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Relational Schema Design

Automatic generation of a relational schema from a domain
model.

Key features
• Fully UML compliant
• User inputs are assisted, reduced to the minimum
• We aim at a non redundant relational schema, near to a

normal form (BCNF)

No other approaches has the same set of features.
• E/R diagrams

• separate notation
• no NULL values ([0..1] multiplicity)

• Design propositions1: no automation
• ORM tools ...

1Paul Dorsey, Martin Fowler, Susan D. Urban
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FAQ : How close are you from Hibernate and al...?

• We do not provide a "object/relational persistence and
query service" for Java objects.

• We provide a relational schema design tool, based on
domain object model

• We do take care of the final schema quality, i.e.
non-redundancy and consistency with the domain model

• The output schema may be used by several applications
(object-based or not)

Hibernate workflow
1. Program classes
2. Map classes to persistence

layer
3. Persist objects

Our workflow
1. Model the domain
2. Add constraints to models
3. Produce a relational

schema
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Problem statement 1: Tackle the impedance mismatch

Object Relational

Class

Association

Attribute

Role

Constraint

[0:1] multiplicity

Table

Foreign Key

(referential constraint)

Column

Unique constraints (key)

no NOT NULL constraint

internal identification
(OID)

identification by value

Generalization ? Various strategies
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Problem statement 2: Integrate MDE technologies into a design
tool

• Harness the infrastructure complexity (languages,
metamodels, xmi, development tools)

• Develop and debug the transformations
• Put it all together (models transformations execution,

additional functionalities, graphical interface)
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Design process activity diagram
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The Domain Model (DM)

The main input of the process is a domain model
• It is the central model during IS development (here

represented by a UML class diagram)
• It is not an application’s object model

Input domain model example
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Behavioral State Machine Diagrams (SMDs)
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Behavioral State Machine Diagrams (SMDs)

They provide additional information on the life cycle of the DM
classes

State machine diagram example for the Training domain
class (very simple indeed)

Assigned

Scheduled

Defended
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Annotations on the DM
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Annotations on the DM
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Annotations on the DM

Relational unique constraints (keys) are essential constructs to
enforce data consistency. We propose to express "keys" on the
DM as UML Constraints, using ad-hoc stereotype: Identification
Constraints (IC)

The metamodel for Identification Constraints
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Supervision

We supervise the designer during Identification Constraints
construction

1. For each persistent class, the system computes a set of
allowed "ICComponents", i.e. components that may
compose an Identification Constraint for the class (the
computation takes generalizations and association
multiplicities in account)

2. The designer selects ICComponents from the computed
set

3. The system checks identification constraints validity

Several benefits
• The designer might discover unexpected ICComponents

(not only class attributes, but also roles)
• Quality of the resulting relational unique constraints
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Examples

The DM

For the Training class, the system determines that the following
identification constraint components may be used by the
designer

attributes: topic, start, end
roles: defence, trainee
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Examples

The DM

The DM with correct annotations added by the designer
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Annotations on the SMDs

Additional state constraints are useful to process, to ensure
further data consistency. We propose to allow the designer to
add state constraints on SMDs

Example of labels added by the designer on the SMD

Assigned

Scheduled

Defended

⇔

⇔

⇔

There is no link between Training and Defence
instances

There is a link between Training and Defence
instances

There is a link between Training and Defence
instances AND Defence is in "marked" state
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Crossing the barrier
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Crossing the barrier

Based on the DM, the SMDs and their respective annotations,
a QVT transformation computes the relational schema.

Key features of the transformation
• An association is processed according to its multiplicities

to become Attribute(s) and Foreign Key(s) and optional
Table and Unique Constraint(s)

• A Generalization yields Foreign Key and Unique Constraint
• An Identification Constraint yields Unique Constraint
• A State Constraint yields TRIGGER and CHECK
• Names (classes, attributes, roles, associations) are

preserved everywhere it’s syntactically possible (SQL
syntax)
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Relational schema
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Relational schema

The output relational schema is a logical schema
(ANSI/X3/SPARC/DBS-SG acceptation), there are no
optimization for efficiency: it is not a physical schema

Logical schema
• CREATE TABLE

• ADD CONSTRAINT

• TRIGGER
• CHECK

Physical schema
• CREATE TABLESPACE

• CREATE INDEX

• ...
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CWM (Common Warehouse Metamodel)

• a metamodel for datawarehouse metadata interchange
(not limited to relational)

• MOF compliant, fits in MDA
• used by existing CASE tools to generate SQL code
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The result

Output CWM relational model (exerpt). Very cumbersome. . .
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The result

SQL code of the output CWM relational model (exerpt)
CREATE TABLE Training (

ID_TRAI NUMBER NOT NULL, topic VARCHAR(30) NOT NULL,
start DATE NOT NULL, end DATE NOT NULL,
trainee NUMBER NOT NULL,

CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI),
CONSTRAINT K1_TRAI UNIQUE (trainee,start));

ALTER TABLE Training ADD CONSTRAINT FK_STUD FOREIGN_KEY (Trainee)
REFERENCES Student.ID_STUD;



28/37

Introduction Our design process Advancement Expected contribution

The result

Assigned

Scheduled

Defended

SQL code of the output CWM relational model (exerpt)
CREATE TABLE Training (

ID_TRAI NUMBER NOT NULL, topic VARCHAR(30) NOT NULL,
start DATE NOT NULL, end DATE NOT NULL,
trainee NUMBER NOT NULL,
state_trai VARCHAR(15) NOT NULL,

CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI),
CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI),
CONSTRAINT K1_TRAI UNIQUE (trainee,start),
CONSTRAINT chk_state_trai

CHECK (state_trai IN (’Assigned’, ’Scheduled’, ’Defended’)));
ALTER TABLE Training ADD CONSTRAINT FK_STUD FOREIGN_KEY (Trainee)

REFERENCES Student.ID_STUD;

Assigned Scheduled ⇔ There is a link between Training and Defence
instances

SQL code of the TRIGGER for the Scheduled state
create or replace trigger trig_det_training
before inserting or update on training
for each row
declare verif_exists_defence number;
begin
select count(*) into verif_exists_defence
from defence d where :new.id_trai = d.training;
if inserting
then...
elseif updating
then
if ( :new.state_trai = ’Scheduled’
and :old.state_trai <> ’Assigned’)
then raise_application_error() ;
elseif ( :new.state_trai = ’Scheduled’
and verif_exists_defence = 0)
then raise_application_error() ;
end if ; end if ; end ;
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The result
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The result

Assigned Scheduled ⇔ There is a link between Training and Defence
instances

SQL code of the TRIGGER for the Scheduled state
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end if ; end if ; end ;
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A few examples

Associations

CREATE TABLE C1(
ID_C1NUMBER NOT NULL PRIMARY_KEY);

CREATE TABLE C2 (
c1 NUMBER NOT NULL UNIQUE

REFERENCES C1.ID_C1);

CREATE TABLE C1(
ID_C1NUMBER NOT NULL PRIMARY_KEY);

CREATE TABLE C2 (
c1 NUMBER NULL UNIQUE

REFERENCES C1.ID_C1);



32/37

Introduction Our design process Advancement Expected contribution

A few examples

Generalizations

A

B C

D

CREATE TABLE A(
ID_A NUMBER NOT NULL PRIMARY_KEY);

CREATE TABLE B (
ID_B NUMBER NOT NULL PRIMARY_KEY,
A NUMBER NOT NULL UNIQUE

REFERENCES A.ID_A);
CREATE TABLE C (

ID_C NUMBER NOT NULL PRIMARY_KEY,
A NUMBER NOT NULL UNIQUE

REFERENCES A.ID_A);
CREATE TABLE D (

B NUMBER NOT NULL UNIQUE
REFERENCES B.ID_B,

C NUMBER NOT NULL UNIQUE
REFERENCES C.ID_C);
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Implementations

• ATL experiment
• Several transformations (allowed annotation computing,

object models relational translation)
• About 25 mapping rules (depending on the way we

implement the process)

ICToUniqueConstraint ATL rule

• Python experiment
• ongoing CASE tool integration:

We are developing an Eclipse plugin, based on the UML2
Tools plugin which provides class diagram and state
machine diagram graphical editors
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Implementations

• ATL experiment
• Several transformations (allowed annotation computing,

object models relational translation)
• About 25 mapping rules (depending on the way we

implement the process)

• Python experiment

QVT (declarative) vs. imperative programming language

• QVT: straightforward to implement simple transformations

• Imperative: easier to control complex transformation and
interface with user events and GUI widgets

• ongoing CASE tool integration:
We are developing an Eclipse plugin, based on the UML2
Tools plugin which provides class diagram and state
machine diagram graphical editors
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Formal proof of the process output quality

Distance to normal forms
• close to Boyce-Codd normal form ?
• we don’t have functional dependencies at hand
• classical normalization does not take NULL into account

Validation
• multiple test-cases
• need for complete integration
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Conclusion

Expected contributions (to the MODELS community)
• Some other problem statements! (Intermodel references

handling...)
• A comparison of model transformation languages usability
• Teachings from the complete integration of MDE in a

design tool (userfriendliness, tooling...)
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Thank you
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