Designing relational schema from an object model using model transformations Antoine Wiedemann 1 awiede01@univ-lr.fr SIDO, L3i, Université de La Rochelle

1 Introduction: Problem statement

The domain model [12,8] hereafter referred to as DM is a central model during information systems development. It serves to visualize real-world concepts as opposed to software objects. We want to help the database designer to derive from the DM a relational structure eventually made available to potentially multiple applications.

But there is no direct mapping between concepts of object and relational models, and as shown in table 1, there is a so-called object-relational impedance mismatch [4]. For example the internal identication of objects is very dierent from the identication of tuples. A relational tuple is identied by the value of a subset of its attributes (table columns). Each of the subsets is a key, and is dened by a unique constraint. There may be more than one key in a table. Integrity constraints (unique -including primary key-, referential and check constraints)

are an important part of every quality relational schema, as they prevent storing in its tables data that would be inconsistent with the domain model.

UML concepts Relational concepts

Class

Our proposal

We propose an automated relational database design method starting from a DM. This DM is assumed correct and we do not consider its validation. We provide specic annotations enabling the designer to express identication constraints (IC) on DM objects. An object IC may be composed of attributes and/or roles. Each IC is bound to become a unique constraint in the relational schema.

We help the designer during the DM annotation phase, by computing sets of allowed IC components. From the annotated DM we derive a relational model with integrity constraints. We believe that the targeted relational model avoids redundancy although classical normalization theory [6] doesn't apply, since it does not take null values into account. Classical normalization imposes classes merging in case of 1-1 association. To respect the designer vocabulary more closely, we sometimes step back from these principles. The relational model produced by our process can be viewed as a multi-purpose model from which relational artefacts (UML 2.0) can be derived (SQL, physical schema . . .). CREATE Using the QVT approach, we build transformations that take a whole model as input. This makes the input model refactoring costly, since even a small change on it forces to recompute everything from the start. Perhaps we should split our transformations into smaller ones.

Implementation using MDE

Another challenge we face is the denition of a mechanism suited to practically add annotations to our DM. At the time of writing we do not have a fully integrated CASE tool that would take care of the translation of graphical symbols (stereotypes) into metaclasses instances. To support the formal proof that our relational schema avoids redundancy, we also try to generate on the y traceability links between input and output models.

Contribution

The whole process tends to ensure the quality of the resulting schema with the same purpose as classical normalization [6], i.e. minimizing redundancy, which is very dierent from ORM techniques. We decide to retain -within the database schema -the meaningful names from the domain terminology, especially by avoiding some inopportune table fusions or creations. We provide support to the designer through control and supervision during the annotation process on DM and SMDs, enabling further automation of the design process. Contrary to E/R-like methods, we handle 0..1 multiplicities in the DM and accept NULL constraints in the relational model.

With respect to MDE implementation, we extend UML by dening appropriate specializations of some of its metaclasses. Therefore we take benet of the stereotypes extension mechanism, adopt their standard notation and make the various user-annotation steps fully UML-compliant. As outlined in Section 2.2, our work raises various questions about MDA integration. Beyond the simple MDA transformation pattern of a single model into another, we also have to master more complex model processing, such as model and inter-model annotation and also model composition. We expect to bring new contributions by coping with these challenges.

References

Fig. 1 .

 1 Fig. 1. Sample DM

⇔

 Fig. 5. Sample state machine diagram of the Training class and additional designer annotations

Table Association

 Association

	CASE tools enable relational model generation from an UML diagram, but the
	quality of the result is not satisfactory [11]: missing unique constraints, no way
	to use role to express constraints. Besides relational database design, some pat-
	terns consider the mapping between object and relational concepts [1]. Some are
	implemented in various Object Relational Mapping (ORM) tools that provide
	a persistence layer to applications objects and hide the underlying database ar-
	chitecture (Hibernate, JDO, ActiveRecord 1 , . . .). Constraints checking is then
	mainly left to the applications while the RDBMS capabilities are under-used. So
	mapping Java objects to relational tables and automatically generating queries
	is not the problem we try to solve. We do not provide an ORM persistence layer
	that would hide the RDBMS and we do not automatically generate queries [13].
	Generalization	Foreign Key (referential constraint)
	Attribute	Column
	Role	
	Constraint	Key (unique constraint)
	[0..1] multiplicity	no not null constraint
	Table 1. The object relational impedence mismatch
	Previous approaches use E/R diagrams [5] as a design language to produce a
	relational schema or SQL code. However, they do not handle [0..1] multiplicities
	and do not generate SQL code with NULL values. Moreover today the UML is
	widely accepted and used so we try to keep the database designer work in the
	same formalism. Many patterns are dened in the literature to map UML to
	relational concepts, but the transformation is not automated [18, 7]. Dierent

TABLE Training

 Training

				(
		ID_TRAI NUMBER NOT NULL, topic VARCHAR(30) NOT NULL,
		start	DATE	NOT NULL, end	DATE	NOT NULL,
		trainee NUMBER NOT NULL,	
		CONSTRAINT PK_TRAI PRIMARY_KEY (ID_TRAI),
		CONSTRAINT K1_TRAI UNIQUE (trainee,start));
		ALTER TABLE Training		
		ADD CONSTRAINT FK_STUD FOREIGN_KEY (Trainee)
		REFERENCES Student.ID_STUD ;	
			Fig. 4. SQL of the output relational model
	2.2	Problems encountered so far