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Abstract— In fuzzy set theory, comparison of fuzzy sets plays an
important role. Among the several ways to compare fuzzy sets, we
address the logical theoretic approach using fuzzy implications. We
propose a general framework allowing to generate many measures of
comparison: inclusion, similarity and distance, and study their prop-
erties. Since the literature on the use fuzzy implications for defining
such measures is abundant, we also attempt to relate this work to
existing research.
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1 Introduction

In fuzzy set theory, inclusion (or subsethood) and similarity
measures between fuzzy sets are basic concepts. Among the
different approaches to compare fuzzy sets, one finds three
categories. The first one is based on measuring a distance
between two real functions and do not refer to a specific in-
terpretation, e.g. the Minkowski r-distances. The second cat-
egory involves set-theoretic operations for fuzzy sets (fuzzy
intersection, union, cardinality) [1, 2]. This paper addresses
the third category which relies on logical theory, mainly ap-
proached by using fuzzy implications. Following the early
paper by Bandler and Kohout [3] introducing the use of im-
plications to measure inclusion of fuzzy sets, many authors
have proposed new measures satisfying some specific axioms
[4, 5, 6].
This paper will be organized as follows. We first recall some
basic definitions and theorems on aggregation operators, tri-
angular norms and fuzzy implications that will be used in the
sequel in section 2. Next, in section 3 we propose a general
framework of comparison measures of fuzzy sets (i.e. inclu-
sion, similarity and distance) based on logical considerations,
i.e. using fuzzy implications. A general description of the
overall aggregation method is also provided, characterizing
each measure belonging to this category. In section 4, we
present the existing approaches that could be linked to this
general formulation. We finally conclude and mention some
application domains we have in mind in section 5.

2 Preliminaries and notations

Aggregating numbers plays an important role in decision-
making systems. Values to be aggregated are generally de-
fined on a finite real interval or on ordinal scales. In this paper,
we assume with no loss of generality that they come from the
unit interval. If not, a simple transformation can be found to
make this assumption true. Given n numbers, an aggregation
operator is a mapping A : [0, 1]n → [0, 1], satisfying bound-

ary conditions

A(0, · · · , 0) = 0 and A(1, · · · , 1) = 1. (1)

and monotonocity

∀n ∈ N, x1 ≤ y1, · · · , xn ≤ yn implies
A(x1, · · · , xn) ≤ A(y1, · · · , yn). (2)

Adding properties like idempotency, continuity, associativity
lead to others definitions. In the literature, one finds many ag-
gregation operators, e.g.: triangular norms (t-norms for short),
OWA (Ordered Weighted Averaging) operators, γ-operators,
or fuzzy integrals. They belong to several categories, de-
pending on the way the values are aggregated: conjunctives,
disjunctives, compensatory, and weighted operators. Briefly,
an aggregation operator is said to be conjunctive if its output
value is lower than the minimum of the input values, compen-
satory if the output value lies between the minimum and the
maximum input value, and disjunctive if its output is greater
than the maximum value of the inputs, refer to [7] for a large
survey on aggregation operators.

Theorem 1. IfA is a strictly monotonic compensatory aggre-
gation operator, then

A(x1, . . . , xn) = 1⇔ x1 = · · · = xn = 1 (3)

and
A(x1, . . . , xn) = 0⇔ x1 = · · · = xn = 0 (4)

Proof.

(3) (⇐) obvious with Eq. (1).
(⇒) by contraposition. We show that ∃i such that xi < 1
implies A(x1, · · · , xn) < 1. If xi < 1 for some i, then,
since xj ≤ 1 for all j, by strict monotonicity of A, we
get A(x1, · · · , xn) < A(1, · · · , 1) = 1, which ends the
contraposition.

(4) (⇐) obvious with Eq. (1).
(⇒) by contraposition. We show that ∃i such that xi > 0
implies A(x1, · · · , xn) > 0. If xi > 0 for some i, then,
since xj ≥ 0 for all j, by strict monotonicity of A, we
get A(x1, · · · , xn) > A(0, · · · , 0) = 0, which ends the
contraposition.

Example 1. The family of mean operators are strictly mono-
tonic compensatory aggregation operators.
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Remark 1. From Theorem 1, we immediately see that a dis-
junctive aggregation operator cannot be strictly monotonic.
∀j xj ≤ 1, and ∃i, xi < 1, ∃k, xk = 1. If A is strictly
monotonic, A(x1, · · · , xn) < A(1, · · · , 1) = 1. Since A is
disjunctive, i.e. A(x1, · · · , xn) ≥ max(x1, · · · , xn), we have
1 = max(x1, · · · , xn) ≤ A(x1, · · · , xn) < 1, which is a
contradiction.

A t-norm is an increasing, associative and commutative map-
ping > : [0, 1]2 → [0, 1] satisfying the boundary condition
>(x, 1) = x for all x ∈ [0, 1]. The most popular continuous
t-norms are:

• Standard: >S(x, y) = min(x, y)

• Algebraic (Product): >A(x, y) = x y

• Łukasiewicz: >L(x, y) = max(x+ y − 1, 0)

Alternatively, the dual operators with respect to a strict nega-
tion are called triangular conorms (t-conorms for short). A
t-conorm is an increasing, associative and commutative map-
ping ⊥ : [0, 1]2 → [0, 1] satisfying the boundary condition
⊥(x, 0) = x for all x ∈ [0, 1]. The most popular continuous
t-conorms are:

• Standard: ⊥S(x, y) = max(x, y)

• Algebraic (Product): ⊥A(x, y) = x+ y − x y

• Łukasiewicz: ⊥L(x, y) = min(x+ y, 1)

Various parametrical families have been introduced, e.g. the
Hamacher family defined by: given γ ∈ [0,+∞[,

• x>H y = x y
γ+(1−γ) (x+y−x y)

• x⊥H y = x+y−x y−(1−γ) x y
1−(1−γ) x y .

Such families result in an infinite number of t-norm couples,
including non parametrical ones e.g. the Algebraic couple for
γ = 1.
A general problem in fuzzy logic is to handle conditional
statements if x, then y where x and y are fuzzy predicates.
A widely used method consists in managing them by map-
pings I : [0, 1] × [0, 1] → [0, 1] such that the truth value of
I depends on the initial propositions x and y. We generally
speak about an implication function if I is non-increasing in
the first variable, non-decreasing in the second variable and
I(0, 0) = I(1, 1) = 1, and I(1, 0) = 0, see [8] for a survey
on fuzzy implication functions and [9] for a large overview
on the use of parametrical implications in fuzzy inference sys-
tems. The four most usual implications are:

1. S-implications, defined by:

I⊥(x, y) = ⊥(xc, y) (5)

where (.)c is the usual complementation xc = 1−x. This
implication is an immediate generalization of the usual
boolean implication x→ y ≡ xc ∨ y.

2. R-(for Residual) implications, defined by:

I>(x, y) = sup
t
{t ∈ [0, 1]|>(x, t) ≤ y}. (6)

Note that if > is a left-continuous t-norm, the supremum
operation can be substituted by the maximum one.

3. QL-(for Quantum mechanic Logic) implications, defined
by:

IQL(x, y) = ⊥(xc,>(x, y)). (7)

4. D-implications, defined by:

ID(x, y) = ⊥(>(xc, yc), y) (8)

which are the contraposition of QL-implications with re-
spect to the complementation.

In the sequel, we will denote by:

• X = {x1, · · · , xn} the (supposed finite) universe of dis-
course,

• C(X) and F(X) the sets of all crisps and fuzzy sets in
X , respectively,

• fA(x), ∀x ∈ X , the membership function of a fuzzy set
A over X ,

• [ 12 ] the constant fuzzy set defined by [ 12 ](x) = 1
2 for any

x ∈ X .

3 General framework
There are several ways to compare fuzzy values or fuzzy quan-
tities. The first one is based on a broad class of measures of
equality based on a distance measure which is specified for
membership functions of fuzzy sets. This approach takes its
roots from studies on how to measure the distance between
two real functions and do not refer to any specific interpre-
tation. The general form of a Minkowski r-metric is usually
taken and leads to well known distance functions (Hamming,
Euclidean, Chebyshev):

dr(A,B) =

(∑
x∈X
|fA(x)− fB(x)|r

)1/r

(9)

A second way to compare fuzzy values comes from some ba-
sic set-theoretic considerations where union, intersection and
complementation are defined for fuzzy sets. Cardinal and pos-
sibility based measures belong to this category. In this paper,
we will focus our attention on the third way: the logical frame-
work. We present the design a unified logical framework to
compare fuzzy sets, which includes usual measures depend-
ing the aggregation operators we use. The use of parametrical
t-norms and t-conorms to define the implications will enable
to obtain parametrical measures of comparison, where the pa-
rameters can be set according to user needs.

3.1 Inclusion measures

An inclusion measure is a relation between two fuzzy sets
which indicates to which extent one fuzzy set is contained
in another one. Since its original definition by A ⊂ B iff
fA(x) ≤ fB(x), for all x in X , which was crisp assessment,
Bandler and Kohout enlarged this point of view by giving a de-
gree of subsetness [3], more in the spirit of the fuzzy theory.
Inclusion measures are generally defined by a set of axioms
[4] and by using fuzzy implication operators [3, 10].

Definition 1. A mapping I : F(X)×F(X)→ [0, 1] is called
an inclusion (or subsethood) measure if it satisfies
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(P1) I(A,B) = 1 iff A ⊆ B , ∀A,B ∈ F(X).

(P2) if [ 12 ] ⊆ A, then I(A,Ac) = 0 iff A = X .

(P3) ∀A,B,C ∈ F(X), if A ⊆ B ⊆ C, then I(C,A) ≤
I(B,A), and if A ⊆ B, I(C,A) ≤ I(C,B).

Note that if a measure I satisfies only the two last properties,
it is called a weak inclusion measure.

Theorem 2. Let I> be a residual implication function. Given
X and arbitrary A,B ∈ F(X), let

I(A,B) =
n

A
i=1

I> (fA(xi), fB(xi)) (10)

for all xi in X , where A is a conjunctive or a strictly mono-
tonic compensatory aggregation operator satisfying Eqs.(1)
and (2). Then I is an inclusion measure.

Proof.

(P1) (⇐) if A ⊆ B, then fA(xi) ≤ fB(xi) for all xi ∈
X . Since if x ≤ y then I>(x, y) = 1, we have
I>(fA(xi), fB(xi)) = 1 for all xi ∈ X , which gives
I(A,B) = 1 by boundary condition on A.
(⇒) two cases are considered
- if A is disjunctive, then we obviously have
fA(xi) ≤ fB(xi) for all xi ∈ X , since the minimum
value of all implications on X is 1
- if A is a strictly monotonic compensatory aggregation
operator, then by using Theorem 1, we have
I> (fA(xi), fB(xi)) = 1 for all xi ∈ X , giving A ⊆ B
by the confinement principle: x ≤ y iff I(x, y) = 1.

(P2) (⇐) if A = X , then I>(fX(xi), ∅(xi)) = 0 for all
xi ∈ X . By boundary condition on A, it follows that
I(A,Ac) = 0.
(⇒) if I(A,Ac) = 0, then I>(fA(xi), 1 − fA(xi)) = 0
for all xi ∈ X by Theorem 1. Assuming that A 6= X ,
then ∃i, xi such that
1
2 ≤ fA(xi) < 1, i.e. 0 < 1− fA(xi) ≤ 1

2 .
By non-increasingness in the first variable of I>, we
have I>(fA(xi), 1 − fA(xi)) ≥ I>(1, 1 − fA(xi)) =
1 − fA(xi) 6= 0, since I> satisfies the border principle:
I(1, x) = x, ∀x ∈ [0, 1]. This is a contradiction with
I>(fA(xi), 1− fA(xi)) = 0, so that A = X .

(P3) if A ⊆ B ⊆ C, fA(xi) ≤ fB(xi) ≤ fC(xi), for
all xi ∈ X . By non-increasingness in the first vari-
able and non-decreasingness in the second variable, it
follows that I>(fC(xi), fA(xi) ≤ I>(fB(xi), fA(xi))
and I>(fC(xi), fA(xi)) ≤ I>(fC(xi), fB(xi)) for all i.
By monotonicity of A, we have I(C,A) ≤ I(B,A) and
I(C,A) ≤ I(C,B), which concludes the proof.

A necessary condition to define a strong inclusion measure I
is that the implication I holds the confinement principle and
the border principle. It is easy to show that the four usual im-
plications I>, I⊥, IQL and ID satisfy the latter, but only I>
satisfies the former. Therefore S, QL and D−implications
define weak inclusion measures while R−implications define
strong inclusion measures provided the operator A is not dis-
junctive, see Remark 1.

3.2 Similarity and distance measures

Definition 2. A mapping S : F(X)×F(X)→ [0, 1] is called
a similarity measure if it satisfies

(P1) S(A,B) = S(B,A), ∀A,B ∈ F(X).

(P2) S(A,A) = 1, ∀A ∈ F(X).

(P3) S(D,Dc) = 0, ∀D ∈ C(X).

(P4) ∀A,B,C ∈ F(X), if A ⊆ B ⊆ C, then S(A,C) ≤
S(A,B) ∧ S(B,C)
or, equivalently
∀A,B,C,D ∈ F(X), if A ⊆ B ⊆ C ⊆ D, then
S(A,D) ≤ S(B,C)

However, the symmetry property (P1) is still subject to exper-
imental investigation: if S(x, y) is the answer to the question
how is x similar to y?, then, when making comparisons, sub-
jects focus more on the feature x than on y. This corresponds
to the notion of saliency [1] of x and y: if y is more salient
than x, then x is more similar to y than vice versa, which is
experimentally confirmed. Accordingly to [11], for a certain
element of the universe of discourse X , a degree of equality
of two fuzzy elements x and y can be defined by using impli-
cations as follows:

(x ≡ y) =
1
2
(
(x→ y)∧ (y → x)+ (xc → yc)∧ (yc → xc)

)
(11)

where ∧ stands for minimum,→ is an R-implication.
Then applying Eq. (6) with x ≥ y, gives

(x ≡ y) =
1
2
(
(x→ y) + (yc → xc)

)
(12)

since 1 is the neutral element of t-norms.
Furthermore, due to the opposition law: I(x, y) = I(yc, xc),
we obtain

(x ≡ y) = (x→ y) (13)

A convenient way to define a similarity measure is to quantify
to which extent two fuzzy membership degrees are similar,
so that it is closely related to the problem of matching fuzzy
quantities, or fuzzy sets similarity. So we propose to use fuzzy
implication functions as similarity measures by the following
theorem:

Theorem 3. Let I> be a residual implication function. For
arbitrary A,B ∈ F(X), let

S(A,B) =
n

A
i=1

I>
(
f(1)(xi), f(2)(xi)

)
(14)

for all xi in X , where f(.) is a permutation of fA and fB such
that f(1)(xi) = (fA∪fB)(xi), f(2)(xi) = (fA∩fB)(xi), and
A an aggregation operator satisfying Eqs. (1) and (2). Then
S is a similarity measure.

Proof.

(P1) we have I>(x, x) = 1, for any x ∈ [0, 1]. By boundary
conditions on A, see Eq. (1), we obtain S(A,A) = 1.
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(P2) by commutativity of union and intersection of fuzzy sets,
we have

S(A,B) =
n

A
i=1

I> ((fA ∪ fB)(xi), (fA ∩ fB)(xi))

=
n

A
i=1

I> ((fB ∪ fA)(xi), (fB ∩ fA)(xi))

= S(B,A)

(P3) by definition, I(1, 0) = 0. By boundary conditions onA,
see Eq. (1), we obtain S(D,Dc) = 0.

(P4) since A ⊆ B ⊆ C ⊆ D, we have for all xi ∈ X

fD(xi) ≥ fC(xi) (15)
fB(xi) ≥ fA(xi) (16)

By non-increasingness in the first variable and non-
decreasingness in the second variable of I>, we obtain
for all xi ∈ X

I>(fD(xi), fA(xi)) ≤ I>(fC(xi), fA(xi)) by Eq. (15)

I>(fC(xi), fA(xi)) ≤ I>(fC(xi), fB(xi)) by Eq. (16)

Last, monotonicity of A, see Eq. (2), gives
S(A,D) ≤ S(B,C) which concludes the proof.

In contrast to inclusion measures, no restriction is imposed to
the A operator, it can be freely chosen provided Eqs.(1) and
(2) are satisfied. On another hand, here again, the confine-
ment principle is necessary to obtain property (P1) of sim-
ilarity measures. Since S(A,B) is reflexive and symmetri-
cal, i.e. S(A,A) = 1 and S(A,B) = S(B,A) hold for any
A,B ∈ F(X), S is a proximity relation on F(X).

Definition 3. A mappingD : F(X)×F(X)→ [0, 1] is called
a distance measure if D has the following properties

(P1) D(A,B) = D(B,A), ∀A,B ∈ F(X).

(P2) D(A,A) = 0, ∀A ∈ F(X).

(P3) D(D,Dc) = 1, ∀D ∈ C(X).

(P4) ∀A,B,C ∈ F(X), if A ⊆ B ⊆ C,
then D(A,B) ≤ D(A,C) and D(B,C) ≤ D(A,C)

Proposition 1. For arbitrary A,B ∈ F(X), and S(A,B)
a similarity measure defined by Eq. (14), then the mapping
D : F(X)×F(X)→ [0, 1] defined by D(A,B) = Sc(A,B)
is a distance measure between A and B.

3.3 Examples

Some examples of inclusion and similarity measures of the lit-
erature, and the new Hamacher inclusion and similarity mea-
sures, all obtained through the proposed general logical frame-
work are given in Table 1. Moreover, this table shows how it is
easy to check wether an inclusion measure is strong (non dis-
junctiveA and I>) or weak (non disjunctiveA), see Definition
1, as well as the proper definition of a similarity measure (any
A and I>), see Theorem 3.

For illustration purpose, Fig. 1 shows some examples of fuzzy
similarity measures as well as the influence of the parameter
γ for Hamacher residual implications, which are defined by:

I>Hγ (x, y) =

{
1 if y ≥ x

y(γ+x−γx)
y(γ+x−γx)+x−y if y ≤ x (17)

where γ ∈ [0,+∞[. The different plots show the similarity
value of a given fuzzy set A = {0.4/x1, 0.3/x2} to all the
possible two-dimensional fuzzy sets B for various I>. As one
could expect, the closer to x1 or x2 the higher the similarity.
One can also note that different I> lead to different shapes for
isosurfaces of the similarity.

4 Related works
Let us relate, as far as possible, the proposed framework to
some works issued from the abundant literature on the use of
fuzzy implications for defining inclusion measures. In their
seminal paper [3], Bandler and Kohout propose to use impli-
cation functions in order to quantify the inclusion of each ele-
ment in another, and then aggregate these individual measures
by a conjunctive operator: the minimum. Some years later,
Hirota and Pedrycz propose to use implications for matching
fuzzy quantities [11]. They aggregate the different implica-
tion truth values over X by a Choquet integral, computing the
fuzzy measure with the help of a family of fuzzy sets taken
as fuzzy prototypes. They also propose an entropy measure
based on this matching measure, which gives an impression
concerning the uncertainty of matching. In [14], Kosko criti-
cizes the original definition of fuzzy set containment: B con-
tains A if and only if fA(x) ≤ fB(x) for all x in X by
Zadeh, pointing out that if this inequality holds for all but
just a few x, we can still consider A to be a subset of B to
some degree. So he proposes a second definition based on
fuzzy intersection of two fuzzy sets which can be seen as the
conditional probability P (B|A) under certain circumstances.
Furthermore, he defines the fuzziness of a fuzzy set A as the
inclusion measure of A ∪ Ac in A ∩ Ac, which satisfies the
axioms of fuzzy entropy of De Luca and Termini [15]. In-
clusion and similarity measures from a general set-theoretic
point of view, coming from the proposition of Tversky [1], are
described by Bouchon-Meunier et al. in [2]. The authors in-
troduce a general framework for similitude, satisfiability and
inclusion measures, also study the aggregation of measures of
comparison, but take only two examples for the aggregation
operator A: a t-norm and the OWA operator. In this paper,
we propose a study of the properties of A in its more general
meaning. The same remark applies to the work by Young [4]
proposing an axiomatization of inclusion measures and their
connection to implication operators since she restricts herself
to both the minimum and the arithmetical mean for A. Fur-
thermore, this work do not give necessary conditions on impli-
cations for the definition of strong or weak inclusion measure
whereas our’s does (Definition 1). Wang [13] presents two
similarity measures which can be viewed as particular cases
of the framework we propose. He enlarges his definition to
the similarity of fuzzy elements belonging to various fuzzy
sets. Again, the framework we propose allows to obtain a
similarity between fuzzy elements since we compute implica-
tions for each element. Starting from Kosko and Young obser-
vations, Botana [16] presents a set of new measures derived
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Table 1: Inclusion and similarity measures of the literature, and the new Hamacher inclusion and similarity measures, all
obtained through the proposed general logical framework.
Inclusion Measure I Aggregation Operator A Implication I
I(A,B) = min

x∈X
(min(1, 1− fA(x) + fB(x))) as defined in [12] min I>L

I(A,B) =
1
n

∑
x∈X

min(1, 1− fA(x) + fB(x)) arithmetical mean I>L

I(A,B) =
1
n

∑
x∈X

max(1− fA(x), fB(x)) arithmetical mean I⊥S

I(A,B) =
1
n

∑
x∈X

1− fA(x) + fA(x) fB(x) as defined in [4] arithmetical mean I⊥A

I(A,B) =
1
n

∑
x∈X

fB(x)(γ + fA(x)− γfA(x))
fB(x)(γ + fA(x)− γfA(x)) + fA(x)− fB(x)

arithmetical mean I>Hγ

Similarity Measure S Aggregation Operator A Implication I

S(A,B) =
1
n

∑
x∈X

min(fA(x), fB(x))
max(fA(x), fB(x))

as defined in [13] arithmetical mean I>A

S(A,B) =
1
n

∑
x∈X

1− |fA(x)− fB(x)| as defined in [13] arithmetical mean I>L

S(A,B) = max
x∈X

min(fA(x), fB(x)) max I>S

S(A,B) = 1−max
x∈X
|fA(x)− fB(x)| min I>L

S(A,B) =
1
n

∑
x∈X

f(2)(x)(γ + f(1)(x)− γf(1)(x))
f(2)(x)(γ + f(1)(x)− γf(1)(x)) + f(1)(x)− f(2)(x)

arithmetical mean I>Hγ

from fuzzy implications. He studies whether the introduced
inclusion measures satisfy Young’s axioms [4] and/or those in
[12] when using Wu, Goguen, modified Goguen, Gödel and
Standard strict implications. He also gives the formulation
of the corresponding entropy in the sense of [15, 14]. An-
other approach to aggregation operators is proposed in [17]
consisting in combining implication truth values through re-
spectively disjunctive and conjunctive functions for an opti-
mistic and pessimistic aggregation. Fan et al. discuss the
links between inclusion, entropy and fuzzy implications, and
propose some new axioms for these measures [5]. Burillo et
al. present a family of implication operators derived from the
Łukasiewicz implication in order to define a family of inclu-
sion grade operators [6] using the minimum operator for A.
In [18], Kehagias and Konstantinidou introduce L-fuzzy val-
ued inclusion, similarity and distance measures, i.e. mappings
I,S,D : F(X) × F(X) → [0, 1]n, but restrict the output to
crisp values. As pointed out by the authors, the vector output
can lead to a difficult interpretation of the result. Furthermore,
as vectors are partially ordered they are even harder to com-
pare, they require a new measure to compare outputs. The
framework we propose can provide a vector output since an
implication on each element of X is computed. By contrast
to [18], it would be a fuzzy L-fuzzy valued measure. More
recently [19, 20], a distance between fuzzy operators, fuzzy
implication functions in particular, is proposed. It leads to
normalized tensor-norms which allow to define a similarity of
fuzzy sets, and present an heuristic to choose the most suit-
able implication function to a fuzzy inference system. Zhang
and Zhang propose an hybrid inclusion measure in [10] and
use it to define similarity and distance measures of fuzzy sets.
They restrict themselves to the weighted mean for A, so it
can be viewed as a special case of the work we propose, but

contrarily to Young the involved implications satisfy the con-
finement and the border principle. Let us finally mention the
work by Fono et al. [21] where as many difference operations
as many implications are used to define measures of compari-
son of fuzzy sets in the set-theoretic framework, but we remind
that such measures are out of the scope of this paper.

5 Conclusion and perspectives
In this paper, we propose a unified logical framework to com-
pare fuzzy sets as well as fuzzy elements. Within this frame-
work, new measures of inclusion, similarity and distance can
be easily derived. These measures depend on any fuzzy im-
plication I , provided it satisfies the necessary conditions we
give (the border and the confinement principles) and any ag-
gregation operator A (for similarity and distance) or any con-
junctive and strictly monotonic compensatory aggregation op-
erator A (for inclusion). Choosing specific (A, I) enables to
retrieve most of the measures of the literature.
We hope that results of this work would be of great help to
set comparison functions in many fields: fuzzy mathematical
morphology [6], cluster validity [5], as well as other domains
e.g. image retrieval or feature selection.
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