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Digestive Activity Evaluation by Multichannel

Abdominal Sounds Analysis
Radu Ranta∗, Member, IEEE, Valérie Louis-Dorr, Christian Heinrich,

Didier Wolf, and François Guillemin

Abstract—This paper introduces a complete methodology for ab-
dominal sounds analysis, from signal acquisition to statistical data
analysis. The goal is to evaluate if and how phonoenterograms
can be used to detect different functioning modes of the normal
gastrointestinal tract, both in terms of localization and of time
evolution during the digestion. After the description of the acqui-
sition protocol and the employed instrumentation, several signal
processing steps are presented: wavelet denoising and segmenta-
tion, artifact suppression, and source localization. Next, several
physiological features are extracted from the processed signals is-
sued from a database of 14 healthy volunteers, recorded during 3 h
after a standardized meal. Data analysis is performed using a mul-
tifactorial statistical method. Based on the introduced approach,
we show that the abdominal regions of healthy volunteers present
statistically significant phonoenterographic characteristics, which
evolve differently during the normal digestion. The most signifi-
cant feature allowing us to distinguish regions and time differences
is the number of recorded sounds, but important information is
also carried by sound amplitudes, frequencies, and durations. De-
pending on the considered feature, the sounds produced by differ-
ent abdominal regions (especially stomach, ileocaecal, and lower
abdomen regions) present a specific distribution over space and
time. This information, statistically validated, is usable in further
studies as a comparison term with other normal or pathological
conditions.

Index Terms—Abdominal sounds, digestion evolution, factorial
analysis, wavelet denoising.

I. INTRODUCTION

O
NE of the oldest means of physiological investigation,

still currently used in clinical routine, is the auscultation.

The instrumentation is simple (stethoscope), and its utility is

largely recognized especially for cardiac and pulmonary sounds.
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Nancy Université-Centre National de la Recherche Scientifique, Nancy
F-54516, France (e-mail: radu.ranta@ensem.inpl-nancy.fr).

V. Louis-Dorr is with the Centre de Recherche en Automatique de
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Relatively little studied for abdominal sounds, although the first

papers appeared a century ago [1], the phonoenterography

presents significant potentialities [1]–[8]. Different applications

can be imagined, from the study of the normal physiology (clas-

sifying digestion phases or abdominal regions) to clinical routine

(functional diseases diagnostic aid and postsurgical monitoring)

or pharmacological research (medication effect on the gastroin-

testinal activity).

Two types of approaches for phonoenterogram interpretation

are proposed in the literature: the first one focuses on the anal-

ysis of individual sounds, classified, for example, in 1◦, 2◦,

and 3◦ sounds [9], clicks, multiclicks and complexes [3], in-

testinal bursts, and regularly sustained sounds [10]. The second

approach, adopted here, is more widely used and tries to ana-

lyze sequences of phonoenterograms using different, so called,

“activity indexes” like mean sound duration, silence between

sounds duration, signal energy, etc. The underlying hypothesis

is that abdominal sounds, recorded upon long periods of time

and in several abdominal locations, are representative of the

physiological activity, either normal or pathological. Under this

hypothesis, changes in the patient status are reflected in the activ-

ity indexes, which can be used to assess and quantify differences

among normal or pathological physiological states [2], [5], [6],

[11]–[13]. However, phonoenterogram interpretation is particu-

larly difficult: There is no consensus on a method for processing

and analyzing abdominal sounds over long durations and in si-

multaneous locations (see the comparative studies [14] or [15]).

The first goal of this paper is to propose a complete (although

not unique) signal acquisition, processing, and analysis method-

ology, able to extract significant activity indexes from long-term

multichannel phonoenterograms. The second and more impor-

tant goal is to use these indexes to analyze the influence of the

physiological factors, such as the patient, the abdominal region,

and the digestion phase, on the phonoenterograms. A detailed

statistical analysis is performed to check if phonoenterograms,

characterized by simple physiological activity indexes, can be

used to make statistically valid affirmations about the digestion:

which regions can be distinguished, when, how much time one

has to record (listen), and which are the indexes that can be used

to make this difference.

We focus here only on the digestion of the healthy volunteers,

in order to obtain a phonoenterographic point-of-view descrip-

tion of the normal functioning of the digestive tract, in the given

controlled recording conditions. The obtained spatial–temporal

(regions–digestion phases) distribution of the abdominal activity

is statistically validated through a nonparametric factorial data

analysis (analysis of variance (ANOVA) type) and can constitute
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a comparison term for other normal or pathological phonoen-

terogram data, recorded and extracted in similar conditions.

After this introduction, the second section describes the signal

acquisition and processing methods. The main addressed issues

are the protocol used to ensure the repeatability of the measures

and the novelties introduced in the denoising procedure. The

next section presents the experimental design and the statistical

analysis methods. Section IV details and discusses the results

and is followed by a conclusion and by possible future research

directions.

II. SIGNAL ACQUISITION AND PROCESSING

This paper uses similar acquisition protocol and instrumen-

tation as our previous works [12], [13], [16]–[18]; therefore, we

focus on the test protocol used to ensure the repeatability of the

measures. Moreover, as most of the employed signal process-

ing methods were already introduced and validated in the cited

papers, only a brief reminder is presented here.

A. Rationale

Regardless of the data analysis methodology, the obtained

results are influenced by the elements of the acquisition and

signal processing chain. To reduce the possible variations of

the activity indexes due to the acquisition,1 we place ourselves

in a controlled environment (identical instrumentation, record-

ing conditions, and signal processing for all recording channels

and all patients). These conditions must, of course, deal with

phonoenterogram difficulties, which are as follows.

1) Long-term recordings have a high variability, either in time

(digestion phases), location (abdominal region), or among

patients. For a valid interpretation, it is necessary to record

on several patients, in different abdominal locations and

using similar recording conditions (standardized protocol

and instrumentation).

2) Individual abdominal sounds have a highly irregular char-

acter and random appearance (although quasi-periodic

bursts have already been detected by Cannon [1], a cen-

tury ago), and they are contaminated by noise and artifacts

(movements, heart beats, etc.). It is then necessary to de-

tect, segment, and denoise them, as well as to characterize

them in order to eliminate the artifacts.

B. Data Acquisition

1) Experimental Protocol: Our database consists of 14

healthy volunteers of medium build, partially based upon the

dataset used in [13].2 All phonoenterograms were recorded in

similar conditions and, to avoid perturbing the normal diges-

tion of the volunteers, the choice of the meal was adapted to

their alimentary habits: a standardized breakfast was taken at

about 8:30 a.m. and consisted in a cup of tea/coffee, two bread

rolls, 200 mL of orange juice, and one yoghurt. The end of

1Real clinical auscultation conditions can be highly variable and they could
influence the results of the analysis.

2Compared to [13], some patients were eliminated and others were added to
obtain an homogeneous database.

Fig. 1. Stethoscope placement and abdominal regions: ℓ stands for the distance
between the navel and the lateral side.

the recording, almost 3 h later (168 min), is very close to the

main meal of the day, taken at about 12:00, and therefore, we

consider that we can follow the digestion (postprandial period)

and have the “hungry” period (preprandial) for each volunteer.

A completely lied-down position (which could be more appro-

priate for good recording conditions) was difficult to accept and

maintain for the whole recording duration, and therefore, the

volunteers’ position was halfway between lying and sitting so

they could watch television (using a headset to avoid phonoen-

terogram contamination by the TV sound). In order to minimize

movement artifacts, they were instructed not to change their

position during the recording.

2) Acquisition Sites: To obtain local information for differ-

ent abdominal regions, six recording channels (1,2, . . ., 6) were

used (see Fig. 1). In order to respect interpatient variability,

channels 1, 2, 4, and 6 were positioned at equal distances from

the navel. This distance was taken at two-third from the total

distance between the navel and the lateral side of the abdomen.

Channels 3 and 5 were aligned to channels 2, 4, and 6. These

positions aim to record sounds over significant abdominal struc-

tures and cover the whole abdominal surface (1 on duodenum,

2 on the ascending colon, 3 on the ileocaecal valve, 4 on the

small bowel, and 5 and 6 on the descending colon).

3) Acquisition Instrumentation: Most of the literature re-

ports classic microphones for acquiring abdominal sounds (as,

for example, in [1], [2], [4], [5], and [19]). Commercial elec-

tronic stethoscopes were used by Craine et al. [6], [7]. We

have followed the approach of Garner and Ehrenreich [3], who

adapted electret microphones to classic stethoscope heads. The

six sensors were fixed on the abdomen wall with an elastic band.

Obviously, to these sensors, we associated conventional ana-

log electronics containing adjustable voltage amplifiers and

bandpass antialiasing filters, calibrated to the bandwidth of the

A/D converter (Nicolet Vision 8 channels digital acquisition

system, 16 bits resolution). According to the frequency charac-

teristics of the signal (band-limited between 100 and 500 Hz, see

next paragraph), the chosen sampling frequency was 5000 Hz.

The advantage of this instrumentation choice is that it allows

a perfect control of the acquisition parameters: the six channels
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Fig. 2. Superimposed frequency responses for different sensor pressures vary-
ing from 390 to 3510 Pa (with a step of 390 Pa), corresponding to masses between
0.05 and 0.4 kg (0.05 kg step) placed on the stethoscope head.

were calibrated in the same manner, and this calibration was

verified before each recording.

The developed acquisition system has its pitfalls: first, the

frequency response due to the stethoscope head is not flat.

Still, commercial electronic stethoscopes also present selective

frequency responses, which vary considerably from one an-

other [20]. Second and more important, the six channels might

have different responses among regions and among volunteers,

because of the variations in the fixation system. With this ideas

in mind, we tried to evaluate, on one hand, the frequency re-

sponse in the frequency band of interest and, on the other hand,

the influence of the pressure applied by the stethoscope head

against the patient’s abdominal wall.

The frequency responses of the sensor were evaluated for

different pressures, situated in a large enough interval (≈400

to ≈3500 Pa) to cover the actual pressures of the stethoscope

head on the abdominal wall during the phonoenterogram record-

ing. Measures were done in an anechoidal chamber by pressing

the stethoscope head against an abdomen phantom using dif-

ferent force values and a calibrated white-noise source between

100 and 1000 Hz. As expected, the frequency response of the

stethoscope head is not flat, unlike the frequency response of

the microphone alone (compared to those recorded using only

the microphone, all sounds acquired through a stethoscope head

are amplified from 5 to 30 dB over the band of interest 100–

500 Hz, see Fig. 2). The curves presented in Fig. 2 correspond

to different pressures and, as it can be seen, they are rather

slightly influenced by the pressure in the frequency band 100–

500 Hz, although more important variations appear for higher

frequencies (around 800 Hz).

Finally, a last evaluation of the acquisition system was per-

formed by medical expertise. Several minutes of the recorded

phonoenterograms were listened to and annotated by a clini-

cian, who confirmed the good quality of the recordings from the

medical interpretation point of view.

We, therefore, conclude that the frequency response of the

instrumentation does not distort the physiological information

carried by the abdominal sounds. Moreover, it does not signif-

icantly vary because of the fixation system, and thus, neither

among different recordings (in time or across the different re-

Fig. 3. Typical phonoenterogram recording. (a) Time course. (b) Spectral
content (normalized to unitary energy).

gions or different patients). Therefore, no acquisition bias affects

the signal analysis presented in the sequel, and comparisons

among regions and patients make sense, as the recordings were

performed in similar conditions.

4) Signal: Healthy phonoenterograms are characterized by

a succession of isolated short events. The signal consists of

a sparse succession of nonstationary impulsive sounds [see

Fig. 3(a)]. They can appear in periodic bursts of activity (3 to 12

per min, according to the place and time of their generation) [1],

[2]. The parts of the signal that separate the sounds, called in the

bibliography “periods of silence,” are not actually completely

quiet. Noise due to acoustic effects of the stethoscope and other

low-frequency physiological sounds (breathing and blood flow)

is superimposed on the informative signal and must be taken

into account in any further processing.

The frequency content of the phonoenterogram is relatively

poor. The literature indicates maximum frequencies of the ab-

dominal sounds lower than 1000–1500 Hz [4], [5], [7], [21],

even if other values are mentioned (5000 Hz, for example,

in [3]). The principal frequency of the abdominal sounds is

generally higher than the frequencies of the cardiac and pul-

monary sounds, and sometimes a high-pass filtering at 80 Hz is

used to eliminate the influence of the latter [5]. The frequency

content of the noise is almost identical to that of the signal and

cannot be eliminated by simple filtering.

The literature description of the abdominal sounds is con-

firmed by our observations. Their frequency content is band-

limited: only approximately 0.5% of the signal energy is located

beyond 1000 Hz and only approximately 2% beyond 500 Hz.

In fact, almost all of the phonoenterogram energy is situated

between 100 and 500 Hz [see Fig. 3(b)].

C. Denoising and Segmentation: HystD Algorithm

Considering the signal characteristics (sparse transients),

nonstationary denoising algorithms seem to be the most
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appropriate. This hypothesis was validated by our previous work

and by several other authors, who developed wavelet-based al-

gorithms for abdominal sounds denoising [13], [22]–[26]. Au-

tomatic segmentation procedures are proposed in [13], [19],

and [24].

The first wavelet-denoising algorithm applied on bowel

sounds was the iterative wavelet transform-based stationary-

nonstationary filter (WTST-NST) proposed in [23] and derived

from the “peeling algorithm” presented in [27].We have shown

in [16] and [18] that WTST-NST may be seen as a fixed-point al-

gorithm, and we have analyzed and determined its convergence

conditions by introducing generalized Gaussian (GG) modeling

of the wavelet coefficients. This approach leads to a “minimal

denoising” algorithm (MinD), completely parameter-free and

ensuring a maximum information extraction from the measured

signal. The main drawback of these methods is the fact that they

tend either to overestimate the number of individual abdomi-

nal sounds (WTST-NST and MinD) or to distort the detected

ones (especially WTST-NST with a different parametrization

Fa > 3, see [26]).

Several improvements were proposed over the past years.

Fractal dimension estimation in the wavelet domain was used

in [25] and [28] to diminish the distortion of the detected events.

Wiener filtering (in the wavelet domain also) was proposed

in [26] to avoid overdetection and minimize distortion. We

proposed a different approach, called “hysteresis denoising,”

in [13], which achieves denoising and segmentation in the same

time, ensuring also a limited distortion of the segmented events.

A slightly modified version of this algorithm (5) is briefly re-

minded here. Comparison with other recent signal processing

developments, such as those introduced in [10], [19], [25], [26],

and [28], is beyond the purpose of this paper.

We consider the model z = x + n, where z is the noisy

discrete-time signal of length N and x is the noise-free unknown

version of z and n the noise. Synthetically, the orthogonal dis-

crete wavelet transform (DWT) of z writes

z =
∑

p,j

wj,p
z ψj,p +

∑

p

wM,p
z φM,p (1)

where j = [1, . . . , M ] is the scale, p = [1, . . . , 2−M N ] is the

position, ψ is the wavelet, φ is the scaling function, and M is

the analysis depth [29]. The denoising threshold is computed

using the fixed-point iteration

Tj,k+1 = Fa

√

1

N

∑

p

(wj,p
z max(0, sign(|wj,p

z | − Tj,k )))2

(2)

with Tj,k being the threshold at scale j and iteration k and Fa

being a multiplicative constant. This constant is user chosen for

WTST-NST or function of the estimated GG probability law of

shape u followed by the wavelet coefficients for MinD (see [18]

for the proof)

Fam =

√

3Γ(1/u)

u
(ue)1/u (3)

with Γ(t) =
∫ ∞

0 e−xxt−1dx. This Fam constant (subscript m
stands for minimal) insures the convergence of the algorithm

to a nonnull threshold having a low value, and thus, leading

to a maximal information extraction from the measured signal

(minimal distortion).

For the implementation, the shape parameter u was estimated

using the absolute empirical moments m1 and m2 (with mr =
IE[|z|r ], see [30] and [31]).

By slightly modifying the proposition made in [13], we in-

troduce a correction term for Fam , leading to a new constant

Fao = max(Fam ,KcFam ) (4)

with

Kc =

√

4 log N

3
√

2πe
. (5)

It is easily verified that for u = 2 (Gaussian law) and Fao =√
2 log N , which is the well-known universal threshold pro-

posed by [32].

The rationale behind this modification is the following: the

universal threshold is constructed to asymptotically eliminate

all the (Gaussian) noise from the measured signal. To adapt it

to our iterative framework and to the GG case, we propose to

modify the Fam constant, the goal being to achieve compara-

ble performances of noise elimination. Therefore, an iterative

algorithm (2) using the Fao constant (4) will lead to a high

threshold value, and thus, a quasi-complete noise cancelling.

Moreover, applying this threshold on the approximation scale

of the wavelet decomposition (low frequency), an approximate

segmentation of the signal or, more precisely, a detection of the

impulsive abdominal sounds, is also obtained. The price to pay

for this high threshold is the distortion of the detected sounds

(see Figs. 4 and 5). It is then natural to combine the two itera-

tive algorithms in one hysteresis denoising algorithm (HystD): a

high threshold (obtained with Fao ) to detect the greatest coeffi-

cients of each scale, and a low threshold (obtained with Fam ) to

select the “big enough” coefficients located in the neighborhood

of those selected by Fao .

A similar method was successfully applied in [13], and there-

fore, we only give some illustrative examples in Figs. 4 and 5.

As it can be seen in Fig. 4, the HystD algorithm detects almost

all of the individual abdominal sounds (the sixth one, unde-

tected, was hardly hearable by the expert, but it was confirmed

after several listenings). Classic iterative WTST-NST detected

it, but it also detected many parasite sounds that, on one hand,

confused the expert and, on the other hand, made the segmen-

tation almost impossible (and thus, also the artifact elimination

and the multichannel processing, which are partly based on the

characteristics of the segmented sounds). Nevertheless, elimi-

nating some of the sounds (as long as it remains marginal and

similar for all recordings) does not influence the relative com-

parisons among regions and time sequences, although it might

shift the absolute values.

Another situation can be observed for the first-detected

sound, which visually seems distorted. A close examination

of its time course and spectral content reveals that the denois-

ing/segmentation procedure eliminated the low-frequency com-

ponents (below 30 Hz, in fact), which are quite energetic. The
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Fig. 4. (a) Example of 6.5 s of phonoenterogram. (b) Its denoised version
using WTST-NST (Fa = 3) and (c) using novel HystD thresholding. Expert
identified events are indicated by arrows.

Fig. 5. Distortion comparison. (a) Example of an abdominal sound. (b) Its
denoised version using WTST-NST (Fa = 3), (c) using HystD, and (d) using
an iterative fixed-point algorithm (2) with Fao (4).

auditive impression confirms this analysis: almost no difference

can be heard among the three denoised versions and the original

sound, except for the background noise (original signal) or a

succession of parasite clicks (WTST-NST).

Although not presented in Fig. 4, the iterative thresholding

using Fao (4), as well as the universal thresholding, furnished

denoised estimated signals visually similar to the one obtained

by HystD (easy to segment, and thus, facilitating the number

of sounds counting). Still, a detailed examination of the result

(see Fig. 5 for a zoom on the third-detected abdominal sound

in the example) shows that physiological characteristics of the

sounds (amplitude, frequency, and duration) might be distorted

by a too high threshold. Therefore, having in mind that our goal

is to extract activity indexes from long-time recordings, a good

compromise was offered by the HystD algorithm.

D. Artifact Elimination and Multichannel Processing

1) Artifact Elimination: Before proceeding to the multi-

channel processing, we have decided to heuristically eliminate

remaining artifacts. Although less sensitive than WTST-NST,

HystD (as certainly no denoising method) cannot ensure com-

plete elimination of undesirable perturbations. In fact, noise

cancelling methods deal with stationary noise, but noninfor-

mative (from a phonoenterographic point of view) signals are

not treated. Indeed, heart beats, patient movements, and cough

can be considered as informative events by the wavelet denois-

ing/segmentation algorithm, and this kind of events are unfortu-

nately unavoidable in long-time measurements. We have there-

fore introduced a priori knowledge at this stage of our abdom-

inal sound processing method. For each segmented event, we

have computed the most popular physical features: the duration,

the energy, and the frequency spectrum, as in [4]–[7]. To avoid

windowing effects, these characteristics were computed from

the wavelet decomposition: duration as the union of the wavelet

supports, the energy as the squared sum of the wavelet coeffi-

cients, and the frequency spectrum as the sum of the wavelet

spectra. The events that did not fit the literature description of

an abdominal sound were eliminated: sounds shorter than 20 ms

(like hair and skin friction on the stethoscope membrane), longer

than 5 s (movements), or having more than half of their energy

below 80 Hz (like heart beats and respiration). On real signals,

several tests showed that this approach was more effective than

high-pass filtering or even adaptive filtering (with a reference

stethoscope placed on the chest, for heart, cough, or movement

detection).

2) Multichannel Processing: There are two steps of multi-

channel processing (see Fig. 1 for stethoscope placement). The

first one concerns artifact elimination by cross-validation. In

fact, we assumed that real abdominal sounds propagate inside

the abdomen. Therefore, we have eliminated all sounds that are

not quasi-simultaneously acquired by at least two stethoscopes

(i.e., their time supports are strictly disjoint).

The second step is the localization technique. We have dis-

cussed different methods in [17]. In fact, very few publications

present a multichannel approach, and most of those who do it

(like [5], for example) treat the recordings in a completely inde-

pendent and parallel manner: they quantify abdominal sounds

independently for each abdominal region and no propagation is

taken into account. Two approaches were proposed by Craine

et al. [7], who perform source localization by triangulation, and

by Dimoulas et al. [19], who use a more elaborated decision

tree adapted to their hierarchical segmentation technique. The

first one is inaccurate, because of the high anisotropy of the

propagation environment, while the second one is inapplicable

in our detection and segmentation framework. In fact, the tech-

nique that we proposed in [17] reduces to what Dimoulas et al.

call closest point of approach (CPA; [19]); indeed, the simplest

hypothesis and, in the actual state of knowledge, the most accu-

rate, is that the recorded sounds are louder when the stethoscope

is placed closer to their origin. Therefore, we have proposed

a six-region partition of the abdomen, as indicated in Fig. 1.

For each sound, we check its maximum amplitude (acoustic
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intensity) on each of the stethoscopes that acquired it, and its

origin is placed inside the region indicated by the greatest value.

III. DATA ANALYSIS METHOD

Our first proposals for long-term monitoring, based on a set

of activity indexes, were made in [12] and [13]. This paper

proposes a different phonoenterogram characterization, directly

based on the most significant physiological indexes instead of

principal components. Therefore, the findings are directly ex-

ploitable by clinicians: median values for several physiological

indexes are given for different abdominal regions and for differ-

ent postprandial time intervals.

A. Feature Extraction

Several empirical activity indexes are proposed in the lit-

erature: number of sounds by time interval [1], [5], [7], [11],

[33]–[35], the sounds duration, energy, power or amplitude in-

tegrated over a period of auscultation [2], [3], [5], [6], [33]–[35],

sounds main frequency [5], [34], and silence between sounds

duration (integrated or averaged over time) [6], [7], [33], [35].

The most commonly considered time interval is the minute,

which corresponds to the range of clinical auscultation duration

by region. Summarizing, we have considered in our study nine

activity indexes, evaluated for each channel and for each minute

of recording: the number of sounds (Nm ), the total energy (Em ),

the total duration of sounds (Dm ), the median energy of sounds

(Eµ ), their median duration (Dµ ), their median power (Pµ ),

their median main frequency (fµ ), their median acoustic inten-

sity (amplitude) (Iµ ), and the median duration of silence periods

between sounds (Ds,µ ).

Each minute of recording can then be represented as a point

in the 9-D space obtained from the nine activity indexes. Con-

sidering our database, we have 14 112 such points, representing

168 min for each of the six regions of the 14 patients. Inter-

preting all this information reveals to be difficult because of the

high dimension of the representation space and, furthermore,

because of the probable redundancy of the nine features.3 To

diminish the variable redundancy, and thus, the dimension of

the representation space, we propose a guided feature-selection

step based on a correlation/principal component analysis (PCA)

analysis: after PCA, the first four principal components c1–c4

were retained, as they describe more than 80% of the variance.

Next, instead of projecting the data onto the reduced principal

component space, the original features that are the most corre-

lated with these first four principal components were retained:

Iµ , Nm , fµ , and Dµ (correlated, respectively, to c1–c4 , at least

0.7). We discarded redundant variables as Dm , highly correlated

with Nm (0.88), Eµ , and Pµ , highly correlated between them

(0.80) and with Iµ (0.67, respectively, 0.68), Em and Ds,µ , un-

correlated with any of the principal components. The first three

retained features are almost orthogonal (the maximum correla-

tion coefficient among them is smaller than 0.2), while the last

3We have proposed PCA in [12] and [13] to reduce the number of retained
features and to decorrelate them.

Fig. 6. Evolution of the four selected variables (Nm , Dµ , fµ , and Iµ ) during
168 min for the six regions (median values over the 14 volunteers).

one (Dµ ) is a little more correlated (0.4 with Iµ ).4 This approach

permits an easier comparison with the literature and, above all,

a natural physiologic interpretation.

B. Statistical Data Analysis

The basic hypothesis is that all recordings are acquired in

similar conditions, i.e., after a standardized meal and from a

normal population, without particular digestion types (diseases

and nutritional habits). The obtained analysis database consists

of 14 × 6 × 168 = 14 112 points (minutes of phonoenterogram)

in a 4-D feature space (Iµ , Nm , fµ , and Dµ ).

We recall that the aim of this paper is to determine if the

processed phonoenterograms can be used to evaluate differences

among different physiologic conditions (digestion evolution)

and/or recording sites (abdominal organs). A first visual analysis

can be done by plotting the median values of the four retained

variables (over the 14 patients), computed for every minute

and every region (see Fig. 6): the displayed graphs seem to

indicate differences among regions and time evolution during

the digestion, but these differences are more easily seen and

quantified for certain variables and/or among certain regions

and/or during certain time intervals. Thus, this visual impression

must be detailed and confirmed by statistical analysis: are the

regions or the minutes significantly different? Are these regional

differences significant all along the recording? If we consider a

particular recording site, is the time evolution significant? These

questions will be addressed for all retained variables.

A very critical issue, which can lead to erroneous interpreta-

tions, is the experimental design, which must take into account

the nature of the analyzed data.

First of all, as the variables (activity indexes) are not Gaus-

sian, nonparametric statistical tests must be used. Different

4All the p-values for the correlation coefficients presented here are highly
significant ≈ 0. This is consistent with the very high amount of data, as for
every variable, we have more than 14 000 measures.
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ANOVA-like nonparametric tests have been developed and com-

pared in the literature [36]–[40], and it is generally accepted that

rank transforming the data (i.e., taking ranks, instead of actual

values) can provide robust solutions. This rank transformation

can be done in different ways: either 1) globally on the whole

data; 2) after aligning the data to eliminate the influence of one of

the factors (i.e., subtraction of lines means before testing for col-

umn differences, for example); or 3) after ranking separately by

factors (i.e., ranking the values on each line separately, instead

of ranking the whole data matrix). Intuitively, rank alignment

2) applied on the third factor (patients) will normalize the vol-

unteers by considering equal means, while the separate ranking

3), known as Friedman test, provides almost the same effect, but

normalizes both the means and the variances of the patients.

Second, the previous questions have to be translated into a

statistical methodology, applied separately and successively for

each variable (Iµ , Nm , fµ , and Dµ ).

1) Gross Analysis: Perform separate one-way Kruskal–

Wallis (KW) tests (equivalent to ANOVA on not aligned ranks

[36]) to assess differences among regions considering as repli-

cates all values for a given region, regardless of the patient

and minute (respectively, among minutes, considering as repli-

cates all values for a given minute, regardless of the region and

patient).

2) Global Analysis: The previous simple approach eludes

the possible influence of the recording site on the time evolution

and of the recording moment on the regional activity. In fact, a

more complex design should take into account the three variable

factors of the dataset: the regions, the minutes, and the patients.

Still, the three factors do not have the same nature: we are

interested in differences among regions and among minutes, but

not among patients, as our starting hypothesis was that they

are all issued form the same healthy population. Nevertheless,

we should take into account the interpatient variability when

testing for differences among regions and/or minutes. In this

design, the third factor is what is called a random factor, and a

three-way test with two fixed factors (six regions and 168 min)

and a random factor (14 patients) should be performed. Then,

perform then a three-ways ANOVA on ranks (not-aligned), with

two fixed factors and one random, to test for differences among

regions, among minutes, and for possible interactions between

them. This last term is very critical, because if interaction exists,

one should consider separate sets of data by region (respectively,

by minute) and make a “fine analysis” as described next.

3) Fine Analysis: If interactions are high, Zar [36] recom-

mends to test only for differences between individual cells. This

approach would be fastidious and useless: even if the difference

is significant, what information could we extract by knowing

that a particular minute recorded in a particular region is dif-

ferent from another minute recorded elsewhere? A midpoint

solution is to group cells by “families” and test for differences

among them: are the regions different, tested minute by minute?

Are the minutes different within a particular region (i.e., is there

a significant time evolution of the considered activity index for a

given region)? This approach implies separate two-way ANOVA

on ranks: we only consider data issued from one of the levels of

a given fixed main factor, and perform the test according to the

other fixed main factor and the random one. For example, we

could consider all regions recorded during a given minute and

perform a two-way analysis with one fixed factor (regions) and

one random factor (patients). The previously defined 3-D matrix

will then split in several 2-D matrices. For each of the 168 min,

matrices having six lines (regions) and 14 columns (patients)

will be obtained (a similar approach leads to 168 × 14 matrices

for each of the six regions).

A more robust alternative is possible: separate ranking by

factors (leading to Friedman test, implemented here using the

statistic given by [36] for repeated measures), leads to a reduc-

tion of the interaction, and therefore, should be used if the first

solution (ANOVA on ranks) reveals a high degree of interaction.

Again, this analysis is made for each of the 168 min to test for

differences among regions; a similar approach is implemented

after considering separate sets of data for each region, to test for

differences among minutes.

One final issue before presenting the results. The described

tests allow to check for differences among several groups, but

not between two particular groups: they provide the information

that at least two groups are different, without indicating which.

Multiple comparisons procedures [36], [37] must be used to

verify this point. Some authors [36] recommend to use them

only if global ANOVA-type tests indicate significant differences,

while others [41] have the completely opposite opinion. Among

these tests, the current approach on ranked data (after KW or

Friedman) is the Nemenyi nonparametric multicomparison [36],

which we used when these tests were applied. The results of

multiple comparisons are presented, as suggested by [36], by

underlining together similar groups (not significantly different).

For example, X1X2X3X4 signifies that X1 is different from

X3 and X4 , but is similar to X2 , which is similar to X3 also, and

so on. As seen in this example, a current problem when using

multiple comparisons is their transitivity. We decided to include

it in our interpretation of the results: if X1 is similar to X2 and

X2 is similar to X3 , then X1 is similar to X3 . In our example,

everything is similar, so we will rather note this as X1X2X3X4

and we will say that X1 , X2 , X3 , and X4 are found similar

after a transitive multiple comparison. Unless explicitly stated,

all multiple comparison results in this paper are transitive. This

choice might seem to restrictive, but, having in mind the actual

state of knowledge on the abdominal sounds, we have decided to

favor statistical validity of our findings with the risk of loosing

more subtle and detailed interpretations.5

IV. EXPERIMENTAL RESULTS

Fig. 6 presents the time evolution for the retained variables

and for each region. Median values computed over the 14 vol-

unteers are displayed. As one can see, the third region seems

richer in sounds than the others, especially than the first one (see

Fig. 1 for positioning). This difference is present for the first part

of the recording, but it attenuates at the end. Moreover, as the

dispersion of the patients around median values is not displayed,

we cannot visually appreciate if this difference is significant or

5For example, groups X1 X2 and X3 X4 could be considered different.
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Fig. 7. Box plots of the four variables (Iµ , Nm , fµ , and Dµ ) for six regions
(all minutes included). The medians for each region are represented with their
confidence intervals (notches) to facilitate multiple comparisons. Box limits
are at 25 and 75 percentiles (i.e., 50% of the minutes are “inside” the box),
while “+” signs represent outliers (minutes situated outside the limits defined
by extending the box, in both directions, by 1.5 its size).

if it is masked by a high patient intervariability. This is the role

of the statistic test, and their results are presented hereafter.

A. Gross Analysis

A possible quantification of the differences among the main

factors (regions and minutes), completely ignoring any possible

interactions, can be done by KW tests. As expected, minutes

cannot be separated, all p values are superior to 0.05. On the

contrary, the regions are significantly different for all of the four

considered variables.

Still, the outputs of the KW tests indicate that a difference

exists, without specifying which precise regions are different.

Multiple comparisons using the Nemenyi test were then per-

formed and the results can synthetically be presented using the

underlining notation introduced in the previous section. Ac-

cording to the four activity indexes, the regions show the fol-

lowing differences: for the sound intensity Iµ : r3r2r5 r6r4r1 ,

for the number of sounds Nm : r3r5r1r2r6r4 , for the median fre-

quency fµ : r3r6r5r2 r4r1 , and for the median sound duration

Dµ : r4r3r1r2r5r6 .

Synthetically, the third region emits more sounds than the

others, with higher frequencies and intensities, while the fourth

region has longer sounds, but very few. The sound intensity

cannot be used to distinguish between the second and fifth re-

gions, nor the number of sounds between the first, second, and

sixth. Different other interpretations are left to the reader, but

we remind that no interaction is taken into account here, and

therefore, only very global and approximate statements can be

made concerning the differences among regions and the absence

of difference among sequences (see Fig. 7).

The previous multiple comparisons results confirm the visual

analysis suggested by Fig. 6: if the auscultation is performed

during a long enough period, the different abdominal regions

have statistically distinguishable activity. All of the selected

features can be used, and the regions can generally be sorted

according to these features (although the second region, for

example, cannot be individually separated from the others).

B. Global Analysis

A more complete approach is a three-way ANOVA with two

fixed factors (regions and minutes) and one random factor (pa-

tients), performed after rank transformation on each of the four

variables. This step permits to evaluate the interactions: if they

are not present, the differences revealed by this method would

be sufficient for the phonoenterogram analysis.

For fµ , the obtained p-values indicate very high levels of in-

teraction among all factors, and therefore, no analysis on main

factors can be performed. For Iµ and Dµ , very high interactions

exist between regions and patients, and between minutes and

patients, but no significant value appears for regions–minutes

interaction (p = 0.26 and p = 0.36, respectively). Still, both

main factors have a high interaction with the patients, and there-

fore, interpreting main factors might be misleading for these

variables also. For Nm , the results are similar, with high inter-

actions between regions and minutes, and between minutes and

patients. Ignoring the interactions, it seems that all variables per-

mit to detect significant differences among regions (p = 0.005,

p = 0.002, p = 0.0005, and p = 0.0007 for Iµ , Nm , fµ , and

Dµ , respectively), but not among minutes (p = 0.97, p = 0.99,

p = 0.65, and p = 0.73).

C. Fine Analysis

As described in the previous section, in case of interaction,

data are considered separately. A first option is to test for differ-

ences among regions for each minute to confirm and detail the

results presented for the gross analysis (see Section IV-A). The

second option is complementary: consider regions separately

and test for differences among minutes.

1) Regional Activity Distribution During Digestion: This

section aims to find if the regions can be considered statistically

different after a 1-min auscultation, and if so, which minute

after the meal is the most appropriate. Unfortunately, testing

for differences among regions for a given minute (Friedman

test) does not give any significant result: 1 min of auscultation

is not sufficient to distinguish between abdominal regions, re-

gardless of the activity index. This result seems to contradict

the information from Fig. 6: it seems quite clear that, for Nm ,

for example, the third region is higher than the others for the

first part of the recording. The same observation can be made

for fµ (regions r1 and r4 lower than r6 around minute 120)

or for Dµ (region r4 higher than r6 around minute 70). On

the other hand, the curves from Fig. 6 show certain natural

trends, which seem to indicate that successive minutes belong

to similar physiologic conditions. Therefore, we have decided

to concatenate several minutes to form sequences and to test

further on for differences among regions by sequence (instead

of by minute). Two solutions are possible: either recompute

the activity indexes for the new time interval, or consider the

minutes belonging to a sequence as statistical replicates (i.e.,

8



representative measures for the given sequence). We adopted

the second solution; on one hand, it preserves the physiological

activity indexes defined in the literature and used for the previ-

ous results and, on the other hand, it improves the statistic tests

reliability.

Different lengths for the tested sequences (analysis windows)

have been considered, from 2 to 42 min. As a first approach and

to ease the interpretation, we did not consider sliding windows,

but contiguous and disjoint (i.e., 84–4 different sequences). It

is clear that, for long sequences, the time position (when to

analyze) is less precise, as the analysis comes close to the gross

KW tests. Moreover, as the activity indexes are nonstationary

(see Fig. 6), long sequences might mask regional differences that

are more important during certain digestion phases. Therefore,

in our opinion, the optimal length of a sequence should be a

compromise: long enough to obtain statistical significance, but

as short as possible, to have a good time resolution and stationary

signals. Still, as no a priori knowledge exists and having these

considerations in mind, we present here the different obtained

results, with a particular focus on sequences having 21-min

length, considered optimal.

For sequences having a 2-min length, the results start to con-

firm the gross KW observations. For example, for the Nm vari-

able, the Friedman test has a significant p-value for almost all

sequences (i.e., there are differences among regions) and Ne-

menyi multiple comparisons indicate that the third region r3

produces more sounds than the others. In particular, a 2-min

auscultation during the first 10 min after the meal, as well as

between minutes 60 and 80, should permit to order the re-

gions: r3 is the richest (and significantly different), followed

by r5 .

The number of sounds by minute Nm is not the only variable

permitting to distinguish among regions: Dµ indicates that the

fourth region r4 produces significantly longer sounds around

minutes 60 and 120.

These findings are confirmed by 3- and 5-min sequences.

For example, for 5-min sequences, Iµ indicates that r3 is sig-

nificantly louder than the others during the first 10 min, and

between minutes 90 and 110. The sound duration Dµ is gener-

ally longer for r4 , and this is constantly and significantly evident

2 h after the meal (minutes 115–125).

Longer sequences reinforce the presented results. A particu-

larly interesting case is obtained for 21-min length sequences,

which split the recording into eight equal parts: the differences

given by the statistical tests have a degree of significance similar

to those obtained for the whole length. For all the sequences, the

loudest region (Iµ ) is r3 (corresponding to the ileocecal valve,

i.e., gut–colon junction) and the most quiet is r1 (stomach or

upper colon). Transitive multiple comparisons using Nemenyi

tests allow individual separation of r3 from all other regions

for all sequences. Region r1 (the most quiet) can also be sep-

arated according to these tests during the first hour (sequences

1–3). Globally, the third region is significantly louder and the

first region is significantly quieter than the others at the begin-

ning of the digestion, and the third region remains so during

all the recording period. Again, this conclusion gives a statistic

confirmation to the visual impression from Fig. 6, where these

TABLE I

REGION ORDERING AND MULTIPLE COMPARISONS BY SEQUENCE (21-MIN

LENGTH) AND ACTIVITY INDEX

differences among regions are more or less visible during the

recording.

Almost similar conclusions can be obtained for the second

variable (Nm ). It is still r3 , which is the richest in sounds, while

the poorest is r4 (lower central abdomen), except for the first

sequence, when r1 has the lowest number of sounds. Multiple

comparisons are more significant at the beginning and at the

middle of the digestion, than at the end (preprandial period): r3 is

significantly different from all the others from the first sequence

until almost 2:30 h after the meal (first seven sequences), but it

cannot be distinguished from r1 (stomach) for the last 21 min

(when most of the volunteers were hungry, with their stomach

gurgling). During the last four sequences, the fourth region r4

was also significantly poorer.

From a frequency fµ point of view, the regions are signif-

icantly different during all sequences. The third and the sixth

regions are the highest in frequency (r3 during the first hour

and r6 during the last hour), while r4 and r1 are the lowest

(r1 during sequences 1, 2, 4–6, and r4 during sequences 3, 7,

and 8). Nevertheless, according to Nemenyi tests, r3 is signif-

icantly higher than all the others only during the first 21 min

(r3r5r6 r2r4r1) and r6 is significantly higher only during se-

quence 7 (r6r3r5r2 r1r4).

The analysis performed on Dµ shows that regions are sig-

nificantly different according to both Friedman and ANOVA

on ranks tests all along the recording, except for the last 21

min, when ANOVA output becomes insignificant. The fourth

region (gut) has the longest sounds during all the digestion,

and it is significantly different from all others (Nemenyi test)

for the first approximately 2:30 h after the meal (sequences 1–

7). The shortest sounds are generated in regions 5 and 6, but

they are significantly different only at the middle of the diges-

tion (sequence 3: r4r3r2r1 r6r5 , sequence 4: r4r2r1r3r5r6 , and

sequence 5: r4r3r2r1r5r6).

In order to enforce the statistical validity of the results and

to ease the lecture, all the previous multiple comparisons were

transitive. The results of the nontransitive multiple comparisons

are not detailed here, but a synthetic view is shown in Table I,

which completely presents the interregion differences for a se-

quence length of 21 min. All multiple comparisons (for the four

variables and the eight sequences) are represented by underlin-

ing similar regions.

2) Activity Time Evolution by Region: Following the same

approach, we present here a detailed analysis by region, the goal

being to separate among minutes (or sequences) inside each
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region. In other words, we attempt to propose a phonoentero-

gram segmentation based on statistical characteristics.

As in Section IV-C1, a first approach considers equal-length

sequences and varies this length in order to find the necessary

(minimal) value for a reliable statistical analysis. Keeping this

duration small, allows us to preserve a good time resolution

for a possible segmentation of the phonoenterograms in diges-

tion phases; indeed, for each variable, consecutive similar time

sequences could be associated, according to the results of the

statistical tests, to define physiological digestion phases, while

the frontiers between two phases would be placed between two

consecutive different sequences.6 It is clear that as the (con-

stant) length of the sequence increases, the resulting segmenta-

tion becomes suboptimal, both because of the phonoenterogram

“subsampling” and its nonstationarity. Nevertheless, these seg-

mentation results lead to a first approximation of the abdominal

activity by piecewise constant functions: curves from Fig. 6

could be approximated by constant fixed-length segments. Sim-

ilar level segments (i.e., not significantly different according to

the tests) can then be concatenated to define a longer phase, the

obtained result being a first segmentation of the phonoentero-

gram in statistically different digestive phases.

Clearly, different other approaches can be adopted. For ex-

ample, variable length sequences could be segmented directly

on the curves from Fig. 6, based on some consistency criteria

(trend changes, piecewise linear regression), and the resulting

digestive phases could be compared among them by statistical

tests to assess the validity of the proposed segmentation. A third

method could propose physiologically defined phases, accord-

ing to the actual medical knowledge on the digestion (phases

of the migrating motor complex, for example), with again an a

posteriori statistical validation. Both these last two approaches

might possibly offer a more precise segmentation of the diges-

tion, but on the other hand, they need a consecutive statistical

validation that risks to concatenate them if the necessary level of

significance is not reached. In our opinion, implementing statis-

tical tests to check for significant differences among trends (or

slopes of piecewise linear regressions) exceeds the aim of this

paper and the actual state of knowledge on the abdominal sound

activity. Therefore, in this paper, the first described method (con-

stant piecewise segments) is only implemented, although less

precise, it directly offers the needed statistical significance.

As expected, sequences of 1-min length cannot be signifi-

cantly distinguished regardless of the region or the activity in-

dex. We adopted the same approach, concatenating the minutes

into longer equal size contiguous sequences and testing for dif-

ferences among them. As argued in the previous paragraph, this

leads to an approximate segmentation of the phonoenterogram

(by variable, for each region).

The shortest sequences that can be differentiated last for

15 min (11 sequences for the first 165 min), but this is only

possible for one variable (Nm ) and one region (r1). More pre-

6Moreover, the shorter the necessary duration for a reliable statistical analysis,
the easier the clinical implementation. Even if, for the moment, it is speculative
and further tests are needed, this approach should permit to suggest clinical
guidelines for the abdominal auscultation.

cisely, Friedman test gives p < 0.01 and multiple comparisons

yield the following order s11s10s9 s7s8s6s3s2s1s5s4 , which

means that during the last 45 min (i.e., starting 2 h after the

meal), the region r1 is significantly richer in sounds than during

the first 2 h.

Increasing the sequence duration improves the results of the

tests. For 21-min sequences (eight sequences), several regions

display significant time evolution, mainly concerning the num-

ber of sounds Nm . Multiple comparisons with Nemenyi test per-

mit to individually distinguish digestion phases for two regions:

for r1 , the last sequence (sequence 8) is the richest in sounds,

followed by sequence 7 (s8s7s6s5s1s2s4s3); for r3 , the evolu-

tion of the number of sounds follows an inverse path: the richest

is the first sequence, immediately after the meal, and the poorest

is the eighth, when the digestion is probably finished and the

volunteers are right before their next meal (s1s2s3s4s5 s6s7s8).

It is quite remarkable that these evolutions show constant nat-

ural trends: the stomach makes more sounds when empty (i.e.,

when the person is hungry), while the lower right abdomen

(end of the gut, ileocecal valve) is very active at the beginning

of the digestion and its activity decreases constantly until the

end.

Finally, splitting the recording in only four sequences having

42-min length each, all variables become significant, depending

on the region. For r1 , the last 42 min are the richer in sounds

and the loudest (for Nm , we have s4s3s1s2 , while for Iµ , we

have s4s3s2s1), although the sound intensity is not significantly

higher according to Nemenyi test, except compared with s1 (first

42 min). The number of sounds permits to establish significant

time evolutions also for regions 2, 3, 4, and 5 (r2 : s2s3s4s1 ,

r3 : s1s2s3s4 , r4 : s2s1s3s4 , and r5 : s3s1s2s4). Frequency

evolution can be observed for r1 : s2s1s4s3 , r4 : s2s1s3s4 , and

r6 : s4s2s3s1 , and median sound duration for r1 : s4s3s2s1

and r4 : s3s2s1s4 . Although not always obvious, some natu-

ral trends can be detected using these long-duration sequences.

The number of sounds Nm seems a valid indicator of the nor-

mal digestion evolution for almost all regions: it constantly

increases for the stomach (r1), it constantly decreases for the

ileocecal region (r3), and it has a similar evolution for the pre-

ceding segment (lower abdomen r4). The frequency is higher

during the first half of the digestion both for r1 and r4 . This

last observation is also confirmed by a gross analysis: KW and

Nemenyi tests for sequence differences, regardless of the region

and of the patient, indicate that s2 (second quarter of the record-

ing) has significantly higher frequencies than the other periods:

s2s1s4s3 .

Interestingly enough, the segmentations resulting from dif-

ferent sequence lengths confirm each other in most of the cases,

or at least they are complementary, for example, taking the first

region r1 and variable Nm , all considered sequences (15, 21, or

42 min) lead to the conclusion that the last part of the phonoen-

terogram (40–45 min) is statistically different from the previous

sequences, with complementary information given by the last

two analysis (21 and 42 min).

A synthetic presentation of the intersequence differences, in-

cluding all the multiple comparisons results, is presented in

Table II for 21-min-length sequences.
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TABLE II

REGION ORDERING AND MULTIPLE COMPARISONS BY SEQUENCE (21-MIN LENGTH) AND ACTIVITY INDEX

V. CONCLUSION AND FUTURE RESEARCH

This paper addresses two main issues: the abdominal sounds

processing methodology and their detailed statistical analysis.

Several methodological signal processing steps were pro-

posed and/or improved, and the resulting chain was employed

to extract physiologically meaningful data from the long-term

multichannel phonoenterograms. The proposed solution is ef-

fective, although an interesting perspective research could be

the comparison of the different other signal processing methods

developed in the recent literature for abdominal sound analysis.

However, the processing steps proposed in this paper proved to

be reliable enough to furnish statistically consistent information,

analyzed in the second part of this paper.

Two types of analysis were performed, aiming to check if

and under which conditions abdominal auscultation can furnish

statistically reliable data on the normal digestion, both in terms

of localization and time evolution.

According to our results, abdominal activity in different re-

gions can be distinguished using abdominal auscultation. It

seems that, to differentiate between regions, rather short-term

auscultation (3–5 min) can be sufficient, especially (but not

only) when this auscultation is performed immediately after the

meal. For example, for normal digestion, the third considered re-

gion r3 (lower right abdomen, ileocecal valve) should be louder,

should emit more sounds, and have higher frequencies. Approx-

imately 2 h after the meal (digestion final phases), the sounds

emitted in the lower central abdomen r4 are significantly longer

than those from the other regions. Of course, future validation

on healthy and pathologic cases is needed, but present results

indicate that these findings consistently describe normal func-

tioning of the abdominal tract. A comparative view of all results

suggests some interesting information for clinical auscultation:

it seems that the most informative regions, at least for analyzing

normal digestion, are r1 , r3 , and r4 (stomach, ileocecal region,

and gut region); the most effective activity index is the number

of sounds Nm , although complementary information is carried

by the other indexes; finally, better results can be obtained by

an immediately postprandial auscultation, although later phases

are also informative, especially if the auscultation is longer.

A more difficult issue is the analysis of the digestion evolu-

tion over time using the selected physiological activity indexes.

Although some trends can be detected, and thus, individual

minutes or short sequences of auscultation seem different at the

beginning and at the end of the digestion process (especially

when counting the sounds emitted by the stomach and by the

lower right abdomen), we were not able to prove this differ-

ence statistically. Even if digestion evolution cannot be clearly

evaluated by realistic (short-time) clinical auscultation, long-

time phonoenterograms can do it. Indeed, considering longer

auscultation sequences (unrealistic in clinical environment, but

possible using an automatic system), these trends can be de-

tected from the recorded data and they become significant, not

only considering the number of emitted sounds, but also in du-

ration, frequency, and intensity. This point also needs further

validation, and we are confident that a more extensive database

can improve the statistical reliability of our results.

An important point not completely addressed in this paper

is the length of the auscultation sequence needed to distinguish

among regions or among sequences themselves. Our current

proposal was to consider equal-length sequences, which is a

coherent approach from a statistical point of view: estimation

made over populations having similar sizes have similar prop-

erties (confidence intervals), and further comparisons are facil-

itated. Nevertheless, a physiologically justified approach would

consist in a previous segmentation of the time evolution of the

activity indexes, in order to detect possible natural digestion

phases, which can be further tested for statistical differences us-

ing a more elaborate test methodology. Hopefully, this approach

should permit to propose and confirm a finer segmentation of

the digestion phases and will be addressed in a future work.

An important future research direction is the validation of the

proposed signal processing and data analysis methodology on

a more extensive database and pathological cases, leading to a

possible increase of the statistical validity. Still, the results pre-

sented in this paper convey statistical evidence that the regional

abdominal activity of healthy patients shows a certain structure.

More precisely, a time-evolving activity pattern can be estab-

lished for healthy patients, and one can speculate that changes

in this pattern reflect a modified patient state (health, digestion

phase, and digestion habits).

For the moment, no pathological case was recorded using the

standardized protocol, but a short phonoenterogram of a patient

with gastritis was easily distinguished from the others (higher

sound intensity and number, especially in r1). As our method

allows a precise analysis of the normal abdominal functioning,

we are confident that pathologic recordings can also be char-

acterized. An important problem is the creation of a standard

healthy phonoenterogram database, necessary for any further

comparative study.

In our opinion, the main conclusion of this paper is that nor-

mal (and possibly pathologic) gastrointestinal activity might

be analyzed using abdominal auscultation, but this should be

done with great care: if the region differences can be assessed

11



by rather short-time auscultation, and thus, in a clinical envi-

ronment, digestion evolution evaluation needs longer recording

periods, and thus, an automatic tool.
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