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Abstract. In this paper we study the asymptotic behavior for a nonlocal
heat equation in an inhomogenous medium:

ρ(x)ut = J ∗ u− u in R
N

× (0,∞) ,

where ρ is a continous positive function, u is nonnegative and J is a probability
measure having finite second-order momentum. Depending on integrability
conditions on the initial data u0 and ρ, we prove various isothermalisation
results, i.e. u(t) converges to a constant state in the whole space.

1. Introduction

The aim of this paper is to study the asymptotic behavior for a nonlocal heat
equation in an inhomogenous medium:

(1)

{

ρ(x)ut = J ∗ u− u, (x, t) ∈ R
N × (0,∞),

u(x, 0) = u0(x), x ∈ R
N .

Here, u0 is a nonnegative continuous function in R
N and ∗ denotes the convolution

with a kernel J : RN → R, which is a radial, continuous probability density having
finite second-order momentum:

∫

RN

J(s) ds = 1 , E(J) =

∫

RN

sJ(s) ds = 0 , V(J) =

∫

RN

s2J(s) ds < +∞ .

Typical examples of kernel that we consider are the gaussian law, the exponential
law or any compactly supported kernels. We also assume that ρ is a positive,
continuous function in R

N , whether integrable or not.
The operator J ∗ u − u can be interpreted as a non-local diffusion operator.

Indeed, if u(x, t) represents the density of a single population and J(x − y) is the
probability to jump from y to x then the term (J ∗ u)(x) is the rate at which
individuals arrive to x and −u(x) is the rate at which individuals leave from x, see
for instance [6]. In the case of heat propagation, u stands for a temperature and
ρ(x) represents the density of the medium.

Problem (1) is called non-local because the diffusion at u(x, t) depends on all the
values of u in the support of J and not only of the value of u(x, t), as it is the case
for the local diffusion problem

{

ρ(x)ut = ∆u, (x, t) ∈ R
N × (0,∞),

u(x, 0) = u0(x), x ∈ R
N .

For this local problem it is well known that for dimension N = 1, 2 there exists
a unique solution in the class of bounded solutions, see [7] and [4]. Moreover, if
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ρ ∈ L1(RN ) and u0 is bounded, then as t → ∞ the solution converges on compact
sets to Eρ(u0), the mean of u0 with respect to ρ :

Eρ(u0) :=

∫

RN

u0(y)ρ(y) dy
∫

RN

ρ(y) dy

∈ R+ .

This phenomenon is called isothermalisation, since the heat distribution converges
to a non-trivial isothermal state in all the space. However, for dimension N > 3
uniqueness is lost in the class of bounded solutions and some solutions decrease to
zero as t→ ∞, so that isothermalisation does not take place, see [8] and [5].

We are also facing the influence of the space dimension in the nonlocal case.
More precisely, if J is compactly supported and N = 1, 2, we prove uniqueness of
bounded solutions. For dimension N > 3, we need (as in the local case) additional
conditions on the behavior of ρ at infinity to get uniqueness of bounded solutions.

The case when ρ is not integrable is also considered, which is more related to
the study of the homogeneous case (ρ ≡ 1), see [3] and [1]. For bounded solutions,
the flux at infinity is so big that solutions go down to zero asymptotically while if
the data is unbounded, the solution may go to infinity asymptotically as t→ ∞.

Organisation and main results

We first prove in Section 2 a comparison result which gives uniqueness for prob-
lem (1) in some class. In Section 3 we study the existence in the class of bounded
solutions, which is obtained by approximation with Neuman problems in bounded
domains. The main theorem is the following:

Theorem 1.1. Let ρ > 0, continous, and u0 be a bounded nonnegative continuous
function. Then there exits a nonnegative classical bounded solution of problem (1)
such that

∫

RN

ρ(x)u(x, t) dx =

∫

RN

ρ(x)u0(x) dx .

Moreover, if either

ρ(x) >
η

1 + |x|2
,

or N = 1, 2 and J has compact support then uniqueness holds in this class.

Section 4 is devoted to study the isothermalisation phenomenon for bounded
initial data. Then the main theorem is as follows:

Theorem 1.2. Let ρ > 0, continuous, integrable and u0 be a bounded nonnegative
continuous function. Then u(x, t) → Eρ(u0) as t → ∞ in Lp

loc(R
N ) for any 1 6

p <∞; the convergence also holds in L1(ρ):

lim
t→∞

∫

RN

|u(x, t)− Eρ(u0)| ρ(x) dx = 0 .

If ρ is not integrable but still u0 ∈ L1(ρ) (that is, ρu0 ∈ L1(RN )) the flux at
infinity forces the solution to go to zero:

Theorem 1.3. Let ρ > 0 and u0 be a bounded nonnegative continuous function
such that u0 ∈ L1(ρ). If ρ is not integrable in R

N , then u(x, t) → 0 as t → ∞ in
Lp
loc(R

N ) for any 1 6 p <∞.
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Finally, in Section 5 we investigate the case of unbounded initial data. We first
prove an existence result in the class of unbounded solutions provided ρ does not
degenerate too rapidly at infinity. More precisely, if

(2) ρ(x) >
η

1 + |x|γ
γ 6 2 ,

then we have an existence result for quadratic initial data:

Theorem 1.4. Let u0 be a positive continuous function with at most quadratic
growth at infinity. If the function ρ satisfies (2) then there exists a solution of
problem (1).

More generally, if ρ is integrable, we prove similar isothermalisation results for
the minimal solution:

Theorem 1.5. We assume that ρ is a continuous positive integrable function in
R

N and that u0 is a continuous nonnegative function, possibly unbounded, such that
there exists a solution u. Noting u the minimal solution, the following holds:

i) If u0 ∈ L1(ρ) the isothermalisation takes place in L1(ρ),

lim
t→∞

∫

RN

|u(x, t)− Eρ(u0)| ρ(x) dx = 0 .

ii) If u0 /∈ L1(ρ), we have that for all 1 6 p <∞,

lim
t→∞

u(x, t) = ∞ in Lp
loc(R

N ).

In the case of nonintegrable ρ’s with u0 6∈ L1(ρ) the asymptotic behavior is more
difficult to treat. For instance, if ρ ≡ 1, the solutions

u(x, t) = |x|2 + V(J)t, and u(x, t) = 1

have different behavior. Thus, there is a balance between ρ, J , and the initial data
u0 which is not easy to handle and the question remains open.

Acknowledgment. Both authors partially supported by project MTM2008-06326-
C02-02 (Spain). R. Ferreira is also partially supported by grant GR58/08-Grupo
920894. We would like to thank Jorge Garcia-Melián for giving us a proof that
J-harmonic bounded functions are constant (which was reproduced in Lemma 4.4).

2. Preliminaries

Let us specify first what is the notion of solution that we use:

Definition 2.1. Let u0 ∈ L1
loc(R

N ). By a stong solution of (1) we mean a function
u ∈ C0

(

[0,∞); L1
loc(R

N )
)

such that ut, J ∗ u ∈ L1
loc(R

N × (0,∞)
)

, the equation is

satisfied in the L1
loc-sense and such that u(x, 0) = u0(x) almost everywhere in R

N .

We shall consider also solutions with more regularity:

Definition 2.2. A classical solution of (1) is a solution such that moreover u, ut, J∗
u ∈ C0(RN × [0,∞)) and the equation holds in the classical sense everywhere in
R

N × [0,∞).
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A classical sub or supersolution is defined as usual with inequalities instead of
equalities in the equation.

Now let us state a simple regularity Lemma, which contains a technical trick
that we shall use several times in the sequel:

Lemma 2.1. Let u be a strong solution of (1). We assume moreover that u0 is
continuous in R

N and that the convolution term J ∗ u is continous in R
N × [0,∞).

Then u and ut are also continuous in R
N × [0,∞) and u is a classical solution.

Proof. We introduce the following transform:

(3) Tρ[u](x, t) := e t/ρ(x)u(x, t) .

A straightforward calculus show that v = Tρ[u] satisfies

vt =
e t/ρ(x)

ρ(x)
(J ∗ u)(x, t) ,

which is a continuous function in R
N × [0,∞). Integrating between 0 and t we get:

v(x, t) =

∫ t

0

∂tv(x, s) ds + v(x, 0) =

∫ t

0

∂tv(x, s) ds+ u(x, 0) ,

hence v is continuous in R
N × [0,∞). This implies that u is also continuous in

R
N × [0,∞), and the equation holds in the classical sense. �

Remark 2.1. It is well-known in the convolution theory that under one of the
following assumptions, the convolution term is continuous:
(i) u is bounded (since J is integrable);
(ii) J compactly supported and u locally integrable.

The following lemma concerns the comparison of classical sub/supersolutions of
the problem. In order to prove that we need to find a strict supersolution ψ, which
satisfies

(4)

ψ ∈ C0(RN × [0,∞)) , ψ > 0 ,

ψ(x, t) → +∞ as |x| → ∞ uniformly for t ∈ [0,∞) ,

ρψt > J ∗ ψ − ψ .

Lemma 2.2. In each of the following three cases, if A > 0 and λ is large enough,
the function ψ satisfies (4):

(i) If function ρ satisfies

ρ(x) >
η

1 + |x|2
,

then

ψ(x) = Aeλt(1 + |x|2) .

(ii) If J has compact support and N = 1,

ψ(x) = Aeλt(1 + |x|) .

(iii) If J has compact support and N = 2,

ψ(x) = Aeλt
(

1 + (ln |x|)+
)

.
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Proof. The regularity and the behaviour at infinity of ψ is clear, so we only need
to prove that ψ is a strictly supersolution.

In the first case a direct computation gives us that,

J ∗ ψ − ψ = AeλtV(J) .

On the other hand,
ρψt = ρAλeλt(1 + |x|2) > Aληeλt .

Then, for λ > V(J)/η, we are done.
In the other two cases, we notice first that ψ is harmonic outside the origin.

Since J is a probability density supported in B(0, R), this implies that

J ∗ ψ − ψ = 0, for |x| > 2R .

On the other hand, since ψ is continuous in B(0, 2R), there exists K > 0 such that

J ∗ ψ − ψ 6 Keλt for |x| < 2R .

Moreover, if |x| 6 2R the function ρ is bounded from below, so there exists a

constant K̃ such that
ρψt = ρλψ(x, t) > K̃λeλt .

Therefore, taking λ > K/K̃, we get that ψ is a strictly supersolution. �

Remark 2.2. In dimensionN > 3 and J compactly supported, the function ψ(x, t) =
eλt min(1, |x|2−N ) would give a strict supersolution, however it goes to zero as
|x| → ∞. Hence it cannot be used to obtain a comparison principle for bounded
solutions.

Lemma 2.3. Let ψ satisfy (4). Let u be a classical subsolution of (1) and ū a
classical supersolution of (1) such that u(x, 0) 6 ū(x, 0). If for all t > 0,

(5) lim sup
|x|→∞

u− u

ψ
6 0

then u > u in R
N × R+.

Proof. We consider the function

wδ = u− u− δψ,

which satisfies the inequality

(6) ρ(x)(wδ)t < (J ∗ wδ)(x, t)− wδ(x, t) .

From (5), we deduce that on R
N × [0, T ], wδ attains its maximum at a point

(x0, t0). Observe that at this point,

ρ(x0)(wδ)t(x0, t0) < (J ∗ wδ)(x0, t0)− wδ(x0, t0) 6 0

but if t0 ∈ (0, T ), ∂twδ(x0, t0) = 0 and if t0 = T , ∂twδ(x0, t0) > 0. Hence in each of
these cases we reach a contradiction. We are left with the last possibility, t0 = 0,
which implies maxwδ 6 0. Passing to the limit as δ → 0, since T > 0 is arbitrary
we obtain the comparison

u− u 6 0 for all x ∈ R
N , t > 0 .

�

As direct corollary, we have the following uniqueness result, which is valid only
in a suitable class of solutions, as it is the case for the local heat equation.
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Corollary 2.4. Let ψ satisfy (4). Let u0 a continuous function which grows strictly
less than ψ. Then there exists at most one classical solution u of (1) such that |u|
grows strictly less than ψ.

3. Existence and uniqueness of bounded solutions

We obtain a existence result by approximation. We consider the following Neu-
mann problem, where χn denotes the indicator of the ball Bn:

(7)







ρ(x)∂tun =

∫

Bn

(

un(y, t)− un(x, t)
)

J(x − y) dy , x ∈ Bn ,

un(x, 0) = u0χn(x) ,

First, we observe that this problem is possed in a bounded domain, so we have
controlled the point where the maximum is attained. Therefore, we can take ψ = 0
in lemma 2.3 to prove that a comparison principle holds.

Lemma 3.1. Let ρ > 0 be a continuous function in R
N and u0 be a nonnegative

bounded continuous function. Then for any n > 0, there exists a unique solution
un ∈ C1([0,∞); C0(Bn)), which satisfies 0 6 un 6 ‖u0‖∞. Moreover, the following
conservation law holds:

∫

Bn

un(x, t)ρ(x) dx =

∫

Bn

u0(x)ρ(x) dx .

Proof. Following [3], we consider t0 > 0 to be fixed later on and the Banach space
Xt0 = C0([0, t0] × Bn) equipped with the norm |||w||| = max

{

‖w(·, t)‖L∞(Bn)
, 0 6

t 6 t0
}

. Then we define an operator T : Xt0 → Xt0 as follows:

Tw0
(w)(x, t) := w0(x) +

1

ρ

∫ t

0

∫

Bn

J(x − y)(w(y, s)− w(x, s)) dy ds

A straightforward calculus, using that ρ > ρ0 in Bn shows that:

|||Tw0
(w) − Tz0(z)||| 6 ‖w0 − z0‖L∞(Bn)

+
2t0
ρ0

|||w − z||| .

We deduce that for any fixed initial data u0 ∈ L∞(Bn), if t0 > 0 is sufficiently
small (say t0 < ρ0/4), Tu0

is a strict contraction in the Banach space Xt0 . Hence
there exists a unique function un ∈ Xt0 such that Tu0

(un) = un, which means that
for any x ∈ Bn and t ∈ [0, t0], one has

un(x, t) = u0(x) +
1

ρ

∫ t

0

∫

Bn

J(x− y)(un(y, s)− un(x, s)) dy ds .

This in particular implies that u(0) = u0 and moreover, that the weak derivative
∂tu exists, which is given by

∂tun =
1

ρ

∫

Bn

J(x− y)(un(y, s)− un(x, s)) dy .

Since the right hand side of the equation is a continuous function in Bn × [0, t0],
we have that ∂tu is also continuous in Bn × [0, t0]. to extend the solution to [0,∞)
we take as initial data u(x, t0) ∈ C0(Bn) and obtain a solution up [0, 2t0]. We then
iterate the procedure to construct a solution for all time t > 0.
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On the other hand, we note that the constants functions ū = ‖u0‖∞ and u = 0
are a supersolution and subsolution respectively, then by comparison

0 6 un 6 ‖u0‖∞ .

Finally, we observe that

ρ(x)un(x, t)− ρ(x)u0(x) =

∫ t

0

∫

Bn

J(x− y)(un(y, s)− un(x, s)) dy ds .

Then, integrating in x and apply Fubini’s theorem in the right hand side of the
equation, we get de desired conservation law. �

Proposition 3.2. Let ρ > 0 be a continuous function in R
N and u0 be a nonneg-

ative continuous bounded function and for any integer n > 0, let un be the solution
constructed in Lemma 3.1. Then as n → ∞, along a subsequence un → u in
L1
loc(R

N × [0,∞)) where u is a nonnegative classical bounded solution of (1).

Proof. Since the sequence un is bounded, it converges (along a subsequence still
denoted un) in L∞-weak∗ to some nonnegative and bounded function u. Since
J ∈ L1, this implies that J ∗ un → J ∗ u strongly and that ∂tun → ∂tu in the sense
of distributions. We can then pass to the limit in the sense of distributions but
here also we want a better convergence.

Let us introduce a modified version of transform T as follows:

vn(x, t) := e t(J∗χn)(x)/ρ(x)w(x, t) .

Since (7) can be written as

ρ(x)∂t(un)(x, t) =
[

J ∗ (unχn)
]

(x, t)− (J ∗ χn)(x)un(x) ,

it follows immediately that vn satisfies the equation

∂tvn =
e t(J∗χn)(x)/ρ(x)

ρ(x)
J ∗ un .

This implies that ∂tvn converges strongly on compact sets of RN × [0,∞), and

so does vn(x, t) = u0(x)χn(x) +
∫ t

0 (vn)t(x, s) ds. Then un also converges strongly

on compact sets of RN × [0,∞) to its limit u.
Passing to the limit in the equation, we see that u is a strong solution of (1),

which implies that it is a classical solution of this equation – this follows from
Lemma 2.1. �

Proof of Theorem 1.1. It is just the combination of Proposition 3.2, Corollary 2.4
and Remark 2.2. �

Now, we pass to the limit in the conservation low to obtain:

Theorem 3.3. Let ρ > 0, continuous and u0 ∈ C0(RN ) ∩ L∞(RN ) ∩ L1(ρ). Then
(i) for any t > 0, u(·, t) ∈ L1(ρ) and

∫

RN

ρ(x)u(x, t) dx 6

∫

RN

ρ(x)u0(x) dx .

(ii) if moreover we assume that ρ ∈ L1(RN ) then the conservation law holds:
∫

RN

ρ(x)u(x, t) dx =

∫

RN

ρ(x)u0(x) dx .
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Proof. Since u0 ∈ L∞ ∩ C0, the approximating sequence {un} of Proposition 3.2
satisfies that (up to a subsequence) un → u almost everywhere, with 0 6 un 6 ‖u0‖
and

(8)

∫

RN

un(x, t)χn(x)ρ(x) dx =

∫

RN

u0(x)χn(x)ρ(x) dx .

Since u0 ∈ L1(ρ), the dominated convergence theorem yields the convergence of the
right-hand side integral as n → ∞. For the left hand side, using Fatou’s Lemma
we obtain that

∫

RN

ρ(x)u(x, t) dx 6 lim inf
n→∞

∫

RN

ρ(x)un(x, t)χn(x) dx =

∫

RN

ρ(x)u0(x) dx ,

which proves assumption (i).
Finally, if we assume that ρ ∈ L1(RN ) we can use also the dominated convergence

theorem for the sequence unχnρ, which is bounded by ‖u0‖∞ ρ ∈ L1(RN ). We then
pass to the limit in the left-hand side of (8) and get (ii). �

4. Asymptotic behaviour for bounded solutions

We shall now derive our main results concerning the asymptotic behaviour for
(1). We divide the proof in several steps.

4.1. Weak limit. This first step is easy, it only comes from the fact that the
solution is globally bounded:

Lemma 4.1. Let ρ > 0, continuous and u0 ∈ C0(RN ) ∩ L∞(RN ). Let u be a
bounded classical solution. Then for any s > 0 there exists a subsequence tk → +∞
such that the following limit exists in L∞-weak*:

u∞(x, s) := lim
tk→∞

u(x, s+ tk) .

Proof. Since u is bounded, thus there exists a subsequence tk → ∞ such that
u(·, s+ tk) converges in L∞-weak* to a function u∞(·, s) ∈ L∞(RN ). �

4.2. Lyapounov functional. We now want a stronger result, so we use a Lya-
pounov functional:

Lemma 4.2. Let t0 > 0. Assume the hypotheses of Lemma 4.1 and that u0 ∈ L2(ρ).
Then there exists a constant C = C(u0, ρ, t0) such that for all t > t0 > 0,

∫ ∞

t

∫

RN

ρ(x)(ut)
2(x, s) ds 6 C.

Proof. We first go back to the approximating scheme (7). Notice that the following
quantity

F [un](t) =

∫

Bn

∫

Bn

J(x− y)(un(x, t) − un(y, t))
2 dxdy
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is a Lyapunov functional which is nonincreasing along the evolution orbits at the
level n. Indeed, multiplying the equation by u and integrating in Bn we get

∫

ρ(x)∂tun · un dx =

∫∫

J(x − y)un(x)un(y) dxdy −

∫

un(x)
2 dx

=
1

2

∫∫

J(x− y)
(

2un(x)un(y)− 2un(x)
2
)

dxdy

=
1

2

∫∫

J(x− y)
(

2un(x)un(y)− un(x)
2 − un(y)

2
)

dxdy

= −
1

2
F [un](t) .

Therefore,

(9) F [un](t) = −
d

dt

∫

Bn

ρn(x)u
2
n(x, t) dx .

In a similar way, multiplying the equation by ∂tun and integrating in space we
obtain

(10)
d

dt
F [un](t) = −4

∫

Bn

ρ(x)((un)t)
2(x, t) dx .

Integrating (9) we have that for some C′ = C′(u0, ρ),
∫ t

0

F [un](s) ds = 2

∫

Bn

ρ(x)u20(x)χn(x) dx − 2

∫

Bn

ρ(x)u2n(x, t) dx 6 C′ .

Indeed, as u0 ∈ L2(ρ) we have by monotone convergence that
∫

RN

ρ(x)u20(x)χn(x) dx →

∫

RN

ρ(x)u20(x) dx <∞ .

Using now the monotonicity in t of F [un](t), we get

tF [un](t) 6

∫ t

0

F [un](s) ds 6 C′ .

Moreover, F [un](t) is positive so that, integrating (10), we get for any t > t0:
∫ ∞

t

∫

RN

ρ((un)t)
2(x, s) dxds 6

1

4
F [un](t) 6

C′

4t0
.

Using Fatou’s Lemma and the fact that ρ(un)t converges strongly to ρut, we obtain
the desired result. �

As and immediate consequence of this result we obtain:

Lemma 4.3. Assume the hypotheses of Lemma 4.1 and that u0 ∈ L2(ρ). For all
sequence tk → ∞ and s > 0,

‖
√

ρ(·) u(·, s+ tk)−
√

ρ(·) u(·, tk)‖
2
L2(RN ) → 0 as n→ ∞ .

Hence, the limit function u∞(x, s) does not depend on the variable s > 0.

Proof. Notice that for all sequence tk → ∞, we get

∥

∥

√

ρ(·)u(·, s+ tk)−
√

ρ(·)u(·, tk)
∥

∥

2

L2(RN )
=

∫

RN

ρ(x)
(

∫ tk+s

tk

ut(x, σ) dσ
)2

dx

6 s

∫

RN

∫ tk+s

tk

ρ(x)(ut)
2(x, σ) dσ dx,
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which goes to zero as tk → +∞. �

4.3. The ω−limit set. We define the ω−limit set as follows

ω(u0) = {u∞ ∈ C0(RN ) : ∃tj → ∞ such that u(·, tj) → u∞(·) in L∞-weak*}

Lemma 4.4. Under the hypotheses of Lemma 4.1 and that u0 ∈ L2(ρ), the ω-limit
set is reduced to constants.

Proof. Since u(x, s+ tk) converges weakly in L∞-weak*, then as tk → ∞,

(J ∗ u)(x, s+ tk) =

∫

J(x− y)u(y, s+ tk) dy
pointwise
−→ (J ∗ u∞)(x, s) .

Moreover, since u is bounded, the convergence of J ∗ u is also strong in L1
loc. On

the other hand, ∂tρu(s + tk) → ρ∂su∞(s) in the sense of distributions. We then
pass to the limit in the sense of distributions in the equation and get

ρ(x)
∂

∂s
u∞(x, s) = J ∗ u∞(x, s)− u∞(x, s) .

Using Lemma 4.3 we know that u∞ is independent of s so that u∞ is a bounded
solution (in the sense of distributions) of

J ∗ u∞ − u∞ = 0 in R
N .

We first deduce that u∞ is continuous because the convolution term is continous.
Then we consider the Fourier transform in the space of tempered distributions:

Ĵ · û∞ − û∞ = 0 .

Since |Ĵ | < 1 except for Ĵ(0) = 1, we see that the (generalized) Fourier transform
of u∞ has a support contained in {0}. This implies that u∞ is a polynom but since
it is bounded, it has to be a constant. �

4.4. Identification of the limit. We are now ready to identify the ω-limit set.

Lemma 4.5. We assume the hypotheses of Lemma 4.1 and that u0 ∈ L1(ρ). Then
the following holds:

(i) if ρ ∈ L1(RN ), ω(u0) =
{

Eρ(u0)
}

;

(ii) if ρ /∈ L1(RN ), ω(u0) =
{

0
}

.

Proof. Notice first that since u0 ∈ L1(ρ) ∩ L∞, then u0 ∈ L2(ρ), hence we may
use Lemma 4.4. In the integrable case, ρ ∈ L1, we observe that as u is uniformly
bounded, the dominated convergence Theorem gives

∫

RN

ρ(x)un(x, s+ tj) dx→ u∞

∫

RN

ρ(x) dx .

Therefore, by Theorem 3.3-(ii) we obtain u∞ = Eρ(u0), so that the ω-limit set is
reduced to

{

Eρ(u0)
}

.

In the case ρ 6∈ L1(RN ), we take a compact set K such that
∫

K

ρ(x) dx >

∫

RN

ρ(x)u0(x) dx ,
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which is always possible since u0 ∈ L1(ρ). Using Theorem 3.3-(i), Lemma 4.4 and
Fatou’s Lemma, we obtain

u∞
∫

K ρ(x) dx 6 lim inf
n→∞

∫

K ρ(x)un(x, s+ tj) dx

6 lim inf
n→∞

∫

RN ρ(x)un(x, s+ tj) dx

6
∫

RN ρ(x)u0(x) dx .

This implies that necessarily u∞ = 0, hence the ω-limit set is reduced to
{

0
}

. �

4.5. Proofs of Theorems 1.2 and 1.3. As consequence of the fact that the
ω−limit is given by only one function we can pass to the limit in the time vari-
able without extracting any subsequence. Then it only remains to check that the
convergence is better, which is done by using transform Tρ.

Proof of Theorem 1.3. Under the hypotheses of the Theorem, we have that u0 is
continuous, bounded, and ρ not integrable, but nevertheless u0 ∈ L1(ρ) ∩ L2(ρ).
Thus Lemmas 4.1 and 4.5 imply that for any s > 0, at least along a subsequence
tn → ∞ we have u(x, s+ tn) → 0 in L∞-weak*. But the same arguments are valid
for any other subsequence such that u(x, s+ t′n) converges weakly. Since the limit
is always zero, we deduce that for any s > 0,

u(x, s+ t)
L∞-weak*

−−−−−−−−→
t→∞

0 ,

which implies that
(

J ∗ u(s+ t)
)

converges strongly in L1
loc as t→ ∞. Then,

ρ(x)∂su(x, s+ t) =
(

J ∗ u(s+ t)
)

(x)− u(x, s+ t)
L∞-weak*

−−−−−−−−→
t→∞

0 .

Even more, since t → +∞ we may assume that t > t0 for some t0 > 0 and from
lemma 4.2 we obtain that for any compact set K,

∫ ∞

t

(
∫

K

ρ(x)|ut|(x, s) dx

)2

ds 6

∫ ∞

t

(
∫

K

ρ(x)|ut|
2(x, s) dx

)

6

(
∫

K

ρ(x) dx

)

ds 6 C(K,u0, ρ).

Then, at least for some sequence tk → +∞, we have ρ(x)∂su(x, s+ tk) → 0 in L1
loc.

Summing up, we obtain that

lim
tk→+∞

u(x, s+ tk) = 0 in L1
loc .

Of course, if t 7→ u(x, s + t) were to converge in L1
loc along another subsequence

t′k → ∞, the limit would necessarily be zero, so that finally u(·, t) → 0 in L1
loc(R

N )
as t → ∞. Moreover, since t 7→ u(·, t) remains bounded in L∞(RN ), we deduce
that the convergence holds in Lp

loc(R
N ) for any 1 6 p <∞. �

Proof of Theorem 1.2. The first part is done exactly as in the proof of Theorem
1.3, except that ρ is integrable here so that the limit is not zero, but Eρ(u0). To
end the proof in this case, it only remains to prove the L1(ρ) convergence. We fix
ε > 0 and choose R > 0 big enough so that (remember that ρ is integrable):

∫

|x|>R

ρ(x) dx 6 ε .
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Then
∫

RN

|u(x, t)− u∞|ρ(x) dx 6 2ε‖u0‖∞ +

∫

|x|6R

|u(x, t)− u∞|ρ(x) dx ,

and using the L1
loc convergence we get:

lim sup
t→∞

∫

RN

|u(x, t)− u∞|ρ(x) dx 6 2ε‖u0‖∞ .

Since ε is arbitrary, we get that the limit is zero, which ends the proof. �

5. Unbounded solutions

In this section we derive some results for unbounded initial data and solutions.
Let us mention that in the case ρ ≡ 1, further results are to be found in [1]. But
here we still face the problem of the space inhomogeneity implied by ρ.

5.1. An existence result for unbounded solutions.

Proposition 5.1. Let us assume that (4) holds. Then for any nonnegative u0 ∈
C0(RN ), satisfying u0(x) 6 ψ(x, 0) there exist a classical solution u of (1) with
u(x, 0) = u0(x).

Proof. Let us first consider an approximation u0n = u0 · χn where χn is smooth,
nonnegative, compactly supported and χn ր 1. Let un be the solution of (1) with
initial data u0n given by Proposition 3.2, then by applying the comparison result
for bounded solutions, the sequence un is nondecreasing.

Notice that ψ is not bounded, but this is allowed in Lemma 2.3, which gives:

un(x, t) 6 ψ(x, t) .

Hence the sequence un converges to some u and we are able to pass to the limit
in J ∗ un by dominated convergence, using that ψ is integrable with respect to
translations of J .

Using now Lemma 2.1, we deduce that u is a classical solution of (1) and the
initial data of u is u0. �

Remark 5.1. This construction does in fact give a minimal solution: if u1 is any
other solution, then it can be used as a supersolution for any un and passing to the
limit shows that u 6 u1. One can think that if we restrict the initial data to grow
strictly less than ψ, then uniqueness holds because the comparison argument is
valid in this class. However, it is not clear whether the constructed solution enters
this class unless we know more about u0, see [1].

5.2. Asymptotic behaviour for unbounded solutions when ρ is integrable.

We prove now that if u0 is integrable with respect to ρ, the isothermalisation phe-
nomenon occurs (whether infinite or not). Notice that we gave sufficient conditions
for existence of a minimal solution in the previous section. The first result is the
following:

Proposition 5.2. Let u0 ∈ C0(RN ) ∩ L1(ρ), ρ ∈ L1(RN ) and assume there exists
a solution u such that u(x, 0) = u0(x). Then, if u denotes the minimal solution,
we have

lim
t→∞

∫

RN

|u(x, t)− Eρ(u0)| ρ(x) dx = 0 .
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Proof. Let u be the minimal solution and let us use the same monotone approxima-
tions that were used in Proposition 5.1. Since un is bounded, Lemma 2.3 implies
that we have a bound from above:

u(x, t) > un(x, t) in R
N × [0,∞) .

But since un(x, 0) ∈ L∞(RN ), Theorem 3.3 implies
∫

RN

un(x, t)ρ(x) dx =

∫

RN

un(x, 0)ρ(x) dx.

Moreover, the convergence of un to u is monotone, so we can pass to the limit in
the above equation to obtain

∫

RN

u(x, t)ρ(x) dx =

∫

RN

u(x, 0)ρ(x) dx.

Using the above three equations we get that
∫

RN

|u(x, t)− Eρ(u0)|ρ(x) dx 6 I1 + I2 + I3,

where,

I1 =

∫

RN

|u(x, t) − un(x, t)|ρ(x) dx =

∫

RN

(u(x, 0)− un(x, 0))ρ(x) dx .

I2 =

∫

RN

|un(x, t) − Eρ(u0χn)|ρ(x) dx,

I3 =

∫

RN

|Eρ(u0χn)− Eρ(u0)|ρ(x) dx.

Observe that I1 and I3 are independents of t and tend to zero as n→ ∞. Moreover,
un satisfies the hypothesis of Theorem 1.2 so that I2 tends to zero as t → ∞.
Therefore, we first have

lim sup
t→+∞

∫

RN

|u(x, t) − Eρ(u0)|ρ(x) dx 6 I1 + I3 ,

so that taking the limit as n→ ∞ yields the desired result. �

In the case when u0 /∈ L1(ρ), then infinite isothermalisation occurs:

Proposition 5.3. Let ρ ∈ L1(RN ) and u0 ∈ C0(RN ) such that u0 /∈ L1(ρ). Then
for any solution u with initial data u0 and any 1 6 p <∞, the following asymptotic
behaviour holds:

lim
t→+∞

u(x, t) = +∞ in Lp
loc(R

N ) .

Proof. As before, if there exists a solution, then we can approximate the minimal
solution u by the family un used in Proposition 5.1. Since this approximation is
monotone,

u(x, t) > un(x, t) in R
N × [0,∞) .

But un(x, 0) satisfies the hypotheses of Theorem 1.2 so that

lim inf
t→+∞

u(x, t) > lim
t→+∞

un(x, t) = cn ,

where cn = Eρ(un(x, 0)), the limit holding in all Lp
loc(R

N ). Hence passing to the
limit as n → +∞, we obtain the result for u since cn → Eρ(u0) = +∞, thus the
same holds for any other solution. �
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Theorems 1.4 and 1.5 follow from the conjunction of Propositions and 5.1, 5.2
and 5.3.
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