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Abstract— In many classification problems, overlapping classes
and outliers can significantly decrease a classifier performance. In
this paper, we introduce the possibility of a given classifier to reject
patterns either for ambiguity or for distance. From a set of typicality
degrees for a pattern to be classified, we propose to use fuzzy im-
plications to quantify the similarity of the degrees. A class-selective
scheme based on this new family is presented, and experimental re-
sults showing the efficiency of the proposed algorithm are given.
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1 Introduction

Usual classification of objects, or patterns, consists in assign-
ing incoming samples to one class belonging to a set of known
ones. Since classes may overlap in the feature space and all of
them do not appear during the learning step of most real classi-
fication problems, some samples may have to be not classified
but rejected. In practice, two situations can lead to rejection,
either the incoming sample could belong to unknown class(es)
(distance rejection) or it should be assigned to several classes
(ambiguity rejection) [1]. In this paper, we focus our atten-
tion on this latter situation. Initially introduced by Chow [2],
it consists in rejecting the most unreliable patterns that have a
low posterior probability, or more generally a low membership
degree value, to its closest class. Such a reject classification
rule is optimal if posterior probabilities are estimated without
error, unfortunately this is not the case in practice.
We investigate some new measures that aim at quantifying to
what extent such a pattern is ambiguous from its membership
degrees, or more generally from its multi-class classifier soft
outputs, using fuzzy implications. These measures assess the
relationships between membership values with various com-
bination of triangular norm operators (t-norms for short, see
[3] for an overview).
The remainder of this paper is organized as follows. In sec-
tion 2, we start by presenting distance-based class models that
we will use in the sequel, and then discuss about standard ap-
proaches to pattern rejection. Next, we give a brief recall on
some basic definitions of triangular norms and fuzzy residual
implications, as well as some new parametrical implications
(section 3). Section 4 is devoted to the proposal of using im-
plications as ambiguity measures. In section 5, an experimen-
tal evaluation and comparisons to well known class-selective
pattern recognition schemes are provided. We finally conclude
and give some perspectives in section 6.

2 Classification with reject options
2.1 Classification

Let x be a pattern described by a p (real) features and let
Ω = {ω1, · · · , ωc} be a set of classes of cardinality c. The
objective of classification is to assign any pattern x ∈ Rp to
one of the c classes of Ω. It generally consists of two steps L
(labeling) and H (hardening):

• L : x 7→ u(x) = t(u1(x), . . . , uc(x)) ∈ L•c

• H : u(x) 7→ h(x) = t(h1(x), . . . , hc(x)) ∈ Lhc.

where Lhc = {h(x) ∈ Lfc : hi(x) ∈ {0, 1}} and L•c de-
pends on the mathematical framework the classifier relies on,
e.g. Lpc = [0, 1]c for degrees of typicality or Lfc = {u(x) ∈
Lpc :

∑c
i=1 ui(x) = 1} for posterior probabilities and mem-

bership degrees. Posterior probabilities can be obtained either
from (known) class-conditional densities whose parameters
are estimated using a learning set X of patterns, i.e. patterns
for which the assignment is known, or from class-density esti-
mates using the classes of their neighbors in X . However, for
high dimensional feature spaces, many patterns are required
to perform good class-density estimates (curse of dimension-
ality). When the learning set is small, distances to prototypes
of each class are used, e.g.

d2(x,vi) = (x− vi)tΣ−1
i (x− vi) (1)

where vi and Σi are the mean vector and covariance matrix
of the class ωi estimated from X . In order to have a common
scaling, label values are often obtained in the unit interval, e.g.

ui(x) =
αi

αi + d2(x,vi)
(2)

where αi are user-defined parameters.
We focus on the H−step because it is in charge of the clas-
sification. This step often reduces to the class of maximum
label value selection, resulting in an exclusive classification
rule which is not efficient in practice because it supposes
that Ω is exhaustively defined (closed-world assumption) and
classes do not overlap (separability assumption). Such untrue
assumptions can lead to very undesired decisions. In many
real applications, it is more convenient to with-hold making
a decision than making a wrong assignment, e.g. in medical
diagnosis where a false negative outcome can be much more
costly than a false positive. Reject options have been proposed
to overcome these difficulties and to reduce misclassification
risk. The first one, called distance rejection [1], is dedicated



to outlying patterns. If x is far from all the class prototypes,
this option allows to assign it to no class. The second one,
called ambiguity rejection, allows to assign inlying patterns to
several or all classes [2, 4]. If x is close to two or more class
prototypes, it is associated with the corresponding classes. In-
cluding reject options leads to partition the feature space into
as many regions as subsets of classes, i.e. at most 2c ones, to
which a pattern can be assigned. Formally, it consists in modi-
fyingH such that h(x) can take values in the set of vertices of
the unit hypercubeLchc = {0, 1}c instead of the exclusive sub-
set Lhc ⊂ Lchc. Different strategies can be adopted to handle
these options at hand, but they all lead to a three types decision
system: distance rejection when h(x) = t(0, . . . , 0) = 0, ex-
clusive classification when h(x) ∈ Lhc, ambiguity rejection
when h(x) ∈ Lchc\{Lhc∪0}. The resulting classification rule
is then a matter of selecting the appropriate number of classes
varying from zero (distance rejection) to c (total ambiguity re-
jection).

2.2 Usual reject schemes

Since the work by Chow [2], many rejection schemes have
been proposed. In its general form, a class-selective procedure
is defined by

n?(x, t) = min
k∈[1,c]

{k : Ak(x) ≤ t} (3)

where Ak is a given ambiguity measure on membership de-
grees, n?(x, t) is the number of selected classes for the pattern
x to be classified, and t is a user-defined threshold which can
be class dependent (e.g. tk). This threshold can be set con-
ditionally to cost functions relative to error, reject and correct
classification rates. Propositions from the literature mainly
consist in new definitions of ambiguity measures Ak. For
Chow,Ak was one minus the maximum value of the member-
ship degrees. In the paper by Ha [4], the second highest value
was tested to decide wether one or several classes are selected.
Since this scheme is leading to unnatural decisions, Horiuchi
[5] proposed a new measure defined by the difference of the
membership degrees which is actually a disambiguity mea-
sure. In [6], Frélicot proposed to use the ratio of membership
degrees. As usual, we use the convention that if Ak(x) > t
for all k, then we set n?(x, t) = c. Table 1 summarizes the
existing ambiguity measures used for pattern rejection, where
the membership degrees are assumed to be sorted in decreas-
ing order for writing convenience, i.e. u1(x) ≥ · · · ≥ uc(x).

Table 1: Existing ambiguity measures related to Eq. (3).
Scheme Ambiguity Measure Ak(x)

Chow [2] 1− u1(x)
Ha [4] uk+1(x)

Horiuchi [5] 1− (uk(x)− uk+1(x))
Frélicot [6] uk+1(x)/uk(x)

3 Fuzzy residual implications
3.1 Basic definitions

Let us recall basic definitions of fuzzy operators that will be
used to combine the values of interest, i.e. the pattern class-
degrees of typicality. Depending on properties, aggregation

functions can be classified into several categories: conjunc-
tive, disjunctive, compensatory, and so on. We restrict on con-
junctive and disjunctive functions. By definition, the output
of a conjunctive operator is lower or equal than the minimum
value, whereas the output of a disjunctive operator is greater
or equal than the maximum value. Beyond these operators,
we choose to use the triangular norms because of their ability
to generalize the logical AND and OR crisp operators to fuzzy
sets, see [3] for a survey. Briefly, a triangular norm (or t-norm)
is a binary operation on the unit interval > : [0, 1]2 → [0, 1]
which is commutative, associative, non decreasing and has 1
for neutral element. Thus, a t-norm > is conjunctive and the
minimum operator ∧ is the greatest t-norm. Alternatively, a
triangular conorm (or t-conorm) is the dual binary operation
⊥ : [0, 1]2 → [0, 1] having the same properties except that its
neutral element is 0. Thus, a t-conorm ⊥ is disjunctive and
the maximum operator ∨ is the lowest t-conorm. Typical ex-
amples of dual couples (t-norm, t-conorm) that will be used in
the sequel are given in Table 2.

Table 2: Examples of dual couples, including parametrical
ones.

Standard
a>Sb = min(a, b)
a⊥Sb = max(a, b)

Algebraic
a>Ab = a b

a⊥Ab = a + b− a b

Łukasiewicz
a>Lb = max(a + b− 1, 0)

a⊥Lb = min(a + b, 1)

Hamacher
a>Hγ b = a b

γ+(1−γ) (a+b−a b)

a⊥Hγ b = a+b+(γ−2) a b
1+(γ−1) a b

Dombi
a>Dγ b =

(
1 +

((
1−a
a

)γ
+
(

1−b
b

)γ)1/γ)−1

a⊥Dγ b = 1−
(

1 +
((

a
1−a

)γ
+
(

b
1−b

)γ)1/γ
)−1

A fuzzy residual implication, denoted R-implication (or→) is
defined by:

I(a, b) = sup
t
{t ∈ [0, 1] : >(a, t) ≤ b} (4)

Note that if > is a left-continuous t-norm, the supremum
operation can be substituted by maximum. If we use addi-
tive generating functions, i.e. a strictly decreasing function
f : [0, 1]→ [0,+∞] with f(1) = 0, and admitting an inverse
(or pseudo-inverse) function f−1, Eq. (4) can be written as

I(a, b) = max(f−1(f(b)− f(a)), 0) (5)

because f is strictly monotonic. We generally speak about an
implication function if I is non-increasing in the first variable,
non-decreasing in the second variable and I(0, 0) = I(1, 1) =
1, and I(1, 0) = 0, see [7] for a large survey on fuzzy impli-
cation functions. Within theses implications, the well-known
Gödel and Goguen ones are respectively given by

I(a, b) =
{

1 if b ≥ a
b if b < a

(6)

and

I(a, b) =
{

1 if b ≥ a
b
a if b ≤ a (7)



which are obtained with the minimum and algebraic (or prod-
uct) triangular norms, respectively. In the sequel, we will as-
sume for writing convenience that the fuzzy values are sorted
in decreasing order, e.g. a ≥ b.

3.2 Parametrical implications

Proposition 1. Let (>Hγ ), γ ∈ [0,+∞[, be the family of
Hamacher t-norms. The residual Hamacher implication is
given by

IHγ (a, b) =

{
1 if b ≥ a

b (γ+a−γa)
b (γ+a−γa)+a−b if b ≤ a (8)

Proof. By definition of R-implications (4), we can write
IHγ (a, b) = sup

t
{t ∈ [0, 1] : >Hγ (a, t) ≤ b}. We also have

IHγ (a, b) = max
t
{t ∈ [0, 1] : >Hγ (a, t) ≤ b} because >Hγ

is a left-continuous t-norm. Then, solving

a t

γ + (1− γ) (a+ t− a t)
≤ b (9)

gives

t ≤ b (γ + a− γa)
b (γ + a− γa) + a− b

. (10)

Since a ≥ b, it is easy to show that the right part of Eq. (10)
is in [0, 1], hence we obtain Eq.(8).

Proposition 2. Let (>Dγ ), γ ∈]0,+∞[, be the family of
Dombi t-norms. The residual Dombi implication is given by

IDγ (a, b) =


1 if b ≥ a(

1 +

((
1−b
b

)γ
−
(

1−a
a

)γ)1/γ
)−1

if b < a

(11)

Proof. IDγ (a, b) = sup
t
{t ∈ [0, 1] : >Hγ (a, t) ≤ b} by

(4). Since >Dγ is a left-continuous t-norm, we can write
IDγ (a, b) = max

t
{t ∈ [0, 1] : >Dγ (a, t) ≤ b}. Then, solving

(
1 +

((
1− a
a

)γ
+
(

1− t
t

)γ)1/γ
)−1

≤ b (12)

gives

t ≤

(
1 +

((1− b
b

)γ
−
(1− a

a

)γ)1/γ
)−1

. (13)

Since, a ≥ b, it is easy to show that((
1−b
b

)γ
−
(

1−a
a

)γ)1/γ

≥ 0, hence the right part of Eq.

(13) is in [0, 1] and (11) is obtained.

Note that R-implications are mostly used in fuzzy inference
systems, see [8] for a large overview on the use of parametrical
R-implications in fuzzy rule based systems.

4 Some parametrical measures of ambiguity

In this section, the concept of similarity measure and its re-
lationship with ambiguity measures are described. Then we
propose to use fuzzy parametrical implications as new fami-
lies of ambiguity measures to be used for pattern classification
with reject options. The resulting class-selection algorithm
(H-step) is presented and we finally discuss the choice of the
parameter for parametrical implications with the help of nu-
merical examples.

4.1 Proposition and properties

A similarity measure S generally satisfies the following prop-
erties:

(P1) S(a, b) = S(b, a), (symmetry)

(P2) S(a, a) ≥ S(a, b), (minimality)

(P3) S(a, b) = 1⇔ a = b, (identity)

However, the symmetry property (P1) is still subject to exper-
imental investigation: if S(a, b) is the answer to the question
how is a similar to b?, then, when making comparisons, sub-
jects focus more on the feature a than on b. This corresponds
to the notion of saliency of a and b [9]: if b is more salient
than a, then a is more similar to b than vice versa, which is
experimentally confirmed. Property (P2) is also open because
it can be violated experimentally, see [9] for details.
There are several ways to deal with the comparison of fuzzy
values, or fuzzy quantities. The first one is based on a broad
class of measures of equality based on a distance measure
which is specified for membership functions of fuzzy sets.
This approach takes its roots from studies on how to measure
the distance between two real functions and do not refer to
any specific interpretation. The general form of a Minkowski
r-metric is usually taken and leads to well known distance
functions (Hamming, Euclidean, Chebyshev). A second way
to compare fuzzy values comes from some basic set-theoretic
considerations where union, intersection and complement are
defined for fuzzy sets. Cardinal and possibility based mea-
sures belong to this category. In this paper, we focus on the
third way to deal with fuzzy values comparison: the logical
framework. Accordingly to [10], for a certain universe of dis-
course D, the degree of equality of two fuzzy elements a and
b can be defined by implications as follows:

(a ≡ b) =
1
2
(
(a→ b)∧(b→ a)+(ā→ b̄)∧(b̄→ ā)

)
(14)

where ∧ stands for minimum,→ is an implication and ā is the
strict negation ā = 1− a.
Since 1 is the neutral element of t-norms, applying Eq. (4)
with a ≥ b gives

(a ≡ b) =
1
2
(
(a→ b) + (b̄→ ā)

)
. (15)

A convenient way to define an ambiguity measure is to quan-
tify to which extent two fuzzy membership degrees are sim-
ilar, so that it is closely related to the problem of matching
fuzzy quantities, or fuzzy sets similarity. So we propose to
use fuzzy R-implications as generalized ambiguity measures.



Given a set of c truth values assumed to be sorted in decreas-
ing order, i.e. u1(x) ≥ · · · ≥ uc(x), with no loss of gen-
erality, let us have two predicates (x is ωi), with the truth
value ui(x), and (x is ωk), with the truth value uk(x). The
truth value of the implication if the pattern x is ωi, then the
pattern x is also ωj , ∀j varying from i + 1 to k is an ambi-
guity measure given by I(ui(x), uk(x)). By convention, we
assume that the assignment of x to ωi is more probable than
the assignment of x to ωk when using this implication because
ui(x) ≥ uk(x) and obviously we have I(ui(x), ui+1(x)) ≥
I(ui(x), uk>i+1(x)).

Proposition 3. Given t ∈ [0, 1], the optimum cardinality of
the generalized class-selective rejection rule is given by

n?(x, t) = min
k∈[1,c]

{
k : I

(
uk(x), uk+1(x)

)
≤ t
}

(16)

with u1(x) ≥ · · · ≥ uc(x), and the convention uc+1(x) = 0.

Since I(a, 0) = 0 if a 6= 0, c classes will be selected if none
were previously selected.

Property 1. If we use the Standard triangular norm min, we
obtain the Ha class-selective rejection scheme [4].

Property 2. If we use the Łukasiewicz triangular norm, we
obtain the Horiuchi class-selective rejection scheme [5].

Property 3. If we use the Algebraic triangular norm, we ob-
tain the Frélicot class-selective rejection scheme [6].

Proofs are straightforward and will be given in a longer
forthcoming paper. Note that modifying Eq.(16) such as

n?(x, t) = min
k∈[0,c]

{
k : I

(
uk(x), uk+1(x)

)
≤ t
}

(17)

with the convention u0(x) = 1 allows to select none of the
classes, i.e. to proceed to distance rejection, since I(1, a) = a
whatever the triangular norm.
The resulting generalized pattern classification rule with reject
options (H−step) is presented in Algorithm 1. It can be used
to compare various schemes, depending on the choice of the
triangular norm.

Algorithm 1: H−step classification algorithm.
Data: a vector of soft class-labels u(x) ∈ Lpc and a

reject threshold t
Result: a vector of class-selective assignments

h(x) ∈ Lchc
begin

set h(x) to 0
find n?(x, t) − Eq.(16) or Eq.(17)
foreach j = 1 : n?(x, t)
in decreasing order of uj(x)′s do

set hj(x) = 1
end

end

4.2 Discussion and examples

One of the main difficulties when using t-norms is to choose
the dual couple and if needed to set the parameter value. Let

us study how the choice of γ for Hamacher and Dombi impli-
cations modifies the resulting implication strength.
• Hamacher: increasing the value of γ will make two fuzzy
values more similar because IHγ (a, b) = ab/(a − b + ab) if
γ = 0 while lim

γ→+∞
IHγ (a, b) = 1 whatever (a, b) ∈ [0, 1]2.

Indeed, IHγ is non-decreasing with γ since

∂IHγ
∂γ

=
(b− ab)(a− b)

(b(γ + a− γa) + a− b)2
≥ 0.

The influence of γ is much more significant for low values of
a and b than for high ones because b(γ + a − γa) appears to
be of order b a (respectively b (γ + a)) for high (respectively
low) values of a and b. It follows that if γ1 >> γ2, we have
γ1
γ1+ε

>> γ2
γ2+ε

, so that large values of γ associated to low
values of (a, b) will result in a high value of IHγ , see Table 3
for examples.

Table 3: Hamacher implications examples for a = 0.9,
b = 0.8, c = 0.1 and d = 0.05.

γ 0 2 10
IHγ (a, b) 0.87 0.89 0.93
IHγ (a, c) 0.10 0.12 0.19
IHγ (c, d) 0.09 0.65 0.90

• Dombi: decreasing the value of γ will make two fuzzy
values more similar because lim

γ→+∞
IDγ (a, b) = b while

lim
γ→0

IDγ (a, b) = 1 whatever (a, b) ∈ [0, 1]2. Analogously

to Hamacher family, IDγ is non-increasing with γ since

∂IDγ
∂γ

≤ 0.

Thus, decreasing γ for the Dombi family has the same impact
as increasing γ for the Hamacher family, so that we expect the
opposite tendency, see Table 4 for examples. The appropriate
tuning of γ can be achieved using a gradient procedure, as in
[11].

Table 4: Dombi implications examples for a = 0.9, b = 0.8,
c = 0.1 and d = 0.05.

γ 0.5 2 10
IDγ (a, b) 0.97 0.81 0.80
IDγ (a, c) 0.12 0.10 0.10
IDγ (c, d) 0.35 0.06 0.05

The simple graphical example shown in Fig.1 illustrates how
the different implications behave. The top-plot shows a one-
dimensional dataset composed of two classes (� and ×) de-
scribed by a distance-based model (Eqs.(1-2)) with αi = 1
(∀i = 1, c). In the middle, implication truth values for the
standard, algebraic, and Łukasiewicz triangular norms, corre-
sponding to Ha, Frélicot and Horiuchi class-selective schemes
respectively, as well as Chow’s scheme are shown. Truth val-
ues when using parametrical implications are shown in the
bottom-plot. Observing the data points in the top-plot allows
to obtain the bounds of intervals of x values where the classes
do not overlap, therefore for which no misclassification should
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Figure 1: Original outputs using Eqs.(1-2) for two classes with
normal distributions (top), implication truth values with usual
triangular norms (middle) and implication truth values with
Hamacher and Dombi families (bottom).

happen, here xlow ≈ 0.8 and xup ≈ 1.9. Then, the corre-
sponding u1(xlow) and u2(xup) ordinate values can be used
to set the classification threshold t. Then, referring to mea-
sures of ambiguity in the middle - and bottom - plots, the be-
haviour of the different schemes can be analyzed. In such a
situation, Chow’s and Horiuchi’s (Łukasiewicz implication)
schemes would lead to reject too many points in low density
areas, while other schemes do not show these drawbacks. On
the other hand, Ha’s scheme (standard implication) would not
allow to reject simultaneously highly ambiguous and outlying
patterns, whereas schemes based on algebraic or parametrical
implications do (provided an appropriate value for the param-
eter), so a better classification performance can be expected.
One can also see in the bottom-plot that tuning the parameter
allows to reject patterns for ambiguity as well as for distance
(a higher value of γ for the Hamacher family and a lower value
for the Dombi family) as pointed out in the discussion.

5 Experimental results
In this section, we report experiments carried out on both arti-
ficial and real benchmark datasets for which it is beneficial to
introduce the ambiguity reject option because the classes over-
lap in the feature space. The proposed class-selective rejection
scheme is compared to the usual rejection schemes presented
in section 2. For additional comparison, results obtained us-
ing the two very recent classification rules proposed by Tax
and Duin [12] called Outlier-norm and Target-norm are given,
the former being especially designed for distance rejection.
Note we did not detailed these (not usual) rules here because
they do not rely on an ambiguity measure, therefore they can-
not be derived using fuzzy R-implications, by contrast to the
previous ones. In all cases, the L−step was performed using
Eqs.(1-2) with αi = 1 (∀i = 1, c).

5.1 The datasets

Two synthetic datasets are used: D which contains 2000
points drawn from two normal seven-dimensional distribu-
tions of 1000 points each with means v1 = t(1 0 · · · 0)
and v2 = t(−1 0 · · · 0), and equal covariance matrices
Σ1 = Σ2 = I , and DH which consists of two overlapping
gaussian classes with different covariance matrices according
to the Highleyman distribution, each composed of 800 obser-
vations in R2, see [13]. Real datasets are taken from the UCI
Machine Learning Repository [14]. The characteristics (num-
ber n of patterns, number p of features, number c of classes,
degree of overlap) are reported in Table 5.

Table 5: The datasets and their characteristics.
Dataset n p c Overlap
D 2000 7 2 slight
DH 1600 2 2 very slight

Ionosphere 351 34 2 very strong
Forest 495411 10 2 moderate
Vowel 528 10 11 very slight
Digits 10992 16 10 very slight

Thyroid 215 5 3 very slight
Pima 768 9 2 strong

Statlog 6435 36 6 slight
Glass 214 9 6 moderate

5.2 Results

Table 6 shows the classification performance of the different
rejection schemes obtained by a 10-fold cross-validation pro-
cedure on the different datasets. In all cases, the threshold
t was set to reject 10% of the data, so that 90% is the best
achievable correct classification rate performance, then the er-
ror rate is (90 − correct)%. The best results are indicated in
bold. Note that there are no outliers in the datasets, so that a
part of the rejected points are considered as outliers whereas
they belong to classes.
It appears from these results that parametrical implications
generally outperform usual rejection schemes as well as non
usual ones (Outlier-norm, Target-norm), e.g. IHγ=2 and
IDγ=0.5 . As expected in the previous section, these schemes
enable to reject both ambiguous and outlying patterns. Fur-
thermore, the tradeoff to be found between a scheme which



Table 6: Classification performance (%) on synthetic and real datasets.
Scheme D DH Ionosphere Forest Vowel Digits Thyroid Pima Statlog Glass
Chow 75.15 83.75 54.42 67.44 87.88 88.03 84.19 59.51 75.66 66.82

Ha 77.35 86.63 54.99 68.35 88.18 87.38 86.98 60.55 75.56 69.63
Horiuchi 77.55 84.31 56.13 69.27 89.09 88.76 86.98 62.89 77.68 68.22
Frélicot 79.65 87.12 58.12 69.73 89.09 89.13 87.91 63.28 77.48 71.03

Hamacher0 80.00 87.12 55.56 69.76 88.99 88.26 87.91 63.15 77.26 70.09
Hamacher2 79.75 87.30 58.12 70.01 89.49 89.17 87.91 63.28 77.78 71.33
Dombi0.5 79.20 86.68 56.41 69.76 89.09 88.96 87.91 63.40 78.12 71.03
Dombi2 78.85 86.38 55.56 69.65 88.89 87.91 87.91 62.50 76.94 70.09

Outlier-norm 76.85 83.31 57.54 67.44 87.88 86.19 84.65 61.33 75.66 69.16
Target-norm 78.80 87.19 56.83 69.69 87.27 86.39 84.19 63.15 75.86 66.82

does not reject outliers (Ha) and others which reject too much
patterns (Chow, Horuichi) appears to favour the choice of im-
plications based on a t-norm which is lower than >S (the
highest t-norm) and greater than >L, e.g. the algebraic or
the parametrical implications (provided an appropriate value
for γ). More generally, rejection schemes that take into ac-
count relationship between fuzzy membership degrees (Hori-
uchi, Frélicot, Hamacher, Dombi) perform better than all the
others schemes we tested. Looking at the degrees of overlap,
IDγ=0.5 (respectively IHγ=2 ) is more efficient for datasets pre-
senting a slight/very slight (respectively strong/very strong)
overlap.

6 Conclusion and perspectives

In this paper, a generalized class-selective rejection scheme
based on a logical approach to pattern assignation is presented
allowing to either reject only ambiguous patterns or ambigu-
ous and outlying patterns. For this purpose, we propose to de-
sign a family of ambiguity measures based on fuzzy residual
implication functions, which indicate to which extent a pat-
tern should be assigned to n? classes depending on its mem-
bership degrees from the truth value of the implication. These
measures assess the relationships between membership val-
ues with various combination of triangular norm operators,
including parametrical families. It is shown that the proposed
scheme generalizes well-known ones of the literature on pat-
tern classification with reject options. It appears from exper-
iments on both synthetic and real datasets that using, as the
basis for residual implication computation, triangular norms
greater than the Łukasiewicz triangular norm and lower than
the standard one, gives better classification performance. Fur-
thermore, measures taking in consideration several member-
ship degrees, so that interactions between classes are taken
into account, also give better results.
A future work will consist in defining new class-selective re-
jection schemes based on other parametrical triangular fami-
lies (Sklar, Frank, Yager and so on) and compare their clas-
sification performance. We also think that, depending on the
context of the pattern recognition problem, other implications
functions than the residual implication ones would be suit-
able. We plan to make an extensive study on the behavior
of S-implications which are an immediate generalization of
the usual boolean implication, QL-implications coming from
quantum mechanic logic, and D-implications which are the
contraposition with respect to a negation of QL-implications,
see [7] for definitions.
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