
2/37

Introduction Our design process Advancement Expected contribution

Designing relational schema from an
object model using model transformations

Antoine Wiedemann1

1Laboratoire informatique image et interaction, Université de La Rochelle

International Conference on Model Driven Engineering
Languages and Systems, Doctoral Symposium

3/37

Introduction Our design process Advancement Expected contribution

Outline

Introduction
What we are trying to do
Problem statement

Our design process
Workflow overview
Inputs
Annotations
Object to Relational transformation
Output

Advancement
Implementations
Ahead

Expected contribution

4/37

Introduction Our design process Advancement Expected contribution

Relational Schema Design

Automatic generation of a relational schema from a domain
model.

Key features
• Fully UML compliant
• User inputs are assisted, reduced to the minimum
• We aim at a non redundant relational schema, near to a

normal form (BCNF)

No other approaches has the same set of features.
• E/R diagrams

• separate notation
• no NULL values ([0..1] multiplicity)

• Design propositions1: no automation
• ORM tools ...

1Paul Dorsey, Martin Fowler, Susan D. Urban

5/37

Introduction Our design process Advancement Expected contribution

FAQ : How close are you from Hibernate and al...?

• We do not provide a "object/relational persistence and
query service" for Java objects.

• We provide a relational schema design tool, based on
domain object model

• We do take care of the final schema quality, i.e.
non-redundancy and consistency with the domain model

• The output schema may be used by several applications
(object-based or not)

Hibernate workflow
1. Program classes
2. Map classes to persistence

layer
3. Persist objects

Our workflow
1. Model the domain
2. Add constraints to models
3. Produce a relational

schema

6/37

Introduction Our design process Advancement Expected contribution

Problem statement 1: Tackle the impedance mismatch

Object Relational

Class

Association

Attribute

Role

Constraint

[0:1] multiplicity

Table

Foreign Key

(referential constraint)

Column

Unique constraints (key)

no NOT NULL constraint

internal identification
(OID)

identification by value

Generalization ? Various strategies

7/37

Introduction Our design process Advancement Expected contribution

Problem statement 2: Integrate MDE technologies into a design
tool

• Harness the infrastructure complexity (languages,
metamodels, xmi, development tools)

• Develop and debug the transformations
• Put it all together (models transformations execution,

additional functionalities, graphical interface)

8/37

Introduction Our design process Advancement Expected contribution

Design process activity diagram

Design relational schema

Domain
model
(DM)

State
machine
diagrams
(SMDs)

Compute
annotations

for DM

Allowed
annotations

Compute
annotations
for SMDs

Allowed
annotations

Label
the
DM

Label
the

SMDs

DM
labels

SMDs
labels

Compute
the

relational
schema

Schema
(CWM)

9/37

Introduction Our design process Advancement Expected contribution

The Domain Model (DM)

The main input of the process is a domain model
• It is the central model during IS development (here

represented by a UML class diagram)
• It is not an application’s object model

Input domain model example

10/37

Introduction Our design process Advancement Expected contribution

Behavioral State Machine Diagrams (SMDs)

Design relational schema

Domain
model
(DM)

State
machine
diagrams
(SMDs)

Compute
annotations

for DM

Allowed
annotations

Compute
annotations
for SMDs

Allowed
annotations

Label
the
DM

Label
the

SMDs

DM
labels

SMDs
labels

Compute
the

relational
schema

Schema
(CWM)

O
pt

io
na

l

11/37

Introduction Our design process Advancement Expected contribution

Behavioral State Machine Diagrams (SMDs)

They provide additional information on the life cycle of the DM
classes

State machine diagram example for the Training domain
class (very simple indeed)

Assigned

Scheduled

Defended

12/37

Introduction Our design process Advancement Expected contribution

Annotations on the DM

Design relational schema

Domain
model
(DM)

State
machine
diagrams
(SMDs)

Compute
annotations

for DM

Allowed
annotations

Compute
annotations
for SMDs

Allowed
annotations

Label
the
DM

Label
the

SMDs

DM
labels

SMDs
labels

Compute
the

relational
schema

Schema
(CWM)

Designer

Optional

13/37

Introduction Our design process Advancement Expected contribution

Annotations on the DM

Design relational schema

Domain
model
(DM)

State
machine
diagrams
(SMDs)

Compute
annotations

for DM

Allowed
annotations

Compute
annotations
for SMDs

Allowed
annotations

Label
the
DM

Label
the

SMDs

DM
labels

SMDs
labels

Compute
the

relational
schema

Schema
(CWM)

Designer
Optional

14/37

Introduction Our design process Advancement Expected contribution

Annotations on the DM

Relational unique constraints (keys) are essential constructs to
enforce data consistency. We propose to express "keys" on the
DM as UML Constraints, using ad-hoc stereotype: Identification
Constraints (IC)

The metamodel for Identification Constraints

15/37

Introduction Our design process Advancement Expected contribution

Supervision

We supervise the designer during Identification Constraints
construction

1. For each persistent class, the system computes a set of
allowed "ICComponents", i.e. components that may
compose an Identification Constraint for the class (the
computation takes generalizations and association
multiplicities in account)

2. The designer selects ICComponents from the computed
set

3. The system checks identification constraints validity

Several benefits
• The designer might discover unexpected ICComponents

(not only class attributes, but also roles)
• Quality of the resulting relational unique constraints

16/37

Introduction Our design process Advancement Expected contribution

Supervision

We supervise the designer during Identification Constraints
construction

1. For each persistent class, the system computes a set of
allowed "ICComponents", i.e. components that may
compose an Identification Constraint for the class (the
computation takes generalizations and association
multiplicities in account)

2. The designer selects ICComponents from the computed
set

3. The system checks identification constraints validity

Several benefits
• The designer might discover unexpected ICComponents

(not only class attributes, but also roles)
• Quality of the resulting relational unique constraints

17/37

Introduction Our design process Advancement Expected contribution

Supervision

Design relational schema

Domain
model
(DM)

State
machine
diagrams
(SMDs)

Compute
annotations

for DM

Allowed
annotations

Compute
annotations
for SMDs

Allowed
annotations

Label
the
DM

Label
the

SMDs

DM
labels

SMDs
labels

Compute
the

relational
schema

Schema
(CWM)

System

18/37

Introduction Our design process Advancement Expected contribution

Examples

The DM

For the Training class, the system determines that the following
identification constraint components may be used by the
designer

attributes: topic, start, end
roles: defence, trainee

19/37

Introduction Our design process Advancement Expected contribution

Examples

The DM

The DM with correct annotations added by the designer

20/37

Introduction Our design process Advancement Expected contribution

Annotations on the SMDs

Additional state constraints are useful to process, to ensure
further data consistency. We propose to allow the designer to
add state constraints on SMDs

Example of labels added by the designer on the SMD

Assigned

Scheduled

Defended

⇔

⇔

⇔

There is no link between Training and Defence
instances

There is a link between Training and Defence
instances

There is a link between Training and Defence
instances AND Defence is in "marked" state

21/37

Introduction Our design process Advancement Expected contribution

Crossing the barrier

Design relational schema

Domain
model
(DM)

State
machine
diagrams
(SMDs)

Compute
annotations

for DM

Allowed
annotations

Compute
annotations
for SMDs

Allowed
annotations

Label
the
DM

Label
the

SMDs

DM
labels

SMDs
labels

Compute
the

relational
schema

Schema
(CWM)

System

22/37

Introduction Our design process Advancement Expected contribution

Crossing the barrier

Based on the DM, the SMDs and their respective annotations,
a QVT transformation computes the relational schema.

Key features of the transformation
• An association is processed according to its multiplicities

to become Attribute(s) and Foreign Key(s) and optional
Table and Unique Constraint(s)

• A Generalization yields Foreign Key and Unique Constraint
• An Identification Constraint yields Unique Constraint
• A State Constraint yields TRIGGER and CHECK
• Names (classes, attributes, roles, associations) are

preserved everywhere it’s syntactically possible (SQL
syntax)

23/37

Introduction Our design process Advancement Expected contribution

Relational schema

Design relational schema

Domain
model
(DM)

State
machine
diagrams
(SMDs)

Compute
annotations

for DM

Allowed
annotations

Compute
annotations
for SMDs

Allowed
annotations

Label
the
DM

Label
the

SMDs

DM
labels

SMDs
labels

Compute
the

relational
schema

Schema
(CWM)

24/37

Introduction Our design process Advancement Expected contribution

Relational schema

The output relational schema is a logical schema
(ANSI/X3/SPARC/DBS-SG acceptation), there are no
optimization for efficiency: it is not a physical schema

Logical schema
• CREATE TABLE

• ADD CONSTRAINT

• TRIGGER
• CHECK

Physical schema
• CREATE TABLESPACE

• CREATE INDEX

• ...

25/37

Introduction Our design process Advancement Expected contribution

CWM (Common Warehouse Metamodel)

• a metamodel for datawarehouse metadata interchange
(not limited to relational)

• MOF compliant, fits in MDA
• used by existing CASE tools to generate SQL code

26/37

Introduction Our design process Advancement Expected contribution

The result

Output CWM relational model (exerpt). Very cumbersome. . .

27/37

Introduction Our design process Advancement Expected contribution

The result

SQL code of the output CWM relational model (exerpt)
CREATE TABLE Training (

ID_TRAI NUMBER NOT NULL, topic VARCHAR(30) NOT NULL,
start DATE NOT NULL, end DATE NOT NULL,
trainee NUMBER NOT NULL,

CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI),
CONSTRAINT K1_TRAI UNIQUE (trainee,start));

ALTER TABLE Training ADD CONSTRAINT FK_STUD FOREIGN_KEY (Trainee)
REFERENCES Student.ID_STUD;

28/37

Introduction Our design process Advancement Expected contribution

The result

Assigned

Scheduled

Defended

SQL code of the output CWM relational model (exerpt)
CREATE TABLE Training (

ID_TRAI NUMBER NOT NULL, topic VARCHAR(30) NOT NULL,
start DATE NOT NULL, end DATE NOT NULL,
trainee NUMBER NOT NULL,
state_trai VARCHAR(15) NOT NULL,

CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI),
CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI),
CONSTRAINT K1_TRAI UNIQUE (trainee,start),
CONSTRAINT chk_state_trai

CHECK (state_trai IN (’Assigned’, ’Scheduled’, ’Defended’)));
ALTER TABLE Training ADD CONSTRAINT FK_STUD FOREIGN_KEY (Trainee)

REFERENCES Student.ID_STUD;

Assigned Scheduled ⇔ There is a link between Training and Defence
instances

SQL code of the TRIGGER for the Scheduled state
create or replace trigger trig_det_training
before inserting or update on training
for each row
declare verif_exists_defence number;
begin
select count(*) into verif_exists_defence
from defence d where :new.id_trai = d.training;
if inserting
then...
elseif updating
then
if (:new.state_trai = ’Scheduled’
and :old.state_trai <> ’Assigned’)
then raise_application_error() ;
elseif (:new.state_trai = ’Scheduled’
and verif_exists_defence = 0)
then raise_application_error() ;
end if ; end if ; end ;

29/37

Introduction Our design process Advancement Expected contribution

The result

Assigned Scheduled ⇔ There is a link between Training and Defence
instances

SQL code of the TRIGGER for the Scheduled state
create or replace trigger trig_det_training
before inserting or update on training
for each row
declare verif_exists_defence number;
begin
select count(*) into verif_exists_defence
from defence d where :new.id_trai = d.training;
if inserting
then...
elseif updating
then
if (:new.state_trai = ’Scheduled’
and :old.state_trai <> ’Assigned’)
then raise_application_error() ;
elseif (:new.state_trai = ’Scheduled’
and verif_exists_defence = 0)
then raise_application_error() ;
end if ; end if ; end ;

30/37

Introduction Our design process Advancement Expected contribution

The result

Assigned Scheduled ⇔ There is a link between Training and Defence
instances

SQL code of the TRIGGER for the Scheduled state
create or replace trigger trig_det_training
before inserting or update on training
for each row
declare verif_exists_defence number;
begin
select count(*) into verif_exists_defence
from defence d where :new.id_trai = d.training;
if inserting
then...
elseif updating
then
if (:new.state_trai = ’Scheduled’
and :old.state_trai <> ’Assigned’)
then raise_application_error() ;
elseif (:new.state_trai = ’Scheduled’
and verif_exists_defence = 0)
then raise_application_error() ;
end if ; end if ; end ;

31/37

Introduction Our design process Advancement Expected contribution

A few examples

Associations

CREATE TABLE C1(
ID_C1NUMBER NOT NULL PRIMARY_KEY);

CREATE TABLE C2 (
c1 NUMBER NOT NULL UNIQUE

REFERENCES C1.ID_C1);

CREATE TABLE C1(
ID_C1NUMBER NOT NULL PRIMARY_KEY);

CREATE TABLE C2 (
c1 NUMBER NULL UNIQUE

REFERENCES C1.ID_C1);

32/37

Introduction Our design process Advancement Expected contribution

A few examples

Generalizations

A

B C

D

CREATE TABLE A(
ID_A NUMBER NOT NULL PRIMARY_KEY);

CREATE TABLE B (
ID_B NUMBER NOT NULL PRIMARY_KEY,
A NUMBER NOT NULL UNIQUE

REFERENCES A.ID_A);
CREATE TABLE C (

ID_C NUMBER NOT NULL PRIMARY_KEY,
A NUMBER NOT NULL UNIQUE

REFERENCES A.ID_A);
CREATE TABLE D (

B NUMBER NOT NULL UNIQUE
REFERENCES B.ID_B,

C NUMBER NOT NULL UNIQUE
REFERENCES C.ID_C);

33/37

Introduction Our design process Advancement Expected contribution

Implementations

• ATL experiment
• Several transformations (allowed annotation computing,

object models relational translation)
• About 25 mapping rules (depending on the way we

implement the process)

ICToUniqueConstraint ATL rule

• Python experiment
• ongoing CASE tool integration:

We are developing an Eclipse plugin, based on the UML2
Tools plugin which provides class diagram and state
machine diagram graphical editors

34/37

Introduction Our design process Advancement Expected contribution

Implementations

• ATL experiment
• Several transformations (allowed annotation computing,

object models relational translation)
• About 25 mapping rules (depending on the way we

implement the process)

• Python experiment

QVT (declarative) vs. imperative programming language

• QVT: straightforward to implement simple transformations

• Imperative: easier to control complex transformation and
interface with user events and GUI widgets

• ongoing CASE tool integration:
We are developing an Eclipse plugin, based on the UML2
Tools plugin which provides class diagram and state
machine diagram graphical editors

35/37

Introduction Our design process Advancement Expected contribution

Implementations

• ATL experiment
• Several transformations (allowed annotation computing,

object models relational translation)
• About 25 mapping rules (depending on the way we

implement the process)

• Python experiment
• ongoing CASE tool integration:

We are developing an Eclipse plugin, based on the UML2
Tools plugin which provides class diagram and state
machine diagram graphical editors

36/37

Introduction Our design process Advancement Expected contribution

Formal proof of the process output quality

Distance to normal forms
• close to Boyce-Codd normal form ?
• we don’t have functional dependencies at hand
• classical normalization does not take NULL into account

Validation
• multiple test-cases
• need for complete integration

37/37

Introduction Our design process Advancement Expected contribution

Conclusion

Expected contributions (to the MODELS community)
• Some other problem statements! (Intermodel references

handling...)
• A comparison of model transformation languages usability
• Teachings from the complete integration of MDE in a

design tool (userfriendliness, tooling...)

38/37

Introduction Our design process Advancement Expected contribution

Thank you

	Introduction
	What we are trying to do
	Problem statement

	Our design process
	Workflow overview
	Inputs
	Annotations
	Object to Relational transformation
	Output

	Advancement
	Implementations
	Ahead

	Expected contribution

