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CLUSTER CATEGORIES, m-CLUSTER CATEGORIES AND

DIAGONALS IN POLYGONS

KARIN BAUR

Abstract. The goals of this expository article are on one hand to describe
how to construct (m-) cluster categories from triangulations (resp. from m+2-
angulations) of polygons. On the other hand, we explain how to use translation
quivers and their powers to obtain the m-cluster categories directly from the
diagonals of a polygon.
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Introduction

This expository article is the expanded version of a talk given at the conference
at the Grenoble summer school ”Geometric methods in representation theory” in
July 2008. The goal of this talk was to explain how cluster categories and m-cluster
categories can be described via diagonals and so-called m-diagonals in a polygon.
And then how the latter can actually be described using the power of a translation
quiver. The first section gives a very brief introduction to the theory of cluster
algebras and cluster categories. It also introduces the notations used in the article.
In Section 2, we explain the notions of a quiver given by the diagonals in a polygon
and of the one given by m-diagonals. The results in this section are mainly due
to Caldero-Chapoton-Schiffler ([CCS06]), to Schiffler ([S06]) and to Baur-Marsh
([BaM08], [BaM07]). In the last section, we introduce the concept of the power of
a translation quiver. Here, the results are from [BaM08], [BaM07] and from the
masters thesis of C. Ducrest ([D08]).

1. Cluster algebras and cluster categories

Cluster algebras were introduced by Fomin and Zelevinsky ([FZ1]) in order to
provide an algebraic framework for the phenomena of total positivity and for the
canonical bases of the quantized universal enveloping algebras.

2000 Mathematics Subject Classification. Primary: Secondary:
Key words and phrases. Cluster category, m-cluster category, diagonals, translation quiver.

1



2 BAUR

We briefly illustrate the notion of total positivity: An n×n matrix is called totally
positive if all its minors are positive. Originally, the term was used to describe
matrices with non-negative minors: these matrices are nowadays called totally non-
negative. In the 1930s, Gantmacher-Krein and I. Schoenberg have independently
started investigating such matrices. One of the motivations was to estimate the
number of real zeroes of a polynomial.

Gantmacher showed that totally non-negative matrices have different real eigen-
values. The interest in total positivity was renewed in the 1990s when G. Lusztig
extended the notion to reductive algebraic groups, cf. [Lu94].

Example 1.1. To illustrate the notion on a (non-reductive) example, let us con-
sider the group of 3 by 3-matrices with 1’s on the diagonal and zeroes below. If

U =

(
1 a b

0 1 c

0 0 1

)
is such a matrix then U is totally positive if a, b, c > 0 and

ac − b > 0. One can check that it is actually enough to require a > 0, ac − b > 0
and b > 0: the condition c > 0 will follow automatically. Equivalently, the condition
a > 0 can be dropped and is automatically satisfied by the remaining conditions.
So there is only a certain number of minors that need to be checked.

Furthermore, if from the set {a > 0, ac − b > 0, b > 0} of conditions the first
is omitted then we may replace it exactly with one other condition, namely with
c > 0, to obtain total positivity of the matrix.

More generally, one shows that the minimal sets of minors to check all have the
same cardinality. And it is often the case that if you remove one minor from such
a minimal set, there exists exactly one other minor to replace it with.

1.1. Cluster algebras. A cluster algebra A ⊂ Q(u1, . . . , un) of rank n is an al-
gebra with possibly infinitely many generators. These generators are called cluster
variables; they are arranged in overlaping sets of the same cardinality n, the clus-
ters. There are relations between the cluster variables, encoded in an n×n matrix,
the mutation matrix. Through mutation, one element of a cluster is exchanged by
exactly one other element and this exchange process is prescribed by the exchange
matrix.

If there are only finitely many generators, the cluster algebra is of finite type.
Finite type cluster algebras have been classified by Fomin and Zelevinsky ([FZ03]).
Their classification describes the finite type cluster algebras in terms of Dynkin
diagrams.

More concretely: a seed is a pair (x, M) where x = {x1, . . . , xn} is a basis of
Q(u1, . . . , un) and M = (Mij)ij is a sign skew symmetric n×n-matrix with integer
entries, called the exchange matrix. That means that the sign of Mij is the opposite
of the sign of Mji.

Then one defines an involutive map µk (for k ∈ {1, . . . , n}) on the seeds, called
the mutation in direction of k, through µk(x) = (x1, . . . , x̂k, x′

k, . . . , xn) where x′
k

is given by the relation

xk · x′
k =

∏

xi ∈ x
Mik > 0

xMik

i +
∏

xi ∈ x
Mik < 0

x−Mik

i

In a similar way, one defines M ′ by

M ′
ij :=

{
−Mij if i = k or j = k
Mij + 1

2 (|Mik|Mkj + Mik|Mkj |) otherwise.

and thus obtains (x′, M ′) as µk((x, M)) (the matrix M ′ is also a sign skew sym-
metric n × n-matrix over Z). For more details we refer to Section 1 of the survey
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article [BuM06] of Buan-Marsh. The xi obtained through successive mutations are
the so-called cluster variables. The cluster algebra A = A(x, M) is then defined
as the algebra generated by the cluster variables. There can be infinitely many
of them. Fomin-Zelevinsky have shown in [FZ4] that A lies in Z[x±1

1 , . . . , x±1
n ]

(Laurent-phenomenon). First examples of cluster algebras are coordinate rings of
SL2, SL3.

The field of cluster algebras is a young and very dynamic field. Since its first
introduction, there have been many different directions in its development. We only
mention a few connections to other areas (in parentheses: the objects corresponding
to the cluster variables): the theory of Teichmüller spaces (Penner coordinates),
see work of Fock-Goncharov, [FG06] and [FG07]; the representation theory of finite
dimensional algebras (tilting modules), cf. [BMRRT05]), triangulations of surfaces
(diagonals), see the work [FST08] of Fomin-Shapiro-Thurston.

1.2. Cluster categories. Cluster categories were introduced independently in the
work [BMRRT05] of Buan-Marsh-Reineke-Reiten-Todorov, and by Caldero-Chapoton-
Schiffler, [CCS06] to provide a categorification of the theory of cluster algebras.

We will use the approach of [BMRRT05] to describe cluster categories and will
consider the approach of [CCS06]later, cf. Section 2.

Let Q be a simply-laced Dynkin quiver (i.e. a quiver whose underlying graph is
of type A, D or E). Let k be an algebraically closed field and kQ the path alge-
bra of Q (for more details, we refer to the lecture notes of M. Brion, [B08] in the
same volume). Take the bounded derived category Db(kQ) of finitely generated
kQ-modules (for details on Db(kQ) we refer to [H88]) with shift denoted by [1] and
Auslander-Reiten translate denoted by τ . By Happel ([H88]), the category Db(kQ)
is triangulated, Krull-Schmidt, and has almost split sequences. To understand the
category Db(kQ) it is helpful to study its Auslander-Reiten quiver: The Auslander-
Reiten quiver of a category is a combinatorial tool which helps understanding the
category. Its vertices are by definition the indecomposable modules up to isomor-
phism and the number of arrows between two points are given by the dimension
of the space of irreducible maps between two representatives of the corresponding
modules.

We now associate a quiver ZQ to Q. Its vertices are (n, i) for n ∈ Z, and where
i a vertex of Q. For every arrow i → j in Q there are arrows (n, i) → (n, j)
and (n, j) → (n + 1, i) in ZQ. So ZQ has the shape of a Z-strip of copies of Q.
Together with the map τ : (n, i) → (n − 1, i) (n ∈ Z, i a vertex of Q), ZQ is
a stable translation quiver as defined by Riedtmann (see [Rie90]). For a precise
definition of stable translation quivers we refer the reader to Section 3 below. We
illustrate ZQ in Example 1.2. Happel has shown in [H88], that the Auslander-Reiten
quiver AR(Db(kQ)) of Db(kQ) is just ZQ. In particular, the category Db(kQ) is
independent of the orientation of Q.

Example 1.2. Let Q be a quiver of type A3,

Q :
31 2

Then, ZQ has the shape
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with one copy of the quiver Q highlighted to show how it appears inside ZQ. The
dotted arrows indicate the Auslander-Reiten translate τ which sends each vertex
to its leftmost neighbor. It is an auto-equivalence of the Auslander-Reiten quiver.

On the other hand, the Auslander-Reiten quiver of the module category kQ-mod
of finitely generated kQ-modules looks like a triangle:

AR(kQ-mod):

Observe that the infinite quiver ZQ can be viewed as being covered by copies
of the Auslander-Reiten quiver of the module category kQ-mod, with additional
arrows and dotted arrows introduced to connect the copies of the triangle of kQ-
mod. With this picture in mind, we can describe the shift [1] on AR(Db(kQ)): it
sends each vertex to the “same” vertex in the next copy of the triangle AR(kQ-mod)
to the right.

Back to the general situation, where Q is of simply-laced Dynkin type. The
shift [1] then is the auto-equivalence of AR(Db(kQ)) which sends a vertex to the
corresponding vertex in the next copy of the Auslander-Reiten quiver of the module
category kQ-mod and the translation τ sends a vertex to its leftmost neighbor. As
an abbreviation, we write F for the auto-equivalence τ−1 ◦ [1] of Db(kQ). Now we
are ready to define the cluster category associated to Q.

Definition. The cluster category C := CQ := Db(kQ)/F of type Q is the orbit
category whose objects are the F -orbits of objects of Db(kQ) and whose morphisms
are given as follows:

HomC(X̃, Ỹ ) =
⊔

i∈Z

HomDb(kQ)(F
iX, Y )

where X̃ and Ỹ are representatives of the F -orbits through X and Y respectively.

Note that for any pair of objects X , Y of Db(kQ) there are only finitely many i
such that HomDb(kQ)(F

iX, Y ) is non-zero. The cluster category is Krull-Schmidt
([BMRRT05]), triangulated and Calabi-Yau of dimension 2 ([Ke05]).

The connection between CQ and the cluster algebra of the same type is given by
the following result.

Theorem 1.3 ([BMRRT05]). There is a bijection between the cluster variables of
the cluster algebra of type An (resp. Dn, En) and indecomposable objects of CQ

where Q is of type An (resp. Dn, En).

To understand the cluster categories better, we consider its Auslander-Reiten
quiver. By definition, it has the form of one copy of the module category, together
with a copy of the quiver Q (with additional arrows, dotted arrows), as illustrated
in types A and D below (Figures 1 and 2). In particular, it is a finite quiver. In the
pictures of Figures 1 and 2 we have repeated one copy of the quiver Q to indicate
how the quivers are glued together: both quivers wrap around. The Auslander-
Reiten quiver of type An can be viewed as lying on a Möbius strip and the one of
type Dn as lying on a cylinder.

Let G be the underlying graph of Q, G of Dynkin type A, D or E. We recall that
a famous result of P. Gabriel establishes a bijection between the indecomposable
objects of kQ-mod (up to isomorphism) and the positive roots of the Lie algebra of
type G. For a recent description of this result we refer to Section 5 of the lecture
notes [Kr07] of H. Krause.
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X

X

YY

Z

Z

Figure 1. The Auslander-Reiten quiver of C for A3

XX

YY

U U

V
V

Figure 2. The Auslander-Reiten quiver of C for D4

There exists an analogous result for cluster categories. To state it we need to
enlarge the set of roots considered: we add the negatives of the simple roots. An
almost positive root of a Lie algebra of type G is a positive root or the negative of
a simple root.

Buan et al. have shown in [BMRRT05] that there is a bijection between the
indecomposable objects of the cluster category CQ and the almost positive roots of
the Lie algebra of type Q.

1.3. The m-cluster category. In 2005, Keller ([Ke05]) has introduced the m-
cluster categories as a natural generalisation of the cluster categories. Again, let Q
be a quiver whose underlying graph is of Dynkin type A, D or E. Let [1] be the shift
and τ the Auslander-Reiten translate as before. Let Fm be the auto-equivalence
τ−1 ◦ [m] of Db(kQ), for m ≥ 1.

Definition. The m-cluster category Cm := Cm
Q := Db(kQ)/Fm (of type Q) is the

orbit category with objects the Fm-orbits of objects of Db(kQ) and with morphisms

HomCm(X̃, Ỹ ) =
⊔

i∈Z
HomDb(kQ)(F

i
mX, Y ) where X̃ and Ỹ are representatives of

the Fm-orbits of X and Y respectively.

Note that the Auslander-Reiten quiver of Cm thus consists of m copies of the
Auslander-Reiten quiver of the module category kQ-mod and additionally, of a
copy of the quiver Q, connected with additional (dotted) arrows. In the case of An,
we observe that if m is odd, the Auslander-Reiten quiver of Cm

Q lies on a Möbius
strip, whereas if it m is even, it lies on a cylinder. As an example, Figure 3 shows
the Auslander-Reiten quiver of the 2-cluster category of type A2. Again, we have
repeated a slice of the quiver to indicate how it wraps around.

XX

Y Y

Figure 3. The Auslander-Reiten quiver of C2 for A2

Remark. The m-cluster categories have very nice properties, analogously to the
properties of the cluster categories: Cm is Krull-Schmidt ([BMRRT05]), triangu-
lated and Calabi-Yau of dimension m + 1 ([Ke05]).
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2. Polygons and diagonals

In the first part of this section we present the approach of Caldero, Chapoton and
Schiffler, [CCS06], who described the cluster category of type An in terms of the
diagonal of a polygon. This was later adapted to type Dn by Schiffler in [S06], using
a punctured n-gon. In the second part, we explain how to describe the m-cluster
category of type An in terms of so-called m-diagonals in a polygon.

2.1. Quiver of diagonals. Let Π be a polygon with n + 2 vertices, labeled clock-
wise by {1, 2, . . . , n + 2}. To it, we associate a quiver Γ(n, 1) as follows:

The vertices of Γ(n, 1) are the diagonals {(i, j) | 1 ≤ i, j ≤ n + 2, |i − j| > 1} of
Π. The arrows are (i, j) → (i, j +1) and (i, j) → (i+1, j), where i+1 and j +1 are
taken modulo n + 2, provided the image is also a diagonal of Π. Furthermore, we
define a bijection τ on the vertices of Γ(n, 1) as follows: τ : (i, j) 7→ (i − 1, j − 1)
(again, taking i− 1 and j − 1 modulo n + 2). The quiver Γ(n, 1) together with this
map τ is a stable translation quiver (cf. definition in Section 3 below).

Example 2.1 (Hexagon). Let us illustrate this in the case n = 4.
1 2

3

45

6

(1, 3)

(1, 4)

(3, 6)

The translation quiver Γ(4, 1) obtained from the hexagon is:

(1, 5) oo

  A
AA

AA
(2, 6)

  A
AA

AA
oo

  A
AA

AA
(1, 3)

  A
AA

AA

(1, 4) oo

  A
AA

AA

>>}}}}}

(2, 5) oo

  A
AA

AA

>>}}}}}

(3, 6)

  A
AA

AA
oo

>>}}}}}

(1, 4)

  A
AA

AA

(1, 3) oo

>>}}}}}

(2, 4) oo

>>}}}}}

(3, 5) oo

>>}}}}}

(4, 6) oo

>>}}}}}

(1, 5)

We have repeated the first slice (1, 3) → (1, 4) → (1, 5) at the end to indicate how
the quiver wraps around.

Observe that the quiver Γ(4, 1) is equal to the Auslander-Reiten quiver of the
cluster category of type A3 (Figure 1). More generally, one can show that the quiver
of diagonals of an n + 2-gon encodes the cluster category of type An−1:

Theorem 2.2 ([CCS06], Section 2). Let Q be a quiver of Dynkin type An−1. Then
the Auslander-Reiten quiver of CQ is isomorphic to the quiver Γ(n, 1) of diagonals
in an n + 2-gon.

As a consequence of this, the cluster category CQ is equivalent to the additive
category generated by the mesh category of the stable translation quiver Γ(n, 1) of
diagonals of an n+2-gon. For details, we refer the reader to [CCS06] and [BaM08].

Remark. The cluster category of type Dn can be modelled in a similar way if we
use a punctured n-gon. This has been done by Schiffler in [S06] using arcs in the
punctured polygon.
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Remark. Every maximal collection of non-crossing diagonals of a polygon Π (punc-
tured or not) is a triangulation of Π. All maximal collections have the same number
of elements, this number is an invariant of Π. It is called the rank of the polygon.
The rank of an n + 2-gon is n − 1, the rank of a punctured n-gon is n. This leads
us back to cluster algebras - for the connection between (punctured) polygons of
rank n and cluster algebras of type An (of type Dn respectively) we refer the reader
to [FST08].

2.2. Quiver of m-diagonals. In a similar way, the m-cluster categories can be
modelled using a certain quiver Γ(n, m). We will now explain how this works. Let
Π be an nm+2-gon. The vertices of Γ(n, m) are the m-diagonals, i.e. the diagonals
of the form (1, m + 2), (1, 2m + 2), etc., where vertices are taken modulo nm + 2.
More precisely, an m-diagonal divides Π into an mj+2-gon and an m(n−j)+2-gon
(for 1 ≤ j ≤ n−1

2 ). The arrows send (i, j) to (i, j+m) and to (i+m, j) whenever the
image is also an m-diagonal. Furthermore, we define a translation τm on Γ(n, m)
which sends (i, j) to (i−m, j−m) (taking vertices modulo nm + 2). Then Γ(n, m)
is also a stable translation quiver. With m = 1 we just recover the case of the usual
diagonals as described above.

Example 2.3. Let m = 2 and n = 3; Π is an octagon. Its 2-diagonals are of the
form (1, 4), (1, 6), (2, 5), etc.

1 2

3

4

56

7

8 (1, 4)

(1, 6)

(4, 7)

Then the quiver Γ(3, 2) is:

(1, 6) oo

""D
DD

(3, 8) oo

""D
DD

(2, 5)

""D
DD
oo (4, 7) oo

""D
DD

(1, 6)

(1, 4) oo

<<zzz

(3, 6) oo

<<zzz

(5, 8) oo

<<zzz

(2, 7) oo

<<zzz

(1, 4)

<<zzz

Here, we have also repeated the first slice (1, 4) → (3, 6) to indicate how the quiver
wraps around.

Observe that the quiver Γ(3, 2) is just the Auslander-Reiten quiver of the 2-
cluster category of type A2. So the 2-diagonals in the octagon model the cluster
category C2

Q for Q of Dynkin type A2. This holds more generally by the following
result.

Theorem 2.4 ([BaM08]). Let Q be a quiver of Dynkin type An−1, let m ≥ 1.
Then the Auslander-Reiten quiver of Cm

Q is isomorphic to the quiver Γ(n, m) of
m-diagonals in an nm + 2-gon.

Note that we recover Theorem 2.2 in the case m = 1.

Remark. (1) Theorem 2.4 tells us that in order to understand the m-cluster cat-
egory of type An it is enough to study Γ(n, m).

(2) To model the m-cluster categories of type Dn, one defines so-called m-arcs
in a punctured nm−m+1-gon and obtains a quiver Γ⊙(n, m). One can show that
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this is the Auslander-Reiten quiver of Cm
Q where Q is of type Dn, cf. Theorem 3.6

in [BaM07].

The maximal collections of non-crossing m-diagonals in an nm + 2-gon (resp.
in a punctured nm − m + 1-gon) correspond to m + 2-angulations of the polygon.
The number of elements in such a maximal collection is again an invariant of the
polygon. It is equal to n − 1 (resp. to n).

3. Powers of translation quivers

We now provide another way of obtaining m-cluster categories. It uses the
concept of the power of a translation quiver which was introduced in [BaM08]. In
order to explain this, let us give the precise definition of a translation quiver.

Definition. A translation quiver is a pair (Γ, τ) where Γ is a quiver, possibly with
infinitely many vertices and arrows; τ is an injective map from a subset of the
vertices of Γ to the vertices of Γ, such that the following holds: the number of
arrows going from a vertex x to y equals the number of arrows from τy to x for all
vertices x, y of Γ. The map τ is called the translation of (Γ, τ).

If τ is defined on all vertices (and thus bijective) then (Γ, τ) is a stable translation
quiver.

We remark that in all examples of stable translation quivers appearing in this
article, the number of arrows between 2 vertices is always at most 1.

We recall that a composition x0 → x1 → · · · → xm−1 → xm of m arrows
xi → xi+1 (where the xi are vertices of Γ) is a path of length m. Such a path is said
to be sectional if τxi+1 6= xi−1 for i = 1, . . . , m − 1 (for which τxi+1 is defined),
cf. [Rin84].

Definition. Let (Γ, τ) be a translation quiver. The m-th power Γm of Γ is the
quiver whose vertices are the same as the vertices of Γ and whose arrows are the
sectional paths of length m of Γ.

One can show that if (Γ, τ) is a stable translation quiver, then the pair (Γm, τm)
is also a stable translation quiver ([BaM08], Section 6). Note however that (Γm, τm)
is not connected in general, even if (Γ, τ) is so. The following example illustrates
this.

Example 3.1. Let Γ be the quiver Γ(6, 1) of diagonals in an octagon, let m = 2.
The quiver of the octagon has five rows, with first slice (1, 3) → (1, 4) → (1, 5) →
(1, 6) → (1, 7):

(1, 7) oo
$$

(2, 8)
$$

oo (1, 3)
$$

(1, 6) oo
$$

::

(2, 7) oo
$$

::

(3, 8)
$$

oo

::

(1, 4)
$$

(1, 5) oo
$$

::

(2, 6) oo
$$

::

(3, 7)
$$

oo

::

(4, 8) oo
$$

::

(1, 5)
$$

(1, 4) oo
$$

::

(2, 5) oo
$$

::

(3, 6)
$$

oo

::

(4, 7) oo
::

$$
(5, 8) oo

$$

::

(1, 6)
$$

(1, 3) oo
::

(2, 4) oo
::

(3, 5) oo
::

(4, 6) oo
::

(5, 7) oo
::

(6, 8)

::

oo (1, 7)

As before, we repeat the first slice at the end to indicate how the quiver wraps
around.

The second power of Γ(6, 1) has three components. One containing the vertex
(1, 3), one containing the vertex (1, 4) and the third containing the vertex (2, 4):
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(1, 6) oo

""D
DD

(3, 8) oo

""D
DD

(2, 5)

""D
DD
oo (4, 7) oo

""D
DD

(1, 6)

(1, 4) oo

<<zzz

(3, 6) oo

<<zzz

(5, 8) oo

<<zzz

(2, 7) oo

<<zzz

(1, 4)

<<zzz

(1, 7) oo

""D
DD

(1, 3)

""D
DD

(1, 5) oo

<<zzz

""D
DD

(3, 7) oo

<<zzz

""D
DD

(1, 5)

""D
DD

(1, 3) oo

<<zzz

(3, 5) oo

<<zzz

(5, 7) oo

<<zzz

(1, 7)

and
(2, 8) oo

""D
DD

(2, 4)

""D
DD

(2, 6) oo

<<zzz

""D
DD

(4, 8) oo

<<zzz

""D
DD

(2, 6)

""D
DD

(2, 4) oo

<<zzz

(4, 6) oo

<<zzz

(6, 8) oo

<<zzz

(2, 8)

We observe that the component through the vertex (1, 4) is the same as the quiver
Γ(3, 2) from Example 2.3. This is a property that holds in general, cf. Theorem 3.2.
The other two components are isomorphic to the Auslander-Reiten quiver of the
orbit category Db(kQ)/[1] where Q is of Dynkin type A3.

Theorem 3.2. The quiver Γ(n, m) is a connected component of Γ(nm, 1)m.

From Theorem 3.2 one obtains that the m-cluster category of type An is a full
subcategory of the additive category generated by the mesh category of Γ(nm, 1)
(for a definition of the mesh category we refer the reader to [BaM08, Section 3]). In
other words: in order to understand the m-cluster category, there is an alternative
approach to the one presented in Subsection 2.2. Namely, we can consider the
m-th power of the quiver given by the usual diagonals. The Auslander-Reiten
quiver of the m-cluster category of type An−1 appears as a connected component
of Γ(nm, 1)m.

Remark. We can actually prove an analogous result as Theorem 3.2 for type Dn,
cf. [BaM07]: Let Γ⊙(n, 1) denote the quiver obtained from the arcs of a punctured
n-gon (note the difference: here, the polygon has n vertices instead of n+2) and by
Γ⊙(n, m) the quiver of m-arcs in a punctured nm−m+1-gon. Then the Auslander-
Reiten quiver of the m-cluster category of type Dn is Γ⊙(n, m) and it is a connected
component of Γ⊙(nm − m + 1, 1)m. For details we refer to Section 5 of [BaM07]1.

A natural question to ask at this point is what the other connected components
of the mth power of Γ(nm, 1) are. Remarkably, this question is much easier in type
D. There, we have a complete answer:

The connected components of the (restricted) mth power of the Auslander-
Reiten quiver of the cluster category of type Dnm−m+1 are exactly the union of
the Auslander-Reiten quiver of the m-cluster category of type Dn with m−1 copies
of the Auslander-Reiten quiver of Db(An−1)/τnm−m+1, cf. Theorem 5.2 of [BaM07].

The difficulty arising in type A has to do with the additional symmetry of the
Dynkin graph of type A, i.e. with the involution sending the first to the last node,
the second to the second-to-the-last, etc.

Let now Q be of Dynkin type An. For odd m, C. Ducrest([D08]) was recently
able to answer the question of the components of the mth power. For even m, she
provides a partial description. Her result is the following (see Section 4 of [D08]):

1to be precise: the arrows in the m-power arise from restricted sectional paths of length m,
and we are taking the restricted mth power.
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Γ(nm, 1)m = Γ(n, m)
⊔ t⋃

i=1

Γi

where Γi is the Auslander-Reiten quiver of an orbit category of Db(An) under an
auto-equivalence of the form τ−s ◦ [r] for some t and for some s, r where we can
assume s < n.

Furthermore, if m is odd then r = (m − 1)/2 and s = 1
2 ((m − 1)(n − 1)) + 1.

The even case is more complicated. One can show that for even m, we have
m/2 ≤ r ≤ m. Example 3.1 above shows that r = m does occur.

Remark. If m is odd, one can show that the mth power only has one connected
component per row of the original quiver Γ(nm, 1). In the even case, there are
examples where we obtain one component per row and examples where there are
two components per row. For details we refer to [D08].

C. Ducrest has developed a programme to calculate all components of the mth
power of Γ(m, n) for all n, m ≤ 20. This programme is available online at
http://www.math.ethz.ch/∼baur/algo/
and the documentation explaining how it works is [D208]. We hope that this
programme will help us finding the complete answer for m even.

References

[BaM08] K. Baur, R. Marsh, A geometric description of m-cluster categories, Transactions
of the AMS 360 (2008), no. 11, 5789–5803.

[BaM07] K. Baur, R. Marsh, A geometric description of the m-cluster categories of type Dn,
Int. Math. Res. Notices, 2007 Volume 2007: article ID rnm011, 19 pages.

[B08] M. Brion, Representations of quivers, notes de l’école d’été ”Geometric Methods
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