
HAL Id: hal-00441446
https://hal.science/hal-00441446

Submitted on 16 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing relational schema from an object model using
model transformations

Antoine Wiedemann

To cite this version:
Antoine Wiedemann. Designing relational schema from an object model using model transformations.
MoDELS 08, Oct 2008, Toulouse, France. �hal-00441446�

https://hal.science/hal-00441446
https://hal.archives-ouvertes.fr


Designing relational schema from an object model

using model transformations

Antoine Wiedemann1

awiede01@univ-lr.fr

SIDO, L3i, Université de La Rochelle

1 Introduction: Problem statement

The domain model [12, 8] hereafter referred to as DM is a central model during
information systems development. It serves to visualize real-world concepts as
opposed to software objects. We want to help the database designer to derive
from the DM a relational structure eventually made available to potentially
multiple applications.

But there is no direct mapping between concepts of object and relational
models, and as shown in table 1, there is a so-called �object-relational impedance
mismatch� [4]. For example the internal identi�cation of objects is very di�erent
from the identi�cation of tuples. A relational tuple is identi�ed by the value of a
subset of its attributes (table columns). Each of the subsets is a key, and is de�ned
by a unique constraint. There may be more than one key in a table. Integrity
constraints (unique -including primary key-, referential and check constraints)
are an important part of every quality relational schema, as they prevent storing
in its tables data that would be inconsistent with the domain model.

UML concepts Relational concepts

Class Table
Association

Generalization Foreign Key (referential constraint)
Attribute Column

Role
Constraint Key (unique constraint)

[0..1] multiplicity no not null constraint

Table 1. The object relational impedence mismatch

Previous approaches use E/R diagrams [5] as a design language to produce a
relational schema or SQL code. However, they do not handle [0..1] multiplicities
and do not generate SQL code with NULL values. Moreover today the UML is
widely accepted and used so we try to keep the database designer work in the
same formalism. Many patterns are de�ned in the literature to map UML to
relational concepts, but the transformation is not automated [18, 7]. Di�erent



CASE tools enable relational model generation from an UML diagram, but the
quality of the result is not satisfactory [11]: missing unique constraints, no way
to use role to express constraints. Besides relational database design, some pat-
terns consider the mapping between object and relational concepts [1]. Some are
implemented in various Object Relational Mapping (ORM) tools that provide
a persistence layer to applications objects and hide the underlying database ar-
chitecture (Hibernate, JDO, ActiveRecord1, . . . ). Constraints checking is then
mainly left to the applications while the RDBMS capabilities are under-used. So
mapping Java objects to relational tables and automatically generating queries
is not the problem we try to solve. We do not provide an ORM persistence layer
that would hide the RDBMS and we do not automatically generate queries [13].

2 Our proposal

We propose an automated relational database design method starting from a
DM. This DM is assumed correct and we do not consider its validation. We
provide speci�c annotations enabling the designer to express identi�cation con-
straints (IC) on DM objects. An object IC may be composed of attributes and/or
roles. Each IC is bound to become a unique constraint in the relational schema.
We help the designer during the DM annotation phase, by computing sets of al-
lowed IC components. From the annotated DM we derive a relational model with
integrity constraints. We believe that the targeted relational model avoids re-
dundancy although classical normalization theory [6] doesn't apply, since it does
not take null values into account. Classical normalization imposes classes merg-
ing in case of 1-1 association. To respect the designer vocabulary more closely,
we sometimes step back from these principles. The relational model produced
by our process can be viewed as a multi-purpose model from which relational
�artefacts� (UML 2.0) can be derived (SQL, physical schema . . . ).

2.1 Implementation using MDE

To implement our process, we use model driven engineering (MDE) and more
precisely the MDA[16] approach. Working in the MDA environment, we nat-
urally use CWM metamodel [15] to instantiate our output relational model,
which makes the process robust to SQL variants. CWM is an OMG speci�cation
for modeling metadata of a datawarehousing environment, including relational
constructs. To be fully OMG-compatible, until now we have used a QVT-like
transformation model language [17, 3].

Figure 1 is a short example of a sample input DM. In this domain, students
are assigned trainings which are eventually defended. A student may be assigned
one or more trainings, while a training can only be performed by one student. A
defence always belongs to a single training whereas a training may or may not
have its defence already accomplished.

1 http://www.hibernate.org, http://java.sun.com/jdo/,
http://wiki.rubyonrails.org/rails/pages/ActiveRecord



Fig. 1. Sample DM

Out of this DM the designer is �rst asked to tag persistent classes. The
selected classes are stereotyped �persistent� and are represented as Persis-
tentClass instances of our UML extension presented in Figure 2. Given the new
persistent tagged DM and its multiplicities, an automatic QVT transformation
selects for every persistent class the set of possible IC components as Attribute
or Role instances. These results are added to the DM as Ai instances of the

Fig. 2. Extended UML

AllowedComponents metaclass and links between Ai and selected ICComponent
instances. Automatically restricted sets of components are next proposed to the
designer, thus ensured to build correct identi�cation constraints as IC instances.
Again, these constraints are represented using a stereotype with tagged values
that encode the designer construction. In Figure 3 example, ICs include both
attributes (no, start) and roles (trainee, training2). We do not use OCL: its great
expressiveness is not needed here, and we try to keep annotations as light and
user-friendly as possible.

Based on this last input, another QVT transformation fully automates the
critical mutation of the annotated DM into its CWM-compliant relational form,
hence crossing the object/relational barrier. Instead of the CWM model, Fig-
ure 4 shows the corresponding SQL script. There are no di�culties to match
CWM constructs and SQL keywords, and existing CASE tools [11] successfully
implement this translation. The SQL code not only creates tables but also adds

2 The class name of Training is used as a role in the Training/Defence association



Fig. 3. DM with designer annotations

constraints to the schema. Italicized items were derived from the designer anno-
tations, and could not have been inferred otherwise.

CREATE TABLE Training (

ID_TRAI NUMBER NOT NULL, topic VARCHAR(30) NOT NULL,

start DATE NOT NULL, end DATE NOT NULL,

trainee NUMBER NOT NULL,

CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI ),

CONSTRAINT K1_TRAI UNIQUE (trainee,start) );

ALTER TABLE Training

ADD CONSTRAINT FK_STUD FOREIGN_KEY (Trainee )

REFERENCES Student.ID_STUD ;

Fig. 4. SQL of the output relational model

2.2 Problems encountered so far

Using the QVT approach, we build transformations that take a whole model as
input. This makes the input model refactoring costly, since even a small change
on it forces to recompute everything from the start. Perhaps we should split our
transformations into smaller ones.

Another challenge we face is the de�nition of a mechanism suited to prac-
tically add annotations to our DM. At the time of writing we do not have a
fully integrated CASE tool that would take care of the translation of graphical
symbols (stereotypes) into metaclasses instances. To support the formal proof
that our relational schema avoids redundancy, we also try to generate on the �y
traceability links between input and output models.



⇔ There is no link between Training andDefence instances

⇔ There is a link between Training and Defence instances

⇔ There is a link between Training and Defence instances
AND Defence is in �marked� state

Fig. 5. Sample state machine diagram of the Training class and additional designer
annotations

2.3 Taking the dynamic model into account

En plus de la partie statique du modèle du domaine, nous cherchons à traiter en
même temps les informations que nous donne le concepteur sur la dynamique des
classes, exprimée par des diagrammes états/transition (DET). De cette manière,
en récupérant des contraintes supplémentaires, nous voulons obtenir un schéma
relationnel encore plus �dèle au modèle du domaine.

More than a static structural model [2, 14], we strive to process at the same
time the information of behavioral state machines diagram (SMD) with concur-
rent states. This way, gathering more constraints, we expect to get relational
models even more consistent with the domain. Figure 5 shows an example SMD
for the Training class of the DM depicted in Figure 1. The processing of this
SMD leads to the creation of a speci�c �state� attribute in the corresponding
Training table, whose value is either Assigned, Scheduled or Defended. In the
same way as we did on the DM, we want to assist the designer during another
annotation step on the SMD. An example of these annotations are shown on
the right hand side of Figure 5. These annotations are more complex to imple-
ment and control than the ones on the DM, since they combine several models,
namely the current SMD, the DM, and potentially other SMD. Italicized words
in Figure 5 refers to these foreign elements. We add CHECK and TRIGGERS
to the relational model according to these inputs. Working with two or more
models at the same time is diving into model composition [9].

3 Contribution

The whole process tends to ensure the quality of the resulting schema with the
same purpose as classical normalization [6], i.e. minimizing redundancy, which is
very di�erent from ORM techniques. We decide to retain - within the database
schema - the meaningful names from the domain terminology, especially by
avoiding some inopportune table fusions or creations. We provide support to
the designer through control and supervision during the annotation process on
DM and SMDs, enabling further automation of the design process. Contrary to
E/R-like methods, we handle 0..1 multiplicities in the DM and accept NULL
constraints in the relational model.



With respect to MDE implementation, we extend UML by de�ning appro-
priate specializations of some of its metaclasses. Therefore we take bene�t of the
stereotypes extension mechanism, adopt their standard notation and make the
various user-annotation steps fully UML-compliant. As outlined in Section 2.2,
our work raises various questions about MDA integration. Beyond the simple
MDA transformation pattern of a single model into another, we also have to
master more complex model processing, such as model and inter-model anno-
tation and also model composition. We expect to bring new contributions by
coping with these challenges.

References


