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Abstract. Clustering is one of the most important task in pattern recog-
nition. For most of partitional clustering algorithms, a partition that rep-
resents as much as possible the structure of the data is generated. In this
paper, we adress the problem of finding the optimal number of clusters
from data. This can be done by introducing an index which evaluates the
validity of the generated fuzzy c-partition. We propose to use a criterion
based on the fuzzy combination of membership values which quantifies
the l-order overlap and the intercluster separation of a given pattern.

1 Introduction

The objective of fuzzy clustering is to partition the data set into c distinct
clusters. The fuzzy c-means (FCM) algorithm proposed by Bezdek [3] and its
variations [8] are probably the most commonly used fuzzy clustering methods.
However, these algorithms require the user to set the number c of clusters al-
though the user do not always know it. A fuzzy c-partition obtained by FCM
has to be validated because its quality depends on this number. Many cluster
validity indexes have been proposed that evaluate each fuzzy c-partition and
determines the optimal number c? of clusters allowing to obtain the optimal
partition of the data.

Compactness and separation of clusters are often considered to validate a
partition [4, 12, 7]. In this paper, we propose a new family of indexes that com-
bine an overlap measure and a separation measure both based on aggregation of
membership values. Section 2 provides background information on basic fuzzy
operators and the l-order fuzzy OR operator our work is based on. Next, in
section 3, we briefly describe the FCM algorithm and recall some well-known
cluster validity indexes we will use for comparison. The measures we propose
to use and the definition of the new index are described in section 4. Experi-
mental results on both synthetic and real data sets that show its efficiency and
concluding remarks are given in section 5 and 6 respectively.

2 Mathematical Background

For the applications we have in mind, e.g. cluster validity, we are particulary
interested in aggregation functions that map a collection u of c values in [0, 1]
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(i.e. a vector u = [u1, · · · , uc]T ) to a value in [0, 1] . Among the frequently used
aggregation operators, one can cite the classes of triangular norms (t-norms)
and triangular conorms (t-conorms). They have been introduced to characterize
the general multivalued logic AND and OR operations and are widely used in
fuzzy logic and fuzzy set theory to implement conjunctive and disjunctive opera-
tor respectively. A triangular norm is a commutative, associative and monotone
function > having for neutral element 1. Alternatively, its dual operator, the
triangular conorm, is a commutative, associative and monotone function ⊥ hav-
ing for neutral element 0. Examples of triangular norms couples are given in
Table 1 for two operands, see [10] for a large survey. Note that various pa-
rameterized families have been introduced, e.g. the Hamacher family defined by
u1>H u2 = u1 u2

γ+(1−γ) (u1+u2−u1 u2)
and u1⊥H u2 = u1+u2−u1 u2−(1−γ)u1 u2

1−(1−γ)u1 u2
where

γ ∈ [0,+∞[. The dual couple is generally associated with a fuzzy negation de-
fined as N(u1) = 1− u1 and mentionned as the triple (>,⊥, N).

Table 1. Basic t-norms and t-conorms couples

Standard
u1>Su2 = min(u1, u2)
u1⊥Su2 = max(u1, u2)

Algebraic
u1>Au2 = u1 u2

u1⊥Au2 = u1 + u2 − u1 u2

 Lukasiewicz
u1>Lu2 = max(u1 + u2 − 1, 0)
u1⊥Lu2 = min(u1 + u2, 1)

Assume that the values ui (i = 1, · · · , c) to be aggregated represent the de-
gree to which an object x satisfies each group description, i.e. its similarity to
the prototypes describing each group. Using this knowledge contained in u, clus-
tering consists in selecting the most appropriate group that the objects will be
assigned to. The maximum operator is commonly used in this situation, but we
may be interested in the lower values, which interact with the greatest value. In
particular, if an object satisfies more than one group description, such an exclu-
sive partitioning is not efficient. A fundamental issue becomes the determination
of the overall degree of exclusive belongingness to a group or cluster. In [11], the
authors define the l-order fuzzy OR operator. This operator evaluates degrees of
satisfaction at a given order by combination of triangular norms. Let P be the
powerset of C = {1, 2, ..., c} and Pl = {A ∈ P : |A| = l} where |A| denotes the
cardinality of subset A, then the fOR-l is defined by:

l

⊥
i=1,··· ,c

ui = >
A∈Pl−1

(
⊥

j∈C\A
uj

)
(1)

It must be viewed as some kind of generalization of the notion of “lth highest”

value, with l in C. In particular, with standard triangular norms,
l

⊥ (u) is ex-
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actly the “lth highest” element of u. For instance, let us take C = {1, 2, 3}, l = 2
and use standard triangular norms. We have P1 = {{1}, {2}, {3}} and

2

⊥
i=1,··· ,3

ui = min(max(u2, u3) max(u1, u3) max(u1, u2))

so that if u2 < u1 < u3,
2

⊥
i=1,··· ,3

ui = u1.

This operator satisfies nice mathematical properties such as monotony, symme-
try, see [11] for proofs and details.

3 Cluster Validity for Fuzzy Clustering

3.1 Fuzzy c-means algorithm

Clustering is an instance of unsupervised classification which aims at finding a
structure of groups in set of n p-dimensional patterns X = {x1, ...,xn}. In this
framework, the label vectors uk = u(xk) do not exist and clustering algorithms
can be used to obtain them from X. For instance, the fuzzy c-means (FCM)
algorithm partitions X into c > 1 clusters by minimizing the following objective
function [3]:

Jm(U, V ) =
n∑
k=1

c∑
i=1

umik ||xk − vi||2 (2)

where uik is the membership degree of xk to the ith cluster represented by its
centroid vi ∈ Rp. Centroids are gathered into a (c × p) matrix V = [v1, ...,vc].
Degrees uik are subject to

∑c
i=1 uik = 1 for all xk in X and to 0 <

∑n
k=1 uik < n

(∀i = 1, · · · , c). In addition, they are elements of the fuzzy c−partition matrix
U (c × n). The so-called fuzzifier m > 1 is a weighting exponent which makes
the resulting partition more or less fuzzy [12]. The higher m is, the softer the
clusters’ boundaries are. Minimization of (2) is obtained by iteratively updating
(U, V ) as follows:

uik = 1

/
c∑
j=1

(
||xk − vi||
||xk − vj ||

)2/(m−1)

(3)

vi =
∑n
k=1 u

m
ik xk∑n

k=1 u
m
ik

(4)

The usual euclidian norm ||.|| induces hyperspherical clusters, hence FCM can
only detect clusters with the same shape and orientation.
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3.2 Classical indexes

Validating the provided clustering of X consists in assessing whether the result-
ing partition reflects the data structure or not. Since c is a user-defined parameter
of clustering algorithms such as FCM, most of works on cluster validity focus
on the number of clusters problem. Many validity indexes have been proposed
for fuzzy clustering (refer to [4, 9, 14, 13, 16] for comparative studies). They can
be classified in two main categories. The first one is composed of indexes that
only use membership degrees (U). Let us cite the Partition Coefficient [3], taking
values in [ 1c , 1]:

PC(c) =
1
n

n∑
k=1

c∑
i=1

u2
ik (5)

or the Partition Entropy [2], taking values in [0, log(c)]:

PE(c) = − 1
n

n∑
k=1

c∑
i=1

uik log(uik) (6)

Both PC to be maximized and PE to be minimized are monotonic with c, as
well as their bounds. Normalized versions have been proposed to reduce this
monotonic tendency, e.g. in [6]. We will use these normalized versions in the
experiments: NPC(c) = cPC(c)−1

c−1 and NPE(c) = nPE(c)
n−c . The second category

consists of indexes that use membership degrees but also some information about
the geometrical structure of the data (U, V,X), e.g. the Xie-Beni index [12, 15]:

XB(c) =
Jm(U, V ) /n

mini,j=1,··· ,c;j 6=i ||vi − vj ||2
(7)

or the Fukuyama-Sugeno index [7]:

FS(c) = Jm(U, V )−
n∑
k=1

c∑
i=1

umik ||vi − v||2 (8)

where v is the mean of centroids. Both XB and FS combine the FCM objective
function (2) which measures the degree of compactness of the clusters and an
additional term which measures the degree of their separation. Combination in-
dicates that both indexes are to be minimized. The more compact and separated
the clusters are, the more optimal c is.

4 The Proposed Index

Let U = [u1, ...,uc] be a fuzzy c-partition provided by a fuzzy clustering algo-
rithm, e.g. FCM. An overlap measure between l fuzzy clusters for each point
xk in X described by its membership degrees can be obtained by Eq. (1). By

successively computing
l

⊥(uk) for different values of c, we get a combination
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of l-order overlap measure for xk. The most satisfied order is obtained by the
disjunction of these measures, and we define the overall overlap measure as:

O(uk, c) =
1

⊥
l=2,c

 l

⊥
i=1,··· ,c

uik

 (9)

In [4], Bezdek and Pal show that intercluster separation plays a more important
role in cluster validity than cluster diameters. We propose to introduce such a

measure by quantifying the separation of each point xk with
1

⊥(uk) which is the
overlap measure between 1 fuzzy cluster, i.e. its separation from the other fuzzy
clusters, since uk sum up to one. Note that if standard triangular norms ar used,
1

⊥(uk) is the maximum coordinate of uk. Finally, we define the family of l-order
Fuzzy OR Indexes as:

lFORI(c,>,⊥) =
1
n

n∑
k=1

O(uk, c)
1

⊥
i=1,··· ,c

uik

(10)

Given U , the less overlaping and separated clusters are, the lower the value of
lFORI is expected to be and minimizing Eq. (10) will give the optimal number
c? of clusters.
If U is hard, i.e. uik ∈ {0, 1}, then one value equals 1 while the others are 0,
say u1k = 1 and u2k = · · · = uck = 0. Since 0 is the absorbing element of
>, it is easy to verify that O(uk, c) = 0 for all uk, whatever (>,⊥), therefore
lFORI(c,>,⊥) = 0:

1

⊥
l=2,c

 l

⊥
i=1,··· ,c

uik

 =

 2

⊥
i=1,··· ,c

(1, 0, · · · , 0)

 1

⊥ · · ·
1

⊥

( c

⊥
i=1,··· ,c

(1, 0, · · · , 0)

)
(11)

=
1

⊥(0, · · · , 0︸ ︷︷ ︸
c−1 times

) = 0. (12)

and
1

⊥(1, 0, · · · , 0) = 1, since 1 is the absorbing element of ⊥.

On the other hand, if U is totally fuzzy, i.e. uik = 1
c (∀i = 1, · · · , c), the resulting

lFORI value depends on the couple (>,⊥) because Eq. (9) only reduces to

1

⊥
l=2,c

 l

⊥
i=1,··· ,c

uik

 =

 2

⊥
i=1,··· ,c

(
1
c
, · · · , 1

c

) 1

⊥ · · ·
1

⊥

( c

⊥
i=1,··· ,c

(
1
c
, · · · , 1

c

))
(13)
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in the general case. If standard t-norms are used, we have:

1

⊥
l=2,c

 l

⊥
i=1,··· ,c

uik

 =
1

⊥
1
c
, · · · , 1

c︸ ︷︷ ︸
c−1 times

 (14)

=
1
c

(15)

which is the value of
1

⊥(uk) for all uk, therefore lFORI(c,>S ,⊥S) = 1 for all
c. Unfortunately, it is not possible to give a simple value for lFORI for other
couples (>,⊥), but an upper bound can be found. Due to lack of space, the
proof is postponed to a forthcoming long paper, as well as properties that could
help the user to choose the couple (>,⊥).

5 Experiments

5.1 Behavior according to clusters’ separability

First, we generated a serie of 10 data sets, each composed of 800 points drawn
from a mixture of c = 4 bivariate normal distributions. The covariance matrix
of each component is the same Σi = I (∀i = 1, · · · , c) and the mean vectors are:

µ1 = α

(
1
1

)
, µ2 = α

(
1
−1

)
, µ3 = α

(
−1
−1

)
and µ4 = α

(
−1

1

)
, for increasing

values of α = 1, 2, . . . , 10. This successively moves the clusters in opposite di-
rections, creating less overlap as the clusters become more and more separated.
The first and last data sets are shown in Figure 1-left. Each data set was then
clustered using FCM with c = 4, providing a fuzzy partition matrix Uα. Cor-
responding values of lFORI for the different basic norms are plotted in Figure
1-right as a function of α. As expected, the proposed validity index decreases
towards 0 as α increases whatever the couple (>,⊥).

Fig. 1. α-separated data sets – α = 1 and 10 (left) and values of lFORI(c = 4) as a
function of α for various t-norms (right).
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5.2 Robustness to outliers

In order to compare the proposed index to the classical ones, we generated a
data set D1 containing n = 200 points consisting of 50 points each drawn from a
mixture of c = 4 bivariate normal distributions, see Figure 2-left. FCM was used
with m = 2 for c varying from cmin = 2 to cmax = 10. A second artificial data
set D2 was generated. It is similar to D1 except that 100 points drawn from a
uniform distribution were added, as shown in Figure 2-right. These additional
points act as noise and can make the FCM algorithm partitioning the data set
into three clusters because the less separated groups in the right-lower area tend
to become only one cluster. Values of the tested validity indexes on D1 and D2

are given in Table 2 and Table 3 respectively, where optimal values are bold
faced and acceptable ones are italicized. Even if the classical indexes are known
to be efficient, most of them fail in giving the right number of clusters on D1

and with even stronger reason in presence of noise (D2), whereas lFORI always
gives the right number c? = 4 whatever the couple (>,⊥) for both data sets.

Moreover, multiple runs of FCM with random initializations on data set D2
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Fig. 2. Centroids of optimal clusters for data sets D1 (left) and D2 (right).

showed us that the proposed index gives more stable results compared to the
others, thus demonstrating a significantly higher robustness to noisy data.

5.3 Sensitivity to the fuzzifier m

The FCM objective function depends on the fuzzy exponent m, see Eq. (2).
Since the resulting fuzzy c-partition U is sensitive to this parameter, a cluster
validity index can also be analysed with respect to m. In [4], Pal and Bezdek
have shown that FCM provides best results for m lying in [1.5, 2.5]. We compare
the different indexes in this range on data sets D1 and D2. Again, c is varying
from cmin = 2 to cmax = 10. The selected number of clusters are reported in
Table 4. As it can be seen, the proposed index lFORI is less sensitive to m
whatever the couple (>,⊥) for both data sets.



8

Table 2. Validity indexes on data set D1.

c NPC NPE XB
FS lFORI
×10−3 (>,⊥)S (>,⊥)A— (>,⊥)H

2 0.57 0.52 0.13 -1.57 0.17 0.14 0.15
3 0.70 0.56 0.07 -3.39 0.12 0.12 0.14
4 0.74 0.59 0.08 -0.74 0.07 0.07 0.12
5 0.67 0.80 0.31 -4.25 0.12 0.11 0.17
6 0.61 1.00 0.45 -2.98 0.18 0.13 0.18
7 0.56 1.15 0.37 -1.53 0.19 0.10 0.20
8 0.530 1.27 0.30 -1.60 0.23 0.09 0.19
9 0.532 1.37 0.31 -2.43 0.29 0.10 0.19
10 0.50 1.47 0.28 -0.15 0.28 0.11 0.17

Table 3. Validity indexes on data set D2 .

c NPC NPE XB
FS lFORI
×10−3 (>,⊥)S— (>,⊥)A— (>,⊥)H

2 0.49 0.58 0.23 -0.85 0.25 0.17 0.19
3 0.60 0.71 0.11 -2.33 0.23 0.11 0.20
4 0.59 0.87 0.13 -0.75 0.17 0.09 0.15
5 0.55 1.08 0.24 -5.21 0.18 0.13 0.21
6 0.50 1.26 0.35 -0.06 0.21 0.14 0.22
7 0.50 1.36 0.36 -0.12 0.21 0.17 0.22
8 0.46 1.50 0.44 -2.41 0.26 0.16 0.21
9 0.45 1.61 0.46 -2.61 0.30 0.16 0.19
10 0.44 1.70 0.36 -1.81 0.30 0.15 0.18

5.4 Benchmark data sets

We finally compare the different indexes on benchmark data sets:

– Iris [5], composed of three classes of 50 flowers each described by 4 physical
attibutes. Two classes have a substantial overlap in the feature space and
the optimal number of clusters to be found is debatable: 2 or 3, see [4].

– Wine [5], which consists of 13 chemical attributes for n = 178 italian wines,
divided into three classes. Classes are well separable, so the indexes found
in the literature generally give the right number of clusters.

– Wisconsin Breast Cancer [5], composed of n = 699 malignant/benign cells
described by 9 features computed from digitized images.

– The artificial data set X30 introduced in [4], consisting in n = 30 observa-
tions in R2, for which three clusters are expected.

– The bidimensional artificial data set Bensaid [1] characterized by 3 classes
of very different cardinalities (6, 3 and 40).

– The original Starfield [15], which contains the position and light intensity of
n = 51 bright stars near Solaris. The expected number of clusters is 8 or 9,
depending on the papers.
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Table 4. Selected number of clusters in data sets D1 and D2 for different values of m.

data set m NPC NPE XB FS
lFORI

(>,⊥)S (>,⊥)A (>,⊥)H

D1

1.5 4 4 3 5 4 4 4
1.7 4 4 4 4 4 4 4
1.9 4 2 3 4 4 4 4
2.1 4 2 3 5 4 4 4
2.3 4 2 3 5 4 4 4
2.5 3 2 4 6 4 3 4

D2

1.5 5 4 3 5 4 4 4
1.7 4 4 3 3 4 4 4
1.9 4 2 3 4 4 4 4
2.1 3 2 3 5 4 4 4
2.3 4 2 3 3 4 3 4
2.5 4 2 4 4 4 3 4

Table 5 summarizes the results obtained on these data sets. The c? column
gives the expected number of clusters and the other columns show the optimal
number of clusters obtained using the validity indexes. The proposed index al-
ways finds the optimal number of clusters whatever the couple (>,⊥) while some
others do not.

Table 5. Selected number of clusters in benchmark data sets.

Data set c? NPC NPE XB FS
lFORI

(>,⊥)S (>,⊥)A (>,⊥)H

Iris 2 or 3 2 2 2 3 2 2 2
Wine 3 3 2 3 5 3 3 3
Breast 2 2 2 2 3 2 2 2
X30 3 3 2 3 7 3 3 3

Bensaid 3 3 2 3 7 3 3 3
Starfield 8 or 9 2 2 6 7 8 8 8

6 Conclusion

A new family of cluster validity indexes for fuzzy partitions has been proposed.
These indexes combine a new measure of overlap of clusters and a separation
measure. The novelty of the approach is that, for each data point to be clus-
tered, the relative importance of each membership degree and the relationship
of the degrees are taken into account through a combination of triangular norms
(>,⊥). Results obtained on artificial and benchmark data sets have shown that
the proposed family of indexes is most of time more efficient than well-known
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ones, less sensitive to the fuzzifier exponent and particularly robust in noisy en-
vironments.
Further results about properties of the proposed indexes based on the mathe-
matical properties of the agregation operators involved as well as guidelines to
choose a member (>,⊥) of the family appropriated to specific situations will
come soon.
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