
HAL Id: hal-00441343
https://hal.science/hal-00441343

Preprint submitted on 16 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On simplicity and stability of tangent bundles of rational
homogeneous varieties

Ada Boralevi

To cite this version:
Ada Boralevi. On simplicity and stability of tangent bundles of rational homogeneous varieties. 2008.
�hal-00441343�

https://hal.science/hal-00441343
https://hal.archives-ouvertes.fr


ON SIMPLICITY AND STABILITY OF THE TANGENT

BUNDLE OF RATIONAL HOMOGENEOUS VARIETIES

ADA BORALEVI

Abstract. Given a rational homogeneous variety G/P where G is com-
plex simple and of type ADE, we prove that the tangent bundle TG/P is
simple, meaning that its only endomorphisms are scalar multiples of the
identity. This result combined with Hitchin-Kobayashi correspondence
implies stability of the tangent bundle with respect to the anticanonical
polarization. Our main tool is the equivalence of categories between
homogeneous vector bundles on G/P and finite dimensional representa-
tions of a given quiver with relations.

1. Introduction

In [Ram67] Ramanan proved that irreducible homogeneous bundles on
rational homogeneous varieties are stable, and hence in particular simple.
If the underlying variety is Hermitian symmetric then this result applies to
tangent bundles. For the general case, the Hitchin-Kobayashi correspon-
dence gives a weaker result for the tangent bundle, polystability. In this
paper we show that in fact the tangent bundle of any G/P is simple, where
G is complex, simple and of type ADE. Simplicity and polystability com-
bined give stability.
Our main tool is the equivalence of categories between homogeneous bundles
on G/P and finite dimensional representations of a given quiver with rela-
tions. Once the machinery of this equivalence of categories is set up, the sim-
plicity of the tangent bundle turns out to be an immediate and surprisingly
easy consequence of it. Indeed one only needs to look at endomorphisms of
the bundle as endomorphisms of the associated quiver representation.

Homogeneous vector bundles have been classically studied using another
equivalence of categories, namely that between homogeneous bundles on
G/P and finite dimensional representations of the parabolic subgroup P .

In [BK90] Bondal and Kapranov had the idea of associating to any ratio-
nal homogeneous variety a quiver with relations. By putting the appropriate
relations one gets the aforementioned equivalence of categories between G-
homogeneous vector bundles on G/P and finite dimensional representations
of the quiver. The relations were later refined by Hille in [Hil94].

2000 Mathematics Subject Classification. 14F05,14M17,14D20,16G20.
Key words and phrases. Homogeneous Vector Bundle, Simplicity, Stability, Quiver

Representation.
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In [ACGP03] Álvarez-Cónsul and Garćıa-Prada gave an equivalent con-
struction, while in [OR06] Ottaviani and Rubei used the quiver for comput-
ing cohomology, obtaining a generalization of the well-known Borel-Weil-
Bott theorem holding on Hermitian symmetric varieties of ADE type.

We describe both equivalences of categories and give details on the quiver,
its relations and its representations in Sections 2 and 3.

Sections 4 and 5 contain results on simplicity and stability. We use the
quiver to prove that homogeneous vector bundles whose associated quiver
representation has a particular configuration—we call such bundles multi-
plicity free—are weakly simple, which means that their only G-invariant
endomorphisms are scalar multiples of the identity. Our result holds on any
G/P , where G is complex, simple and of type ADE:

Proposition A. Let E be a multiplicity free homogeneous vector bundle
on G/P . Let k be the number of connected components of the quiver Q|E .
Then H0(EndE)G = C

k. In particular if Q|E is connected, then E is weakly
simple.

It turns out that the tangent bundle TG/P of a rational homogeneous
variety of ADE type is multiplicity free and connected, and that moreover
the isotypical component H0(EndTG/P )G coincides with the whole space

H0(End TG/P ), or in other words that the bundle is simple.

Theorem B. Let TG/P the tangent bundle on a rational homogeneous
variety G/P , where G is a complex simple Lie group of type ADE and P
one of its parabolic subgroups. Then TG/P is simple.

If algebraic geometry, representation theory and quiver representations
give us simplicity, for stability differential geometry also joins the team. A
homogeneous variety G/P is in fact also a Kähler manifold, and as such
it admits a Hermite-Einstein structure. In virtue of the Hitchin-Kobayashi
correspondence this is equivalent to the polystability of its tangent bundle.
This together with Theorem B gives:

Theorem C. Let TG/P be the tangent bundle on a rational homogeneous
variety G/P , where G is a complex simple Lie group of type ADE, and P
one of its parabolic subgroups. Then TG/P is stable with respect to the anti-
canonical polarization −KG/P induced by the Hermite-Einstein structure.

In the case where G/P is a point-hyperplane incidence variety in P
n, we

obtain a complete understanding of the stability of the tangent bundle with
respect to different polarizations:
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Proposition D. Let F = F(0, n− 1, n) be the point-hyperplane incidence
variety, and set:

m(n) =
−n + n

√
4n2 + 4n − 3

2(n2 + n − 1)
.

Then the tangent bundle TF is stable with respect to the polarization OF(a, b)
if and only if it is semistable if and only if m(n)a ≤ b ≤ m(n)−1a.

We also show similar computations for SL4 /B.

In the last Section 6 we deal with moduli spaces. We quote and generalize
the results from [OR06], where the authors showed that King’s notion of
semistability [Kin94] for a representation [E] of the quiver QG/P is in fact
equivalent to the Mumford-Takemoto semistability of the associated bundle
E on G/P , when the latter is a Hermitian symmetric variety.
We can thus construct moduli spaces of G-homogeneous semistable bundles
E with fixed gr E on any homogenous variety G/P of ADE type.

Acknowledgements. This paper is part of my PhD thesis. I am very
grateful to my advisor Giorgio Ottaviani for the patience with which he
followed this work very closely and for always transmitting me lots of en-
couragement and mathematical enthusiasm. I would also like to thank Jean-
Pierre Demailly for inviting me to Grenoble and for his warm hospitality and
Michel Brion and the referee for many helpful comments.

2. Preliminaries

2.1. Notations and first fundamental equivalence of categories. Let
G be a complex semisimple Lie group. We make a choice ∆ = {α1, . . . , αn}
of simple roots of g = LieG and thus of some Cartan subalgebra h ⊂ g.
We call Φ+ (respectively Φ−) the set of positive (negative) roots. Then g

decomposes as:

g = h⊕
⊕

α∈Φ+

gα ⊕
⊕

α∈Φ−

gα .

A parabolic subgroup P ≤ G is a subgroup P conjugated to one of the
standard parabolic subgroups P (Σ), where:

Lie(P (Σ)) = h⊕
⊕

α∈Φ+

gα ⊕
⊕

α∈Φ−(Σ)

gα,

for a subset Σ ⊂ ∆ that induces Φ−(Σ) = {α ∈ Φ−|α =
∑

αi /∈Σ piαi}.
If Σ = ∆, then P (∆) = B is the Borel subgroup.

A rational homogeneous variety is a quotient G/P .
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A vector bundle E on G/P is called (G)-homogeneous if there is an action
of G on E such that the following diagram commutes:

G × E //

��

E

��
G × G/P // G/P

where the bottom row is just the natural action of G on the cosets G/P .
Note that the tangent bundle TG/P on any rational homogeneous variety
G/P is obviously a G-homogeneous bundle.

The category of G-homogeneous vector bundles on G/P is equivalent to
the category P -mod of representations of P , and also to the category of
integral p-modules, where p = Lie(P ), see for example [BK90].

More in detail, the group G is a principal bundle over G/P with fiber P .
Any G-homogeneous vector bundle E of rank r is induced by this principal
bundle via a representation ρ : P → GL(r). We denote E = Eρ. Indeed, E of
rank r over G/P is homogeneous if and only if there exists a representation
ρ : P → GL(r) such that E ≃ Eρ, and this entails the aforementioned
equivalence of categories.

For any weight λ we denote by Eλ the homogeneous bundle corresponding
to Σ∗

λ, the dual of the irreducible representation Σλ of the parabolic sugroup
with maximal weight λ. Here λ belongs to the fundamental Weyl chamber
of the reductive part of P . Indeed, P decomposes as P = R · N into a
reductive part R and a unipotent part N . At the level of Lie algebras
this decomposition entails a splitting p = r⊕ n, with the obvious notation
r = Lie R and n = Lie N . Moreover from a result by Ise [Ise60] we learn that
a representation of p is completely reducible if and only if it is trivial on n,
hence it is completely determined by its restriction to r.
The well-known Borel-Weil-Bott theorem [Bot57] computes the cohomology
of such Eλ’s by using purely Lie algebra tools, namely the orbit of the weight
λ under the action of the Weyl group. In particular the theorem states that
if λ is G-dominant then H0(Eλ) is the dual of the irreducible representation
of G with highest weight λ and all higher cohomology vanishes.

3. The quiver QG/P

3.1. Definition of the quiver QG/P and its representations. Other
than looking at homogeneous bundles as P -modules, it is useful to try a
different point of view and look at these same bundles as representations
of a given quiver with relations. For basics on quiver theory we refer the
reader to [DJ05] or [Kin94].

To any rational homogeneous variety G/P we can associate a quiver with
relations, that we denote by QG/P . The idea is to exploit all the information
given by the choice of the parabolic subgroup P , with its Levi decomposition
P = R · N .
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Let Λ be the fundamental Weyl chamber of G, and let Λ+ be the Weyl
chamber of the reductive part R. Then we can give the following:

Definition 3.1. Let G/P be any rational homogeneous variety. The quiver
QG/P is constructed as follows. The set of vertices is:

Q0 = Λ+ = {λ |λ dominant weight for R}.
There is an arrow connecting the vertices λ and µ if and only if the vector
space Hom(Ω1

G/P ⊗ Eλ, Eµ)G is non-zero.

Remark 3.1. Definition 3.1 is precisely the original one of Bondal and Kapra-
nov [BK90], later used also by Alvarez-Cónsul and Garćıa-Prada [ACGP03].
Arrows correspond to weights of the nilpotent algebra n, considered as an
r-module with the adjoint action.
In fact one could obtain an equivalent theory by considering the same ver-
tices with a smaller number of arrows, i.e. by taking only weights of the
quotient n /[n, n]. This is for example the choice made by Hille (see [Hil98]
and [Hil96]).

Note that vertices λ of QG/P correspond to irreducible homogeneous bun-
dles Eλ on G/P .

The relations on the quiver QG/P will be defined in Section 3.2.

Let now E be an homogeneous vector bundle over G/P . Let us use the
same notation E to denote the associated P -module. We want to associate
to E a representation [E] of the quiver QG/P . The bundle E comes with a
filtration:

(3.1) 0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Ek = E,

where each Ei/Ei−1 is completely reducible. Of course the filtration does
not split in general. We define gr E = ⊕iEi/Ei−1 for any filtration (3.1).
The graded bundle gr E does not depend on the filtration: in fact it is given
by looking at the p-module associated to E as a module over r, so that it
decomposes as a direct sum of irreducibles:

(3.2) gr E =
⊕

λ

Eλ ⊗ Vλ,

with multiplicity spaces Vλ ≃ C
k, where k ∈ Z≥0 is the number of times Eλ

occurs.
The representation [E] associates to the vertex λ of the quiver QG/P

precisely the multiplicity space Vλ in the decomposition (3.2).
Going on with the definition of the representation [E], given any λ, µ ∈ Q0

such that there is an arrow λ → µ ∈ Q1, we now need to define a linear map
Vλ → Vµ. This information is given by the nilpotent part n. More precisely,
it is given by the natural action of n on the P -module associated with E,
both viewed as r-modules:

θ : n⊗ gr E → gr E.
5



The morphism θ encodes all the information we need, including that on the
relations of the quiver.

If we have a vector bundle E we then have the graded gr E and the
morphism θ. Viceversa, if we have an r-module and a morphism that behaves
“just like θ”, we can reconstruct a p-module and hence a vector bundle.
More in detail, let us state and prove the following generalization of [OR06,
Theorem 3.1]:

Theorem 3.1. Consider n as an r-module with the adjoint action.

(1) Given a p-module E on X, the action of n over E induces a mor-
phism of r-modules:

θ : n⊗ gr E → gr E.

The morphism

θ ∧ θ : ∧2 n⊗ gr E → gr E

defined by θ ∧ θ((n1 ∧ n2)⊗ f) := n1 · (n2 · f)− n2 · (n1 · f) satisfies
the equality θ ∧ θ = θϕ in Hom(∧2 n⊗ gr E, gr E), where ϕ is given
by:

ϕ : ∧2 n⊗ gr E → n⊗ gr E

(n1 ∧ n2) ⊗ e 7→ [n1, n2] ⊗ e.

(2) Conversely, given an r-module F on X and a morphism of r-modules

θ : n⊗F → F

such that θ ∧ θ = θϕ, we have that θ extends uniquely to an action
of p over F , giving a bundle E such that gr E = F .

Proof. (1) Obviously θ is r-equivariant, almost by definition.
Take n1 and n2 in n. We have that:

θ ∧ θ((n1 ∧ n2) ⊗ f) = n1 · (n2 · f) − n2 · (n1 · f) = [n1, n2] · f,

which means exactly that θ ∧ θ = θϕ.
(2) For any f ∈ F and any r + n ∈ p = r⊕ n we set:

(3.3) (r + n) · f := r · f + θ(n ⊗ f).

We need to show that given any p1, p2 ∈ p, the action (3.3) respects
the bracket, i.e. that for every f ∈ F :

[p1, p2] · f = p1 · (p2 · f) − p2 · (p1 · f).

Now if both p1, p2 ∈ r, then there is nothing to prove.
If both p1, p2 ∈ n, then from the equality θ ∧ θ = θϕ, we get:

[p1, p2] · f = θ([p1, p2] ⊗ f) = θϕ((p1 ∧ p2) ⊗ f) =

= θ ∧ θ((p1 ∧ p2) ⊗ f) = p1 · (p2 · f) − p2 · (p1 · f).
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Finally, in case p1 ∈ r and p2 ∈ n, then [p1, p2] ∈ n and we have:

p1 · (p2 · f) = θ(p1 · (p2 ⊗ f)) = θ(([p1, p2] ⊗ f + p2 ⊗ (p1 · f)) =

= [p1, p2] · f + θ(p2 ⊗ (p1 · f)) = [p1, p2] · f + p2 · (p1 · f).

�

Remark that (3.2) entails that we have a decomposition:

(3.4) θ ∈ Hom(n⊗ gr E, gr E) =
⊕

λ,µ∈Q0

Hom(Vλ, Vµ) ⊗ Hom(n⊗Σ∗
λ,Σ∗

µ).

Lemma 3.2. [BK90, Proposition 2] In the ADE case dimHom(n⊗Σ∗
λ,Σ∗

µ)P

is either 0 or 1 for every λ, µ ∈ Λ+.

Remark 3.2. From now on G will thus always denote a complex Lie group
of ADE type. Nevertheless, the construction of the quiver with its relation
can be done for any type of Lie group, like in [ACGP03].

We can now conclude the construction of the representation of the quiver
[E] associated to the bundle E.
For any r-dominant weight λ fix a maximal vector vλ of Σ∗

λ (it is unique up
to constants). For any weight α of n, fix an eigenvector eα ∈ n.

Now suppose that there is an arrow λ → µ in the quiver. Then the vec-
tor space Hom(n⊗Σ∗

λ,Σ∗
µ)P is non-zero, and in particular is 1-dimensional.

Notice that by definition, being given by the action of n, the arrow will send
the weight λ into a weight µ = λ + α, for some negative root α ∈ Φ−(Σ)
(for we have gα ·Wλ ⊆ Wλ+α).
Then fix the generator fλµ of Hom(n⊗Σ∗

λ,Σ∗
µ)P that takes eα ⊗ vλ 7→ vµ.

Once all the generators are fixed, from (3.4) we write the map θ uniquely
as:

(3.5) θ =
∑

λ,µ

gλµfλµ,

and thus we can associate to the arrow λ
fλµ−−→ µ exactly the element gλµ in

Hom(Vλ, Vµ). All in all:

Definition 3.2. To any homogeneous vector bundle E on G/P we associate
a representation [E] of the quiver QG/P as follows.
To any vertex λ ∈ Q0 we associate the vector space Vλ from the decompo-
sition (3.2).
To any arrow λ → µ we associate the element gλµ ∈ Hom(Vλ, Vµ) from the
decomposition (3.4).

Notice that a different choice of generators would have led to an equivalent
construction.
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3.2. Second fundamental equivalence of categories. We introduce here
the equivalence of categories between homogeneous vector bundles on G/P
and finite dimensional representations of the quiver QG/P .
From Proposition 3.1 it is clear that by putting the appropriate relations on
the quiver, namely the equality θ ∧ θ = θϕ, we can get the following:

Theorem 3.3. [BK90, Hil94, ACGP03] Let G/P a rational homogeneous
variety of ADE type. The category of integral p-modules is equivalent to
the category of finite dimensional representations of the quiver QG/P with
certain relations R, and it is equivalent to the category of G-homogeneous
bundles on G/P .

We show here how one can derive the relations. For details, see [ACGP03].
Let λ, µ, ν ∈ Q0. We start by defining the morphism φλµν :

Hom(n⊗Σ∗
λ,Σ∗

µ) ⊗ Hom(n⊗Σ∗
µ,Σ∗

ν)
φλµν−−−→ Hom(∧2 n⊗Σ∗

λ,Σ∗
ν)

by setting φλµν(a ⊗ a′) : (n ∧ n′) ⊗ x 7→ z, where a : n ⊗ x 7→ y and
a′ : n′ ⊗ y 7→ z.

The image of the P -invariant part:

φλµν(Hom(n⊗Σ∗
λ,Σ∗

µ)P ⊗ Hom(n⊗Σ∗
µ,Σ∗

ν)
P ) ⊆ Hom(∧2 n⊗Σ∗

λ,Σ∗
ν)

P .

In particular recall once the choice of constants has been made, there are
fixed generators fλµ, where fλµ : eα ⊗ vλ 7→ vµ, and α = λ − µ. Then if we
set β = µ − ν, all in all:

φλµν(fλµ ⊗ fµν) : (eα ∧ eβ) ⊗ vλ 7→ vν .

Now consider the natural morphism ∧2 n → n sending n ∧ n′ 7→ [n, n′].
It induces a morphism φλν :

Hom(n⊗Σ∗
λ,Σ∗

ν)
φλν−−→ Hom(∧2 n⊗Σ∗

λ,Σ∗
ν).

Once again it is clear that the invariant part φλν(Hom(n⊗Σ∗
λ,Σ∗

ν)P ) is

contained in Hom(∧2 n⊗Σ∗
λ,Σ∗

ν)
P .

Theorem 3.1 together with the splitting (3.5) entail that we have an equal-
ity in Hom(∧2 n⊗Σ∗

λ,Σ∗
ν)

P :

(3.6)
∑

λ,ν

∑

µ

(

φλµν(fλµ ⊗ fµν)(gλµgµν) + φλν([fλµ, fµν ])gλν

)

= 0.

Finally, let {ck
λν} be a basis of the vector space Hom(∧2 n⊗Σ∗

λ,Σ∗
ν)

P , for

k = 1, . . . ,mλν , with mλν = dim(Hom(∧2 n⊗Σ∗
λ,Σ∗

ν)
P ). Expand:

φλµν(fλµ ⊗ fµν) =

mλν
∑

k=1

xk
λµνck

λν

φλν([fλµ, fµν ]) =

mλν
∑

k=1

yk
λνc

k
λν ,
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Then for every couple of vertices λ, ν, equality (3.6) gives us a system of
mλν equations that the maps gγδ satisfy:

(3.7) Rλν
k :

∑

µ∈Q0

xk
λµνgλµgµν + yk

λνgλν = 0

Definition 3.3. We define the relations R on the quiver QG/P as the ideal
generated by all the equations (that with a slight abuse of notation we keep
calling Rk):

Rλν
k :

∑

µ∈Q0

xk
λµνfλµfµν + yk

λνfλν = 0,

for k = 1, . . . ,mλν and for any couple of weights λ, ν ∈ Q0.

If P = B is the Borel subgroup, Definition 3.3 can be made more precise.
We show this with some details in Section 5 (see Definition 5.7).

4. Simplicity

4.1. Simplicity of multiplicity free bundles. In this section we work
on rational homogeneous varieties G/P , where G is complex, simple and of
type ADE.

Let E be a rank r homogeneous vector bundle on G/P , and let [E] be the
associated representation of the quiver QG/P . Denote by Q|E the subquiver
of QG/P given by all vertices where [E] is non-zero and all arrows connecting
any two such vertices. Clearly the support of Q|E has at most r vertices,
call them λ1, . . . , λn, n ≤ r. Notice also that the representation [E] of QG/P

induces a representation of the subquiver Q|E .

Definition 4.1. A homogeneous vector bundle E of rank r is multiplicity
free if and only if grE is multiplicity free.

Let now E be multiplicity free. Just by looking at the associated quiver
representation [E], we will show that the only G-invariant endomorphisms
that such a bundle can have are scalar multiple of the identity, i.e. that
the isotypical component H0(End E)G = C. If this holds we call the bundle
weakly simple.

Proposition 4.1. Let E be a multiplicity free homogeneous vector bundle
on G/P . Let k be the number of connected components of the quiver Q|E .
Then H0(EndE)G = C

k. In particular if Q|E is connected, then E is weakly
simple.

Proof. Suppose first that k = 1, so that the subquiver Q|E is connected.
Any element ϕ ∈ H0(End E)G is a G-invariant endomorphism ϕ : E → E.
In particular we can look at ϕ as a morphism [E] → [E] between represen-
tations of the same quiver. This means that we can look at ϕ as a family of
morphisms {ϕi : Vi → Vi | i = 1, . . . , n}. The hypothesis that E is multiplic-
ity free entails that in particular each ϕi = ki Id and hence ϕ = (k1, . . . , kn)
is in fact just an element of C

n.
9



By definition of morphisms of quiver representations, every time that there
is an arrow λi → λj in the quiver Q|E , there is a commutative diagram:

Vi

ki

��

// Vj

kj

��
Vi

// Vj

Remark that the two horizontal arrows are the same. This means that if
we fix the first constant k1, then ϕ is completely determined thanks to con-
nectedness. So this proves that H0(EndE)G ⊆ C.
On the other hand, notice we have homotheties, hence C ⊆ H0(EndE)G,
and the thesis follows for the case k = 1.
The same argument applies for each connected component, and this com-
pletes the proof. �

4.2. Simplicity of tangent bundles. The results of the previous section
can be applied to a “special” multiplicity free homogeneous bundle: the
tangent bundle TG/P , with G simple of type ADE.

Let TG/P be the tangent bundle on G/P . Recall that any standard para-
bolic subgroup P = P (Σ) is given by a subset Σ ⊆ ∆ of simple roots. Define
also the subset of positive roots Φ+

P = {α ∈ Φ+ | −α /∈ Φ−(Σ)}. Notice that

when P = B is the Borel, Σ = ∆ and Φ+
B = Φ+.

The bundle TG/P is a homogeneous bundle of rank r = dim G/P = |Φ+
P |,

whose weights are exactly the elements of Φ+
P .

Remark 4.1. It is convenient for us to take into account all the weights of
the tangent bundle, and not only the highest weights. Obviously in the case
of the Borel it doesn’t make any difference. If P is any other parabolic
subgroup of G, this means that instead of the tangent bundle TG/P we are
considering its pull-back π∗ TG/P via the (flat!) projection

π : G/B → G/P.

Projection formula (see [Har77], II.5) together with the fact that π∗OG/B =
OG/P guarantee that:

H0(G/B,End(π∗ TG/P )) = H0(G/B, π∗(End TG/P )) = H0(G/P,End TG/P ).

Hence we are allowed to work on π∗ TG/P instead of TG/P . To simplify the
notation we write TG/P := π∗ TG/P .

Now we make the easy but fundamental remark that for every homo-
geneous variety G/P , the rank of TG/P (that is, the dimension of G/P )
coincides with the number of weights of the associated representation and
also with the number of nonzero vertices in the quiver representation [TG/P ].
Hence these vertices must all have multiplicity one. Moreover, notice that
whenever α 6= −β we have [gα, gβ] = gα+β (recall that we are assuming g

simple here). All in all:
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Theorem 4.2. For every homogeneous variety G/P the bundle TG/P is
multiplicity free and connected.

We will now show that in the case of the tangent bundle TG/P all endo-
morphisms are G-invariant endomorphisms, or in other words that

H0(End(TG/P ))G = H0(End(TG/P )).

Lemma 4.3. Let G/P any homogeneous variety of type ADE. For any
simple G-module W 6= C, H0(gr End(TG/P ))W = 0.

Proof. This is a direct computation.
We use here the notation for positive and negative roots Φ+ and Φ− used
for example in [FH91], and we call {Li} the standard basis of h∗. In the
AN−1 case (G = SLN ):

Φ+ = {Li − Lj}1≤i<j≤N and Φ− = {Li − Lj}1≤j<i≤N ,

and the fundamental Weyl chamber associated is the set:

(4.1) Λ = {
∑

aiLi | a1 ≥ a2 ≥ . . . ≥ aN}.
For the DN case (G = SO2N ):

Φ+ = ({Li −Lj} ∪ {Li + Lj})i<j and Φ− = ({Li −Lj} ∪ {−Li −Lj})i>j ,

and the fundamental Weyl chamber associated:

(4.2) Λ = {
∑

aiLi | a1 ≥ . . . ≥ aN−1 ≥ |aN |}.
By the Borel-Weil-Bott theorem [Bot57], an irreducible bundle Eν has non-
zero H0(Eν) exactly if and only if ν lies in the fundamental Weyl chamber.

For the case of AN−1: let ν be an irreducible summand of EndTSLN /P .

Hence ν is of the form α + β with α ∈ Φ+ and β ∈ Φ−.
Practically speaking, α is a vector in Z

N having 1 at the i−th place, −1 at
the j−th place and 0 everywhere else, with 1 ≤ i < j ≤ N ; similarly β has
a −1 at the h−th place, a 1 at the k−th place and 0 everywhere else, with
again 1 ≤ h < k ≤ N . What does a sum ν = α + β look like? Fix α. Then
only six possibilities can occur for β, namely

either: h < k ≤ i < j,
or: h ≤ i ≤ k ≤ j,
or: h ≤ i < j ≤ k,
or: i ≤ h < k ≤ j,
or: i ≤ h ≤ j ≤ k,
or else: i < j ≤ h < k.

One can check directly that the condition (4.1) is satisfied exactly when
β = −α. In this case ν = 0 and H0(E0) = C, which is what we wanted.

Let us now move to the case DN . Here the situation is complicated by the
fact that we deal with more roots, and thus with more possible combinations
for the sum ν = α + β. Nevertheless the condition (4.2) for ν to belong to
the fundamental Weyl chamber is stronger than that for AN−1 (4.1), thus
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making our life easier.
A direct check shows that the thesis holds true for N = 4.
So let us suppose we are in the case DN , with N ≥ 5. The weight ν is a
vector of Z

N having at most 4 non-zero elements ai ∈ {±1,±2} (thus since
N ≥ 5 there is at least one coordinate equal to 0).
Look at the last coordinate aN : if aN 6= 0, then there is no way for condition
(4.2) to be satisfied, and we are done. If instead aN = 0, we look at the
other coordinates: if all the other elements are non-zero, then it means that
we are necessarily in the case D5, and such elements are alternating 1’s and
-1’s, hence we are done again. If there is another ai = 0 with i 6= N − 1, we
are also done.
Finally, if we are in the case aN−1 = aN = 0, we repeat the argument above.
We can go on until we either get to a1 = a2 = . . . = aN = 0, or we encounter
an element that cannot satisfy (4.2), and this concludes the proof for the
D-case.

The proof for the three exceptional cases E6, E7 and E8 is nothing but
a brute force check. First write down all the positive roots λi, i = 1, . . . ,m
for En (in the three cases respectively m = 36, 73 and 120). The most con-
venient thing is writing them down in the basis formed by simple roots. By
computing as usual all differences of type λi − λj , we get all the irreducible
summands of gr EndT. Using the Cartan matrix we can find their coeffi-
cients in the basis of fundamental weights, where the condition of belonging
to the fundamental Weyl chamber just means having all non-negative co-
efficients. Then one simply checks that the only irreducible summands of
gr EndT satisfying this condition are those where λi = λj . �

Theorem 4.4. Let TG/P the tangent bundle on a flag manifold G/P , where
G is a complex simple Lie group of type ADE, and P one of its parabolic
subgroups. Then TG/P is simple.

Proof. Proposition 4.1, Theorem 4.2 and Remark 4.1 imply that the isotypi-
cal component H0(End(TG/P ))G = H0(End(TG/P ))G = C. But from Lemma

4.3 we get that H0(End(TG/P )) = H0(End(TG/P ))G, and we are done. �

5. Stability

5.1. Simplicity and stability. Let us start this section with some basic
definitions.

Definition 5.1. Let H be an ample line bundle on a projective variety X
of dimension d. For any coherent sheaf E on X define the slope µH(E) as:

µH(E) =
c1(E) · Hd−1

rkE
.

E is called H-stable (respectively H-semistable) if for every coherent subsheaf
F ⊂ E such that E/F is torsion free and 0 < rkF < rkE we have:

µH(F ) < µH(E) (respectively ≤).
12



This notion of stability is known as Mumford-Takemoto stability.

Definition 5.2. In the same setting as above, E is called H-polystable if it
decomposes as a direct sum of H-stable vector bundles with the same slope.

It is a well-known fact that for vector bundles stability implies polystabil-
ity and the latter implies semistability, see for example [Kob87]. Also stabil-
ity implies simplicity, and the converse is not true in general (see [OSS80],
or [Fai06] for a homogeneous counterexample).

We now want to look at our homogeneous vector bundles from the point
of view of differential geometry. A homogeneous variety G/P is in particular
a homogeneous Kähler manifold. For an exhaustive introduction on Kähler-
Einstein manifolds we refer the reader to [Bes87]. Here we content ourselves
with quoting the results on Kähler-Einstein and Hermite-Einstein structures
that we need. The following holds:

Theorem 5.1. [Bes87, Theorem 8.95] Every compact, simply connected ho-
mogeneous Kähler manifold admits a unique (up to homothety) invariant
Kähler-Einstein structure.

Theorem 5.1 above implies that the tangent bundle TG/P admits a Kähler-
Einstein structure, and hence in particular an Hermite-Einstein structure.

If X is a compact Kähler manifold and E a holomorphic bundle over X,
a Hermitian metric on E determines a canonical unitary connection whose
curvature is a (1, 1)-form F with values in EndE.
The inner product of F with the Kähler form is then an endomorphism of
E. Metrics which give rise to connections such that the endomorphism is a
multiple of the identity are called Hermite-Einstein metrics.

Indeed, the notion of an Hermite-Einstein connection originated in physics.
Hitchin and Kobayashi made a very precise conjecture connecting this no-
tion to that of Mumford-Takemoto stability, which is known as the Hitchin-
Kobayashi correspondence. Uhlenbeck and Yau showed in [UY86] that the
conjecture holds true for compact Kähler manifolds.

Theorem 5.2. [UY86] A holomorphic vector bundle over a compact Kähler
manifold admits an Hermite-Einstein structure if and only if it is polystable.

As an immediate consequence we get that:

Corollary 5.3. Let G/P a rational homogeneous variety of type ADE.
Then the tangent bundle TG/P is polystable with respect to the anticanonical
polarization −KG/P induced by the Hermite-Einstein structure.

Recall now that a simple bundle is in particular indecomposable. Thus
the polystability of the tangent bundle TG/P combined with its simplicity
implies that the direct sum of stable bundles in which it decomposes is
reduced in reality to only one summand, or in other words that:

Theorem 5.4. Let G/P a rational homogeneous variety of type ADE. Then
the tangent bundle TG/P is stable with respect to the anticanonical polariza-
tion −KG/P induced by the Hermite-Einstein structure.
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5.2. Some bounds on stability and polarizations in the An case. A
natural question arising from Theorem 5.4 is whether or not there are other
polarizations having the same property of the anticanonical one, and in
case we get a positive answer, can we describe them? This section contains
an answer to these questions in some specific cases: in particular here we
assume G = SLn+1.

We start with point-hyperplane incidence variety F(0, n−1, n) in P
n: these

are homogeneous varieties of dimension 2n − 1 and of the form SLn+1 /P ,
where P = P (Σ) is the parabolic obtained removing only the first and the
last simple roots of the Lie algebra, i.e. Σ = {α1, αn}.
Proposition 5.5. Let F = F(0, n − 1, n) be the point-hyperplane incidence
variety, and set:

m(n) =
−n + n

√
4n2 + 4n − 3

2(n2 + n − 1)
.

Then the tangent bundle TF is stable with respect to the polarization OF(a, b)
if and only if it is semistable if and only if:

m(n)a ≤ b ≤ m(n)−1a.

Proof. Start by noticing that:

F(0, n − 1, n) = P(QPn),

meaning that we can look at our varieties as the projectivization F = P(QPn)
of the quotient bundle QPn ≃ TPn(−1) on P

n. We get projections:

F

β

!!B
BB

BB
BB

B

α

~~~~
~~

~~
~~

P
n

P
n∨

Hence Pic(F(0, n−1, n)) = Z
2 is spanned by F = β∗OPn∨(1) = OF(1, 0) and

G = α∗OPn(1) = OF(0, 1).
Recalling that the elements of F are couples (p,H)=(point, hyperplane) such
that p ∈ H ⊂ P

n we also get the identification:

F = {(p,H) | p ∈ H, p = p0} and G = {(p,H) | p ∈ H,H = H0}.
Moreover, we have two short exact sequences:

0 → OF → π∗Q∗
Pn ⊗O(1)rel → Trel → 0(5.1)

0 → Trel → TF → π∗ TPn → 0.(5.2)

All in all, the (quiver associated to the) tangent bundle TF to these vari-
eties has the simple look:

(5.3) •n−1

•1 //

OO

•n−1

14



So gr TF has 3 irreducible summands, all with multiplicity 1 and whose rank
is described in the picture (5.3) above.
Now that we have understood the tangent bundle, we can look at its sub-
bundles. Of course there are more than two subbundles. Yet it is enough
to check the stability condition only on the two homogeneous subbundles,
in virtue of a criterion given by Rohmfeld in [Roh91], and later refined by
Faini in [Fai06]:

Theorem 5.6 (Rohmfeld-Faini). Let H be an ample line bundle. If a homo-
geneous bundle E = Eρ is not H-semistable then there exists a homogeneous
subbundle F such that µH(F ) > µH(E).

Since our tangent bundles have the particular configuration shown in
(5.3), all we need to do is just look at the polarizations H = aF + bG
such that:

{

µH(E′) < µH(TF)
µH(E′′) < µH(TF)

where the subbundles E′ and E′′ are the irreducible rank n − 1 bundles in
the following picture:

E′ = •

◦ ◦

E′′ = ◦

◦ •
Knowing all the weights of the representation associated to our bundles,

we easily compute their first Chern class, so that the two inequalities above
read:

(5.4)

{

(−λ1+nλ2)·(aλ1+bλ2)2n−2

n−1 < (nλ1+nλ2)·(aλ1+bλ2)2n−2

2n−1
(nλ1−λ2)·(aλ1+bλ2)2n−2

n−1 < (nλ1+nλ2)·(aλ1+bλ2)2n−2

2n−1

Intersection theory is easy to understand in this particular case; out of
all products

F iGj , i + j = 2n − 1,

the only non-vanishing ones will be (recall that we are pulling back from a
P

n!):
{

Fn−1Gn = FnGn−1 = 1
F iGj = 0 for i, j 6= n, n − 1, i + j = 2n − 1

We stress the fact that there is a complete symmetry P
n ↔ P

n∨, and thus
F ↔ G. Simplifying (5.4), we get that TF is stable if and only if:

{

(n2 + n − 1)b2 + nab − n2a2 > 0
−n2b2 + nab + (n2 + n − 1)a2 > 0

And from these two inequalities one gets that TF is stable with respect to
H = aF + bG if and only m(n)a ≤ b ≤ m(n)−1a, where m(n) is defined as
in the statement of Proposition 5.5.
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The only thing left to check is the equivalence “stable ⇔ semistable”, but
this simply follows from the fact that the conditions for semistability are
just the conditions (5.4) where we substitute the sign < with a ≤.
But in reality equality never holds, for m(n) is an irrational coefficient (be-
cause 4n2 + 4n − 3 = (2n + 1)2 − 4), while we need (a, b) ∈ Z

2. �

Remark 5.1. An interesting observation is that as n grows bigger m(n)
approaches 1. Hence the cone of polarizations with respect to which TF is
stable collapses to the line a = b, which is the one corresponding to the
anticanonical. The collapsing process is illustrated in Figure 1 below, where
we have drawn the cone for—respectively—n = 2 and n = 20 in the space
of polarizations (a, b). The dotted line is the anticanonical polarization
{a = b}.

0

1

2

3

4

5

6

7

1 2 3 4 5

x

0

1

2

3

4

5

1 2 3 4 5

x

Figure 1. The cone for n = 2 (left) and n = 20 (right).

We wish to obtain the same type of characterization as Proposition 5.5
for other homogeneous varieties.

The next simplest case after the incidence varieties with Picard group Z
2

is the full flag manifold F = SL4 /B, with Pic(F) = Z
3 and dimension 6.

The weights of the tangent bundle are the 6 positive roots of SL4. Before
we can show how the the quiver representation [TF] looks like, we need
to explain here how the relations on the quiver work. In the Borel case,
Definition 3.3 can be made more explicit.

For each root α, let eα ∈ gα be the corresponding Chevalley generator, and
define the Chevalley coefficients Nαβ by [eα, eβ ] = Nαβeα+β , if α + β ∈ Φ+,
and Nαβ = 0 otherwise.

Proposition 5.7. [ACGP03, Proposition 1.21] The relations R on the
quiver QG/P are the ideal generated by all the equations:

R(α,β) = fλµfµν − fλµ′fµ′ν − Nαβgλν

for α < β ∈ Φ+ and for any couple of weights λ, ν ∈ Q0, where α+β = λ−ν,
µ = λ + α and µ′ = λ + β.
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Let now G = SLN . For the sake of simplicity we indicate with eij the
elementary matrix with weight Li − Lj .

Take a couple of roots α < β ∈ Φ+, α = Li − Lj and β = Lh − Lk

(with i < j). Note that in this case the non-zero coefficients Nαβ are all ±1.
The only possibility for the coefficient Nαβ to be non-zero is if either j = h
(⇒ Nαβ = 1), or i = k (⇒ Nαβ = −1). But then from Proposition 5.7:

R(Li−Lh,Lh−Lk) = eihehk − ehkeih − eik = 0,

R(Li−Lj ,Lh−Li) = eijehi − ehieij + ehj = 0.

In other words the relations tell us nothing other than [eih, ehk] = eik.
Now suppose j 6= h and i 6= k, so that Nαβ = 0. The relations are thus:

R(Li−Lj ,Lh−Lk) = eijehk − ehkeij = 0,

for any i, j, h, k + 1, . . . , N .
All in all the relations that we need to put on the quiver QF for a full flag

manifold F = SLN /B are nothing but the Serre relations:

R(Li−Lh,Lh−Lk) = [eih, ehk] = eik,(5.5)

R(Li−Lj ,Lh−Li) = [eij , ehi] = −ehj,(5.6)

R(Li−Lj ,Lh−Lk) = eijehk − ehkeij = 0, for i 6= k, j 6= h.(5.7)

For N = 4, we will have in particular that [e12, e34] = 0, so the corre-
sponding arrows commute.

For SL4/B the quiver representation [TF] looks like in (5.8). We have
indicated to which element of n correspond the arrows.

(5.8) TF = •

•
e23

OO�
�

�
e12 ///o/o/o •

•
e34

OO

e12

///o/o/o •
e34

OO

e23

//___ •

The relations tell us that the square below is commutative:

• e12 ///o/o/o •

•
e34

OO

e12

///o/o/o •
e34

OO

Now let’s go back to stability computations. Again by Theorem 5.6 all
we need to do is identify all the homogenous subbundles F of the tangent
bundle TF, and then impose the stability condition µH(F ) < µH(TF); this
will give us a necessary and sufficient condition for the polarization H to be
such that TF is H-stable.
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All the homogenous subbundles we need to analyze are thus the following
six:

E1 = •

◦ ◦

◦ ◦ ◦

E2 = ◦

◦ •

◦ ◦ ◦

E3 = ◦

◦ ◦

◦ ◦ •

E4 = •

•

OO�
�

�

///o/o/o •

◦ ◦ ◦

E5 = ◦

◦ •

◦ •

OO

//___ •

E6 = •

•

OO�
�

�

///o/o/o •

◦ •

OO

//___ •

Now we need to compute the first Chern class of all these bundles.
The elements of F are triples (p, ℓ, π)=(point, line, plane) such that p ∈ ℓ ⊂
π ⊂ P

3. A basis for the Picard group is given by:






F = {(p, ℓ, π) | p ∈ π0, π0 fixed }
G = {(p, ℓ, π) | ℓ ∩ ℓ0 6= ∅, ℓ0 fixed }
H = {(p, ℓ, π) | p0 ∈ π, p0 fixed }

They correspond to the pull-back (via the standard projection) of the
tautological bundle O(1) from respectively P

3 (↔ F ), the Grassmannian of

lines in P
3

G(1, 3) (↔ G) and P
3∨ (↔ H). We underline the symmetry

between F and H.
Since we are looking for all polarizations OF(a, b, c) = aF + bG+ cH such

that for all i = 1, . . . , 6:

(5.9)
c1(Ei)(aF + bG + cH)5

rkEi
<

c1(TF)(aF + bG + cH)5

6
,

we are interested in intersections F iGjHk, where i + j + k = 6.
Intersection theory brings us to:
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





FG4H = HG4F = F 2G2H2 = FG3H2 = F 2G3H = 2
F 3G2H = FG2H3 = F 3GH2 = F 2GH3 = 1
F iGjHk = 0 for all other i, j, k s.t. i + j + k = 6

With the help of a computer algebra system and the intersections above
we see that the six inequalities (5.9) define a cone around the line {a = b = c}
that corresponds to the anticanonical polarization −KF = OF(2, 2, 2).

Figure 2 below shows a section of this cone cut by the plane {a+b+c = 3}
orthogonal to the “anticanonical line”. It is somewhat unexpected that the
region that we obtain is not convex. In fact from general theory we learn
that the area would be convex if we were considering all possible characters
in the definition of stability, and not just the ones arising from geometric
polarizations given by ample line bundles like in our case. In the next section
we will explain with some more detail the question of characters, stability
and moduli spaces.

Figure 2. Polarizations for SL4 /B

6. Moduli and stability

There is a notion of semistability of representations of quivers introduced
by King in [Kin94], which is suitable to construct moduli spaces according
to the Geometric Invariant Theory (GIT from now on).
In their paper [OR06] Ottaviani and Rubei showed that King’s notion of
semistability for a representation [E] of the quiver QG/P is in fact equivalent
to the Mumford-Takemoto semistability of the associated bundle E on X =
G/P , when the latter is a Hermitian symmetric variety. They thus obtained
moduli spaces of G-homogeneous semistable bundles with fixed gr E.

In this section we recall some of these results and show how they can
be extended to our more general setting where X is any—not necessarily
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Hermitian symmetric—homogeneous variety.
Consider the moduli problem of homogeneous vector bundles E on X with
the same gr E and thus with the same dimension vector α = (αλ) ∈ Z

|Q0|.
Once we have made the choice of vector spaces Vλ with dimension αλ,

the isomorphism classes of representations of the quiver QX with the same
dimension vector α are associated with certain orbits of the group:

GL(α) :=
∏

λ∈Q0

GL(Vλ)

acting over

R(QX , α) := ⊕a∈Q1
Hom(Vta, Vha)

by (g · φ)a = ghaφag
−1
ta , and specifically over the closed subvariety VX(α) ⊆

R(QX , α) defined by the relations in our quiver.

The affine quotient Spec(C[VX(α)]GL(α)) is a single point, represented by
gr E itself, and it thus has no interest for our purposes.

Following [Kin94], we call a character of the category CQX − mod an
additive function σ : K0(CQX − mod) → R on the Grothendieck group.
(For the sake of simplicity we denote by CQX − mod the category of left
modules on the path algebra (CQX ,R) of the quiver QX with relations R:
by writing only CQX it is understood that we are modding out the path
algebra by the ideal of relations.)

A representation [E] of the quiver is called σ-semistable if σ([E]) = 0 and
every subrepresentation [E′] ⊆ [E] satisfies σ([E′]) ≤ 0.
Moreover [E] is called σ-stable if the only subrepresentations [E′] satisfying
σ([E′]) = 0 are [E] itself and 0.

When σ takes integer values, there is an associated character χσ for GL(α)
acting on R(QX , α). More precisely, King shows that the characters of
GL(α) χσ, χσ : GL(α) → C

∗ are given by:

χσ(g) =
∏

λ∈(QX )0

det(gλ)σλ

for σ ∈ Z
|Q0| such that

∑

λ σλαλ = 0.
A point in R(QX , α) corresponding to a representation [E] ∈ CQX −mod

is χσ-semistable (respectively χσ-stable) if and only if [E] is σ-semistable
(respectively σ-stable).

We stress the fact that σ ∈ Hom(CQX − mod, Z) can be simply seen as
an homomorphism that applied to Eλ gives σλ.

A function f ∈ C[VX(α)] is called a relative invariant of weight σ if

f(g · x) = χσ(g)f(x),

and the space of such relatively invariant functions is denoted by:

C[VX(α)]GL(α),σ.
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So once we have fixed the dimension vector α and a character σ, we can
define the moduli space MX(α, σ) by:

MX(α, σ) := Proj
(

⊕n≥0 C[VX(α)]GL(α),nσ
)

,

which is projective over Spec(C[VX(α)]GL(α)), hence it is a projective variety.
In fact MX(α, σ) has a more geometrical description as the GIT quotient

of the open set VX(α)ss of χσ-semistable points.
Fix an ample line bundle H (a polarization).

Every ample line bundle H defines a character σH by:

σH(α)λ = rk(E)(c1(Eλ)Hn−1) − (c1(gr E)Hn−1) rkEλ,

where n is the dimension of the underlying variety.
Notice that given an F ∈ CQX −mod with dimension vector α and given

a fixed character σ, we can define the slope of F with respect to σ (or slope
of α w.r.t. σ):

µσ(F ) = µσ(α) =
∑

λ∈Q0

σλαλ.

An object is then called µσ-(semi)stable if and only if it is σ-(semi)stable.
Recall now from Theorem 3.1 that a homogeneous bundle E is determined

by θ ∈ Hom(gr E, gr E ⊗ TX) such that θ ∧ θ = ϕθ.

Theorem 6.1. [OR06, Generalization of Theorem 7.1] Let E be a homoge-
neous bundle on a rational homogeneous variety X, and let α be the dimen-
sion vector corresponding to gr E. Fix an ample line bundle H giving the
character σ ∈ Hom(CQX −mod, Z). Then the following facts are equivalent:

(i) for every G-invariant subbundle K, we have µσ(K) ≤ µσ(E) (equi-
variant semistability);

(ii) for every subbundle K such that θE(gr K) ⊂ gr K ⊗ TX , we have
µσ(K) ≤ µσ(E) (Higgs semistability);

(iii) the representation [E] if QX is σ-semistable, according to [Kin94]
(quiver semistability);

(iv) E is a χσ-semistable point in VX(α) for the action of GL(α) [Kin94]
(GIT semistability);

(v) for every subsheaf K, we have µH(K) ≤ µH(E) (Mumford-Takemoto
semistability).

Proof. The equivalence (i) ⇔ (ii) follows from the fact that a subbundle
K ⊂ E is G-invariant if and only if θE(gr K) ⊂ gr K ⊗TX . The equivalence
(ii) ⇔ (iii) is just a rephrasing of the second fundamental equivalence of
categories. The equivalence (iii) ⇔ (iv) is proved in [Kin94, Proposition
3.1]. In fact this equivalence holds true even for those characters σ that do
not have a geometric interpretation as the one induced by a polarization
that we chose. Finally, the equivalence (i) ⇔ (v) is proved for example in
[Mig96]. �

With the same reasoning one can prove that:
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Theorem 6.2. [OR06, Generalization of Theorem 7.2] Let E be a homoge-
neous bundle on a rational homogeneous variety X, and let α be the dimen-
sion vector corresponding to gr E. Fix an ample line bundle H giving the
character σ ∈ Hom(CQX −mod, Z). Then the following facts are equivalent:

(i) for every proper G-invariant subbundle K, we have µσ(K) < µσ(E)
(equivariant stability);

(ii) for every proper subbundle K such that θE(gr K) ⊂ gr K ⊗ TX , we
have µσ(K) < µσ(E) (Higgs stability);

(iii) the representation [E] if QX is σ-stable, according to [Kin94] (quiver
stability);

(iv) E is a χσ-stable point in VX(α) for the action of GL(α) [Kin94]
(GIT stability);

(v) E ≃ W ⊗ E′ where W is an irreducible G-module, and for every
proper subsheaf K ⊂ E′, we have µH(K) < µH(E′) (Mumford-
Takemoto stability).

Proof. The proof is the same of Theorem 6.1. The equivalence (i) ⇔ (v) is
proved in [Fai06]. �

We remark that case (v) in Theorem 6.2 is more involved with respect to
the naive expectation coming from (v) in Theorem 6.1.
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