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Abstract

In this paper we study the asymptotic behavior for a nonlocal heat equation in an inho-
mogenous medium:

ρ(x)ut = J ∗ u − u in R
N × (0,∞) ,

where ρ is a continous positive function, u is nonnegative and J is a probability measure
having finite second-order momentum. Depending on integrability conditions on the initial
data u0 and ρ, we prove various isothermalisation results, i.e. u(t) converges to a constant
state in the whole space.

1 Introduction

The aim of this paper is to study the asymptotic behavior for a nonlocal heat equation in an
inhomogenous medium:

{

ρ(x)ut = J ∗ u − u, (x, t) ∈ R
N × (0,∞),

u(x, 0) = u0(x), x ∈ R
N .

(1)

Here, u0 is a nonnegative continuous function in R
N and ∗ denotes the convolution with a

kernel J : R
N → R, which is a radial, continuous probability density having finite second-order

momentum:
∫

RN

J(s) ds = 1 , E(J) =

∫

RN

sJ(s) ds = 0 , V(J) =

∫

RN

s2J(s) ds < +∞ .

Typical examples of kernels that we consider are the gaussian law, the exponential law or any
compactly supported kernel. We also assume that ρ is a positive, continuous function in R

N ,
whether integrable or not.
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The operator J ∗u−u can be interpreted as a non-local diffusion operator. Indeed, if u(x, t)
represents the density of a single poulation and J(x − y) is the probability to jump from y to
x then the term (J ∗ u)(x) is the rate at which individuals arrive to x and −u(x) is the rate at
which individuals leave from x, see for instance [7]. In the case of heat propagation, u stands
for a temperature and ρ(x) represents the density of the medium.

Problem (1) is called non-local because the diffusion at u(x, t) depends on all the values of
u in the support of J and not only of the value of u(x, t), as it is the case for the local diffusion
problem

{

ρ(x)ut = ∆u, (x, t) ∈ R
N × (0,∞),

u(x, 0) = u0(x), x ∈ R
N .

For this local problem it is well know that for dimension N = 1, 2 there exists a unique solution
in the class of bounded solutions, see [8] and [5]. Moreover, if ρ ∈ L1(RN ) and u0 is bounded,
then as t → ∞ the solution converges on compact sets to Eρ(u0), the mean of u0 with respect
to ρ :

Eρ(u0) :=

∫

RN

u0(y)ρ(y) dy
∫

RN

ρ(y) dy

∈ R+ .

This phenomenon is called isothermalization, since the heat distribution converges to a non-
trivial isothermal state in all the space. However, for dimension N > 3 uniqueness is lost in the
class of bounded solutions and some solutions decrease to zero as t → ∞, so that isothermaliza-
tion does not take place, see [9] and [6].

On the contrary here, we show that if ρ is integrable, given any bounded initial data there
exists a unique classical solution of problem (1) and that the isothermalization effect always
occurs for all dimension N > 1 (see more precise statements below).

The case when ρ is not integrable is also considered, which is more related to the study of
the homogeneous case (ρ ≡ 1), see [3] and [1]. For bounded solutions, the flux at infinity is so
big that solutions go down to zero asymptotically while if the data is unbounded, the solution
may go to infinity asymptotically as t → ∞.

Organisation and main results

We first prove in Section 2 a comparison result which gives uniqueness for problem (1). In
Section 3 we study the existence in the class of bounded solutions, which requires an approxima-
tion first by functions ρn that do not degenerate at infinity. The main theorem is the following:

Theorem 1.1 Let ρ > 0, continous, and u0 be a bounded nonnegative continuous function.
Then there exits a unique classical solution of problem (1).

Before studying the asymptotic behaviour, an important step in this direction consists first in
proving that if ρ is integrable and u0 bounded, the following conservation law holds:

∫

RN

ρ(x)u(x, t) dx =

∫

RN

ρ(x)u0(x) dx .
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This is a nontrivial result which is obtained by approximation with Neuman problems in bounded
domains, see Section 4. Then, Section 5 is devoted to study the isothermalisation phenomenon
for bounded initial data. Then the main theorem is as follows:

Theorem 1.2 Let ρ > 0, continuous, integrable and u0 be a bounded nonnegative continuous
function. Then u(x, t) → Eρ(u0) as t → ∞ in Lp

loc(R
N ) for any 1 6 p < ∞; the convergence

also holds in L1(ρ):

lim
t→∞

∫

RN

|u(x, t) − Eρ(u0)| ρ(x) dx = 0 .

Notice that we have no restriction on the space dimension contrary to what happens for the
“local” heat equation. In the case when ρ is not integrable but still u0 ∈ L1(ρ) (that is,
ρu0 ∈ L1(RN )) the flux at infinity forces the solution to go to zero:

Theorem 1.3 Let ρ > 0 and u0 be a bounded nonnegative continuous function such that u0 ∈
L1(ρ). If ρ is not integrable in R

N , then u(x, t) → 0 as t → ∞ in Lp
loc(R

N ) for any 1 6 p < ∞.

Finally, in Section 6 we investigate the case when the initial data is not bounded. We first
prove an existence result in the class of unbounded solutions provided ρ does not degenerate too
rapidly at infinity. More precisely, if

ρ(x) >
η

1 + |x|γ
γ 6 2 , (2)

then we have an existence result for quadratic initial data:

Theorem 1.4 Let u0 be a positive continuous function with at most quadratic growth at infinity.
If the function ρ satisfies (2) then there exists a minimal solution of problem (1).

More generally, if ρ is integrable, we prove similar isothermalisation results for the minimal
solution:

Theorem 1.5 We assume that ρ is a continuous positive integrable function in R
N and that

u0 is a continuous nonnegative function, possibly unbounded, such that there exists a solution u.
Noting u the minimal solution, the following holds:

i) If u0 ∈ L1(ρ) the isothermalization takes place in L1(ρ),

lim
t→∞

∫

RN

|u(x, t) − Eρ(u0)| ρ(x) dx = 0 .

ii) If u0 /∈ L1(ρ), we have that for all 1 6 p < ∞,

lim
t→∞

u(x, t) = ∞ in Lp
loc(R

N ).

In the case of nonintegrable ρ’s with u0 6∈ L1(ρ) the asymptotic behavior is more difficult to
treat. For instance, if ρ ≡ 1, the solutions

u(x, t) = |x|2 + V(J)t, and u(x, t) = 1

have different behavior. Thus, there is a balance between ρ, J , and the initial data u0 which is
not easy to handle and the question remains open.
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2 Preliminaries

Let us specify first what is the notion of solution that we use:

Definition 2.1 Let u0 ∈ L1
loc(R

N ). By a stong solution of (1) we mean a function u ∈
C0

(

[0,∞); L1
loc(R

N )
)

such that ut, J ∗ u ∈ L1
loc(R

N × (0,∞)
)

, the equation is satisfied in the
L1

loc-sense and such that u(x, 0) = u0(x) almost everywhere in R
N .

We shall consider also solutions with more regularity:

Definition 2.2 A classical solution of (1) is a solution such that moreover u, ut, J∗u ∈ C0(RN×
[0,∞)) and the equation holds in the classical sense everywhere in R

N × [0,∞).

A classical sub or supersolution is defined as usual with inequalities instead of equalities in the
equation.

Now let us state a simple regularity Lemma, which contains a technical trick that we shall
use several times in the sequel:

Lemma 2.1 Let u be a strong solution of (1). We assume moreover that u0 is continuous in
R

N and that the convolution term J ∗ u is continous in R
N × [0,∞). Then u and ut are also

continuous in R
N × [0,∞) and u is a classical solution.

Proof. We introduce the following transform:

Tρ[u](x, t) := e t/ρ(x)u(x, t) . (3)

A straightforward calculus show that v = Tρ[u] satisfies

vt =
e t/ρ(x)

ρ(x)
(J ∗ u)(x, t) ,

which is a continuous function in R
N × [0,∞). Integrating between 0 and t we get:

v(x, t) =

∫ t

0
∂tv(x, s) ds + v(x, 0) =

∫ t

0
∂tv(x, s) ds + u(x, 0) ,

hence v is continuous in R
N × [0,∞). This implies that u is also continuous in R

N × [0,∞), and
the equation holds in the classical sense. 2

Remark 2.1 It is well-known in the convolution theory that under one of the following assump-
tions, the convolution term is continuous:
(i) u is bounded (since J is integrable);
(ii) J compactly supported and u locally integrable.

The following lemma concerns the comparison of classical sub/supersolutions of the problem.
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Lemma 2.2 Let u and u be continous functions in R
N × [0,∞). We assume that u is a classical

supersolution of (1) and that u is a bounded classical subsolution of (1) with u(x, 0) > u(x, 0).
Then u > u in R

N × R+.

Proof. We consider the functions

wδ = u − u − δ −
δ

4V(J)
|x|2 , and φδ = Tρ[wδ] .

Since

J ∗ |x|2 − |x|2 =

∫

RN

J(y)|y|2 dy − 2

∫

RN

J(y) < x, y > dy = V(J)

the above functions are related by the inequality

ρ(x)(φδ)t = e t/ρ(x)
(

(J ∗ wδ)(x, t) +
δ

4

)

. (4)

The function wδ is continuous in R
N × [0,∞) and notice that wδ 6 −δ < 0 at time t = 0. There

are two options:
(i) either wδ 6 −δ/2 in R

N × (0,∞);
(ii) or there exists a point (x, t) ∈ R

N × (0,∞) such that wδ(x, t) > −δ/2.

Let us assume that we are in this second case and let t0 be defined as follows:

t0 := inf{t > 0 : ∃x ∈ R
N , wδ(x, t) > −δ/2} < ∞ .

A first estimate shows that

wδ(x, t) > −δ/2 =⇒ |x| < Rδ :=
(4V(J)‖u‖∞

δ

)1/2
< ∞ ,

so that the only possible points where wδ may reach a level above −δ/2 are located inside the
fixed ball BRδ

. Thus, up to a finite number of terms, any minimizing sequence remains inside
the compact set BRδ

× [0, t0 +1]. After extraction and using the continuity of wδ, we get that the
inf is attained and there is a point (x0, t0) such that wδ(x0, t0) = −δ/2. Of course this implies
that t0 cannot be zero, since wδ 6 −δ at t = 0.

So, t0 > 0 and necessarily wδ 6 −δ/2 in R
N × (0, t0), which implies also J ∗ wδ 6 −δ/2 for

t ∈ (0, t0), everywhere in R
N . Using (4), we see that (φδ)t 6 0 in (0, t0) so that

∀(x, t) ∈ R
N × (0, t0) , φδ(x, t) 6 φδ(x, 0) = wδ(x, 0) 6 −δ .

But taking x = x0 and letting t → t0, by continuity we arrive at wδ(x0, t0) 6 φδ(x0, t0) 6 −δ
which is a contradiction.

So, we end up with the first possibility (i): for any δ > 0, wδ 6 −δ/2 in all R
N × (0,∞) and

taking limit as δ → 0 we obtain

(u − u)(x, t) 6 0 for all x ∈ R
N , t > 0 ,

which ends the proof. 2
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Remark 2.2 Observe that the same result holds if we only assume that the subsolution grows
strictly less than |x|2 : indeed, if u(x, t) 6 C(1 + |x|2−ε) for some ε ∈ (0, 2) then the point x0

remains inside a fixed ball with radius O(δ−1/ε) and the rest of the proof follows identically. See
also [1].

An immediate consequence of the comparison property is the uniqueness of the bounded
classical solution.

Corollary 2.1 Given u0 continous and bounded in R
N , there exists at most one classical solu-

tion u of (1).

Proof. Since u0 is bounded, then the constant ‖u0‖∞ is a bounded (classical) supersolution.
Hence, if there exists a (classical) solution u, using the comparison result we see that u is
necessarily bounded by ‖u0‖∞. Then if we have two solutions u1 and u2, since both are bounded
we can again use the comparison result in both ways to get that u 6 v and v 6 u so that the
solution is unique. 2

3 Existence and uniqueness of bounded solutions

We shall assume first that ρ is bounded below by some positive constant, so that we can apply
the usual fixed-point approach to prove the existence of the solution for integrable initial data.
Then we derive a general result for possibly degenerating ρ’s by approximation.

3.1 Non-degenerate case.

Lemma 3.1 Let ρ > ρ0 > 0, continuous and u0 ∈ L1(R). Then there exists a unique strong
solution u of (1) in the class C0

(

[0,∞); L1(RN )
)

.

Proof. Following [3], we consider t0 > 0 to be fixed later on and the space Xt0 = C0([0, t0]; L
1(RN ))

equipped with the norm |||w||| = max
{

‖w(·, t)‖L1 , 0 6 t 6 t0
}

. Then we define an operator
T : Xt0 → Xt0 as follows:

Tw0
(w)(x, t) := w0(x) +

1

ρn

∫ t

0

{

(J ∗ w)(x, s) − w(x, s)
}

ds

A straightforward calculus, using that ρ > ρ0 shows that:

|||Tw0
(w) − Tz0

(z)||| 6 ‖w0 − z0‖L1 +
2t0
ρ0

|||w − z||| .

We deduce that for any fixed initial data u0 ∈ L1(RN ), if t0 is sufficiently small, Tu0
is a

contraction, hence there exists a unique solution u starting with u(0) = u0, defined up to t = t0:

u(x, t) = u0(x) +
1

ρ

∫ t

0

{

(J ∗ u)(x, s) − u(x, s)
}

ds ,

6



which implies that ∂tu exists as a L1
loc function, and that (1) holds in (0, t0) in the strong sense

(not classical though, a priori). We then iterate the argument to construct a solution for all
time t > 0. 2

3.2 Degenerate case

We construct here a solution of (1) for continuous and bounded initial data, using the approxi-
mation ρn → ρ and also an approximation of initial data from L1(RN ). We consider the following
problem:

{

ρn(x)(un)t = J ∗ un − un, (x, t) ∈ R
N × (0,∞),

un(x, 0) = u0(x)χn(x), x ∈ R
N ,

(5)

where by χn we denote the indicator function of Bn (the ball of radius n centered at the origin)
and ρn(x) = max{ρ(x);αn} where (αn) is a sequence of positive real numbers strictly decreasing
to zero. With this choice, ρn > αn, ρn decreases to ρ, and ρn = ρ in any compact set for n
sufficiently big (since ρ is continuous and positive).

Since ρn > αn > 0 and u0χn ∈ L1(RN ) ∩ L1(ρn) we can apply the results of the previous
Subsection to obtain that there exist a classical solution un.

Now, in order to obtain a solution of problem (1) we pass to the limit as n → ∞.

Proposition 3.1 Let ρ > 0, continuous and u0 ∈ L∞(RN )∩C0(RN ) be a nonnegative function.
For any positive decreasing sequence αn ց 0, let un be the solution of (5) associated to ρn =
max{ρ, αn}. Then the sequence (un) converges in L1

loc to the unique classical solution u ∈
C0

(

R
N × [0,∞)

)

of (1) with initial data u0.

Proof. Since ρn > αn > 0 does not degenerate, we may use Lemma 3.1 to get a solution un ∈
C0

(

[0,∞); L1(RN )
)

with ρn. We first observe that ‖u0‖∞ is a bounded classical supersolution
of (5) with 0 6 u0n 6 ‖u0‖∞, so we may apply Lemma 2.2 with ρ = ρn to get that

0 6 un(x, t) 6 ‖u0‖∞ .

This allows to pass to the limit in L∞-weak* along a subsequence (still denoted by un): there
exists a bounded function u such that un ⇀ u.

We then deduce that J ∗un → J ∗u pointwise (since J is integrable), and J ∗u is continuous
since u is bounded (see Remark 2.1). Moreover, J ∗ un is uniformly bounded so that the
convergence also holds in L1

loc(R
N × [0,∞)). On the other hand, ρn∂tun converges weakly in the

sense of distributions to ρ∂tu, which would be enough to obtain a weak (distributional) solution.
But we have more.

Using transform Tρn
introduced in Lemma 2.1, we see that vn := Tρn

[un] satisfies the equa-
tion:

∂tvn(x, t) =
e t/ρn(x)

ρn(x)
(J ∗ un)(x, t) ,

7



hence ∂tvn converges pointwise and in L1
loc(R

N × [0,∞)) to some f which is continuous. Inte-
grating in time we get:

vn(x, t) = u0n(x) +

∫ t

0
∂tvn(x, s) ds → v(x, t) = u0(x) +

∫ t

0
f(x, s) ds ,

which is continuous in R
N × [0,∞).

Hence un = e−t/ρn(x)vn also converges pointwise and in L1
loc(R

N × [0,∞)), and the limit is
necessarily u, which is a continuous function in R

N × [0,∞). Coming back to the equation for
un, we see that every term converges strongly, and in the limit we have:

ρ ut = J ∗ u − u ,

where all the terms of the equation are in fact in C0(RN × [0,∞)). Hence u is a classical solution
of (1) and Corollary 2.1 implies its uniqueness. The last step of the existence proof consists in
saying that since any possible limit is in fact unique, then all the sequence converges to u, and
there is no need to extract. 2

Proof of Theorem 1.1. It is just the combination of Corollary 2.1 and Proposition 3.1. 2

3.3 Approximation by Neumann problems

Another way to get a solution of (1) in R
N consists in solving first the equation in the balls

Bn and pass to the limit as n → ∞. Since we are interested in getting a conservation law, it is
natural to consider here the following Neuman problem, where χn denotes the indicator of Bn:







ρ(x)∂tun =

∫

Bn

(

un(y, t) − un(x, t)
)

J(x − y) dy , x ∈ Bn ,

un(x, 0) = u0χn(x) ,
(6)

Lemma 3.2 Let ρ > 0 be a continuous function in R
N and u0 be a nonnegative continuous

function such that u0 ∈ L1(ρ) ∩ L∞. Then for any n > 0, there exists a unique solution
un ∈ C0(0, T ; L1(Bn)) of (6), and un is continuous. Moreover, the maximum principle holds
which implies 0 6 un 6 ‖u0‖∞ and the conservation law holds:

∫

Bn

un(x, t)ρ(x) dx =

∫

Bn

u0(x)ρ(x) dx .

Proof. Existence and uniqueness is done in [3] using a semi-group approach, in the case ρ ≡ 1.
Even if ρ is not constant here, it is bounded from below in Bn so that the modifications are similar
to those of the non-degenerate case, section 3.1. Moreover, using the same techniques as in [2],
the equation (or inequation for sub/super solutions) still holds at the boundary, ∂Bn × (0,∞).
The comparison principle is obtained in the same way as in lemma 2.2, without the term |x|2.
Therefore, using the constant solutions c = 0 and c = ‖u0‖∞ to compare with the solution un,
we get the desired estimate. Finally, the conservation law is simply obtained by integrating the
equation over Bn × [0, t]. 2
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Proposition 3.2 Let ρ > 0 be a continuous function in R
N and u0 be a nonnegative continuous

function such that u0 ∈ L1(ρ)∩L∞ and for any integer n > 0, let un be the solution constructed
in Lemma 3.2. Then as n → ∞, along a subsequence un → u in L1

loc(R
N × [0,∞)) where u is

the unique classical solution of (1).

Proof. Since the sequence un is bounded, it converges (along a subsequence still denoted un)
in L∞-weak∗ to some nonnegative and bounded function u. Since J ∈ L1, this implies that
J ∗ un → J ∗ u strongly and that ∂tun → ∂tu in the sense of distributions. We can then pass to
the limit in the sense of distributions but here also we want a better convergence.

Let us introduce a modified version of transform T as follows:

vn(x, t) := e t(J∗χn)(x)/ρ(x)w(x, t) .

Since (6) can be written as

ρ(x)∂t(un)(x, t) =
[

J ∗ (unχn)
]

(x, t) − (J ∗ χn)(x)un(x) ,

it follows immediately that vn satisfies the equation

∂tvn =
e t(J∗χn)(x)/ρ(x)

ρ(x)
J ∗ un .

This implies that ∂tvn converges strongly on compact sets of R
N × [0,∞), and so does

vn(x, t) = u0(x)χn(x) +
∫ t
0 (vn)t(x, s) ds. Then un also converges strongly on compact sets of

R
N × [0,∞) to its limit u.

Passing to the limit in the equation, we see that u is a strong solution of (1), which implies
that it is the unique classical solution of this equation – this follows from Lemma 2.1 and
Corollary 2.1. Any other converging subsequence leads to the same solution u so that all the
sequence un converges to u in L1

loc(R
N × [0,∞)). 2

Remark 3.1 By uniqueness of classical solutions, we have that the classical solution obtained
by approximation of the function ρ(x) and the classical solution obtained as the limit of solutions
of Neumann problems are identical.

4 Conservation Law

In this Section we investigate various conditions under which solutions of (1) satisfy a conser-
vation law. A first lemma in this direction is as follows:

Lemma 4.1 Let ρ be a nonnegative measurable function and u a strong solution of (1) such
that u ∈ C0

(

[0,∞); L1(RN )
)

. If u0(x) ∈ L1(ρ) then for any t > 0, u(·, t) ∈ L1(ρ) and

∫

RN

ρ(x)u(x, t) dx =

∫

RN

ρ(x)u0(x) dx.
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Proof. First, we integrate equation (1) with respect to the time variable to obtain

ρ(x)u(x, t) = ρ(x)u0(x) +

∫ t

0
(J ∗ u − u)(x, t) dt.

We integrate over BR using Fubini’s theorem:
∫

BR

ρ(x)u(x, t) dx +

∫ t

0

∫

BR

u(x, t) dxdt =

∫

BR

ρ(x)u0(x) dx +

∫ t

0

∫

BR

J ∗ u(x, t) dxdt .

Using the fact that u0(x) ∈ L1(ρ) and u ∈ C0
(

[0,∞); L1(RN )
)

, we can use monotone convergence
for the right-hand side terms which implies that u(·, t) ∈ L1(ρ). Moreover, since u(·, t) ∈ L1,

∫

RN

(J ∗ u)(x, t) dx =

∫

RN

u(x, t) dx, for any t > 0

so that finally we get
∫

RN

ρ(x)u(x, t) dx =

∫

RN

ρ(x)u0(x) dx .

2

In particular, this result is valid for the solutions constructed in Section 3.1, but it is difficult
in general to be sure that u(t) remains in L1. So we use the approximation by Neuman problems
in order the keep the conservation law in the limit when ρ ∈ L1. If ρ is not integrable, we have
only a one-sided estimate but this will be sufficient to obtain the asymptotic behaviour.

Proposition 4.1 Let ρ > 0, continuous and u0 ∈ C0(RN ) ∩ L∞(RN ) ∩ L1(ρ). Then
(i) for any t > 0, u(·, t) ∈ L1(ρ) and

∫

RN

ρ(x)u(x, t) dx 6

∫

RN

ρ(x)u0(x) dx .

(ii) if moreover we assume that ρ ∈ L1(RN ) then the conservation law holds:
∫

RN

ρ(x)u(x, t) dx =

∫

RN

ρ(x)u0(x) dx .

Proof. Since u ∈ L∞ ∩C0, we may use the approximating sequence {un} of Section 3.3, which
satisfies that un → u at least almost everywhere, with 0 6 un 6 ‖u0‖ and

∫

RN

un(x, t)χn(x)ρ(x) dx =

∫

RN

u0(x)χn(x)ρ(x) dx . (7)

Since u0 ∈ L1(ρ), the dominated convergence theorem yields the convergence of the right-hand
side integral as n → ∞. For the left hand side, using Fatou’s Lemma we obtain that

∫

RN

ρ(x)u(x, t) dx 6 lim inf
n→∞

∫

RN

ρ(x)un(x, t)χn(x) dx =

∫

RN

ρ(x)u0(x) dx ,

which proves assumption (i) of the proposition.

Finally, if we assume that ρ ∈ L1(RN ) we can use also the dominated convergence theorem
for the sequence unχnρ, which is bounded by ‖u0‖∞ ρ ∈ L1. We then pass to the limit at the
left-hand side of (7) and get (ii). 2

10



5 Asymptotic behaviour for bounded solutions

We shall now derive our main results concerning the asymptotic behaviour for (1). We divide
the proof in several steps.

5.1 Weak limit

This first step is easy, it only comes from the fact that the solution is globally bounded:

Lemma 5.1 Let ρ > 0, continuous and u0 ∈ C0(RN )∩L∞(RN ). Let u be the associated classical
solution. Then for any s > 0 there exists a subsequence tk → +∞ such that the following limit
exists in L∞-weak*:

u∞(x, s) := lim
tk→∞

u(x, s + tk) .

Proof. Since u0 is bounded, u is also bounded by comparison in the class of classical solutions,
thus there exists a subsequence tk → ∞ such that u(·, s+tk) converges in L∞-weak* to a function
u∞(·, s) ∈ L∞(RN ). 2

5.2 Lyapounov functional

We now want a stronger result, so we use a Lyapounov functional:

Lemma 5.2 Assume the hypotheses of Lemma 5.1 and that u0 ∈ L2(ρ). Then there exists a
constant C = C(u0, ρ) such that,

∫ ∞

t

∫

RN

ρ(x)(ut)
2(x, s) ds 6 C.

Proof. First we prove that for the approximating problem (5) the following functional

F [un](t) =

∫

RN

∫

RN

J(x − y)(un(x, t) − un(y, t))2 dxdy

is a Lyapunov functional which is nonincreasing along the evolution orbits. Multiply equation
(5) by (un)t and integrating in space we obtain that

d

dt
F [un](t) = −4

∫

RN

ρn(x)((un)t)
2(x, t) dx , (8)

while multiplying the equation by un gives

F [un](t) = −2
d

dt

∫

RN

ρn(x)u2
n(x, t) dx . (9)

Notice that derivation under the integral is possible at the level n since we know that un(t) ∈
C0

(

0,∞; L1(RN )
)

, which implies that also ∂tun ∈ C(0,∞; L1).

11



Integrating (9) we have that for some C ′ = C ′(u0, ρ),

∫ t

0
F [un](s) ds = 2

∫

RN

ρn(x)u2
0(x)χn(x) dx − 2

∫

RN

ρn(x)u2
n(x, t) dx 6 C ′ .

Indeed, as u0 ∈ L2(ρ) we have by monotone convergence that

∫

RN

ρn(x)u2
0(x)χn(x) dx →

∫

RN

ρ(x)u2
0(x) dx < ∞ .

Hence, t 7→ F [un](t) is a decreasing function which is in L1(0, t) for all t > 0. It follows that
F [un](t) must be bounded for all t > 0 by some constant C = C(u0, ρ).

Moreover, F [un](t) is positive so that, integrating (8), we get for any t > 0:

∫ ∞

t

∫

RN

ρ((un)t)
2(x, s) dxds 6

1

4
F [un](t) 6 C(u0, ρ).

Using Fatou’s Lemma and the fact that ρn(un)t converges strongly to ρut, we obtain the desired
result. 2

As and immediate consequence of this result we obtain:

Lemma 5.3 Assume the hypotheses of Lemma 5.1 and that u0 ∈ L2(ρ). For all sequence
tk → ∞ and s > 0,

‖
√

ρ(·) u(·, s + tk) −
√

ρ(·) u(·, tk)‖2
L2(RN ) → 0 as n → ∞ .

Hence, the limit function u∞(x, s) does not depend on the variable s > 0.

Proof. Note that for all sequence tk → ∞, we get

∥

∥

√

ρ(·) u(·, s + tk) −
√

ρ(·) u(·, tk)
∥

∥

2

L2(RN )
=

∫

RN

ρ(x)
(

∫ tk+s

tk

ut(x, σ) dσ
)2

dx

6 s

∫

RN

∫ tk+s

tk

ρ(x)(ut)
2(x, σ) dσ dx → 0.

2

5.3 The ω−limit set

We define the ω−limit set as follows

ω(u0) = {u∞ ∈ C0(RN ) : ∃tj → ∞ such that u(·, tj) → u∞(·) in L∞-weak*}

Lemma 5.4 Under the hypotheses of Lemma 5.1 and that u0 ∈ L2(ρ), the ω-limit set is reduced
to constants.

12



Proof. Since u(x, s + tk) converges weakly in L∞-weak*, then as tk → ∞,

(J ∗ u)(x, s + tk) =

∫

J(x − y)u(y, s + tk) dy
pointwise
−→ (J ∗ u∞)(x, s) .

Moreover, since u is bounded, the convergence of J ∗u is also strong in L1
loc. On the other hand,

∂tρu(s + tk) → ρ∂su∞(s) in the sense of distributions. We then pass to the limit in the sense of
distributions in the equation and get

ρ(x)
∂

∂s
u∞(x, s) = J ∗ u∞(x, s) − u∞(x, s) .

Using Lemma 5.3 we know that u∞ is independent of s so that u∞ is a bounded solution (in
the sense of distributions) of

J ∗ u∞ − u∞ = 0 in R
N .

We deduce that u∞ is continuous because the convolution term is continous, and so it is nec-
essarily constant in all R

N . Indeed, the equation for u∞ implies that it is harmonic (see for
instance [4] for a proof) and bounded harmonic functions are constant. 2

5.4 Identification of the limit

We are now ready to identify the ω-limit set.

Lemma 5.5 We assume the hypotheses of Lemma 5.1 and that u0 ∈ L1(ρ). Then the following
holds:

(i) if ρ ∈ L1(RN ), ω(u0) =
{

Eρ(u0)
}

;

(ii) if ρ /∈ L1(RN ), ω(u0) =
{

0
}

.

Proof. Notice first that since u0 ∈ L1(ρ) ∩ L∞, then u0 ∈ L2(ρ), hence we may use Lemma
5.4. In the integrable case, ρ ∈ L1, we observe that as u is uniformly bounded, the dominated
convergence Theorem gives

∫

RN

ρ(x)un(x, s + tj) dx → u∞

∫

RN

ρ(x) dx .

Therefore, by Proposition 4.1-(ii) we obtain u∞ = Eρ(u0), so that the ω-limit set is reduced to
{

Eρ(u0)
}

.

In the case ρ 6∈ L1(RN ), we take a compact set K such that
∫

K
ρ(x) dx >

∫

RN

ρ(x)u0(x) dx ,

which is always possible since u0 ∈ L1(ρ). Using Proposition 4.1-(i), Lemma 5.4 and Fatou’s
Lemma, we obtain

u∞

∫

K ρ(x) dx 6 lim inf
n→∞

∫

K ρ(x)un(x, s + tj) dx

6 lim inf
n→∞

∫

RN ρ(x)un(x, s + tj) dx

6
∫

RN ρ(x)u0(x) dx .
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This implies that necessarily u∞ = 0, hence the ω-limit set is reduced to
{

0
}

. 2

5.5 Proofs of Theorems 1.2 and 1.3

As consequence of the fact that the ω−limit is given by only one function we can pass to the
limit in the time variable without extracting any subsequence. Then it only remains to check
that the convergence is better, which is done by using transform Tρ.

Proof of Theorem 1.3. Under the hypotheses of the Theorem, we have that u0 is continuous,
bounded, and ρ not integrable, but nevertheless u0 ∈ L1(ρ) ∩ L2(ρ). Thus Lemmas 5.1 and 5.5
imply that for any s > 0, at least along a subsequence tn → ∞ we have u(x, s + tn) → 0 in
L∞-weak*. But the same arguments are valid for any other subsequence such that u(x, s + t′n)
converges weakly. Since the limit is always zero, we deduce that for any s > 0,

u(x, s + t)
L∞-weak*
−−−−−−−→

t→∞
0 ,

which implies that
(

J ∗ u(s + t)
)

converges strongly in L1
loc as t → ∞. Then,

ρ(x)∂su(x, s + t) =
(

J ∗ u(s + t)
)

(x) − u(x, s + t)
L∞-weak*
−−−−−−−→

t→∞
0 .

Even more, from lemma 5.2 we obtain that for any compact set K,

∫ ∞

t

(
∫

K
ρ(x)|ut|(x, s) dx

)2

ds 6

∫ ∞

t

(
∫

K
ρ(x)|ut|

2(x, s) dx

) (
∫

K
ρ(x) dx

)

ds 6 C(K,u0, ρ).

Then, at least for some sequence tk → +∞, we have ρ(x)∂su(x, s + tk) → 0 in L1
loc. Summing

up, we obtain that
lim

tk→+∞
u(x, s + tk) = 0 in L1

loc .

Of course, if t 7→ u(x, s + t) were to converge in L1
loc along another subsequence t′k → ∞, the

limit would necessarily be zero, so that finally u(·, t) → 0 in L1
loc(R

N ) as t → ∞. Moreover, since
t 7→ u(·, t) remains bounded in L∞(RN ), we deduce that the convergence holds in Lp

loc(R
N ) for

any 1 6 p < ∞. 2

Proof of Theorem 1.2. The first part is done exactly as in the proof of Theorem 1.3, except
that ρ is integrable here so that the limit is not zero, but Eρ(u0). To end the proof in this case,
it only remains to prove the L1(ρ) convergence. We fix ε > 0 and choose R > 0 big enough so
that (remember that ρ is integrable):

∫

|x|>R
ρ(x) dx 6 ε .

Then
∫

RN

|u(x, t) − u∞|ρ(x) dx 6 2ε‖u0‖∞ +

∫

|x|6R
|u(x, t) − u∞|ρ(x) dx ,
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and using the L1
loc convergence we get:

lim sup
t→∞

∫

RN

|u(x, t) − u∞|ρ(x) dx 6 2ε‖u0‖∞ .

Since ε is arbitrary, we get that the limit is zero, which ends the proof. 2

6 Unbounded solutions

In this section we derive some results for unbounded initial data and solutions. Let us mention
that in the case ρ ≡ 1, further results are to be found in [1]. But here we still face the problem
of the space inhomogenity implied by ρ.

6.1 An existence result for quadratic growth

We assume that there exists some η > 0 and 0 6 γ 6 2 such that for any x ∈ R
N ,

ρ(x) >
η

1 + |x|γ
. (10)

This hypothesis means that ρ does not degenarate too rapidly at infinity. We then begin by
constructing a supersolution of the problem (recall that V(J) is the second-order momentum of
J , which is a finite constant):

Lemma 6.1 If (10) holds, then for any λ > V(J)/η and A > 0 the following function is a
(classical) supersolution of (1):

U(x, t) := A e λt(1 + |x|2) . (11)

Proof. It is a simple calculation: ∂tU = λA e λt(1 + |x2|),

J ∗ U − U = A e λt(J ∗ |x|2 − |x|2)
= A e λt

(∫

RN J(y)|y|2 dy − 2
∫

RN J(y) < x, y > dy
)

= A e λt
V(J) .

Hence we have a supersolution provided λρ(x)(1 + |x|γ) > V(J). Since by assumption we have
ρ(x)(1 + |x|γ) > η, it is enough to impose λη > V(J), hence the result. 2

Proposition 6.1 Let us assume that (10) holds. Then for any nonnegative u0 ∈ C0(RN ),
satisfying u0(x) 6 C(1 + |x|2) for some C > 0, there exist a strong solution u of (1) with
u(x, 0) = u0(x).

Proof. Let us first consider an approximation u0n = u0 · χn where χn is smooth, nonnegative,
compactly supported and χn ր 1. Let un be the unique solution of (1) with initial data u0n

given by Proposition 3.1, then by applying the comparison result for bounded solutions, the
sequence un is nondecreasing.
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On the other hand, if A is big enough, and for instance λ = V(J)/η, we may use the
supersolution U defined in (11) to compare with un. Notice that U is not bounded, but this is
allowed in Lemma 2.2, which gives:

un(x, t) 6 A e λt/η(1 + |x|2) .

Hence the sequence un converges to some u and we are able to pass to the limit in J ∗ un by
dominated convergence, using that U is integrable with respect to translations of J .

Using now Lemma 2.1, we deduce that u is a classical solution of (1) and the initial data of
u is u0. 2

Remark 6.1 This construction does in fact give a minimal solution: if u1 is any other solution,
then it can be used as a supersolution for any un and passing to the limit shows that u 6 u1.
One can think that if we restrict the initial data to grow at most like |x|2−ε, then uniqueness
holds because the comparison argument is valid in this class (see Remark 2.2). However, it is not
clear whether the constructed solution enters this class unless we know more about u0, see [1].

6.2 Asymptotic behaviour for unbounded solutions when ρ is integrable

We prove now that if u0 is integrable with respect to ρ, the isothermalisation phenomenon occurs
(whether infinite or not). Notice that we gave sufficient conditions for existence of a minimal
solution in the previous section. The first result is the following:

Proposition 6.2 Let u0 ∈ C0(RN ) ∩ L1(ρ), ρ ∈ L1(RN ) and assume there exists a solution u
such that u(x, 0) = u0(x). Then, if u denotes the minimal solution, we have

lim
t→∞

∫

RN

|u(x, t) − Eρ(u0)| ρ(x) dx = 0 .

Proof. Let u be the minimal solution and let us use the same monotone approximations that
were used in Proposition 6.1. Since un is bounded, Lemma 2.2 implies that we have a bound
from above:

u(x, t) > un(x, t) in R
N × [0,∞) .

But since un(x, 0) ∈ L∞(RN ), Proposition 4.1 implies
∫

RN

un(x, t)ρ(x) dx =

∫

RN

un(x, 0)ρ(x) dx.

Moreover, the convergence of un to u is monotone, so we can pass to the limit in the above
equation to obtain

∫

RN

u(x, t)ρ(x) dx =

∫

RN

u(x, 0)ρ(x) dx.

Using the above three equations we get that
∫

RN

|u(x, t) − Eρ(u0)|ρ(x) dx 6 I1 + I2 + I3,
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where,

I1 =

∫

RN

|u(x, t) − un(x, t)|ρ(x) dx =

∫

RN

(u(x, 0) − un(x, 0))ρ(x) dx .

I2 =

∫

RN

|un(x, t) − Eρ(u0χn)|ρ(x) dx,

I3 =

∫

RN

|Eρ(u0χn) − Eρ(u0)|ρ(x) dx.

Observe that I1 and I3 are independents of t and tend to zero as n → ∞. Moreover, un satisfies
the hypothesis of Theorem 1.2 so that I2 tends to zero as t → ∞. Therefore, we first have

lim sup
t→+∞

∫

RN

|u(x, t) − Eρ(u0)|ρ(x) dx 6 I1 + I3 ,

so that taking the limit as n → ∞ yields the desired result. 2

In the case when u0 /∈ L1(ρ), then infinite isothermalisation occurs:

Proposition 6.3 Let ρ ∈ L1(RN ) and u0 ∈ C0(RN ) such that u0 /∈ L1(ρ). Then for any
solution u with initial data u0 and any 1 6 p < ∞, the following asymptotic behaviour holds:

lim
t→+∞

u(x, t) = +∞ in Lp
loc(R

N ) .

Proof. As before, if there exists a solution, then we can approximate the minimal solution u
by the family un used in Proposition 6.1. Since this approximation is monotone,

u(x, t) > un(x, t) in R
N × [0,∞) .

But un(x, 0) satisfies the hypotheses of Theorem 1.2 so that

lim inf
t→+∞

u(x, t) > lim
t→+∞

un(x, t) = cn ,

where cn = Eρ(un(x, 0)), the limit holding in all Lp
loc(R

N ). Hence passing to the limit as
n → +∞, we obtain the result for u since cn → Eρ(u0) = +∞, thus the same holds for any
other solution. 2

Theorems 1.4 and 1.5 follow from the conjunction of Propositions and 6.1, 6.2 and 6.3.
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[1] C. Brändle, E. Chasseigne, R. Ferreira Unbounded solutions of the nonlocal heat equation,
preprint.

[2] E. Chasseigne The Dirichlet problem for some nonlocal diffusion equations, Differential
Integral Equations 20 (2007), 1389–1404.

[3] E. Chasseigne, M. Chaves, J. Rossi Asymptotic behavior for nonlocal diffusion equations, J.
Math. Pures Appl. 86 (2006), 271–291.

[4] E. Chasseigne, F. Quiros, Deconcentration effects in Local and Non-local heat equations, in
preparation (2009).

[5] D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous
medium, J. Differential Equations 84 (1990), 309–318.

[6] D. Eidus, The perturbed Laplace operator in a weighted L2-space, J. Funct. Anal. 100 (1991),
400–410.

[7] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions. Trends in non-
linear analysis, 153–191, Springer, Berlin, 2003.

[8] S. Kamin and P. Rosenau, Nonlinear diffusion in a finite mass medium, Comm. Pure Appl.
Math. 35 (1982), 113–127.

[9] S. Kamin, Heat propagation in an inhomogeneous medium, Progress in partial dierential
equations: the Metz Surveys 4, 229-237, Pitman Res. Notes Math. Ser. 345, Longman,
Harlow, 1996.

18


