
HAL Id: hal-00441663
https://hal.science/hal-00441663v1

Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast construction of panoramic images for cystoscopic
exploration

Yahir Hernandez-Mier, Walter Blondel, Christian Daul, Didier Wolf, François
Guillemin

To cite this version:
Yahir Hernandez-Mier, Walter Blondel, Christian Daul, Didier Wolf, François Guillemin. Fast con-
struction of panoramic images for cystoscopic exploration. Computerized Medical Imaging and Graph-
ics, 2010, 34 (7), pp.579-592. �10.1016/j.compmedimag.2010.02.002�. �hal-00441663�

https://hal.science/hal-00441663v1
https://hal.archives-ouvertes.fr


Fast construction of panoramic images

for cystoscopic exploration

Y. Hernández-Mier a,b,∗, W.C.P.M. Blondel a, C. Daul a, D. Wolf a, Franç ois Guillemin a,c
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Cystoscopy is used as a reference clinical examination in the detection and visualization of pathologi-cal bladder lesions. Evolution observation and 

analysis of these lesions is easier when panoramic images from internal bladder walls are used instead of video sequences. This work describes a fast and 

automatic mosaicing algorithm applied to cystoscopic video sequences, where perspective geometric transforma-tions link successive image pairs. This 

mosaicing algorithm begins with a fast initialization of translation parameters computed by a cross-correlation of images, followed by an iterative 

optimization of transfor-mation parameters. Finally, registered images are projected onto a global common coordinate system. A quantifying test 

protocol applied over a phantom yielded a mosaicing mean error lower than 4 pixels for a 1947 × 1187 pixels panoramic image. Qualitative evaluation 

of 10 panoramic images resulting from videos of clinical cystoscopies was performed. An analysis performed over translation values from these clinical 

sequences (in vivo) is used to modify the mosaicing algorithm to be able to do a dynamic selection of image pairs. Construction time of panoramic images 

takes some minutes. At last, algorithm limits are discussed.

1. Introduction

1.1. Clinical context

Among hollow organs cancers, bladder cancer is the 7th most
extended in the world [1]. 95% of bladder tumors originate in the
epithelium or urothelium (surface tumors) [2]. One of the main
problems concerning bladder tumors is their dangerous recur-
rence potential. Recurrence, with an important progression risk
is often associated to Carcinoma In Situ (CIS). CIS in the blad-
der is a cancerous lesion that can be multifocal and diffuse. Due
to its nature (flat, non-papillary tumor, located at the mucous
membrane), CIS may not be detected by conventional cystoscopy;
therefore, recurrence risk is increased. Some recent research results
advice lifetime monitoring of patients after partial bladder surgical
removal (cystectomy) to avoid recurrence [3]. Cystoscopy is the
reference examination allowing the physician to visually detect
and locate pathological lesions, specifically cancer, in the blad-
der. A cystoscope is a narrow instrument (soft or rigid) that is
inserted through the urethra to reach the bladder and visualize
internal bladder walls. Due to the reduced size of the instrument,
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observation of every region of interest is made through a narrow
visualization window. The physician moves this reduced field of
view (maximal area of about 1 cm2) over nearly all the tissue surface
and the corresponding images are then recorded on a video system.
The study presented in this paper proposes using information deliv-
ered by cystoscopes to construct extended views of tissue regions to
follow the evolution of diseases and to simplify organ observations.
Currently, the only physical media used by clinicians are pho-
tographs of a few particular sites, a bladder sketch with annotations
and a video of the examination. With a photograph, only a limited
part of a region of interest may be visible with enough details and
resolution. With a video sequence, extended tissue areas can be
analyzed along the cystoscope movements, but the obtained image
sequence consists of a large amount of redundant data. In addition,
as a complementary step to the anatomo-histopathological exam-
ination of tissue samples, the physician must compare in vivo the
same bladder regions from one examination to another. In this case,
finding a particular region of interest at a particular moment in
the video sequence could take long and could be annoying for the
physician. Urologists expressed the need for a fast-access visual
medium to effectively locate potential bladder lesions, to easily
observe neighboring regions around suspicious lesions or zones,
and to efficiently compare zones of interest through their evo-
lution. Finally, this kind of complementary visual medium could
also be applied to recently developed fluorescence endoscopic
imaging systems, giving a spatial correspondence between fluo-
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Fig. 1. Examples of images that can be found in a conventional cystoscopic video sequence. (a) Image with many visible blood vessels. (b) Elements in suspension (clearer)

crossing the field of view of the cystoscope. (c) Blurred image due to defocusing of the cystoscope. (d) Blurred image due to rapid movements of the cystoscope in which few

structures are visible due to poor lighting conditions. (e) Image taken at a short distance. (f) Image presenting light reflections at the air bubble.

rescence and white light images, resulting in higher diagnostic
efficiency [4].

1.2. Aim and applications of image mosaicing

Image mosaicing is a process by which a panoramic image is
built by superimposing partial views (images) of a scene or object.
This panoramic image is a concise representation of data leading
to a considerably reduced data storage space. Mosaicing is mainly
based on an image registration process for determining geometric
transformations Ti,i+1 between image pairs Ii and Ii+1, successively
taken from different views. These local transformations are then
used to compute a global transformation Ti+1, that is used to place
the last transformed image Ii+1 (as well as the preceding ones) in
a global common coordinate system (for instance, the coordinate
system of the first image).

Image mosaicing is used today in many different areas such as
consumer photography [5–7], stabilization of hand-held recorded
video (operator movement compensation) [8,9], construction of
virtual environments [10–12], submarine exploration [13,14] and
construction of images with super-resolution [15–17].

In the medical field, research has been conducted for improv-
ing the field of view in ultrasound imaging by registration of
images obtained from manual scans [18]. The authors performed
image registration using Mutual Information (MI) as similarity
measure and an perspective transformation of 8 degrees of free-
dom. Although images used in that work were very noisy, no image
pre-processing was used. In conventional X-ray radiology, Yaniv
and Joskowicz [19] have constructed panoramic images for observ-
ing long bones that are not visible on a single radiograph. To register
two or more radiographic images, they considered that no rotation
exists between images and that transformations between images
can be represented by movements that are parallel to the projection
axis. A ruler was placed next to each image and alignment was man-
ually performed using ruler marks. However, the main applications
of image mosaicing in the medical field concern ophthalmology,
where constructed panoramic images allow for easier and more
efficient diagnosis. The approaches developed in ophthalmology,
generally use similarity measures based on the comparison of pixel
gray-levels in similar image regions and transformation models up
to 6 degrees (affine model) for image registration. For example,
Zhou et al. [20,21] registered successive angiogram images of the
back of the eye using an inverse compositional-based registration
algorithm [22–24] which was modified by introducing a tunable

increasing parameter. Some other approaches, such as that from
Can et al. [25], use segmentation of visible blood vessels of the retina
to extract intersection points that can be used to register images.
Results of this method are highly dependent on the segmentation
algorithm ability to find blood vessel intersections with enough
robustness. This approach uses a non-linear transformation model
of 12 degrees of freedom to represent the deformation between
images and the retinal curvature. Up to now, the only referenced
application of image mosaicing to hollow organs, and specifically
to bladder, is the work of Miranda-Luna et al. [26,27,4]. In their
work, extended views of internal bladder walls were constructed
by mosaicing images extracted from a video sequence, correspond-
ing to successive views taken by a cystoscope. Their approach uses
Mutual Information (MI) as similarity measure to register images
through an iterative optimization algorithm (stochastic steepest
descent). Although panoramic images so constructed are visually
coherent and the used mosaicing algorithm is robust, computation
time of a panoramic image is very long (several hours). This is due to
the analytical modeling of histograms or probability density func-
tions (Parzen’s window) used to compute MI and to the number of
iterations needed in the optimization.

1.3. Objectives and application constraints

The objective of the present study is to develop a fast and auto-
matic mosaicing algorithm to construct panoramic images of the
internal wall of bladders, useful for the physician in situ. This algo-
rithm must be able to provide panoramic images without affecting
the application protocol of the cystoscopic examination. As a result
of our previous study [26], urologists have requested that compu-
tation time of these panoramic images be reduced, so that they
can evaluate and verify their coherence, their precision and their
exploitability before the end of a clinical examination. Finally, the
proposed mosaicing algorithm must be robust enough to deal with
image variability found in cystoscopic video sequences (visible or
not visible blood vessels, lighting conditions, blur, texture, and oth-
ers). Fig. 1 shows examples of images acquired with a cystoscope
under these variable conditions.

2. Mosaicing algorithm

The mosaicing algorithm presented here is composed of three
main parts: image pre-processing (Section 2.1), registration algo-
rithm and image stitching (Sections 2.2 and 2.3), and dynamic



selection of images to be registered (Section 2.4). The selection
stage is based on an analysis of translation information delivered by
an initial image correlation step. This stage avoids entering into the
iterative part of the registration algorithm for image series where
small movements or “static” sequences exist.

2.1. Image pre-processing

In the case of endoscopic images, it is necessary to correct or
compensate geometric and photometric aberrations to achieve effi-
cient registration. Three of the most relevant aberrations to the
study presented here are: a vignetting effect, due to the wide field
of view (FOV) of the endoscope (wide angle lens); a fiber optics
pattern appearing over images (when a fiberscope is used) and
radial distortion caused by the cystoscope optics (wide FOV). Cor-
rection of these effects is essential for a good performance of the
subsequent registration stage. The analysis of the effects of these
aberrations and their correction are developed in Section 3. The
following subsections explain the strategies implemented to solve
these problems.

2.1.1. Vignetting and fiber pattern

The vignetting effect corresponds to a lighting inhomogeneity
in the image resulting in intensity variations of very low spatial
frequency. It can be simply modeled as the application to an image
without lighting artifacts Io of a multiplicative term Im and an addi-
tive term Ia, so that:

Iv = Io × Im + Ia (1)

where Iv is the image affected by vignetting.
In practice, it is difficult to determine the contribution of each

term; therefore, approximations of the lighting gradient are built
for correction. Considering, for example, that the image background
is essentially composed of the illumination terms, it can be modeled
by quadratic or polynomial functions [28]. This approach is suitable
when the lighting conditions between images of a sequence do not
change, which is not the case of cystoscopic sequences. Another
approach implemented in [29–32] applies a high-pass filter to
eliminate the corresponding very low frequencies. The character-
istics of the filter are determined with the help of the analysis of
Fourier spectra of typical images. This approach has been imple-
mented in the present study because it offers a good compromise
between efficacy and computation time (using adapted implemen-
tation techniques). A Gaussian mask G�(x, y) was used:

G�(x, y) =
1

2��2
e

−
x2+y2

2�2 (2)

with� being the standard deviation of the mask and (x, y) the pixels
coordinates.

From the Fourier spectrum of cystoscopic images (Fig. 2(a) and
(b)), we experimentally determined a standard deviation value for
the Gaussian mask in the frequency domain �ill = 0.012N, with
N = 256 the width of the square region of interest (ROI) of the
image. This value corresponds to the interval of spatial frequen-
cies [0,0.012N], where the very low frequency components related
to lighting inhomogeneities are found. Useful information, bladder
texture, is found in higher frequency components of the Fourier
spectrum. After image background is obtained (Fig. 2(c)), it is sub-
tracted from the initial image, leading to a vignetting-corrected
image (Fig. 2(d)).

When a flexible cystoscope (fiberscope) is used, a spatially peri-
odical pattern due to fiber optics bundle is visible on the images (see
Fig. 2(a)) and can affect the registration robustness. As indicated by
arrows in Fig. 2(e), the presence of this pattern produces high fre-
quency peaks in the Fourier spectrum of the image. In literature,

there are few studies addressing this problem. The method pre-
sented in [27] localizes these high-frequency peaks in the Fourier
spectrum to define the cut-off frequency of a Gaussian filter that
is next applied to every image of the sequence acquired with the
same fiberscope. Recently, Winter et al. [33] proposed an auto-
matic method for the detection of the position of these peaks in the
Fourier spectrum image followed by the computation of the cut-
off frequency of the low-pass filters to eliminate the fiber pattern.
The main advantage of their method is its capacity to automatically
build adaptive masks. In the application developed in the present
study, for the same endoscope, the characteristics of the filter can
be computed once, and they will be the same for all images.

Spatial frequencies of the fiber pattern are located in the fre-
quency bandwidth [0.156N,0.312N] in the fiberscope used in our
tests (see Fig. 2(e)). The result of the application of a Gaussian fil-
ter with standard deviation in the Fourier domain �patt = 0.156

3 =

0.052N, is shown in Fig. 2(f).
Two low-pass filters were combined to form a band-pass filter

that eliminates very-low frequencies due to vignetting and high fre-
quencies due to the fiber pattern. As a result, useful information in
the frequency bandwidth [0.036N,0.156N] is preserved. In spatial
domain, sizes of the first and second Gaussian masks are respec-
tively 83 × 83 pixels and 19 × 19 pixels. This filtering operation can
be efficiently implemented in the frequency domain by masking
unwanted frequency regions in the Fourier spectra of images.

2.1.2. Radial distortion

In [30] and [31], an algorithm for the correction of the radial
distortion produced by cystoscope optics was proposed. Their
approach obtains correction parameters from the cystoscope that
will be used to perform the clinical exam. However, access to a cys-
toscope for calibration is not always simple in day-to-day practice,
and the correction operation on every image implies a compu-
tation time that cannot be neglected. It was observed in all the
analyzed cystoscopic images that radial distortion values at the
central part of images are small enough if a reduced region of inter-
est (ROI) is taken (N2 = 400 × 400 pixels typically). Consequently,
radial distortion correction may be avoided on this reduced-size
image which can be directly used in our mosaicing algorithm.

2.2. Image registration

2.2.1. Geometric transformation

The generic process of image registration of successive images Ii
and Ii+1 from a cystoscopic video sequence aims to superpose com-
mon parts of these images. Mathematically described by Eq. (3),
it maximizes a similarity measure between extracted characteris-
tics from target image It = Ii and homologue characteristics from
source image Is = Ii+1 to which geometric transformation Ti,i+1

is applied (◦). ft and fs are specific feature extraction algorithms
which may be applied to these images. Parameter values of trans-
formation Ti,i+1 are selected in a search space T by means of an
optimization algorithm opt to finally obtain transformation T̃i,i+1

when ft(Ii) ≈ fs
(
Ii+1 ◦ Ti,i+1

)
(registered images)

T̃i,i+1 = arg opt
Ti,i+1 ∈ T

S{ft(Ii), fs(Ii+1 ◦ Ti,i+1)} (3)

Transformation type T, similarity measure S, feature extraction
algorithms ft and fs and optimization method opt must be cho-
sen by taking into account some constraints. These constraints
include sensor type, image acquisition modality, available compu-
tation time and registration precision required by the application.
The type of transformation type T is chosen considering on the one
hand, the projection model of the cystoscopic acquisition system,
and on the other, the deformable nature of the bladder wall. Consid-



Fig. 2. (a) Original fiberscopic image with enlarged fiber pattern and line shapes patterns. (b) Fourier spectrum of image (a). The continuous circle at the center part of

the image indicates the location of spatial frequencies values of 0.012N and the dashed circle shows the extension of the Gaussian mask (3�ill). (c) Image resulting from

low-pass filtering with �ill = 0.012N. (d) Normalized image after pixel-wise subtraction of image (c) to image (a). (e) Fourier spectrum of image (a). The white arrows

show the frequency components corresponding to the fiber pattern and the gray arrow shows the region of the spectrum corresponding to line patterns. The continuous

circle corresponds to the value of �patt = 0.052N and the dashed line shows the extension of the Gaussian mask. (f) Image resulting from low-pass filtering with 0.052N on

image (d).

ering that radial distortion influence is small when a reduced-size
window at the central part of acquired images (as mentioned in
previous subsection) is selected, the 3D/2D projection model of
the cystoscope is linear. Concerning non-linearities induced by
the bladder wall deformation due to movements of surrounding
organs, a non-linear transformation model could be considered for
describing the geometrical relationship between adjacent pairs of
images. However, once the bladder is filled up with physiologi-
cal serum for the need of the endoscopic examination, the bladder
wall can be considered as rigid enough to appear motionless with
reference to the video acquisition rate (25 s). In addition to the
apparent rigidity of the bladder wall, a relatively low displacement
speed of the endoscope (a few mm/s typically) makes it possible to
use a linear transformation model. The most complete 2D/2D lin-
ear transformation model we can use is a perspective model of 8
degrees of freedom, which can be represented as a 3 × 3 matrix M

defined in block form and homogeneous coordinates as:
[
x′

y′

1

]

w =

[
a11 a12 tx
a21 a22 ty
v1 v2 v

]

︸ ︷︷ ︸

M

[
x
y
1

]

(4)

where x = [x, y]T and x′ = [x′, y′]T are the coordinates of the cor-
responding homologous points in images Ii and Ii+1 respectively;
a11, a12, a21, a22 are dimensionless parameters forming a 2 × 2 non-
singular matrix representing an affine transformation that includes
scale and shearing factors, and in-plane rotation; t = [tx, ty] is a
vector that represents translation in pixels; v1 and v2 are param-
eters that are used to model perspective parameters; and v is a
dimensionless parameter which is generally different from zero.
w = v1x + v2y+ v is an homogeneity factor related to perspective.
This is the transformation model that we use in the present study.

2.2.2. Similarity measure

The diversity of cystoscopic image sequences results from vari-
ations of illumination conditions, anatomical differences between
explored regions inside the bladder and anatomical differences
between patients. Refer to Fig. 1 for examples of this variability.
Therefore, it is not always possible to extract feature points or to

do region or contour segmentation robustly. In addition, in most
sequences, translations are the predominant parameters (see Sec-
tion 2.4) and their values between image pairs are small enough
to consider that viewpoints between consecutive images are lit-
tle different because of small movements. For these reasons, we
selected a registration algorithm based on the direct utilization
of gray levels of images and, in consequence, there is no need of
segmentation operations. Similarity measure S is then computed
directly from gray levels of images. In our application, cystoscopy
with monomodality images and limited computation time, the sum
of squared differences (SSD) of gray levels of images can be used:

SSD =
∑

x∈ Ii∩Ii+1

[Ii+1(x) ◦ (Ti,i+1(M)) − Ii(x)]
2

=
∑

x∈ Ii∩Ii+1

[Ii+1(Ti,i+1(x;M)) − Ii(x)]
2 (5)

where Ii+1(Ti,i+1(x;M)) stands for image Ii+1 after application of
transformation Ti,i+1, where the transformation parameters are
found in matrix M. SSD is computed for every pixel of coordinates
x that is common to both images Ii and Ii+1. This similarity mea-
sure has been widely and successfully used in applications such as
object tracking [34,24], mosaicing of consumer-grade photographs
[6,7], and biomedical images [21,20].

2.2.3. Forward and direct compositional algorithms

The definition of the SSD presented in the previous section was
used in the registration algorithm proposed by Lucas & Kanade
(L&K) [35] to obtain optical flow between images of a sequence for a
stereo vision application. Since then, this algorithm has been widely
applied to moving object tracking and image mosaicing. In the origi-
nal article, only translations were considered, but this algorithm has
been extended for considering other transformation parameters, as
we did in our application. Starting from known initial transforma-
tion parameters M, the L&K algorithm searches �M increments
that, when added to the initial parameters, will provide minimal
SSD between the transformed source image Ii+1(Ti,i+1(x;M)) and
the target image Ii(x). From Eq. (5) and with a known estimation of



M, the algorithm of L&K iteratively minimizes:

SSD =
∑

x∈ Ii∩Ii+1

[Ii+1(Ti,i+1(x;M +�M)) − Ii(x)]
2 (6)

for �M increments updating M, so that M ← M +�M, and corre-
sponding to the following transformation update:

Ti,i+1(x;M) ← Ti,i+1(x;M +�M) ≈ Ti,i+1(x;M) +
∂Ti,i+1

∂M
�M (7)

�M increments are obtained by a second order non-linear
optimization (Gauss–Newton). The least-squares minimization
problem SSD implies the computation of the first derivative of
the cost function in Eq. (6). This is achieved by linearization of
Ii+1(Ti,i+1(x;M +�M)) using a first order Taylor series expansion
with respect to�M, that is:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

SSD =
∑

x∈ Ii∩Ii+1

[Ii+1(Ti,i+1(x;M)) + ∇Ii+1(x)JT (M)�M − Ii(x)]
2

∂SSD

∂M
=

∑

x∈ Ii∩Ii+1

[∇Ii+1(x)JT (M)]T [Ii+1(Ti,i+1(x;M))

+∇Ii+1(x)JT (M)�M − Ii(x)]

with the Jacobian (the first derivative of transformed coordinates
of the pixel located at (x, y) with respect to transformation parame-
ters), the gray-level Gradient and the second derivative matrix (the
Hessian) of source image Ii+1(x), which are respectively:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JT (M)=
∂Ti,i+1(x;M)

∂M
=

⎛

⎜
⎝

∂Ti,i+1(x;M)

∂m1
. . .
∂Ti,i+1(x;M)

∂m9
∂Ti,i+1(y;M)

∂m1
. . .
∂Ti,i+1(y;M)

∂m9

⎞

⎟
⎠

∇Ii+1(x)=

(
∂Ii+1(x, y)

∂x
,
∂Ii+1(x, y)

∂y

)

Hi+1=
∑

x∈ Ii∩Ii+1

[

∇Ii+1(x)
∂Ti,i+1(x;M)

∂M

]T[

∇Ii+1(x)
∂Ti,i+1(x;M)

∂M

]

(9)

During this minimization process, these derivatives must be
computed at every iteration, implying long-time computation
operations (O(n2N) for the Hessian, with n being the number of
transformation parameters and N the number of pixels). In [23], the
authors observed that when consecutive images being registered
are quite similar, as in our application, the gradient of the source
image can be replaced by the one of the target image. By taking the
target image Ii as source image to which the transformation Ti,i+1 is
applied, and the source image Ii+1 as target image, the Gradient, the
Jacobian and the Hessian of Ii can be computed once and for all, lead-
ing to significantly reduced computation time without affecting
robustness. In this inverse approach, they develop a composition
algorithm that can be applied to homographic transformations, i.e.
perspective.

The forward compositional approach, instead of the additive
one, developed in [36,37,23] minimizes:

SSD =
∑

x∈ Ii∩Ii+1

[Ii+1(Ti,i+1(Ti,i+1(x;�M);M)) − Ii(x)]
2 (10)

with respect to �M and then updates T at each iteration step, so
that:

Ti,i+1(x;M) ← Ti,i+1(x;M) ◦ Ti,i+1(x;�M) = Ti,i+1(Ti,i+1(x;�M);M).

(11)

The inverse compositional approach detailed in [23] minimizes
the following expression:

SSD =
∑

x∈ Ii∩Ii+1

[
Ii(Ti,i+1(x;�M)) − Ii+1(Ti,i+1(x;M))

]2
(12)

with respect to�M and iteratively updates:

Ti,i+1(x;M) ← Ti,i+1(x;M) ◦ Ti,i+1(x;�M)−1 (13)

After a first order Taylor series expansion, Eq. (12) becomes:

SSD =
∑

x∈ Ii∩Ii+1

[Ii(Ti,i+1(x;�M0))

+∇Ii(x)JT (M)�M − Ii+1(Ti,i+1(x;M))]2, (14)

with �M0 the initial increments matrix and ∇Ii(x) the gradient of
initial target image over −→x and −→y .

Considering that the transformation matrix composed of initial
increments�M0 is an identity matrix, Eq. (14) is minimized so that:

∂SSD

∂�M
= 2

∑

x∈ Ii∩Ii+1

[

∇Ii(x)
∂Ti,i+1(x;M)

∂M

]T

×

[

Ii(x) + ∇Ii(x)
∂Ti,i+1(x;M)

∂M
�M − Ii+1(Ti,i+1(x;M))

]2

= 0 (15)

or

�M = H−1
i

∑

x∈ Ii∩Ii+1

[

∇Ii(x)
∂Ti,i+1(x;M)

∂M

]T

[Ii+1(Ti,i+1(x;M)) + Ii(x)],

(16)

with

Hi =
∑

x∈ Ii∩Ii+1

[

∇Ii(x)
∂Ti,i+1(x;M)

∂M

]T [

∇Ii(x)
∂Ti,i+1(x;M)

∂M

]

(17)

being the Hessian matrix for image Ii(x) and H−1 its inverse, whose
value can be pre-computed once and for all before the iterative
stage.

In our application, we experimentally verified that the forward
and inverse compositional algorithms yielded very similar results
but the latter was effectively faster, without losing robustness or
precision. Consequently, we implemented this approach in our cys-
toscopic image mosaicing algorithm.

2.3. Image stitching

In mosaicing, the stitching of the pairwise registered images
from the video sequence is performed by placing image Ii+1 on a
global coordinate system, (Og,

−→x g,
−→y g), which may correspond to

the coordinate system of the first image in the sequence. Optimal
local transformations, T̃i,i+1, between images Ii and Ii+1 obtained
after completion of the registration algorithm are used to compute
successive global transformations, T̃i+1, so that:

T̃i+1 = T̃i,i+1 × T̃i =

j=i−1
∏

j=0

T̃i−j,i−j+1 (18)

in which i∈ [1;n− 1] and n is the number of images in the sequence.
This sequential way of placing images on the global coordinate
system works only if image registration error is minimum. Mosaic-
ing error, directly related to registration error, is evaluated in
Section 3.

To smooth the gray-level discontinuities between the side pix-
els of image Ii+1 and those co-localized in the panoramic image



Fig. 3. Translation parameter values as a function of consecutive pairs of images obtained for a 511 image sequence (a) and a 301 image sequence (b) from two clini-

cal cystoscopies (in vivo). Left: �x translations. Middle: close-up of the dashed rectangle on the corresponding left graphics. Right: �y translations. Black-dotted and gray

lines represent translation values obtained from the cross-correlation algorithm (present study), and values from the registration algorithm based on Mutual Information

(MI) [26].

already built, a spatial weighting function is applied. This is done
by assigning pixel gray-level values that are weighted by a Gaussian
function so that:
{
Ipi+1 = w1Ii+1 +w0Ipi
w1 = 0.9er/�

2
+ 0.1 = 1 −w0

(19)

where Ipi and Ipi+1 are respectively, the panoramic image before
and after stitching of image Ii+1;w1 andw0 are the weights assigned
respectively to the pixels of the image to be stitched and to the ones
of the panoramic image already constructed; r is the radial distance
of a pixel, measured with reference to the stitched image center and
� is the standard deviation of the Gaussian function.

Based on human observation (qualitative) of the cystoscopic
images, the value of � was fixed at 0.25N (N = 400 pixels). As a
result, gray-level continuity on image borders and also light gradi-
ent diffusion on the map are ensured.

2.4. Speed improvements

The speed of convergence of the registration process (related to
the number of iterations) described in the previous section strongly
depends on the initialization values of the transformation param-
eters. To rapidly initialize these parameters with values closer to
an “optimal” solution, it is proposed to first compute the cross-
correlation of images using their Fourier transforms [38], so that:

CC(x, y) = F
−1[Ii(u, v)I∗

i+1(u, v)] (20)

in which Ii(u, v) and Ii+1(u, v) are the Fourier transform of tar-
get and source images Ii and Ii+1 respectively; (u, v) are the spatial
frequencies; and ∗ indicates the complex conjugate.

The matrix CC(x, y) thus computed has a correlation peak whose
coordinates constitute a good approach of the exact translation

values existing between images being registered. However, this
information from cross-correlation is only workable if variations of
the other transformation parameters stay in the same limits, few
degrees in rotation and up to 10% for scale factor.

In order to demonstrate the usefulness of the cross-correlation
operation and to ensure its exploitability for the application pre-
sented here, a test was performed over 3860 pairs of images
extracted from ten clinical cystoscopic sequences acquired in

vivo. We compared the translation values obtained from cross-
correlation implemented in the algorithm of the present study to
those obtained from a registration algorithm based on MI men-
tioned earlier (Section 1.2) which had already been validated [26].
Results for two of these representative sequences are given in Fig. 3.
The translation values obtained by the two approaches are glob-
ally similar. Mean value of the difference (±standard-deviation)
between translations obtained for ten sequences is 0.04 (±2.33)
pixels over −→x , and 0.02 (±2.54) pixels over −→y . The maximum
difference is 34.22 pixels over −→x and 34.44 pixels over −→y . These
results show that cross-correlation applied to cystoscopic images
allows a simple and fast estimation of initial translation values
close to the optimal solution. Results of efficient application of cor-
relation highlight the fact that translations are the predominant
varying transformation parameters for these clinical cystoscopic
sequences. The image registration method described in Section 2.2
works well if the superposed areas between images to register
is higher than 80% of image size, as it will be detailed in Sec-
tion 3. When this is not the case, the registration process may be
slowed down or even fail. Thus, for evaluating the superposition
rate between all consecutive images of our test clinical sequences,
the distribution of the absolute values of �x and �y translations (Fig. 4),
obtained by registering the 3860 image pairs previously mentioned,
was represented. These distributions indicate that the translation



Fig. 4. Distribution of absolute values of translations for 10 image sequences (3868 image pairs) over �x-axis (a) and �y-axis (b).

values found are always lower than 50 pixels. Around 90% of the
translation values are lower than 10 pixels. Mean translation val-
ues (±standard-deviation) over −→x and −→y are respectively, 3.20
(±3.34) and 4.04 (±4.37) pixels. For the tested sequences, the max-
imum translation value was 43.56 pixels (−→y -axis). This high value
occurred only once in a very specific sequence having the largest
translation values among all tested sequences. Considering the size
of images and the maximum values of translation obtained for
the tested sequences, the superposition rate between two adjacent
images is always greater than 80%. In addition, cystoscopic video
recorded in clinics is characterized by many sequences where the
cystoscope moves slowly or stays almost static. In these cases, a
significant time is spent in registering images very close to each
other, this is, barely transformed images. Consequently, the use of
the translation estimations delivered by the cross-correlation stage
to perform a dynamic selection of image pairs to be registered, is
proposed. Based on the characterization of �x and �y translation dis-
tributions over the ten cystoscopic sequences, a conditional step
has been added to the algorithm presented in this study. Thus, the
iterative image registration and the computation of global trans-
formation matrices are only performed when translations between
images are greater than 9 pixels, that is 85% of the translation val-
ues in our test sequences. Once this threshold is reached, iterative
registration of the current image and the last one registered, as well
as update of the global transformation matrix are performed. Since
the iterative part of the registration algorithm takes most of com-
putation time, a substantial time saving is obtained by avoiding
registration of images that are too close to each other.

3. Results

3.1. Quantitative evaluation of the mosaicing precision on

phantom

Quantitative evaluation of mosaicing precision is difficult to
be done with video sequences recorded in clinical conditions (in
vivo), where the position coordinates of the viewpoint of the cys-
toscope into the bladder are unknown. To quantify the mosaicing
precision, it is necessary to best simulate realistic conditions of
acquisition while having a fine control of the cystoscope move-
ments. To do so, an acquisition protocol on a phantom with precise
control of 3D movements of the cystoscope was established. A
multi-axis motorized micrometric positioning system (translation
stages UMR8.51 and linear actuators LTA-HS, Newport, 0.1 �m pre-
cision) was mounted for applying in plane translations and scale
factor variations, that is, along −→x , −→y and −→z axis, as well as in plane
rotations (rotation stage PR50CC, Newport, 0.01◦ precision) and out
of image plane rotations (rotation stage URS75CC, Newport, with
0.01◦ precision). The sequence of movements was controlled by a
motor drive controller (XPS, Newport) with a LabView programmed

interface. Due to the size and weight of the acquisition system, the
movements of the cystoscope were simulated by movements of
the phantom on which the image acquisitions were performed. The
phantom is a high-resolution printed photograph (10 × 12 cm) of
the internal surface of a pig bladder, previously excised and “wide
opened”. A pig bladder is very similar to a human one in texture
and anatomy.

The acquisition of an image sequence was performed follow-
ing the predefined path sketched in Fig. 5(a). The course of the
cystoscope involved movements along every axis composing the
positioning system (2 rotations and 3 translations). Movements
over the 1st acquisition path included a 42 mm translation in −→x ,
combined to a 42 mm translation along −→z (scale-factor variation).
Movement over the 2nd path involved a 42 mm translation along
−→y coupled to in plane rotations from 0 to 20◦. The 3rd path of
movement is composed of a −42 mm translation along −→x , return-
ing to initial coordinate x = 0), with an off-plane rotation from 0
to 16◦ (perspective modification). The last set of movements, 4th
acquisition path, involved translations along −→y and −→z , and in- and
off-plane rotations simultaneously, so that the device finally goes
back to its starting position. A total of 169 images were acquired
(42 images for each acquisition path). The first (I001) and last (I169)
images were obtained from the same position.

In order to obtain a measure of the construction error in the
panoramic image, a grid of black dots regularly spaced was printed
over the photograph of the bladder (see Fig. 5(b)). The panoramic
image obtained after applying our mosaicing algorithm to the
acquired image sequence is shown in Fig. 5(c). Mosaicing error com-
putation was carried out in three steps. Firstly, four dots manually
selected in the first image of the panoramic image are registered
with their counterparts in the digitized photograph. To perform
this registration, a rigid transformation model is used (2D trans-
lations, rotation and scale factor). Secondly, the segmentation of
every visible dots (31 dots) in the panoramic image (Fig. 5(d)) and
the automatic computation of centroid coordinates of these seg-
mented dots are performed using morphological operators. Thirdly,
these coordinates are compared to the known coordinates of the
center of the dots printed on the photograph. Mosaicing preci-
sion given by the distance error measure em was calculated as the

mean Euclidean distance between the coordinates (xjm, y
j
m) of Np

dot centroids segmented in the panoramic image and the coordi-

nates (xjr, y
j
r) of the dot centroids segmented in the photograph, so

that:

em =
1

Np

Np∑

j=1

√

(xjm − xjr)
2

+ (yjm − yjr)
2
. (21)

Fig. 5(d) shows the 31 segmented dots in the panoramic image 5(c)
and their 31 counterpart dots in the printed photograph used as
reference. Fig. 5(e) is an enlarged image of one of these dots. The



Fig. 5. (a) Illustration of the acquisition path of images I001, I002 , . . . , I169 applied onto the bladder photograph phantom for quantifying mosaicing precision. (b) Pig bladder

photograph with a regular grid of black dots printed on it. These dots have been enlarged to facilitate their observation in this figure. (c) Panoramic image (1947 × 1187 pixels)

constructed from 169 images acquired along the path in (a). Black dots have been enlarged. (d) Image of the dots (centroid of detected dots) segmented in the panoramic

image (c) with reference dots located in the photograph (b) in the same coordinate system. (e) Enlarged image of one dot in image (d) (pointed by the gray arrow) showing

the centroid of the detected dot (in light gray) and the segmented dot in the reference image (in dark gray). Mean distance between homologous dots is 3.82 pixels.

centroids (barycenters) of dots detected in the panoramic image
are shown in light-gray, whereas the centroids of dots in the refer-
ence printed photograph are shown in dark-gray. At last, the grid
of dots with regular vertical and horizontal spacing can be identi-
fied in the panoramic image, with a mean error of 3.82 pixels and
a maximum error of 6.73 pixels. Considering that the size of the
panoramic image is 1947 × 1187 pixels, the maximum error repre-
sents 0.57% of the image height (1187 pixels). This error percentage
is very small and low enough for providing the physician a good
quality panoramic image efficiently exploited in the case of the pre-
sented application. This point is further discussed in the following
section.

3.2. Mosaicing of clinical data

Our mosaicing algorithm was applied to cystoscopic sequences
acquired during conventional clinical procedures in order to
demonstrate its applicability to real conditions (in vivo) and to
perform a qualitative validation on clinical data. Among 6 video
recordings, lasting from 4 to 11 min, obtained from 6 different
patients, 10 image sequences lasting from several seconds to
several dozens of seconds, were selected. We considered as particu-
larly interesting those sequences where the air bubble, the ureters,
the trigone, some scars or polyps may be observed. The primary
interest of these anatomical structures is not to give exploitable ele-
ments to the registration algorithm, but for the physician to more
easily associate the panoramic image to a particular anatomical
place in the bladder. The number of images in the sequences vary
from 150 images (6 s) to 1300 images (52 s). Representative results
for 3 of these sequences are given in Figs. 6–8. It is worth notic-
ing that for these sequences, where lighting conditions and texture
features vary significantly, our approach is robust enough to handle
variations observed in images. The urologists who analyzed these

panoramic images confirmed their visual coherence. The mosaic-
ing errors, which were not measured here, were estimated small
enough to allow the clinician to properly interpret or analyze the
image qualitatively. The mosaicing algorithm was programmed in C
language using the OpenCV vision library. Panoramic images were
constructed using a Pentium IV 3.2 GHz, 2 Gb RAM computer. A
mean number of 12 iterations was needed by the optimization algo-
rithm to register a pair of images. Registration time for an image
pair varied between 1.2 and 1.5 s. Total construction time, registra-
tion and stitching, was 9.31 min for image in Fig. 6 (301 images),
9.39 min for image in Fig. 7 (530 images) and 12.69 min for image
in Fig. 8 (450 images). These computation times makes it possi-
ble to construct a partial panoramic image of the bladder during
the standard cystoscopic examination procedure. The next section
gives details on how to further reduce these computation times by
not registering the totality of images in a sequence but only those
separated by significant variations of translations.

3.3. Improvements and comparisons

According to the study of the occurrence of translation values
between images in the 10 cystoscopic sequences used (see Section
2.4), we implemented the proposed method of conditional (selec-
tive) registration for translations lower than 9 pixels. Results show
a significant reduction of computation time with this method of
image selection. The registration and stitching times decreased by
40% compared to the algorithm without selection. This means that,
computation times are significantly reduced, from 9.31 down to
4.74 min, from 9.39 to 6.91 min and from 12.69 to 6.70 min for
images shown in Figs. 6, 7 and 8. With this decrease in compu-
tation time, constructing panoramic images of the internal wall of
bladders in a time duration lower than the one of the cystoscopic
examination is possible. In addition, we observed that panoramic



Fig. 6. 2544 × 4362 pixels panoramic image constructed from a 301 images sequence. In this image, a polyp can be located (at the bottom left) in relation to the air bubble

visible at the top. The graphic on the right shows the course of the endoscope during the acquisition of this sequence, represented thanks to the computed transformation

parameters.

images constructed with and without image selection are visually
quite similar.

To date, the only published work on bladder mosaicing was
presented in [26]. Using a same sequence of cystoscopic images
(in vivo), we compared the panoramic image constructed with
the mosaicing algorithm presented in [26] and the one developed
in the present study. As seen in Fig. 9, a great visual similarity
can be observed. The mosaicing mean error using the algorithm
developed in [26] is 3.35 pixels after accumulated error correction
(43.14 pixels without correction). Using our algorithm, a mean error
of 3.82 pixels and a maximum error of 6.73 pixels were obtained
without accumulated error correction. Construction of the same
panoramic image takes some minutes using our method, while the
MI-based algorithm used in [26] takes several hours.

In Section 2.1, we mentioned that image pre-processing is essen-
tial in our application for the registration algorithm to properly
work. To highlight the effect of the fiber pattern and lighting
inhomogeneities on the registration process, the two similarity
measures (SSD and MI) were computed for two regions extracted
from two images acquired with a fiberscope. The translations
between images are known a priori: tx = 8 pixels (x-axis) and ty =

−47 pixels (y-axis). No other geometric transformation between
images is involved. Without applying image pre-processing, the

coordinates of the two parameter space extremum found are
wrong: (tx, ty) = (−1,−50) for MI and (tx, ty) = (0,−46) for SSD.
Fig. 10(a) and (b) illustrates the effect of these artifacts on MI
and SSD respectively. These cost functions or similarity measures,
are affected by many local extrema that make it harder for the
optimization algorithm to converge towards a correct value of
transformation parameters. When pre-processing is applied to
these images, correct results are obtained: (tx, ty) = (8,−47) for the
two similarity measures.

4. Discussion: limits and applicability of the presented

algorithm

The mosaicing method presented in this paper was specifically
developed for building panoramic images of the internal wall of
human bladders. This approach can be also applied to other hollow
organs, such as the stomach. However, its applicability to tubular
hollow organs, like the colon and the esophagus, is more difficult
because of the endoscope orientation, where severe perspective
deformations may occur. As for any other registration algorithms,
the two main factors affecting the registration process in our algo-
rithm are image quality (color contrast and deformations produced
by the cystoscope orientation) and intra and inter-patient image



Fig. 7. 1479 × 1049 pixels panoramic image constructed from a 450 image sequence. Two polyps are visible on the top-right and at the bottom left of the image. In this

panoramic image, both polyps can be accurately located in relation to each other. The 4 images shown on the left, below the larger image were extracted from the sequence.

They highlight the great variations in lighting conditions.

variability. Although a great variability exists between character-
istics of cystoscopic images in a same sequence, generally, lighting
and texture conditions do not change drastically from one image
to the next in the sequence. The bladder photograph used to eval-
uate registration precision was also used to quantify the limits of
the registration method. So, we applied elementary transforma-
tion combinations controlled by the positioning system described
in Section 3.1. Considering realistic limits related to our endoscopic
application, the maximum values of transformation parameters

(see Eq. (4)) applied to images were: ±50 pixels for tx and ty transla-
tions and ±10◦ for rotation in the image plane (� angle). Isometric
variations in scale factor (related to parameters a11 and a22) were
fixed to ±10%. Variations in viewpoint, or perspective, were sim-
ulated by ±10◦ rotations of angles � and  , around x- and y-axis
respectively. Note that, considering the acquisition video rate (25 s)
and the limited speed of the cystoscope movements during a clin-
ical examination (few mm/s), the values of these parameters in a
standard sequence are much lower than those considered in our



Fig. 8. 1458 × 5471 pixels panoramic image constructed from 530 images. The air bubble at the top and an ureter orifice at the opposite side of the bladder (bottom right)

may be observed simultaneously on this panoramic image.

Fig. 9. (a) 1947 × 1187 pixels panoramic image from a sequence of cystoscopic images constructed using the algorithm presented in this study. (b) Same panoramic image

constructed using the MI-based mosaicing algorithm presented in [26].



Fig. 10. Effect produced by the fiber pattern and lighting inhomogeneities on MI (top-left) and on the absolute value of SSD (top-right) computed using images without

pre-processing (a) and with pre-processing (b). After pre-processing, the cost functions are convex and a unique global extremum exist that corresponds to the correct value

of translations (8,−47)

tests. The results of these tests indicate that the impact of rotation
angle� (around z-axis) on the algorithm performance is important.
If � ≈ 10◦ and other transformations are also significant, regis-
tration fails. However, we found that for a superposition rate of
75% of image size and for in-plane rotations lower than 8◦, cor-
rect registration of images with a maximum error less than 1 pixel
is systematically obtained. In practice, these rotations are smaller
than 8◦. This error is very small indeed, because the obtained devi-
ation from the true position represents 0.4% of the height of images
(400 × 400 pixels). In addition, the conditions of the video acqui-
sitions on our phantom – pig bladder excised then “wide opened”
– and on a human bladders – clinical in vivo– are relatively differ-
ent. More precisely, pig bladder images as acquired are globally
less contrasted, due to weak lighting conditions, non-immersed
in a liquid media, light reflections and mechanical strain of the
bladder wall, than human bladder images acquired in clinics. The
differences between images acquired on the pig bladder photo-
graph and on human bladders in vivo are more important than the
intra-patient differences. However, our algorithm was successfully
applied to both types of sequences. The good results obtained for
various sequences acquired for different patients show the ability
of our approach to deal with image variability due to intra- and
inter-patient differences.

Finally, from the point of view of clinical application, visual
coherence corresponding to continuity and preservation of the
anatomical information is a parameter at least as important as
mosaicing error. Therefore, the panoramic images constructed and
their corresponding video sequences were compared by the physi-
cians to analyze the presence and continuity of blood vessels, scars
and other anatomical features visible on the bladder wall images. In
all panoramic images, the clinicians found that they were visually

fully coherent. Thanks to this easy-to-use and easy-to-store media,
they were able to rapidly observe specific zones of interest, such as
lesions, and to precisely locate them in the bladder.

5. Conclusion and perspectives

We developed a fast and automatic mosaicing algorithm appli-
cable to cystoscopic video sequences. Geometric transformations
between image pairs are modeled by a perspective transformation.
The presented mosaicing algorithm consists of a fast initial-
ization of translation parameters by an image cross-correlation
step, followed by a limited but efficient optimization of all the
transformation parameters using an inverse composition-based
registration scheme, and finally a projection of successively reg-
istered images onto a global common coordinate system. A test
protocol performed on a phantom allowed us to measure a mosaic-
ing error lower than 0.3% of the panoramic image size, considering
its width. We performed a qualitative evaluation of the panoramic
images constructed from 10 different image sequences obtained
from standard cystoscopic examinations. An analysis of the dis-
tribution of translation values existing between images for these
clinical sequences was carried out and exploited to modify our algo-
rithm for dynamic and automatic selection of the image pairs to be
registered. In this way, construction of panoramic images of regions
of a bladder takes only some minutes. Even if image mosaicing in
real time was not reached (with video rate of 25 s), the computa-
tion time taken by our algorithm, allows the physician to obtain an
exploitable panoramic image before ending the cystoscopic clinical
examination. All panoramic images built from clinical cystoscopies
constitute easy-to-use and easy-to-store media but are also visu-
ally fully coherent for the clinicians who are able to rapidly observe



specific zones of interest and to precisely locate them in the blad-
der. Complementary work is being carried out to further reduce
this computation time using image position prediction techniques
based on the translation information between previous images of
the sequence.
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