Some remarks on Nakajima's quiver varieties of type A
 D. A. Shmelkin

To cite this version:

D. A. Shmelkin. Some remarks on Nakajima's quiver varieties of type A. 2008. hal-00441483

HAL Id: hal-00441483

https://hal.science/hal-00441483

Preprint submitted on 16 Dec 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SOME REMARKS ON NAKAJIMA'S QUIVER VARIETIES OF
 TYPE A.

D.A.SHMELKIN

Abstract

We try to clarify the relations between quiver varieties of type A and Kraft-Procesi proof of normality of nilpotent conjugacy classes closures.

1. Introduction

Kraft and Procesi proved in KP that for any nilpotent $n \times n$ matrix A over an algebraically closed field \mathbf{k} of charactersistic zero, the closure $\overline{C_{A}}$ of the conjugacy class C_{A} of A is normal, Cohen-Macaulay with rational singularities. The main idea of the proof of this wonderful theorem is as follows: $\overline{C_{A}}$ is proved to be isomorphic to the categorical quotient for an affine variety Z of representations of a quiver with relations: $\overline{C_{A}} \cong Z / / H$, where H is a reductive group. Moreover, this Z is proved to be a reduced irreducible normal complete intersection, and this implies all the claimed properties of $\overline{C_{A}}$ as being inherited by the categorical quotients over reductive groups in general.

Nakajima in Na94 and Na98 introduced a setup related to the term quiver variety. A very particular case of that setup, when the underlying quiver is of type A and the additional vector spaces are of special dimension vector leads to the above variety Z used by Kraft and Procesi. Nakajima employed this observation in Na94 to illustrate quiver varieties, in particular, he proved a nice theorem (Na94, Theorem 7.3]) relating the quiver variety in this case with the cotangent bundle over a flag variety. The proof is based on another result (Na94, Theorem 7.2]) that he claimed to be proved in KP. Actually, that result was proved in KP, Proposition 3.4] only for special dimension vectors, not in the generality needed for Theorem 7.3. Unfortunately, this confusion haven't been corrected so far and we want to fill this gap, and without any contradiction with the valuable sense of Nakajima's result.

First of all, both Theorems 7.2 and 7.3 are true and we give proofs for them. In addition, we show that Theorem 7.3 is closely related with a result on Δ-filtered modules of Auslander algebra from BHRR. On the other hand, the main part of the results of $[K P]$ (because $[K P$, Proposition 3.4] is only a small part of these) can not be generalized, in particular, the variety Z can be reducible (see Example 4.3).

Our study does not claim to be a new result. Quite the contrary, we are trying to present the known results in their uncompromising beauty.

[^0]
2. Kraft-Procesi setup and Nakajima's Theorem 7.2.

We present the setup used in KP keeping the local notation. Consider a sequence of t vector spaces and linear mappings between them:

$$
\begin{equation*}
U_{1} \underset{B_{1}}{\stackrel{A_{1}}{\rightleftarrows}} U_{2} \underset{B_{2}}{\stackrel{A_{2}}{\rightleftarrows}} U_{3} \cdots U_{t-1} \underset{B_{t-1}}{\stackrel{A_{t-1}}{\rightleftarrows}} U_{t} \tag{1}
\end{equation*}
$$

Consider moreover the equations as follows:

$$
\begin{equation*}
B_{1} A_{1}=0 ; B_{2} A_{2}=A_{1} B_{1} ; B_{3} A_{3}=A_{2} B_{2} ; \cdots ; B_{t-1} A_{t-1}=A_{t-2} B_{t-2} \tag{2}
\end{equation*}
$$

and denote by Z the closed subvariety defined by these equations. The equations can be thought of as "commutativity" conditions for every $i=2, \cdots, t-1$: two possible compositions of $U_{i-1} \rightleftarrows U_{i} \rightleftarrows U_{i+1}$ yield the same endomorphism of U_{i}. The extra condition $B_{1} A_{1}=0$ combined with that commutativity implies $\left(A_{1} B_{1}\right)^{2}=A_{1}\left(B_{1} A_{1}\right) B_{1}=0$. Inductively, we have for $i=2, \cdots, t-1$:

$$
\begin{equation*}
\left(B_{i} A_{i}\right)^{i}=\left(A_{i-1} B_{i-1}\right)^{i}=A_{i-1}\left(B_{i-1} A_{i-1}\right)^{i-1} B_{i-1}=0 \Rightarrow\left(A_{i} B_{i}\right)^{i+1}=0 \tag{3}
\end{equation*}
$$

so all these endomorphisms are nilpotent. Denote $\operatorname{dim} U_{i}$ by n_{i}; so we have the dimension vector $\left(n_{1}, \cdots, n_{t}\right)$. The variety Z is naturally acted upon by the group $G=G L_{n_{1}} \times \cdots \times G L_{n_{t}}$ and its normal subgroup $H=G L_{n_{1}} \times \cdots \times G L_{n_{1-1}}$. The above setup is interesting for any dimension vector but each of the texts [KP] and Na94, §7] considered those important for their purposes. Nakajima considered (in slightly different notation) monotone dimension vectors, that is, subject to the condition $n_{1}<n_{2}<\cdots<n_{t}$. One of the statements we feel necessary to clarify is the following (in our reformulation consitent with given notation):
Theorem 2.1. (Theorem 7.2 from Na94) Assume $\left(n_{1}, \cdots, n_{t}\right)$ is monotone. Then the map $\left(A_{1}, B_{1}, \cdots, A_{t-1}, B_{t-1}\right) \rightarrow A_{t-1} B_{t-1}: Z \rightarrow \operatorname{End}\left(U_{t}\right)$ is the categorical quotient with respect to H and the image is the conjugacy class closure for a nilpotent matrix.

Instead of the proof for this Theorem it is stated in Na94 that this result is proved in $[\mathrm{KP}]$. This is not true, because in KP$]$ a smaller subset of dimensions was considered and the most part of the results concerns this subset, though the developed methods do allow to recover the proof of the above Theorem (see $\S(4)$.

For the main goal of KP it was sufficient to consider the dimensions as follows. Let $\eta=\left(p_{1}, p_{2}, \cdots, p_{k}\right)$ be a partition with $p_{1} \geq p_{2} \geq \cdots \geq p_{k}$. By $\hat{\eta}=\left(\hat{p}_{1}, \cdots, \hat{p}_{m}\right)$ denote the dual partition such that $\hat{p}_{i} \doteq \#\left\{j \mid p_{j} \geq i\right\}$. In the Young diagram language, the diagram with rows consisting of $p_{1}, p_{2}, \cdots, p_{k}$ boxes, respectively has columns consisting of $\hat{p}_{1}, \hat{p}_{2}, \cdots, \hat{p}_{m}$ boxes, respectively. For example, the dual partition to $\eta=(5,3,3,1)$ is $\hat{\eta}=(4,3,3,1,1)$ as shows the Young diagram of η

Now, if $\eta=\left(p_{1}, p_{2}, \cdots, p_{k}\right)$ is a partition such that $p_{1}=t$ set

$$
\begin{equation*}
n_{1}=\hat{p}_{t} ; n_{2}=\hat{p}_{t-1}+\hat{p}_{t} ; \cdots ; n_{t}=\hat{p}_{1}+\hat{p}_{2}+\cdots+\hat{p}_{t} . \tag{4}
\end{equation*}
$$

So n_{1}, \cdots, n_{t} are the volumes of an increasing sequence of Young diagrams such that the previous diagram is the result of collapsing the first column of the next
one. For example, the above partition yields the dimension vector $(1,2,5,8,12)$. This way we define a vector $n(\eta)=\left(n_{1}, \cdots, n_{t}\right)$ and the set of all such vectors can be characterized by the inequalities as follows:

$$
\begin{equation*}
n_{1} \leq n_{2}-n_{1} \leq n_{3}-n_{2} \leq \cdots \leq n_{t}-n_{t-1} \tag{5}
\end{equation*}
$$

In particular, this is a monotone sequence. Moreover, let C be the Cartan matrix of type A_{t-1} and set $v=\left(n_{1}, \cdots, n_{t-1}\right), w=\left(0, \cdots, 0, n_{t}\right)$. Then the formulae (5) are equivalent to

$$
\begin{equation*}
w-C v \in \mathbf{Z}_{+}^{t-1} \tag{6}
\end{equation*}
$$

Remark 2.1. The condition (6) has a very important sense in Nakajima's theory. Namely, by Na98, Proposition 10.5] it is equivalent to the set $\mathfrak{M}_{0}^{r e g}(v, w)$ being nonempty, which means that the generic orbit in Z is closed with trivial stabilizer. The most interesting general Nakajima's results hold under this condition and in this particular case are just equivalent to what is proved in KP.

A partition $\eta=\left(p_{1}, \cdots, p_{k}\right)$ of t yields a nilpotent conjugacy class C_{η} of matrices with Jordan blocks of size p_{1}, \cdots, p_{k}, and moreover, a special matrix $A \in C_{\eta}$ such that basis vectors of \mathbf{k}^{t} correspond to the boxes of Young diagram and A maps the boxes from the first column to 0 and each of the other boxes to its left neighbour.

We now state a result from KP], which is very close to Theorem 2.1. Actually our statement is more strong than in KP but one can easily check that the original argument works for this statement without any change.

Proposition 2.2. (Proposition 3.4 from KP)

1. The map $\Theta: Z \rightarrow \operatorname{End}\left(U_{t}\right), \Theta\left(A_{1}, B_{1}, \cdots, A_{t-1}, B_{t-1}\right)=A_{t-1} B_{t-1}$ is the categorical quotient with respect to H for arbitrary dimension vector $\left(n_{1}, \cdots, n_{t}\right)$.
2. If $\left(n_{1}, \cdots, n_{t}\right)=n(\eta)$, then the image of Θ is equal $\overline{C_{\eta}}$.

3. Nakajima's Theorem 7.3

Before stating Nakajima's result we need some preliminary facts and notion. Let $\left(n_{1}, \cdots, n_{t}\right)$ be a monotone dimension vector. Denote by \mathcal{F} the variety of partial flags $\{0\}=E_{0} \subseteq E_{1} \subseteq E_{2} \subseteq \cdots \subseteq E_{t-1} \subseteq E_{t}=\mathbf{k}^{n_{t}}$ with $\operatorname{dim} E_{i}=n_{i}$ for $i=1, \cdots, t$. The variety \mathcal{F} is projective and homogeneous with respect to the natural action of $G L_{n_{t}}, \mathcal{F} \cong G L_{n_{t}} / P$, where P is the stabilizer of a selected flag f_{0}, a parabolic subgroup in $G L_{n_{t}}$. Recall that the tangent space $T_{f_{0}} G L_{n_{t}} / P$ is isomorphic to \mathfrak{p}_{0}^{*}, where \mathfrak{p}_{0} is the nilradical of the Lie algebra of P.

Consider a closed subset $X \subseteq \mathcal{F} \times \operatorname{End}\left(\mathbf{k}^{n_{t}}\right)$ as follows:

$$
\begin{equation*}
X=\left\{(f, A) \in \mathcal{F} \times \operatorname{End}\left(\mathbf{k}^{n_{t}}\right) \mid A E_{i} \subseteq E_{i-1}, i=1, \cdots, t\right\} \tag{7}
\end{equation*}
$$

X is naturally isomorphic to the cotangent bundle $T^{*} \mathcal{F}$ because the fiber of the projection $p_{1}: X \rightarrow \mathcal{F}$ over f_{0} is $f_{0} \times \mathfrak{p}_{0}$.

Let μ be the dual partition to the ordered sequence ($n_{1}, n_{2}-n_{1}, \cdots, n_{t}-n_{t-1}$) (in particular, if $\left(n_{1}, \cdots, n_{t}\right)=n(\eta)$, then $\mu=\eta$). The following statement is well-known and can be found, e.g. in H. Theorem 3.3]:
Proposition 3.1. $p_{2}(X)=\overline{C_{\mu}}$.
Now we need to introduce shortly quiver varieties in this particular case. These are quotients by the action of a group, but two papers, Na94 and Na98 propose two different approachs to this notion, a Käler quotient and a quotient in the sense
of Geometrical Invariant Theory, respectively. Though the results we discuss are in Na94, we prefer the approach from Na98.

Nakajima considered two quotiens of Z with respect to the action of H. The first, \mathfrak{M}_{0} is just the categorical quotient, $\mathfrak{M}_{0}=Z / / H$ so the geometrical points of \mathfrak{M}_{0} are in 1-to-1 correspondance with the closed H-orbits in Z. On the other hand, one can consider the semi-stable locus $Z^{s s} \subseteq Z$ (actually with respect to a particular choice of a character of H but we consider just one as in Na98). It is proved in Na98 in general case that $Z^{s s}$ consists of stable points, that is, every H-orbit in $Z^{s s}$ is closed in $Z^{s s}$ and isomorphic to H. Hence, there is a geometric quotient $\mathfrak{M}=Z^{s s} / H$ (the construction of the quotient as an algebraic variety is usual for GIT, see Na98, p.522]). In particular, the points of \mathfrak{M} are in 1-to-1 correspondance with the H-orbits in $Z^{s s}$. Moreover, the categorical quotient $Z \rightarrow \mathfrak{M}_{0}$ gives rise to a natural map $\pi: \mathfrak{M} \rightarrow \mathfrak{M}_{0}$. Geometrically, π sends a stable orbit $H z$ to the unique closed (in Z) orbit in $\overline{H z}$. Besides, the construction of \mathfrak{M} implies that π is projective. Finally, Proposition 2.2 yields a convenient form of π as a map sending the stable orbit of $\left(A_{1}, B_{1}, \cdots, A_{t-1}, B_{t-1}\right)$ to $A_{t-1} B_{t-1} \in \operatorname{End}\left(U_{t}\right)$.

Theorem 3.2. (Theorem 7.3 from Na94) $\mathfrak{M} \cong T^{*} \mathcal{F}$.
We want to reformulate the above theorem, as follows:
Theorem 3.3. There is an isomorphic map $\alpha: \mathfrak{M} \rightarrow X \cong T^{*} \mathcal{F}$ making the diagram commutative:

Remark 3.1. Assume $\mathfrak{M}_{0}^{\text {reg }} \neq \emptyset$, that is, the generic closed orbit in Z is isomorphic to H. By Na98, Proposition 3.24], these generic closed orbits belong to $Z^{s s}$, hence, $\pi(\mathfrak{M})$ is the whole of \mathfrak{M}_{0}. We know that this happens precisely when the vector $\left(n_{1}, \cdots, n_{t}\right)$ is of Kraft-Procesi type (cf. Remark 2.1). Reading the original proof by Nakajima, one can feel that the author had the above diagram (with \mathfrak{M}_{0}) in mind for all monotone dimension vectors.

We give a proof of Theorem 3.3 following the idea of the proof of Na94, Theorem 7.3] but working in the setup of Na98], where we have:
Proposition 3.4. $\left(A_{1}, B_{1}, \cdots, A_{t-1}, B_{t-1}\right) \in Z^{s s} \Leftrightarrow A_{1}, \cdots, A_{t-1}$ are injective
Proof. In Na98, Lemma 3.8] we find a criterion of stability, which can be reformulated in this case as follows: for any tuple of subspaces $W_{i} \subseteq U_{i}, i=1, \cdots, t-1$ such that $A_{i}\left(W_{i}\right) \subseteq W_{i+1}$ and $B_{i}\left(W_{i+1}\right) \subseteq W_{i}$ for $i=1, \cdots, t-2$ and $A_{t-1}\left(W_{t-1}\right)=0$ we have $W_{1}=W_{2}=\cdots W_{t-1}=0$. Now assume that A_{1}, \cdots, A_{p-1} are injective and A_{p} is not. Set $W_{p}=\operatorname{Ker}\left(A_{p}\right)$ and $W_{i}=0$ for $i \neq p$. We claim that such a tuple contradicts the above condition of stability. Indeed, we have $A_{p-1} B_{p-1}\left(W_{p}\right)=B_{p} A_{p}\left(W_{p}\right)=0$, so $B_{p-1}\left(W_{p}\right)=0$, because A_{p-1} is injective. Conversely, assume that A_{1}, \cdots, A_{t-1} are injective and let W_{1}, \cdots, W_{t-1} be a tuple as above. Since A_{t-1} is injective and $A_{t-1}\left(W_{t-1}\right)=0$, we have $W_{t-1}=0$. Next, A_{t-2} is injective and $A_{t-2}\left(W_{t-2}\right) \subseteq W_{t-1}=0$ implies $W_{t-2}=0$. So we get $W_{1}=W_{2}=\cdots W_{t-1}=0$ and the point is stable.

Proof. (of the Theorem) Nakajima's construction for α is as follows:

$$
\begin{gather*}
\alpha\left(\left(A_{1}, B_{1}, \cdots, A_{t-1}, B_{t-1}\right)=\right. \tag{8}\\
=\left(\operatorname{Im} A_{t-1} A_{t-2} \cdots A_{1} \subseteq \operatorname{Im} A_{t-1} A_{t-2} \cdots A_{2} \subseteq \cdots \subseteq \operatorname{Im} A_{t-1} \subseteq U_{t}, A_{t-1} B_{t-1}\right)
\end{gather*}
$$

We claim that this map is well-defined. First of all the components of α are H invariant: this is clear for the operator $A_{t-1} B_{t-1}$; as for the maps $A_{t-1} \cdots A_{i}$ used to define the flag, the action of $\left(h_{1}, \cdots, h_{t-1}\right) \in H$ conjugates this map by the h_{i} so does not change the image. Next, the constructed flag belongs to \mathcal{F} because by Proposition 3.4 the maps $A_{t-1} \cdots A_{i}$ are injective over $Z^{s s}$ so the dimension of the image is equal n_{i}. Finally, applying formulae (2) we have on Z :

$$
\begin{gathered}
A_{t-1} B_{t-1} A_{t-1} A_{t-2} \cdots A_{i}=A_{t-1} A_{t-2} B_{t-2} A_{t-2} \cdots A_{i}=\cdots \\
\quad \cdots=A_{t-1} \cdots A_{i+1} A_{i} B_{i} A_{i}=A_{t-1} \cdots A_{i+1} A_{i} A_{i-1} B_{i-1} .
\end{gathered}
$$

Hence, the operator $A_{t-1} B_{t-1}$ maps $\operatorname{Im} A_{t-1} A_{t-2} \cdots A_{i}$ to $\operatorname{Im} A_{t-1} A_{t-2} \cdots A_{i} A_{i-1}$.
Assume for $z=\left(A_{1}, B_{1}, \cdots, A_{t-1}, B_{t-1}\right)$ and $z^{\prime}=\left(A_{1}^{\prime}, B_{1}^{\prime}, \cdots, A_{t-1}^{\prime}, B_{t-1}^{\prime}\right)$: $z, z^{\prime} \in Z^{s s}$ and $\alpha(z)=\alpha\left(z^{\prime}\right)$. It is not difficult to see that we may conjugate z^{\prime} by an appropriate $h \in H$ such that not only the vector spaces $\operatorname{Im} A_{t-1} \cdots A_{i}$ and $\operatorname{Im} A_{t-1}^{\prime} \cdots A_{i}^{\prime}$ are equal for all i but also $A_{1}=A_{1}^{\prime}, A_{2}=A_{2}^{\prime}, \cdots, A_{t-1}=A_{t-1}^{\prime}$. Then, applying the equality of the second parts of $\alpha, A_{t-1} B_{t-1}=A_{t-1}^{\prime} B_{t-1}^{\prime}$ and having $A_{t-1}=A_{t-1}^{\prime}$ is injective, we get $B_{t-1}=B_{t-1}^{\prime}$. Next, we have

$$
\begin{equation*}
A_{t-2} B_{t-2}=B_{t-1} A_{t-1}=B_{t-1}^{\prime} A_{t-1}^{\prime}=A_{t-2}^{\prime} B_{t-2}^{\prime} \tag{9}
\end{equation*}
$$

and $A_{t-2}=A_{t-2}^{\prime}$ is injective, hence, $B_{t-2}=B_{t-2}^{\prime}$. Applying this argument repeatedly, we get $z=z^{\prime}$, so α is injective.

On the other hand, for each point $x=\left(\left(E_{1} \subseteq E_{2} \subseteq \cdots E_{t}\right), A\right) \in X$ we can identify E_{i} with U_{i}, set A_{i} to be the inclusion $E_{i} \subseteq E_{i+1}$ and set B_{i} to be the restriction of A to E_{i+1}. This way we get a point $z \in Z$ and by Proposition 3.4 z is stable. Since $\alpha(z)=x$, we proved that α is bijective and moreover, α is an isomorphism, because X is smooth.

The commutativity of the diagram follows from the definition of α : indeed, we have $\pi=p_{2} \alpha$. Finally, Proposition 3.1 yields $p_{2}(X)=\overline{C_{\mu}}$.

Remark 3.2. A proof of Na94, Theorem 7.3] is also outlined in N.
Now we want to consider the action of $G=G L_{n_{1}} \times \cdots \times G L_{n_{t}}$ on Z. Clearly, $Z^{s s}$ is G-stable and G acts on both H-quotients, \mathfrak{M} and \mathfrak{M}_{0} via the factor $G L_{n_{t}}$ such that π is G-equivariant. By Theorem $\sqrt{3.3} \pi(\mathfrak{M})$ contains a dense G-orbit so the same is true for \mathfrak{M}. Since \mathfrak{M} is a geometric quotient $Z^{s s} / H$, we get:

Corollary 3.5. $Z^{s s}$ contains a dense G-orbit.
Remark 3.3. This corollary is exactly Theorem 2 from BHRR. Indeed, in BHRR, $\S 5]$ it is explained that the variety of representations of the Auslander algebra in dimension $\mathbf{d}=\left(n_{1}, \cdots, n_{t}\right)$ is Z (with the reverse numeration of the vector spaces). Moreover, the Δ-filtered representations are all points in Z with A_{1}, \cdots, A_{t-1} being injective, so by Proposition 3.4 this is $Z^{s s}$.

In the next section we will see that Z does not share these nice properties of $Z^{s s}$

4. Nakajima's Theorem 7.2

Definition 4.1. Let $\eta=\left(p_{1}, \cdots, p_{s}\right)$ be a partition of n with $p_{1} \geq p_{2} \geq \cdots \geq p_{s}$. For any $a \in \mathbf{Z}_{+}$define a partition $\eta+a$ as follows: If $a \geq s$, set $\eta+a=\left(p_{1}+\right.$ $\left.1, \cdots, p_{s}+1,1, \cdots, 1\right)$ so that $\eta+a$ has $a-s$ more parts. Otherwise, if $s+a=2 l$ set $\eta+a=\left(p_{1}+1, \cdots, p_{l}+1, p_{l+1}-1, \cdots, p_{s}-1\right)$, or else, if $s+a=2 l+1$ set $\eta+a=\left(p_{1}+1, \cdots, p_{l}+1, p_{l+1}, p_{l+2}-1, \cdots, p_{s}-1\right)$.

Clearly, if $a \geq s$, then the Young diagam of $\eta+a$ is that of η with added first column of height a. Conversely, if $a<s$ the number of rows of $\eta+a$ can be less than that for η (equal to s) provided $p_{s}=1$. As for the number of columns, it always increases by 1 from p_{1} to $p_{1}+1$. For example, if $\eta=(2,1,1)$, then

Recall that the set of partitions carries an order as follows:

$$
\begin{equation*}
\eta=\left(p_{1}, \cdots, p_{s}\right) \geq \nu=\left(q_{1}, \cdots, q_{t}\right) \Leftrightarrow \sum_{i=1}^{j} p_{i} \geq \sum_{i=1}^{j} q_{i}, \forall j \tag{11}
\end{equation*}
$$

It follows from Definition 4.1:

$$
\begin{equation*}
\eta \geq \nu \Rightarrow \eta+a \geq \nu+a, \forall a \in \mathbf{Z}_{+} \tag{12}
\end{equation*}
$$

Consider the variety $L=\operatorname{Hom}_{\mathbf{k}}\left(\mathbf{k}^{n}, \mathbf{k}^{n+a}\right) \times \operatorname{Hom}_{\mathbf{k}}\left(\mathbf{k}^{n+a}, \mathbf{k}^{n}\right)$ of pairs (A, B) of linear maps and the maps $\pi: L \rightarrow \operatorname{End}\left(\mathbf{k}^{n}\right), \pi(A, B)=B A$ and $\rho: L \rightarrow$ $\operatorname{End}\left(\mathbf{k}^{n+a}\right), \rho(A, B)=A B$. The next lemma generalizes KP, Lemma 2.3]:
Lemma 4.2. $\rho\left(\pi^{-1}\left(\overline{C_{\eta}}\right)\right)=\overline{C_{\eta+a}}$
Proof. To describe the pairs (A, B) such that $\pi(A, B)=B A \in C_{\eta}$ we apply the techniques of so-called $a b$ diagrams from KT, §4], as follows. The $G L_{n} \times G L_{n+a^{-}}$ orbits of pairs (A, B) such that $A B$ and $B A$ are nilpotent are depicted by the diagrams consisting of rows like $a b a b \cdots a b$, which can start and end either with a or with b. Clearly, the orbits are the isomorphism classes of representations for the quiver with two vertices and two arrows of different directions, so the diagram is nothing but a decomposition of the representation into indecomposable blocks

$$
\begin{equation*}
e_{1} \xrightarrow{A} f_{1} \xrightarrow{B} e_{2} \xrightarrow{A} f_{2} \xrightarrow{B} \cdots \xrightarrow{A} f_{k} \xrightarrow{B} 0 \tag{13}
\end{equation*}
$$

coresponding, for example, to the string $a b a b \cdots a b$ of length $2 k$, where e_{1}, \cdots, e_{k} and f_{1}, \cdots, f_{k} are basis vectors of \mathbf{k}^{n} and \mathbf{k}^{n+a}, respectively. Therefore, the total number of letters a in the diagram should be equal to n and that for b is equal to $n+a$. We assume also that from the top to bottom the rows are ordered by the length. Now, it follows from (13) that, taking all a-s from the diagram we get a partition of n, which corresponds to the conjugacy class of $B A$ and the same for b-s and $A B$. Therefore we need to describe the $a b$ diagrams giving η as the a-part. To get such a diagram we have to fill in between of a-s the $p_{1}-1+p_{2}-1+\cdots+p_{s}-1$ letters b. After that we have $s+a$ more letters b and we can add them from the left and from the right to each row or create a row with single b. In particular, if we want to place these $s+a$ letters b as high as possible, then, if $a \geq s$ we add $2 b$-s to each of s rows and then add $a-s$ more rows with single b. Otherwise, if $a<s$ and $s+a=2 l$ we add $2 b$-s to the first l rows; else, if $s+a=2 l+1$, we also
add one b to the $l+1$-th row. This way we get $\eta+a$ as the diagram of $A B$. Of course, this is only one of possible ways to get an $a b$ diagram from η but it is clear from the above considerations that all other b-diagrams ν that we can get have the property $\nu \leq \eta+a$. Moreover, we may take any other orbit $C_{\mu} \subseteq \overline{C_{\eta}}$ and the crucial property of the order is that $\mu \leq \eta$. So by the property (12) each $a b$-diagram over μ yields a b-diagram with partition less than $\mu+a$, hence, than $\eta+a$ as well. So we proved that $\rho\left(\pi^{-1}\left(\overline{C_{\eta}}\right)\right)$ contains $C_{\eta+a}$ and is contained in $\overline{C_{\eta+a}}$. On the other hand, by the First Fundamental Theorem for $G L_{n}$ the map $\rho: L \rightarrow \operatorname{End}\left(\mathbf{k}^{n+a}\right)$ is the categorical quotient by $G L_{n}$. Hence, the same is true for the restriction of ρ to the closed $G L_{n}$-stable subvariety $\pi^{-1}\left(\overline{C_{\eta}}\right)$. In particular, $\rho\left(\pi^{-1}\left(\overline{C_{\eta}}\right)\right)$ is closed, hence, is equal to $\overline{C_{\eta+a}}$.

Now we are prepared to prove Theorem 2.1 (Nakajima's Theorem 7.2):
Proof. By Proposition 2.2 we only need to show that the image of $\Theta: Z \rightarrow$ $\operatorname{End}\left(U_{t}\right), \Theta\left(A_{1}, B_{1}, \cdots, A_{t-1}, B_{t-1}\right)=A_{t-1} B_{t-1}$ is the closure of a nilpotent orbit and this follows from Lemma 4.2. Namely, we have $B_{1} A_{1}=0$ on Z, so we take $n=n_{1}, a=n_{2}-n_{1}$, and $\eta=\rho=(1,1, \cdots, 1)$. Hence, by Lemma 4.2 the image of $A_{1} B_{1}$ is $\overline{C_{\eta+a}}$. Then we take $n=n_{1}, a=n_{3}-n_{2}, \eta=\rho+\left(n_{2}-n_{1}\right)$, and get the image of $A_{2} B_{2}$ to be $\overline{C_{\left(\rho+\left(n_{2}-n_{1}\right)\right)+n_{3}-n_{2}}}$. Applying this argument repeatedly, we complete the proof.
Remark 4.1. So the dense nilpotent conjugacy class in the image of Θ has the form of C_{λ} with $\lambda=\left(\left(\rho+\left(n_{2}-n_{1}\right)\right) \cdots\right)+\left(n_{t}-n_{t-1}\right)$. Only under Kraft-Procesi inequalities on the dimension vector this partition has the clear direct connection with $\left(n_{1}, \cdots, n_{t}\right)=n(\lambda)$.

As we already noted in the Introduction, the main part of results from KP can not be generalized to the Nakajima's context. In particular, the following example shows that Z can be reducible:

Example 4.3. Take the dimension vector $(1,4,5)$. Then, applying the proof of Theorem 2.1, we have: $\rho=(1)$, the image of $A_{1} B_{1}$ is $\overline{C_{(2,1,1)}}$ and that for $A_{2} B_{2}$ is $\overline{C_{(3,2)}}$, because $(1)+3=(2,1,1)$ and $(2,1,1)+1=(3,2)$ (c.f. (10)):

So as in the proof of Lemma 4.2 we see that the pair $\left(A_{2}, B_{2}\right)$ coresponds to the $a b$-diagram ($b a b a b, b a b, a$). Hence, A_{2} is not injective (the summand a corresponds to the kernel of A_{2}). On the other hand, the stable representations in dimension $(1,4,5)$ exist and, by Theorem 3.3 the image $\Theta\left(Z^{s s}\right)=\overline{C_{(3,1,1)}}$. Since the stability condition is open, if Z would be irreducible, then $Z^{s s}$ would be dense in Z, hence, $\Theta\left(Z^{s s}\right)$ dense in $\Theta(Z)$, but we see this is false.

References

[BHRR] T. Brüstle, L. Hille, C.M. Ringel, and G. Röhrle, The Δ-filtered modules without selfextensions for the Auslander Algebra of $k[T] /\left\langle T^{n}\right\rangle$, Algebras and Representation Theory 2 (1999), 295-312.
[H] W. Hesselink, Polarizations in the classical groups, Math. Z. 160 (1978), 217-234.
[KP] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Inventiones Math. 53 (1979), 227-247.
[M] A. Maffei, Quiver varieties of type A, Comment. Math. Helv. 80 (2005), 1, 1-27.
[Na94] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994) 2, 365416.
[Na98] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 3, 515-560.

117437, Ostrovitianova, 9-4-187, Moscow, Russia.
E-mail address: mitia@mccme.ru

[^0]: 2000 Mathematics Subject Classification. 14L30, 16G20.
 Key words and phrases. Quiver variety, quotient.

