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Central Limit Theorem for dimension of Gibbs
measures for skew expanding maps

Renaud Leplaideur& Benôıt Saussol ∗

December 16, 2009

Abstract

We consider a class of non-conformal expanding maps on the d-dimensional
torus. For an equilibrium measure of an Hölder potential, we prove an analogue of
the Central Limit Theorem for the fluctuations of the logarithm of the measure of
balls as the radius goes to zero.

An unexpected consequence is that when the measure is not absolutely contin-
uous, then half of the balls of radius ε have a measure smaller than εδ and half
of them have a measure larger than εδ, where δ is the Hausdorff dimension of the
measure.

We first show that the problem is equivalent to the study of the fluctuations of
some Birkhoff sums. Then we use general results from probability theory as the
weak invariance principle and random change of time to get our main theorem.

Our method also applies to conformal repellers and Axiom A surface diffeomor-
phisms and possibly to a class of one-dimensional non uniformly expanding maps.
These generalizations are presented at the end of the paper.

Keywords: Gibbs measure, expanding maps, dimension, Central limit Theorem.
MSC: 37A35, 37C45, 37D35, 60F05.
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1 Introduction

1.1 General background and motivations

Let consider a C1+α diffeomorphism T acting on some compact Riemaniann mani-
fold X. We can associate to each T -invariant probability µ several global quantities:
the Kolmogorov entropy hµ, the Lyapunov exponents λµ,1 < λµ,2 < . . . < λµ,k and
the Hausdorff dimension δµ; the dimension δµ being the infimum of all the Haus-
dorff dimensions of sets with positive µ-measure. Let us assume that the measure
is hyperbolic, in the sense that no Lyapunov exponent is zero.

For the case of one dimensional maps, we recall that the Lyapunov exponent is
defined by λµ :=

∫
log |T ′|dµ. Then, the relation between these three terms is

hµ = δµλµ.

For the higher dimensional case, the relation is (see e.g. [LY85a])

hµ =
∑

i

δµ,iλ
+
µ,i,

where λ+
µ,i denotes max(0, λµ,i). The terms δµ,i may be considered as intermediate

unstable dimensions and we have δu
µ =

∑

i, λµ,i>0

δµ,i (similarly we have δs
µ =

∑

i, λi<0

δµ,i).

On the other hand, associated to the measure µ, there is a notion of local (or
pointwise) dimension. We set

δµ(x) := lim
ε→0

log µ(B(x, ε))

log ε
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whenever the limit exists. Here B(x, ε) is the open ball of radius ε centered at x. It
is known (see [LY85b] and [BPS99]) that for µ-almost every point x, the pointwise
dimension δµ(x) exists, is equal to δµ and δµ = δu

µ + δs
µ.

In this article, we study the fluctuations in this convergence for some dynamical
systems (X,T, µ). Namely, we prove a Central Limit Theorem

log µ(B(x, ε)) − δµ log ε√− log ε

D
=⇒ N (0, σ2).

An unexpected consequence is that when σ 6= 0, then half of the balls of radius
ε have a measure smaller than εδµ and half of them have a measure larger than εδµ

(See Corollary 1.3).
The proof of this central limit theorem requires us to work at the level of pro-

cesses. That is, at some point, we need a functional central limit theorem. With a
little additional effort we also get the functional version of the above central limit
theorem, which is the statement of our main theorem that we will now present in
detail.

1.2 Statement of the Main Theorem

1.2.1 The dynamics

We consider the d dimensional torus T
d =

(
R/Z

)d
. We denote by πk the canonical

projections πk(x1, . . . , xd) = (x1, . . . , xk).

Definition 1.1. A map T : T
d 	 is said to be a skew product if it is of the form

T (x) = (f1(x1), f2(x1, x2), . . . , fd(x1, . . . , xd)).

We consider T : T
d 	 a C2 skew product. We assume that T is (uniformly)

expanding, in the sense that

sup
x

‖(dxT )−1‖ < 1

Consider a Hölder continuous function ϕ : T
d → R called the potential, and

define its pressure by

P (ϕ) := sup

{
hµ +

∫
ϕdµ

}
,

where the supremum is considered on the set of T -invariant probabilities. In this
setting the supremum is attained at a unique invariant measure µϕ, which is called
the equilibrium state of ϕ.

Note that considering such a potential, we can assume that the pressure is equal
to zero. This can be realized easily replacing ϕ by ϕ minus the pressure.

1.2.2 Skorohod topology

In this article we shall use the Skorohod topology. We refer to [Bil99] chapter 3 for
more global setting on this topology. We denote by D([0, 1]) the set of cadlag (french
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acronym for right continuous with left hand limits) functions on [0, 1] endowed with
the Skorohod topology:

Two functions u and v in D([0, 1]) are ρ-close if there exists λ : [0, 1] → [0, 1]
such that

1. λ(0) = 0 and λ(1) = 1 and λ is increasing;

2. ∀ t ∈ [0, 1], |λ(t) − t| ≤ ρ,

3. ∀ t, |u(λ(t)) − v(t)| ≤ ρ.

In other words, u and v are ρ-close in D([0, 1]) if, up to a small change of times, the
two functions are ρ-close. The main feature of the space D([0, 1]) is that it allows
discontinuous functions but is still separable.

1.2.3 Main result and corollaries

Our main theorem is

Main Theorem. Let T : T
d 	 be a skew product C2 expanding map. Let ϕ be a

Hölder continuous function from T
d to R . Let µϕ be the equilibrium state associated

to ϕ. Let δ be its Hausdorff dimension.
We assume that the sequence

λµ,i :=

∫
log

∣∣∣∣
∂fi

∂xi

∣∣∣∣ ◦ πidµϕ, i = 1, . . . , d

is increasing. Then there exists a real number σ ≥ 0 such that the process

log µϕ

(
B(x, εt)

)
− tδ log ε√− log ε

converges in D([0, 1]) and in distribution to the process σW (t), where W is the
standard Wiener process.

In addition, the variance σ2 is zero if and only if µϕ is the unique absolutely
continuous invariant measure, or equivalently ϕ is cohomologous to − log |detDT |.

We emphasize that for the absolutely continuous invariant measure, the measure
of balls is completely governed by its density h with respect to the Lebesgue measure:
the density is continuous (in fact C1), therefore we have the equivalence

µϕ(B(x, ε)) ∼ h(x)εd

for any x ∈ T
d. Needless to say, there is no point in looking at fluctuations in this

case.

Corollary 1.2 (Central limit theorem). With the same assumptions and notations,
the family of random variables

log µϕ (B(x, ε)) − δ log ε√− log ε

converges in distribution to the (possibly degenerate) gaussian distribution N (0, σ2).
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An immediate consequence is the unexpected balance between “heavy” and
“light” balls, already mentioned in the introduction:

Corollary 1.3 (Median). With the same assumptions and notations, if µϕ is not
absolutely continuous then

µϕ

({
x : µϕ (B(x, ε)) ≤ εδ

})
→ 1

2
.

We emphasize that the CLT was the main goal of the paper, but the method,
at the level of processes, gives as a byproduct several standard corollaries; we refer
to [Bil99] for further precisions about functions of Brownian motion paths.

Corollary 1.4 (Maximum and minimum). With the same assumptions and nota-
tions, if µϕ is not absolutely continuous then

µϕ

(
∀t ∈ [0, 1], µϕ

(
B(x, εt)

)
≤ εtδ+bσ/

√
− log ε

)
→ M(b),

where

M(b) = P ( sup
t∈[0,1]

Wt ≤ b) = 1 − 4

π

∞∑

k=1

(−1)k

2k + 1
e−π2(2k+1)2/8b2 .

Corollary 1.5 (Arc-sine law). With the same assumptions and notations, if µϕ is
not absolutely continuous then, the family of random variables

Tε(x) := Leb
(
t ∈ [0, 1] : µϕ

(
B(x, εt)

)
≤ εtδ

)

converges in distribution to the Arc-sine law (recall that U follows the arc-sine law
if P (U ≤ u) = 2

π arcsin
√
u).

1.3 Steps of the proof and structure of the paper

To clarify the exposition the proof will be made in the two-dimensional case. For
convenience we will denote points in T

2 by (x, y) and assume that the map T is of
the form T (x, y) = (f(x), g(x, y)). We set π(x, y) = x.

The proof has two main steps. In a first part (Section 2), we use dynamical and
ergodic arguments to reduce the problem to the study of the convergence of some
process of the form (see Lemma 2.17)

Snεtφ1 + Smεtφ2√− log ε
, (1)

where nε and mε are random “times”.
Then, in Section 3 we use arguments from Probability Theory to prove the con-

vergence of this last process. These arguments are somehow general and independent
of the functions φ1 and φ2.

We mention that the use of the Skorohod topology is perhaps not necessary.
It seems useful because the process we study is a priori discontinuous. However,
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note that the limit process is a.e. continuous. Therefore the convergence is uni-
form. Nevertheless, the space of cadlag functions endowed with the norm of uniform
convergence is not separable, which may cause some troubles as pointed out by P.
Billingsley in [Bil99]. We thus preferred to work in D([0, 1]).

Our method also applies to conformal repeller and Axiom A surface diffeomor-
phisms. These adaptations are presented in Section 4. Hypothesis of uniform ex-
pansion does not seem to be so crucial and we also discuss some possible extensions
of our main result at the end of the paper.

2 Reduction to a non-homogeneous sum of

random variables

2.1 A fibered Markov partition

Given (x0, y0) ∈ T
2 we denote S0 = {x0} × T ∪ T × {y0}.

Lemma 2.1. For any (x0, y0) ∈ T
2, there exist a finite partition R of T

2 in Markov
proper sets Ri such that

1. For each element Ri of the partition, T (Ri) = T
2 and T

|
◦

Ri

is one-to-one.

2. π(
◦
Ri) ∩ π(

◦
Rj) = ∅ or π(

◦
Ri) = π(

◦
Rj).

3. The boundary ∂R is mapped to T (∂Ri) ⊂ S0

4. P = π(R) is a Markov partition for f .

Proof. As the map T is a local diffeomorphism, the map f is also a local diffeomor-
phism of T. Both are onto. Thus they are coverings with finite covers.

Denote by Pi’s the collection of the closure of the connected components of

T \ f−1({x0}). Each
◦
P i is mapped by f one-to-one, f(Pi) = T and f(∂Pi) = {x0}.

Similarly, the closure of the connected components of T
2 \T−1S0 defines a finite

collection of sets Ri which fulfill the hypotheses (see Figure 1). By construction,

T is one-to-one on
◦
Ri and T (Ri) = T

2. Now, for each k, π(Rk) is one of the Pi’s.
These Pi’s have disjoint interior.

For x in T, Pn(x) denote the element of the partition

n−1∨

k=0

f−k(P) which contains

x. Note that it is well defined up to the boundary of this “partition”. Similarly we
define Rn(x, y). By construction π(Rn(x, y)) = Pn(x).

The border of the partition ∂Rn is going to play an important role. For a fixed
point (x, y) and for an integer n, the border or Rn(x, y) is denoted by ∂Rn(x, y).
It is the union of a vertical border ∂vRn(x, y) and a horizontal border ∂hRn(x, y).
The vertical border is exactly the union of two vertical segments (its projection by
π is the union of two different points). The horizontal border is the union of two
“relatively” horizontal curves. Their slope is studied in Lemma 2.3.
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Ri

(0, 0)

(1, 1)

(1, 0)

Figure 1: Markov partition in nice proper sets

We emphasize that the union over all integers of these borders is not an T -
invariant set. In particular note that T (R) has no boundary.

2.2 Lyapunov exponents and geometry of the partition

Given f : T → T and g : T
2 → T two C1 maps, we define for all integer n

Fn =
n−1∏

j=0

f ′ ◦ f j ◦ π, Gn =
n−1∏

j=0

∂g

∂y
◦ T j. (2)

Lemma 2.2. Let T : T
2 	 be as in the Theorem. We set T (x, y) = (f(x), g(x, y)).

There is an invariant splitting TT
2 = Eu ⊕ Euu defined µ-a.e. The two associ-

ated Lyapunov exponents of (T, µ) are λu :=

∫
log |f ′(x)| dµϕ(x, y) and λuu :=

∫
log

∣∣∣∣
∂g

∂y
(x, y)

∣∣∣∣ dµϕ(x, y).

Proof. By the ergodic theorem we have

lim
1

n
logFn = λu < λuu = lim

1

n
logGn. (3)

Therefore, the series

U = −
∞∑

k=0

Fk

Gk+1

∂g

∂x
◦ T k
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converges almost everywhere. Define the splitting

Eu =

(
1
U

)
, Euu =

(
0
1

)
.

One directly checks that as announced the splitting is invariant:

D(x,y)T

(
1

U(x, y)

)
= f ′(x)

(
1

U ◦ T (x, y)

)
, D(x,y)T

(
0
1

)
=
∂g

∂y
(x, y)

(
0
1

)
.

We will need some estimates for the top and bottom borders ∂hRn of the parti-
tion Rn. Note that if a point (x, y) belongs to ∂hRn then, it also belongs to ∂hRm

for every m ≥ n. We denote by Tx,y,n the slope of the tangent to ∂hRn at (x, y).

Lemma 2.3. For every n and for µϕ-almost every (x, y) there exists a real number
C∂h(x, y) such that for every (x′, y′) in ∂hRn(x, y), ,

|Tx′,y′,n| ≤ C∂h(x, y).

Proof. We assume that (x, y) is such that the invariant splitting is defined. For
(x′, y′) in ∂hRn(x, y), we set

Un := −
n−1∑

k=0

Fk(x
′)

Gk+1(x′, y′)
∂g

∂x
◦ T k(x′, y′).

Set (α, β) = (D(x′,y′)T
n)−1(1, 0). Then (α, β) is tangent to ∂hRn(x, y) at (x′, y′).

Moreover we get

DT n =

(
Fn 0

−GnUn Gn

)
.

Therefore the slope of

(
α
β

)
in the canonical basis is

β/α = Un.

The bounded distortion property shows that there exists a constant CT such that
for all (x′′, y′′) ∈ Rn(x, y) we have

1

CT
|Un(x, y)| ≤ |Un(x′′, y′′)| ≤ CT |Un(x, y)|.

We use this double inequality for (x′, y′). Hence, |Tx′,y′,n| ≤ CT |Un(x, y)| holds.
Finally Un(x, y) converges to U for a.e. (x, y). It is thus bounded, and the lemma
is proved.
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2.3 Multi-temporal Markov approximation of balls

Definition 2.4. Let ε be a positive real number.
(i) We denote by nε(x, y) the largest integer k such that Gk(x, y)ε ≤ 1
(ii) we denote by mε(x) the largest integer k such that Fk(x)ε ≤ 1.

Lemma 2.5. There exists some constant c > 0 such that c ≤ Fmε(x)(x)ε ≤ 1 and
c ≤ Gnε(x,y)(x, y)ε ≤ 1.

Proof. The inequalities follow directly from the definition and the fact that the
functions f ′ and ∂g

∂y are bounded from above and from below by a positive constant.

Lemma 2.6. For µϕ a.e. point we have lim
ε→0

nε

− log ε
=

1

λuu
and lim

ε→0

mε

− log ε
=

1

λu
.

In particular we have nε ≪ mε (as ε→ 0) for µϕ a.e. (x, y).

Proof. This is an immediate consequence of Equation (3) in the proof of Lemma 2.2
and Lemma 2.5.

Definition 2.7. We define the multi-temporal Markov approximation of a ball by

Cε(x, y) := Rnε(x,y)(x, y) ∩ π−1(Pmε(x)(x)).

This set is in spirit an approximation of the ball B((x, y), ε). We shall discuss
this fact now.

Lemma 2.8. Let (x, y) be fixed in T
2. The map T nε(x,y) is one-to-one from

◦
Rnε

∩{x} × T to fnε(x) × (T \ {y0}).
Proof. T nε is one-to-one from the interior of the cylinder Rnε to T

2\S0 and preserve
vertical fibers.

Lemma 2.9. There exists a constant D > 0 such that diamPmε(x) ≤ Dε and
diam(Rnε(x, y) ∩ {x} × T) ≤ Dε.

Proof. The first assertion follows immediately from the mean value theorem, bounded

distortion property, and the fact that fmε is one-to-one on
◦
Pmε .

For the second one, a vertical segment based on x and contained in Rnε(x, y)
is expanded by T nε by a factor Gnε(x, y

′) by the mean value theorem, for some
y′ such that (x, y′) in Rnε(x, y). The conclusion follows by bounded distortion
property, Lemmas 2.5 and 2.8.

In the rest of the paper we use vocabulary from the Probability Theory. Namely,
we consider random constants and/or random processes. The random part depends
on the point (x, y) chosen in T

2 with respect to the law µϕ. Constants are constant
with respect to the parameter ε. Processes are functions in t ∈ [0, 1].

Lemma 2.10. There is a choice of (x0, y0) ∈ T
2 such that the following holds:

There exists a constant c < 1, positive almost everywhere, and a function cε > 1,
satisfying cε =0 O(| log ε|) almost everywhere, such that for any ε > 0,

Ccε(x, y) ⊂ B((x, y), ε) ⊂ Ccεε(x, y).
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Proof. Let (x′, y′) ∈ Cε(x, y). By the first assertion of Lemma 2.9 we have d(x, x′) ≤
Dε.

It follows immediately the second assertion of Lemma 2.9 and Lemma 2.3 that
Cε(x, y) is included in a “bow tie” of vertical size less than Dε+ 2C∂h(x, y)Dε (see
Figure 2). Hence for any ε > 0 we have

Cε(x, y) ⊂ B((x, y), 2D(1 +C∂h(x, y))ε).

Set c :=
1

2D(1 + C∂h(x, y))
. We have just proved that Ccε(x, y) ⊂ B((x, y), ε) holds.

(x, y)

Cε(x, y)

Figure 2: The Markov approximation of the ball contained inside a Bow tie

To get the other inclusion we need to control the distance between a point (x, y)
and the border of Cε(x, y).

We claim that it is possible to choose x0 and y0 such that

µϕ(B(∂R, r)) ≤ ar, ∀r > 0

where a = 8‖DT‖∞.
Indeed, since µϕ is a probability measure, there exist x0 and y0 such that

µϕ(B(x0, r) × T) ≤ 4r and for all r, µϕ(T × B(y0, r)) ≤ 4r (see [Sau06], proof
of Lemma 3 for details).

We have B(∂R, r) = B(T−1S0, r) ⊂ T−1B(S0, ‖DT‖∞r). Hence by invariance
of the measure we get µϕ(B(∂R, r)) ≤ µϕ(B(S0, ‖DT‖∞r)) ≤ ar.

Now, we show that for µϕ-almost every point the orbit does not approach the
border ∂R too “quickly” .

By Borel Cantelli Lemma and the invariance of µϕ the claim implies that there
exists N = N(x, y), finite a.e., such that for any n ≥ N we have d(T n(x, y), ∂R) >
1/n2. In addition, the distance dN (x, y) := d((x, y), ∂RN ) is a.e. non zero since
∪N

n=0T
−nS0 has zero measure.
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Note that DT n =

(
Fn 0

−GnUn Gn

)
. Hence for µϕ-a.e. (x, y) we have

sup
Rn(x,y)

|DT n| ≤ κ(x, y)|Gn(x, y)|

for some constant κ > 1 finite a.e..

Let ρn =
1

n2κ|Gn|
. Let n so large that ρn < dN (x, y). By induction we have

that B((x, y), ρn) ⊂ Rn(x, y). Indeed, suppose that for some N ≤ k ≤ n − 1
we have B((x, y), ρn) ⊂ Rk(x, y). Since the image T kB((x, y), ρn) is contained in
the ball B((x, y), κ|Gk |ρn), which does not intersect the boundary ∂R, we get that
B((x, y), ρn) ⊂ Rk+1(x, y).

Taking n = nε (when ε is sufficiently small) we get that

B((x, y), ρnε) ⊂ Rnε(x, y).

A similar and easier argument applied to the one-dimensional map f and the

partition P gives that for some sequence, say, ρ′m =
1

m2κ′|Fm| we have

B(x, ρ′mε
) ⊂ Pmε(x).

Putting together these two inclusions, for any ε > 0 sufficiently small we get
that

B((x, y),min(ρnε , ρ
′
mε

)) ⊂ Cε(x, y). (4)

To get the last inclusion, we rewrite (4) with a variable α instead of ε:

B((x, y),min(ρnα , ρ
′
mα

)) ⊂ Cα(x, y).

Now, we want to inverse the expression in α and ε: for a given ε, there is α such
min(ρnα , ρ

′
mα

) = ε. Hence

B((x, y), ε) ⊂ Ccε.ε(x, y)

holds if we set cε =
α

ε
.

Note that we can always assume that the constant κ and κ′ are bigger than 1.
Hence, Lemma 2.5 yields that α is (much) bigger than ε. This shows that nε(x, y)
and mε(x) are respectively bigger than nα(x, y) and mα(x).

Assuming, for instance, that ρα = ε, we get

cε = n2
ακ|Gmα |α.

Again, we use Lemma 2.5, and then Lemma 2.6 to get

cε ≤ κ̃(x, y)| log ε|,
for some constant κ̃ a.e. finite.

Remark 1. A direct consequence of Lemma 2.10 is that
log cε

| log 1

4 ε|
is bounded from

above when ε describes [0, 1
2 ].
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2.4 The projected measure νϕ is a Gibbs measure

We define the projected measure νϕ = π∗µϕ on T by

νϕ(A) := µϕ(A× T).

As T is a fibred map on T
2 the measure νϕ is f -invariant. The goal of this subsection

is to prove that νϕ is a Gibbs measure.
This comes from [CU09]:

Definition 2.11 (Amalgamation map). Let A,B be two finite alphabets, with Card(A) >
Card(B), and π : A→ B be a surjective map (amalgamation) which extends to the
map π : AN → BN (we use the same letter for both) such that (πa)n = π(an) for all
n ∈ N. The map π is continuous and shift-commuting, i.e. it is a factor map from
AN onto BN.

We remind that the the variation is varn φ = supC supx,y∈C |φ(x) − φ(y)| where
the supremum is taken among all the cylinders C of rank n.

Theorem 2.1 (Chazottes-Ugalde). Let π : AN → BN be the amalgamation map
just defined and ϕ : AN → R be a potential with exponentially decaying variation:
varn(ϕ) ∈ O(e−qn), for some q > 0. Then the measure µϕ ◦ π−1 is a Gibbs measure
with support BN, for a potential ψ : BN → R with stretched exponential variation:
varn(ψ) ∈ O(e−c

√
n) for some c > 0.

Using our vocabulary and our notation we get:

Proposition 2.12. There exists a function ψ which satisfies
(i) the variation of ψ is stretched exponential.
(ii) the measure νϕ is a Gibbs measure for (T, f) associated to the potential ψ.

Remark 2. Without loss of generality we set the pressure of ψ with respect to
(T, f) to zero. In particular we have hνϕ(f) = −

∫
ψ ◦ πdµϕ.

2.5 The measure of balls as Birkhoff sums

For two random variables aε and bε we use the notation aε ≈ bε to mean that there
exists a constant random variable c <∞ a.e. such that |aε − bε| ≤ c for any ε.

Let us recall the definition of the main process

Nε(t) =
log µϕ(B((x, y), εt)) − tδ log ε√− log ε

, t ∈ [0, 1].

By regularity of the measure, Nε is cadlag1. We want to show the convergence of
Nε for the Skorohod topology on [0, 1].

Now, we define another process

N ′
ε(t) =

log µϕ(Cεt(x, y)) − tδ log ε√− log ε
, t ∈ [0, 1].

1Presumably Nε(t) is even continuous. However, the proof of that fact would need more space than
the margin allows us.
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Lemma 2.13. If the process N ′
ε converges in distribution on D([0, 1]) to a Wiener

process of variance σ2 then Nε converges in distribution to the same process.

Proof. Observe that the process Nε has the scale invariance

Nε(t) =
√

2Nε2(t/2), ∀t ∈ [0, 1].

Since the Wiener process itself has the same scale invariance, and the mapping
w(·) 7→

√
2w(·/2) is continuous, it is sufficient to prove the convergence in distribu-

tion of the process Nε on D([0, 1/2]).
Let c and cε given by Lemma 2.10. For any ε < 1/e4, on the set Ω0

ε := {log c ≥
− log1/4 1

ε} and for any t ≤ 1/2 we have

Nε(t) ≥
log µϕ(Ccεt(x, y)) − tδ log ε√− log ε

≥
log µϕ(Cexp(− log1/4 1

ε
)εt(x, y)) − tδ log ε

√− log ε

≥ N ′
ε(t+ log−3/4 1

ε
) − δ log−1/4 1

ε
=: Uε(t)

since exp(− log1/4 1
ε ) = εlog

−3/4 1

ε .

On the other hand, on the set Ω1
ε = {log cη ≤ log1/8 1

ε log1/4 1
η ,∀η ∈ (0, 1

2 )}, and

for any t ∈ [log−5/8 1
ε , 1/2] we have

Nε(t) ≤
log µϕ(Ccεtεt(x, y)) − δ log ε

√− log ε

≤ N ′
ε(t− log−5/8 1

ε
) + δ log−1/8 1

ε

since2 cεt ≤ exp(log1/8 1
ε log1/4 1

εt ) ≤ ε− log−5/8 1

ε . Note in addition that for t ∈
[0, log−5/8 1

ε ), since µ is a probability measure, it trivially holds the upper bound

Nε(t) ≤
0 − tδ log ε√− log ε

≤ δ log−1/8 1

ε
.

Define

Vε(t) := δ log−1/8 1

ε
+

{
N ′

ε(t− log−5/8 1
ε ) if t ≥ log−5/8 1

ε

0 otherwise
.

For any ε < 1/e2, on Ω0
ε ∩ Ω1

ε we have the bound on [0, 1/2]:

Uε ≤ Nε ≤ Vε.

The measure of Ω0
ε ∩ Ω1

ε goes to 1 (see Remark 1 page 11), and both Uε and Vε

converge in distribution to the same process. We can now conclude the proof3:

2For ε < e−4 and for t > log−5/8 1

ε , εt ≤ e−4
3/8

= 0.186.. < 1

2
.

3The conclusion could follow from the sandwich theorem. However, a version for processes is not
widely known, therefore we prove it directly in our case.
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Denote, for any q > 0, the oscillation of a function w ∈ D([0, 1]) by v(w, q) =
sup|t−s|<q |w(t) −w(s)|. We have

Zε := Vε − Uε ≤ v(N ′
ε, 2 log−5/8 1

ε
) + 2δ log−1/8 1

ε
.

Since N ′
ε converges in distribution to a Wiener process W , which is continuous, we

claim that the oscillation v(N ′
ε, 2 log−5/8 1

ε ) converges to zero in probability:
let r > 0. Since W is almost surely uniformly continuous, there exists q > 0

such that P (v(W, 3q) > r/3) < r. Let A(q, r) = {w ∈ D : v(w, q) > r}. The closure
of A(q, r) in the Skorohod topology is trivially contained in A(3q, r/3). Moreover,
the weak convergence of the measures PN ′

ε
to PW implies

lim sup
ε→0

PN ′

ε
(A(q, r)) ≤ PW (A(3q, r/3)) ≤ r.

Therefore, there exists ε0 such that for any ε < ε0 we have P (v(N ′
ε, q) > r) ≤ r+ r.

Let ε1 < ε0 such that 2 log−5/8 1
ε1
< q. For any ε < ε1 we have

P (v(N ′
ε, 2 log−5/8 1

ε
) > r) ≤ 2r.

This proves the convergence in probability.
By Slutsky theorem, Nε also converges in distribution to the Wiener process.

Therefore it suffices to show the convergence in distribution of the process
(N ′

ε(t))t∈[0,1]. The key lemma below relates the measure of the multi-temporal
Markov approximation of the ball with a non-homogeneous Birkhoff sum. This is
where we use the skew product structure and the Gibbs property of the measure
and its projection.

Lemma 2.14. For µϕ a.e. (x, y) we have

log µϕ(Cε(x, y)) ≈ Snε(x,y)(ϕ− ψ ◦ π)(x, y) + Smε(x,y)(ψ ◦ π)(x, y)

Proof. Remind that Cε(x, y) := Rnε(x,y)(x, y) ∩ π−1(Pmε(x)(x)). Given ε0 > 0,
set Ω(ε0) := {(x, y) ∈ T

2 : ∀ε ≤ ε0,mε(x) ≥ nε(x, y)}. Let (x, y) ∈ Ω(ε0). In the
following we omit the dependence with respect to (x, y) in nε(x, y) and mε(x). Since
µϕ is exp(−ϕ) conformal and T nε is 1-1 on Cε we have

µϕ(T nεCε) =

∫

Cε

e−Snεϕdµϕ.

Since Cε is contained in the cylinder Rnε , the bounded distortion property gives

log µϕ(Cε) ≈ Snεϕ(x, y) + log µϕ(T nεCε)

on Cε. Moreover, Lemma 2.8 gives that T nεCε = T nε(Rnε∩π−1(Pmε)) = π−1(fnεPmε)
and by the Markov property of (f,P) we get fnεPmε(x) = Pmε−nε(f

nε(x)). There-
fore

log µϕ(T nεCε) = log νϕ(Pmε−nε(f
nε(x))) ≈ Smε−nεψ ◦ fnε(x)
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by the Gibbs property of νϕ. We end up with

log µϕ(Cε) ≈ Snεϕ+ Smε−nεψ ◦ π ◦ T nε = Snε(ϕ− ψ ◦ π) + Smεψ ◦ π.

This holds on Ω(ε0). The conclusion follows since µϕ(Ω(ε0)) → 1 as ε0 → 0 by
Lemma 2.6.

Denote the intermediate entropies by huu = hµϕ(T ) − hνϕ(f) and hu = hνϕ(f).
Since the pressures of (T,ϕ) and (f, ψ) are zero we get (see Remark 2 page 12 )
that

hu = −
∫
ψ ◦ πdµϕ, huu = −

∫
(ϕ− ψ ◦ π)dµϕ. (5)

Lemma 2.15. With the previous notation, we get the next formula for the pointwise
dimension:

huu

λuu
+
hu

λu
= δ.

Proof. It follows from Lemmas 2.6 and 2.14 that µϕ-a.e.

lim
ε→0

log µϕ(Cε)

log ε
= lim

ε→0

nε

log ε

1

nε
Snε(ϕ − ψ ◦ π) +

mε

log ε

1

mε
Smε(ψ ◦ π)

= − 1

λuu

∫
(ϕ− ψ ◦ π)dµϕ − 1

λu

∫
ψ ◦ πdµϕ.

Here, we recover that the pointwise dimension of the measure µϕ exists µϕ-a.e. and
is constant. This together with Equation (5) prove the first equality. Since it is
constant, it is necessarily the Hausdorff dimension δ of the measure µϕ.

Set δuu = huu

λuu , δu = hu

λu and define the functions

φ1 = ϕ− ψ ◦ π + δuu log
∂g

∂y
, φ2 = ψ ◦ π + δu log f ′ ◦ π. (6)

By Equation (5) and Lemma 2.2 we have
∫
φ1dµϕ =

∫
φ2dµϕ = 0.

Proposition 2.16. If the functions φ1 and φ2 are both cohomologous to zero then
ϕ is cohomologous to − log |detDT |, and reciprocally.

Proof. Suppose that φ1 and φ2 are cohomologous to zero.
Since φ2 is T -cohomologous to zero, ψ − δu log |f ′| is f -cohomologous to zero,

hence ψ is f -cohomologous to −δu log |f ′|. Therefore the f -pressure of −δu log |f ′|
is zero. Since f is uniformly expanding this implies that δu = 1.

We have that φ1 is cohomologous to − log |f ′| − δuu log
∣∣∣∂g
∂y

∣∣∣. Since detDT =

f ′ ◦ π · ∂g
∂y we get that ϕ is cohomologous to − log |detDT |+ (1− δuu) log

∣∣∣∂g
∂y

∣∣∣. But

the convexity of the pressure gives

0 = PT (ϕ) ≥ PT (− log |detDT |) + (1 − δuu)

∫
log

∣∣∣∣
∂g

∂y

∣∣∣∣ dµϕ = (1 − δuu)λuu.
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Therefore δuu ≥ 1. On the other hand, δu +δuu = δ ≤ 2, which implies that δuu = 1
also, proving the result.

The reciprocal is immediate.

Define the process

N ′′
ε (t) :=

Snεtφ1 + Smεtφ2√− log ε
, t ∈ [0, 1].

We are now able to relate the convergence of the two processes.

Lemma 2.17. There exists a constant C0 < +∞ a.s. such that

sup
t∈[0,1]

∣∣N ′
ε(t) −N ′′

ε (t)
∣∣ ≤ C0√− log ε

for any ε > 0.

Proof. By Lemma 2.15 we have δ = δuu + δu, thus by Lemma 2.5 we have

−δ log ε ≈ δu logFmε + δuu logGnε .

This relation, together with the facts that logFmε = Smε log f ′ ◦ π and logGnε =
Snε log ∂g

∂y , and Lemma 2.14 yield

log µϕ(Cε(x, y)) − δ log ε ≈ Snε(ϕ− ψ ◦ π + δuu log
∂g

∂y
) + Smε(ψ ◦ π + δu log f ′ ◦ π)

= Snεφ1 + Smεφ2.

Therefore, there exists a constant C0 finite a.e. on T
2 such that for any ε and

t ∈ [0, 1], we have

|N ′
ε(t) −N ′′

ε (t)| ≤ C0√− log ε
.

To complete the proof of the main theorem we are left to prove the convergence
of the process N ′′

ε toward a (possibly degenerate) Wiener process. Since φ1 and φ2

have a good regularity and are centered it is well known that their Birkhoff sums
follow a central limit theorem. However a problem arise here. The “times” nε and
mε are not constant but they depend on the point.

3 Invariance principle, random change of time

The invariance principle consists in an approximation of all the trajectory of the
processes (Snφ1) and (Smφ2) by a Brownian motion, and this is what we need
in a first step. Then, a random change of time in the process will give us back
N ′′

ε . Observe that it is sufficient to show the convergence in distribution along the
subsequence ε = e−k, that is the convergence of the process Xk = N ′′

e−k in the
Skorohod topology.
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3.1 Invariance principle

Let φ : T
2 → R

2 defined by φ = (φ1, φ2). The function φ has stretched exponential
decay of the variation varn φ. Hence, if we set Snφ = (Snφ1, Snφ2), the central
limit theorem holds for Snφ. Denote by Q the limiting covariance matrix of 1√

n
Snφ.

Define the process Yk by

Yk(t) =
1√
k

(
S⌊kt⌋φ+ (kt− ⌊kt⌋)φ ◦ T ⌊kt⌋

)
.

We denote by C the space C([0, 1],R) endowed with the topology of uniform con-
vergence.

The weak invariance principle, or functional central limit theorem, is well known
in this setting.

Theorem 3.1 (WIP, folklore). The process Yk converges in distribution in C2 to a
two-dimensional brownian motion B = (Bt)t∈[0,1] with covariance matrix Q.

Note that B (and also Yk) is continuous, hence the Skorohod topology coincides
with the topology of uniform convergence. We remark that the weak invariance
principle for vector valued processes is not present in the literature, although it is
a part of the folklore. We were indeed not able to give a proper reference, even
in this ideal context of uniformly expanding maps with Hölder potential. For the
sake of completeness one can always invoke the almost sure invariance principle for
vector valued observables [MN09], which implies immediately the weak invariance
principle that we need.

Writing Q = UΛU∗ for some orthogonal matrix U and Λ = diag(σ2
1 , σ

2
2), we have

that W := U∗B = (σ1W1, σ2W2), where W1 and W2 are two independent standard
Wiener processes.

3.2 Random change of time and conclusion

If nε and mε were independent and independent of the process (Yk) then we could
conclude by direct computation, but these independencies are generally false. The
good strategy is to make a random change of time in this process. We follow the
general line of Billingsley ([Bil99], Theorem 14.4). The setting here is a bit different:
two dimensional time, no need for Skorohod topology.

3.2.1 Existence of the limiting distribution.

Fix a > 1/λu. Let Zk be the process in C(|0, a]2,R2) defined by

Zk(t1, t2) = (Yk,1(t1),Yk,2(t2))

for any (t1, t2) ∈ [0, a]2. Let ν̃k(t) = (ne−kt,me−kt). The real functions ν̃k,i(t),
i = 1, 2, are not continuous in t. We define νk,i(t) as the continuous function
obtained from ν̃k,i(t) by linear interpolation at the jump points. Namely, νk,i is
continuous, affine by part, and coincides with ν̃k,i at the jump points.
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Let θ1 = 1/λuu, θ2 = 1/λu and define the random element Φk ∈ C([0, 1]2, [0, a]2)
by

Φk(t1, t2) =

{
(νk,1(t1)/k, νk,2(t2)/k) if νk,1(1)/k ≤ a and νk,2(1)/k ≤ a

(θ1t1, θ2t2) otherwise

Let β : C([0, 1]2) → C([0, 1]) defined by β(u)(t) = u(t, t) and γ : C([0, 1],R2) →
C([0, 1],R) defined by γ(u)(t) = u1(t) + u2(t). Note that

Xk = β(γ(Zk ◦ Φk)) +O(
1√
k
),

whenever the condition in the definition of Φk holds (both times are less than a),
which happens eventually almost surely.

Lemma 3.1. The processes (
n

εt1

− log ε)t1∈[0,1] and ((
m

εt2

− log ε)t2∈[0,1] converge in probability

in C, respectively, to ( t1
λuu ) and ( t2

λu ).

Proof. By Lemma 2.6, almost everywhere, for any t1 ∈ [0, 1],
n

εt1

− log ε converges to

( t1
λuu ). Since the process is positive and nondecreasing in t1, it follows from Dini’s

(or Pólya’s) theorem that the convergence is uniform. Hence the process converges
almost surely in C, hence in probability. The same is true for mε.

By Lemma 3.1 the map Φk converges almost surely in uniform norm to the map
Φ defined by Φ(t1, t2) = (θ1t1, θ2t2) for any (t1, t2) ∈ [0, 1]2.

Define the continuous mapping h from C([0, a],R2) to C([0, a]2,R2) by

h(y)(t1, t2) = (y1(t1), y2(t2)), y ∈ C([0, a],R2).

Lemma 3.2. The process (Zk) converges in distribution to Z = h(B).

Proof. We have Zk = h(Yk), and by continuity we get that Zk converges in distri-
bution to h(B).

Since Zk converges to Z in distribution and Φk converges to (the deterministic)
Φ in probability, the couple (Zk,Φk) converges to (Z,Φ) ([Bil99], Theorem 3.9). By
continuity of the composition we conclude that Zk ◦Φk converges in distribution to
Z ◦ Φ. By continuity again we finally get that Xk converges in distribution to

X = β(γ(h(B) ◦ Φ)).

3.2.2 The limit is a Wiener process.

To finish the proof we are left to characterize the limiting process X . Denote the
transfer matrix by U = (uij). Note that θ1 < θ2. For any t ∈ [0, 1] we have

X (t) = β(γ(h(B) ◦ Φ))(t)

= h1(UW)(θ1t, θ2t) + h2(UW)(θ1t, θ2t)

= u11σ1W1(θ1t) + u12σ2W2(θ1t) + u21σ1W1(θ2t) + u22σ2W2(θ2t)

= (u11 + u21)σ1W1(θ1t) + (u12 + u22)σ2W2(θ1t)+

+ u21σ1(W1(θ2t) −W1(θ1t)) + u22σ2(W2(θ2t) −W2(θ1t))
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By independence of the processes Wi and independence of their increments, we get
that X (t) is again a Wiener process, its variance is

σ2 := varX (1)

= ((u11 + u21)σ1)
2θ1 + (u12 + u22)σ2)

2θ1 + (u21σ1)
2(θ2 − θ1) + (u22σ2)

2(θ2 − θ1).

(7)

Remark 3. We remark that the variance vanishes if and only if





u11σ1 + u21σ1 = 0
u12σ2 + u22σ2 = 0

u21σ1 = 0
u22σ2 = 0

⇐⇒ U

(
σ1

σ2

)
= 0,

which is equivalent to σ1 = σ2 = 0 since the matrix U is invertible. This is equivalent
to the fact that the covariance matrix Q = 0, which happens if and only if both φ1

and φ2 are cohomologous to zero. Then, we use Proposition 2.16.

We finally have the conclusion: the process Nε converges in the Skorohod topol-
ogy to a Wiener process N with variance σ2.

4 Generalizations and open questions

For each of these situations the method developed in the paper gives a version of
the theorem. We compute the exact limiting distribution (i.e. the variance of the
limit). We do not rewrite their proofs in full details since it is very close.

4.1 Conformal hyperbolic dynamics

We present two situations of conformal hyperbolic dynamics where our method can
be applied verbatim. We refer to [Bar08] for their precise definitions, and also
for the estimates concerning the geometry of cylinders and further notions such as
invariant measures of full dimension and maximal dimension.

Theorem 4.1. Let J be a repeller of a C1+α transformation T , for some α > 0,
such that T is conformal and topologically mixing on J , and µ be the equilibrium
measure of a Hölder continuous ϕ : J → R. Denote the asymptotic variance of

ϕ+
hµϕ

λµϕ
log f ′ by σ2

u.

Then the statement of the main theorem holds. The variance of the limit is

σ2 := σ2
u

λµϕ
, which vanishes iff µ is the measure of maximal (or full) dimension in J .

The result is obtained by a simplification of our proof: just remove any depen-
dence in y. In particular, one can use formula (7) with u21 = u22 = u12 = 0.
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Theorem 4.2. Let Λ be a locally maximal hyperbolic set of a C1+α diffeomorphism
T , for some α > 0, such that T is conformal and topologically mixing on Λ, and µ
be the equilibrium measure of a Hölder continuous ϕ : Λ → R.

Denote the asymptotic variance of ϕ+
hµϕ

λs
log ‖df |Es‖ by σ2

s . Denote the asymp-

totic variance of ϕ+
hµϕ

λu
log ‖df |Eu‖ by σ2

u.
Then the statement of the main theorem holds. The variance of the limit is

σ2 := σ2
s

λs
+ σ2

u
λu

, which vanishes iff µ has full dimension in Λ.

Remark 4. Although there always exists an invariant measure of maximal dimen-
sion in Λ, it is unlikely that Λ supports an invariant measure with full dimension.
Indeed, we generically have that supµ dimH µ < dimH(Λ).

An interesting situation is for the SRB, or physical measure. When Λ is the
whole manifold then generically the SRB measure does not have full dimension, in
particular the variance σ2 6= 0.

The proof here is somehow different. The key point is that there are local product
structures, both for coordinates (see e.g. [Bow75]) and for Gibbs measures (see e.g.
[Lep00]). Moreover, if we locally set

µϕ ≈ µs
ϕ ⊗ µu

ϕ,

these two measures µu
ϕ and µs

ϕ also satisfy some Gibbs property.
Using these local coordinates, a ball B((x, y), ε) can be approximate by a cylinder

of the form
C

nε(y)
−mε(x).

It is important here to note that the quantity nε depends only on the future (the
unstable direction, coordinate y) and conversely, −mε depends only on the past
(the stable direction, coordinate x). Then, using the local product structure for the
Gibbs measures we get

µϕ(B(x, y), ε) ≈ Snε(y)(φu)(y) + Smε(x)(φs)(x), (8)

with φs ad φu Hölder continuous, both cohomologous to ϕ, and depending only on
past (resp. future) coordinates. We also observe that the asymptotic distributions
of both terms are independent. Then adapt Section 3.

4.2 Possible extensions to other dynamical systems

Our main hypotheses was the uniform expansion and skew product structure. It
seems however that these hypotheses can be relaxed and we discuss this point below.

4.2.1 Non-uniformly expanding maps of an interval.

The first possibility is to relax the uniformity in the expansion. There is a vast
and still growing literature in this subject. However, these results mainly concern
absolutely continuous invariant measures. As already said, these measures have
no fluctuations and our result is irrelevant in these cases. For other potentials,
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the literature is not so large. Basically our method could be applied in principle
for maps and their Gibbs measures, such that the (functional) CLT hold for a
sufficiently regular class of observables.

It is not clear for the moment if the method could be adapted to conformal
“mostly expanding maps” as studied by Oliveira and Viana in [OV08]. Note that
for these maps, the equilibrium state is not a Gibbs measure but only a non-lacunar
Gibbs measure. This seems to be an obstruction to adapt our method.

We emphasize that for some non-uniformly expanding maps the CLT does not
hold in the classical form; for example we could be in the non-standard basin of
attraction of the normal law; in that case we could prove a version of our main
theorem with a suitable modification of the normalization. A more difficult task is
when we have a convergence to a stable law of some index α < 2. In that case we
believe that our method could be carried out, but some difficulties may arise due
to the discontinuity of the paths in non Brownian Levy process.

4.2.2 Non-conformal without skew product structure

The second and most challenging situation is for non-conformal maps without the
skew product structure. Note that we used two strong consequences of this struc-
ture: 1) the Lyapunov splitting exists, without going through a natural extension
and 2) the projected measure has the Gibbs property. Still, we believe that the
result remains true in general.

Conjecture. Let M be a compact smooth Riemannian manifold and T : M 	 be
an Axiom-A diffeomorphism. Let ϕ be a Hölder continuous function from M to R.
Let µϕ be the equilibrium state associated to ϕ. Let δ be its Hausdorff dimension.

Then there exists a real number σ ≥ 0 such that the process

log µϕ

(
B(x, εt)

)
− tδ log ε√− log ε

converges in D([0, 1]) and in distribution to the process σW (t), where W is the
standard Wiener process.

In particular we believe that the SRB measure of a topologically mixing Anosov
diffeomorphism of a compact Riemaniann manifold should enjoy this property, and
that the variance will vanishes iff the measure is absolutely continuous.
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