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Abstract. Dynamic, or temporal, texture is a spatially repetitive, time-
varying visual pattern that forms an image sequence with a certain tem-
poral stationarity. Important tasks are thus the detection, segmentation
and perceptual characterization of Dynamic Texture (DT). Following re-
cent work, color image decomposition appears as a good way to reach
these different aims, however, to our best knowledge, no proposed model
is currently able to deal with temporal aspect, inherent to color image
sequences.
The major contribution of this paper is to adapt static decomposition
model to time aspect in order to deal with videos and color image se-
quences. In this paper we propose an extended decomposition model
which splits a video into two components, a first one containing geo-
metrical information, the structure of the sequence and a second one
dynamic color texture and noise. Examples for color video decomposi-
tion and characterization of real dynamic present in texture component
will be presented.

1 Introduction

1.1 Motivation

A new issue in texture analysis is its extension to the temporal domain, a field
known as Dynamic Texture (DT) analysis. In DT, the notion of self-similarity
central to conventional image textures is extended to the spatiotemporal domain.
DT are typically result from processes such as of water flows, smoke, fire, a flag
blowing in the wind, a moving escalator, or a walking crowd. Important tasks
are thus the detection, segmentation and perceptual characterization of dynamic
textures. The ultimate goal is to be able to support video queries based on the
recognition of the actual natural and artificial dynamic texture processes.

Following recent work, color image decomposition into geometrical and tex-
ture components appears as a good way to reach this aim in extracting mean-
ingful information, i.e texture component, independently of geometrical infor-
mation.



In this way, we propose to extend spatial color decomposition model to spa-
tiotemporal domain, and attempt to highlight time influence present in video
to characterize dynamic texture. To the best of our knowledge, no such time
adaptation is currently available.

1.2 Overview of the paper

The aim of this work is to extend a model, which decompose color image into
two components, a first one containing geometrical structure U and a second
one V, holding textural information and noise. So, we aim to deal with color
image sequences in extending to time existing reliable model. Moreover, through
decomposition of texture component, we attempt to determinate time impact,
showing up dynamicity present in sequences, which will be suit for future work
on dynamic texture.

In the first place of this paper we introduce the extended minimization func-
tional problem and the associate discrete framework in which we place ourself
and which is an appropriate one in image sequence processing. In a second part
we present the extended time decomposition model and subsequently its color
implementation and choice of parameters. Then, in the last part, we show some
significant results and attempt to present time weight in dynamic texture ex-
traction through color image sequence.

2 Time extension of decomposition model

Decomposing an image into meaningful component appears as one of major aims
in recent development in image processing. The first goal was image restoration
and demising; but following the ideas of Yves Meyer, in total variation mini-
mization framework of L. Rudin, S. OSher and E. Fatemi, image decomposition
into geometrical and oscillatory (i.e texture) component appears as usefull and
very interesting way in computer vision and image analysis. There is a very large
literature and recent advances on image decomposition models, image regular-
ization and texture extraction and modelling. So, we only cite, among many
others, most recent works which we appear like most relevant and usefull paper.
In this way, reader can refer to the work of Stark et al. [1], Aujol et al. [2], [3],
Aujol and Chambolle [4], Aujol and Ha Kang [5] and Vese and Osher [6], [7], [8]
to cover the most recent and relevant advances.

2.1 Decomposition model and functional spaces

In order to decompose image sequences in suitable components we propose to
extend the Osher-Vese [8] color decomposition model. Their approach derived
from Meyer decomposition model [9]. Its rely on space of functions of bounded
variation, BV and Banach space, G. Authors propose to minimize the following
discretized functional:

inf
(u,v)∈BV×G/f=u+v

{
F (u, v) =

∫
|∇u|+ λ‖v‖G

}
(1)



BV is a good space to model functions with discontinuities along lines and
curves, that can represent and preserve edges in an image. For the reader con-
venience we recall here its definition [10]:

Definition 1. BV (Ω) is the subspace functions u ∈ L1(Ω) such that the fol-
lowing quantity, called the total variation of u, is finite:

J(u) = sup

{∫
Ω

u(x)div(ξ(x))dx

}
(2)

such that ξ ∈ C1
c (Ω,R2), ||ξ||L∞(Ω) ≤ 1

In order to improve representation of oscillating patterns, Meyer in [9] has in-
troduced the Banach space, G, which modeling signals with large oscillations, in
particular textures and noise. A function belonging to G may have large oscilla-
tions and nevertheless have a small norm. Thus the norm on G is well-adapted
to capture the oscillations of a function in an energy minimization method. We
recall here the definition of G:

Definition 2. G is the Banach space composed of the distributions f which can
be written f = ∂1g1 + ∂2g2 = div(g) with g1 and g2 in L∞(Ω). On G, the
following norm is associate:

‖v‖G = inf
{
‖g‖L∞(Ω,R2)/v = div(g), g = (g1, g2), |g(x)| =

√
(|g1|2 + |g2|2)(x)

}
(3)

2.2 Spatiotemporal structure and discretization

To take into account the spatiotemporal structure, we consider a video as an 3-D
image [11], i.e a volume, so that we can apply 2-D image algorithms extended
to the 3-D case. We assume that we have a given image sequence f ∈ L2(Ω),
where Ω is an open and bounded domain on R3, with Lipschitz boundary. In
order to recover u and v from f , we propose:

– An extended discrete version of gradient vector |∇u| given by:

(∇u)i,j,k =
(
(∇u)1i,j,k, (∇u)2i,j,k, (∇u)3i,j,k

)
(4)

(∇u)1i,j,k =

{
ui+1,j,k − ui,j,k if i < N

0 if i = N

(∇u)2i,j,k =

{
ui,j,k − ui,j+1,k if j < N

0 if j = N

(∇u)3i,j,k =

{
ui,j,k − ui,j,k−1 if k < N

0 if k = N

– An extended discrete total variation definition:

J(u) = (∇u)1i,j,k + (∇u)2i,j,k + α(∇u)3i,j,k (5)

we introduce the α constant to maintain homogeneity between space and
time component. It’s mainly for numerical implementation, to avoid dis-
cretization problem due to quantization step, which be different along space



and time dimension. In practice, we often set it to one, but user can adapt
it to less, more or in function of frame per second, or quickness of movement
present in sequence, to ensure most reliability and homogeneity.

– An adapted definition of G, inspired by [8] for the vector case, extended to
the third dimension:

Definition 3. Let G denote the Banach space consisting of all generalized
vector-valued functions ~v(x, y, t) = (vR(x, y, t), vG(x, y, t), vB(x, y, t)) which
can be written as:

~v(x, y, t) = (div ~gR, div ~gG, div ~gB) (6)

g1,c, g2,c, g3,c ∈ L∞(R3), c = R,G,B ,

induced by the norm ‖v‖∗ defined as the lower bound of all L∞ norms of func-
tions |~g|, where |~g| =

√
| ~gR|2 + | ~gG|2 + | ~gB |2 =

√∑
c=R,G,B ((g1,c)2 + (g2,c)2 + (g3,c)2),

and where the infinitum is computed over all decompositions (6) of ~v.

3 Description of the extended decomposition model

For the reader convenience we only use, by now, useful indices in our formulas
to avoid overloaded notation, so we will use c indices to denote color channel
(c ∈ R,G,B) and 1, 2 and 3 exponents to represent the dimension to which
objects belong.

3.1 Description of the model

We propose the following minimization problem inspired by (6) and [8], for each
color channel:

inf
u,g1,g2,g3

{
Gp(u, g1, g2, g3) =

∫
|∇u|+ λ

∫
|f − u− ∂xg1 − ∂yg2 − ∂tg3|2dxdydt

+µ

[∫
(
√
g2
1 + g2

2 + g2
3)pdxdydt

] 1
p
}

(7)

where λ, µ are tuning parameters (see next section for more useful details). Let
reintroduce that ~u = (uR, uG, uB), and ~gi = (~gi,R, ~gi,G, ~gi,B), i ∈ {1, 2, 3}.



Formally minimizing the above energy equation with respect to u, g1, g2, g3,
yields the following Euler-Lagrange equation for each color channel:

u = f − ∂xg1 − ∂yg2 − ∂tg3 +
1

2λ
div

(
∇u
|∇u|

)
(8)

µ(‖
√
g2
1 + g2

2 + g2
3‖)

1−p(
√
g2
1 + g2

2 + g2
3)p−2g1 = 2λ

[
∂

∂x
(u− f) + ∂2

xxg1 + ∂2
xyg2 + ∂2

xtg3

]
(9)

µ(‖
√
g2
1 + g2

2 + g2
3‖)

1−p(
√
g2
1 + g2

2 + g2
3)p−2g2 = 2λ

[
∂

∂y
(u− f) + ∂2

yxg1 + ∂2
yyg2 + ∂2

ytg3

]
(10)

µ(‖
√
g2
1 + g2

2 + g2
3‖)

1−p(
√
g2
1 + g2

2 + g2
3)p−2g3 = 2λ

[
∂

∂t
(u− f) + ∂2

xtg1 + ∂2
ytg2 + ∂2

ttg3

]
(11)

To simplify the presentation, let us introduce the notation:

H(g1, g2, g3) = (‖
√
g2
1 + g2

2 + g2
3‖)

1−p(
√
g2
1 + g2

2 + g2
3)p−2

3.2 Numerical implementation

For the reader convenience, we present here a numerical scheme to solve our
minimization problem. So to solve equations (8) to (11) we use a semi-implicit
finite differences scheme and an iterative algorithm, based on fixed point iteration
[6].
We got, in order to compute gradient:

|∇u| •= |∇u|i,j,k =

√(ui+1 − ui−1

2h

)2

+
(uj+1 − uj−1

2h

)2

+
(uk+1 − uk−1

2h

)2

(12)

so, belong first dimension (x) we got:


|∇u|i+ 1

2 ,j,k
=

√(
ui+1−u

h

)2

+
(
uj+1−uj−1

2h

)2

+
(
uk+1−uk−1

2h

)2

|∇u|i− 1
2 ,j,k

=

√(
u−ui−1

h

)2

+
(
ui−1,j+1−ui−1,j−1

2h

)2

+
(
ui−1,k+1−ui−1,k−1

2h

)2

(13)

in the same way, we compute gradient belong y and t dimension.



We are now in position to introduced complete numerical scheme to solving
Euler-Lagrange equations:

u
n+1

=
1

1 + 1
3λh2

(
1

|∇|
i+ 1

2

+ 1
|∇|

i− 1
2

+ 1
|∇|

j+ 1
2

+ 1
|∇|

j− 1
2

+ 1
|∇|

k+ 1
2

+ 1
|∇|

k− 1
2

) (14)

∗

f − ∂xg1 − ∂yg2 − ∂tg3 +
1

3λh2

 uni+1

|∇|
i+ 1

2

+
uni−1

|∇|
i− 1

2

+
unj+1

|∇|
j+ 1

2

+
unj−1

|∇|
j− 1

2

+
unk+1

|∇|
k+ 1

2

+
unk−1

|∇|
k− 1

2


(15)

g
n+1
1 =

3λ

µH(gn1 , g
n
2 , g

n
3 ) + 6λ

h2

[
∂xu

n − ∂xf +
gn1i+1

+ gn1i−1

h2
+ ∂

2
xyg

n
2 + ∂

2
xtg

n
3

]
(16)

g
n+1
2 =

3λ

µH(gn1 , g
n
2 , g

n
3 ) + 6λ

h2

[
∂yu

n − ∂yf + ∂
2
xyg

n
1 +

gn2j+1
+ gn1j−1

h2
+ ∂

2
ytg

n
3

]
(17)

g
n+1
3 =

3λ

µH(gn1 , g
n
2 , g

n
3 ) + 6λ

h2

[
∂tu

n − ∂tf + ∂
2
xtg

n
1 + ∂

2
ytg

n
2 +

gn3k+1
+ gn3k−1

h2

]
(18)

(19)

where h denote the discrete step space, so in practice we set h = 1 in our
algorithm, moreover in furtherance of time computing, we always use the most
recent computed values. For the initialization of parameters we set: u0 = f , g0

1 =
−1
3λ

∂xf√
∂xf2+∂yf2+∂tf2

, g0
2 = −1

3λ
∂yf√

∂xf2+∂yf2+∂tf2
and g0

3 = −1
3λ

∂tf√
∂xf2+∂yf2+∂tf2

3.3 Choice of parameters

To obtain week regularization, we use parameters as: λ = 0.1, µ = 0.1 and
we compute about 20 iterations. For strong regularization we got: λ = 0.005,
µ = 0.005 iterated 50 times. So, for classic decomposition we use parameters
as: λ = 0.01, µ = 0.01 iterated 20 times. For all results present in the next
section we computed our decomposition on 8 images treated simultaneously as
one block, but our algorithm is able to deal with bigger image block to catch
lower frequences and wider range of time oscillating patterns.

4 Numerical results and time component

All images and results are compute from DynTex, the dynamic texture database
[12] which provide a large and diverse database of high-quality dynamic textures.
Dyntex sequences come from natural scene presenting a wide variety of moving
process as flowing water, leaves blowing in wind, walking crowd... Such diversity
grants user to identify and emphasize a lot of aspects in testing purpose.

For more details, demonstration sequence, wider range of results and for a
presentation of similar color image sequences decomposition, relying on different
approaches in the same framework [13], please consult this URL: http://perso.univ-
lr.fr/mlugiez.



4.1 Static vs dynamic decomposition

In order to prove that our dynamic decomposition method show more significant
result than a static decomposition, we present a comparison between two meth-
ods (static and dynamic decomposition are both computed with same classic
parameters). We can easily see that time impact in result, water in Fig.1 is well
regularized and fluid aspect is well represent in the V component. In Fig. 2 we
can clearly see the reenforcement of moving cars texture without that static part
and objects present in sequence are taken into account. Moreover the regular-
ization is more robust to illumination and movement constrain.

Moreover, if user tunes parameters to obtain stronger regularization, our al-
gorithm is able to catch wider waves in spatiotemporal texture component: see
the circumference of fountain in Fig. 1, more regularized (in U component) than
wider waves. It’s a matter of deep in spatiotemporal texture extraction, which
our algorithm is able to deal with.

4.2 Time impact in our decomposition

We present, in Fig. 3, a part of a decomposed sequence of flowing water under
wood bridge. We can see the static aspect of U component, regularized in space
and in time, seems to be freezed, although texture component, V, present a real
dynamic, strengthened by time influence. Only moving things or objects present-
ing dynamicity are taken in account in the third part of V component (i.e g3). In
Fig. 4 we can distinctly see time influence, reed’s branch oscillating under water
flow is clearly highlight, waves present in basin’s fountain are well regularized in
U component, water dynamicity is totaly catch as texture. We can clearly see
that is due to the third part of texture component, movement information is
well captured in this component.In this way we obtain the dynamicity present
in video through oscillations along time dimension. These results will be usefull
for future work on dynamic texture characterization.
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Fig. 2. From left to right, the geometrical component, U, in classic color decomposition
(top) and its texture and noise component V (bottom). The original image (center and
top), the difference between static and dynamic V component (center and bottom).
Then our new dynamic decomposition components (right).

Fig. 3. From left to right, the geometrical component, U, in classic color decomposition
(top) and its texture and noise component V (bottom). The original image (center and
top), the time influence g3 part of V component (center and bottom). Then our new
dynamic decomposition components (right).



Fig. 4. From left to right, the geometrical component, U, in classic color decomposition
(top) and its texture and noise component V (bottom). The original image (center and
top), the time influence g3 part of V component (center and bottom). Then our new
dynamic decomposition components (right).


