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Abstract — Two analytical solutions based on
transmission-line theory for the total power radiated
by a multiconductor line above a ground-plane are
proposed. The line is not assumed to be electrically short
or close to the ground-plane, thus making the proposed
model suitable for assessing the emission/immunity of
actual transmission-lines employed in industrial contexts
such as in the automotive domain, in railway lines and
power-distribution lines. The model allows an imperfect
ground plane to be considered through the complex-image
approximation, together with propagation losses. Numerical
and experimental results are provided as a validation,
while an empirical rule to assess the accuracy of the
results is proposed. The two expressions aim at allowing
fast parametric analysis of radiation during the design
phase of the electrical and geometrical configuration of an
unshielded MTL.

I. I NTRODUCTION

Transmission-lines can act as antennas, thus providing
the main gateway for radiated interference/subsceptibility.
In particular, in many industrial applications multiconduc-
tor transmission-lines (MTLs) are mostly unshielded, so
that they play a major role in EMC emission/immunity
tests. Recently, several authors have suggested the use
of new test procedures to characterize equipments from a
radiation view-point. These are based on the measurement
of the total radiated power (TRP) [1], [2], a global
approach opposed to the classic one of characterizing
the maximum field radiated at a certain distance by
an equipment under test (EUT). The TRP has been
historically measured by several means [3], all of them
requiring the complete characterization of the radiation
pattern of the EUT which, for electrically large devices,
is very sensitive to the geometry and excitation of the
EUT. In particular, the presence of field nulls complicates
the experimental measurement of the radiation patterns.
A simpler and far more effective way of providing an
estimation makes use of mode-stirred reverberation cham-
bers (MSRC): a statistical evaluation of the TRP is thus
provided and can be related to the maximum radiated field
by considerations on the EUT electrical dimensions [4].
Besides, TRP is in itself a fundamental quantity for
the characterization of any power-radiating equipment.
Currently, it is mostly used in the antenna domain for
the characterization of radiation efficiency [5], but the
pertinence of this methodology in the EMC domain is
bound to grow as the electrical dimensions of EUTs
increase.

Although the TRP can be easily measured by means of
MSRCs (as shown in Section V), its numerical computa-
tion during the design phase requires suitable tools, which
could be divided into two groups: 1) analytical results
from antenna theory, usually developed for the estimation
of the radiation resistance of wire antennas; 2) methods
based on a power-balance procedure.

In the first group the radiation resistance, and therefore
the TRP, is usually computed by integrating Poynting’s
vector over a closed surface enclosing the antenna [6].
By approximating the actual current-distribution along the
antenna conductors through simple analytical expressions,
this double integration can be carried out analytically, thus
obtaining a closed-form solution for the TRP. The prob-
lem with this approach is that the mathematical expres-
sions involved quickly become unwieldy; a typical way of
avoiding this problem is to apply simplifying hypothesis
such as assuming the line to be electrically short, or to
neglect losses [6], [7]. Unfortunately, such hypothesis are
very limiting when these models are applied to problems
outside their original context. Currently applied standards
require to test radiated emissions beyond 1 GHz, where
these lines can be no longer approximated as electrically
short. To the best of our knowledge, only one attempt has
been made to derive a closed-form solution for the TRP of
an electrically long line [8]:however, in the approximate
solution proposed by Storer et al. the line was assumed
to be electrically very close to an ideal ground-plane.

Conversely, power-balance methods estimate the
amount of power radiated by a device by assessing the
difference between the active power going into its ports
and that coming out of them. The amount of power
missing from this balance is somehow “lost” inside the
device. Considering the case of a transmission-line, this
missing power can be associated to two main phenom-
ena: conversion from electric power into thermic one by
Joule’s effect (ohmic losses) and conversion from electric
power into radiating electromagnetic power (radiation
losses). By estimating the amount of power lost into
ohmic losses, one can easily assess the TRP. Nevertheless,
applying it in a modelling problem requires suitable
tools. In fact, in order to apply the power balance pro-
cedure, a full-wave model of the transmission-line must
be used. This task can be achieved by means of two
broad approaches: on the one hand numerical models
directly solving Maxwell’s equations; on the other hand,
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Fig. 1. The transmission-line and its reference system.

by applying analytical models extending the validity of
TLT by including radiation losses. This latter approach
has been pursued by several authors in recent years [9]-
[12]. Although these techniques provide a very powerful
tool for high-frequency modelling of transmission-lines,
their actual implementation is far from being accessible to
the average industrial user. Conversely, the application of
numerical methods may require a significant computation-
time in the design phase. Therefore, both these two groups
of solutions should be rather applied in a context where
high-level skills are available, as well as time is not a
constraint.

The aim of this paper is to present an alternative
analytical solution for the TRP of an electrically long
multiconductor line. In particular, the basic idea is to
provide an estimation of the TRP from a TLT description
of an MTL: this approach is interesting since TLT does
not require high-level skills, so that it would lead to a
simpler implementation. Furthermore, engineers dealing
with transmission line problems already make use of TLT
modelling, so that the proposed model would appear as a
sort of natural extension for the assessment of the TRP.
Since the proposed model deals with open lines, it can
be directly applied not just to the automotive domain,
but also for the assessment of the radiation efficiency
of interferences propagating along railway lines, or that
of high-frequency telecommunication signals in power-
line communications. Such an analytical model, although
inevitably affected by limitations, could be effectively
employed in parametric analyses of the TRP for a line,
much faster than with a numerical model. This would
allow to identify the most interesting configurations (e.g.
worst-cases or best ones) and to apply full-wave models
just to a smaller subset of configurations.

II. T HE MODEL

The system considered here is a uniform multicon-
ductor line of finite lengthL , located above an infinite
ground-plane. For the sake of simplicity, the case of a
single-wire line will be considered first (Fig. 1). The
proposed analytical solution is based upon the following
hypotheses:

1) the thin-wire approximation holds for the overhead
conductor,

2) the ground-plane is boundless,
3) the medium in which the line is immersed is loss-

less,
4) the current-distribution along the line can be de-

scribed as the sum of two complex exponentials,
and

5) the radiation due to the discontinuities introduced
by the line ends (e.g. vertical risers) is assumed
to be negligible, i.e., the line is regarded as the
main source of radiation or as the main gateway
for coupling to radiated interferences.

Hypothesis 4) implies that the propagation along the line
can be described through transmission-line theory. This
poses a limitation to the highest frequency that can be
covered by the model. This also implies that radiation
losses should be negligible, i.e., radiation modes should
not be strongly excited with respect to transmission-line
ones or, in other words, that the line is not acting as an
efficient antenna [13]. Since transmission-line modes are
deemed to be dominant, the effect of radiation losses (due
to the excitation of radiation modes) can be accounted for
through a perturbation of the transmission-line solution.
This is the same approach used when including losses into
waveguide structures, by keeping the same modal solution
as for the lossless case, while introducing a modification
of the propagator function accounting for the losses. This
perturbation approach allows extending the validity of the
transmission-line model to higher frequencies, as we will
show for the single-wire case, by means of a two-step
procedure (see Section V), by giving an estimation of the
effect of radiation losses in the computation of the TRP.

Following point 5), the loads and the voltage gener-
ator in Fig. 1 should be just regarded as mathematical
boundary conditions rather than physical connections. The
closed-form solutions here proposed cannot take into ac-
count the contribution coming from external components,
such as vertical risers.

The TRP is usually introduced in antenna theory for the
definition of the radiation resistance of wire-antennas [6]
and defined as

Pr =
1

2
Re

∫∫

Ω

S · n̂dΩ, (1)

where Ω is a closed bounding-surface embracing the
entire line,S is Poynting’s vector and̂n is the unitary
outward vector normal to the surfaceΩ. In the case of
an ideal ground-plane, this surface can be reduced to an
hemisphere over the ground-plane, the electromagnetic
(EM) field being identically equal to zero beneath the
metallic boundary. For a lossy ground-plane, this hy-
pothesis is not fully met, since part of the EM energy
radiated by the line is directed into the ground-plane. In
the context of this work, the fraction of energy radiated
into the ground-plane will be assumed to be negligible,
as compared to the energy radiated into the upper-space.
This hypothesis is just applied to the EM field that is
not guided by the line: part of the transversal topography
of the propagating modes is actually inside the ground-
plane. Hence, the losses due to propagation over a lossy
ground-plane can be included into the model through the
per-unit-length (p.u.l.) parameters of the line [14].



Assuming the upper medium to be lossless, (1) can be
recast in the far-field as follows:

Pr =
1

2

∫∫

Ω

ζ0|H(ρ, ϑ, ϕ)|2dΩ, (2)

whereζ0 is the characteristic impedance of the surround-
ing medium. Variablesρ, ϑ andϕ refer to Fig. 1:ϑ is the
angle between the direction̂ρ and the axisz, whereasϕ
is the azimuthal angle considered on thexy plane. Due
to hypothesis 4), the following modal description for the
current-distribution has been used:

I(z) = I+
0 (e−γz − ΓLe−2γL e+γz), (3)

where I+
0 is the forward-travelling modal current,γ =

γ0ξ is the propagation constant for the wave guided by
the line, andΓL represents the load reflection coefficient.
The parameterγ0 = jk0 is the propagation constant of
the surrounding medium, so thatξ = ξ′ − jξ′′ acts as a
sort of equivalent permittivity for the propagation along
the line.

The computation of the radiated field can be greatly
simplified by invoking the image principle, thus removing
the lower half-space. Although it is usually employed
just for perfect electric conductors, this concept has been
extended to lossy conductors through the use of the
complex-image method [15], by placing the image at
a complex distancehCI = h + jδ below the ground-
plane, whereδ is the skin-effect penetration depth for
the ground-plane material. Thus, the original line can be
analyzed as a two-wire line in a homogeneous medium,
with wires running at a distancehCI + h = 2h′, where
h′ = h+ jδ/2.

A classical approach from antenna theory [16] can then
be applied, by integrating over the current-distribution
I(z), plus its image, to compute the far-field expression
of the magnetic field:

H(ρ, ϑ, ϕ) = ϕ̂
k0

2πρ
sinϑ sinh(k0h

′
x̂ · ρ̂)e−γ0ρ ·

·
∫ L

0

I(z)e−γ0zẑ·ρ̂dz (4)

The projection termŝx · ρ̂ and ẑ · ρ̂ take into account
the phase-shift of the contribution of each elementary
source along the radiation direction̂ρ. Inserting this result
into (2) and expressingdΩ in spherical coordinates yields:

Pr =
|I+

0 |2ζ0
4π2

∫ π

0

∫ +π/2

−π/2

sin3 ϑ

|ξ2 − cos2 ϑ|2 ·

·| sinh(k0h
′ sinϑ cosϕ)|2|B(ϑ)|2dϕdϑ, (5)

with

B(ϑ) = (e−γ0(cos ϑ+ξ)L − 1)(cosϑ− ξ) + (6)

− ΓLe−2γL (e−γ0(cos ϑ−ξ)L − 1)(cosϑ+ ξ).

After some algebraic manipulations, (6) yields:

|B(ϑ)|2 = A1 +

+ A2 sin2 ϑ+

+ A3 cos(k0L cosϑ) +

+ A4 sin2 ϑ cos(k0L cosϑ) +

− A5 cosϑ sin(k0L cosϑ), (7)

where the five coefficientsAi are given below:

A1 = (1 + |ξ|2)(1 + χ2)σ − 4χ2τκc(1 − |ξ|2) (8)

A2 = 4χ2τκc − σ(1 + χ2) (9)

A3 = 2χ[2τχPc(1 − |ξ|2) − κcσ(1 + |ξ|2)] (10)

A4 = 2χ(κcσ − 2χτPc) (11)

A5 = 4χ(ξ′σκs + 2χξ′′Psτ), (12)

with

τ = Re {ΓLe−jk0ξ′
L } (13)

χ = e−k0ξ′′
L (14)

σ = 1 + |ΓL|2 (15)

κc = cos(k0ξ
′
L ) (16)

κs = sin(k0ξ
′
L ) (17)

Pc = cosh(k0ξ
′′
L ) (18)

Ps = sinh(k0ξ
′′
L ). (19)

In order to solve (5), the double-integral has to be
factorized into two one-dimensional integrals. An easy
and straightforward solution is to employ the McLaurin
series expansion ofsinh2 x, which eventually yields

Pr =
|I+

0 |2ζ0
4π2

∞
∑

n=1

an

∫ π

0

sin2n+3 ϑ

|ξ2 − cos2 ϑ|2 |B(ϑ)|2dϑ,

(20)

with

an = bn + cn (21)

bn = −
(

k0h

n

)2

bn−1 (22)

cn =

(

k0δ

2n

)2

cn−1, (23)

whereb0 = −π/2 andc0 = π/2. The terms in the integral
in (20) share the same structure which, though being
analytically solvable, has no simple closed-form solution.
Nevertheless, the special casesξ = 1 andξ2−cos2 ϑ ≃ ξ2

provide a closed-form result [17], which isexact for
ξ = 1:

Pr ≃ |I+
0 |2ζ0

8A0π2

∞
∑

n=K+1

an−K

{

A1S2n−1 +

+ A2S2n+1 +

+ A3ψn +

+

(

A4 −
k0L

2n
A5

)

ψn+1

}

, (24)

with

Sn =

∫ π

0

sinn ϑdϑ =
n− 1

n
Sn−2, and (25)

ψn =
Jn−1/2(k0L )

(k0L /2)n−1/2

√
π(n− 1)!, (26)

whereK = 0, A0 = 1 for the approximationξ ≃ 1 and
K = 2, A0 = |ξ|4 otherwise. This result can be simplified
by neglecting the Bessel termsψn, in the case of an
electrically long line (k0L > 1), as shown in Fig. 2a.
This implies that (24) is dominated by the loadΓL and
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Fig. 2. Convergence and accuracy tests for expression (24).Picture (a)
shows the TRP for a line withL = 1 m, h = 10 cm, ZL = 50 Ω

and ξ = 1 as computed by numerical integration of definition (2) and
through the analytical solution (24) for one and two expansion terms.
Picture (b) shows the accuracy of (24) when used forξ 6= 1. Dashed
lines represent the TRP as computed through numerical integration
of (2), solid ones are for expression (24).

especially by the line heighth, whereas the line length
acts just on the position of TRP peaks throughτ and on
propagation losses throughχ.

In order to check the validity of (24) as a solution
for (2), it was compared with the numerical integration
of the latter, performed by using an algorithm based on
Lobatto’s adaptive quadrature. In particular, this check is
important for verifying whether the series expansion is
fast-convergent or not, as well as for assessing the solution
performance when approximating a line withξ > 1. To
this end, a single-wire line withh = 10 cm, L = 1 m,
Zs = ZL = 50 Ω, with Vs providing an available power
Pav = 1 W was considered, over a frequency range up to
1 GHz. This means that around 1 GHz the line would be
some three wavelengths long, and withh/λ ≃ 1/3.

The first check, involving the series convergence, con-
sidered the caseξ = 1. The TRP will be hereafter
normalized to the available power, yielding the radiation
efficiencyη = Pr/Pav of the line. The results are shown
in Fig. 2a, where the TRP obtained through numeri-
cal integration is compared with approximate solutions
considering just one term and two terms with a further
simplification discarding the terms related to Bessel’s
functions. Figure 2a demonstrates the good convergence
properties of the proposed solution, together with the fact
that even the first term provides a good estimate of the
TRP. Figure 2a also shows how (24) gives better results

than the model proposed by Storer et al. [8]. Indeed, for
an electrically short line [8] neglects the contribution of
the Bessel terms, whereas for an electrically long line
the first term in (24) gives a better approximation of the
TRP, in particular around the peak values. The two-term
solution is indistinguishable from the exact solution in the
lower frequency-range.

The second check was related to the approximate solu-
tion for ξ > 1. In this case (24) provides very good results
even forξ = 1.4 (Fig. 2b), which does not fully satisfy the
conditionξ2 − cos2 ϑ ≃ ξ2. On the other hand, whenever
ξ ≃ 1, it is possible to use (24) under the solution for
ξ = 1. An example is shown in Fig. 2b, where the actual
caseξ = 1.05 was approximated by using the solution
for ξ = 1: the worst-case error is smaller than 2 dB. The
ability of the solution to extend its agreement with the
numerical solution forξ > 1, will be shown to be very
useful for applications to actual lines (see Section VI).

III. I NCLUSION OF RADIATION LOSSES: THE

TWO-STEP PROCEDURE

The very idea of a non-negligible TRP implies that part
of the power propagating along the line is radiated away.
It was proven in [18] that the propagation along an open
line over an ideal ground-plane can be fairly described by
a single TEM mode as long as the ratioh/λ . 1/3.

The problem with this approach is that the attenuation
due to radiation losses has to be assessed. Being related
to the radiated field, the radiation losses are dependent
on the entire current-distribution. This means that it does
not suffice just to know the line cross-section as for p.u.l.
parameters: therefore, they cannot be generally treated as
ohmic losses.

Anyway, for the special case of an infinitely long
uniform line, the radiation losses act as ohmic losses [10],
so that a p.u.l. radiation resistancerr = Rr/L can
be defined and included into the p.u.l. impedance, thus
accounting for radiation losses. The same procedure can
be pursued for a finite-length line [19], as long as all types
of fringing effects can be neglected: in this case the line
finiteness is taken into account by the current-distribution
itself, which includes a backward-travelling wave. Hence,
we just need to compute the radiation resistanceRr:
this is done in antenna theory by relating the current
distribution to the TRP. The following definition [8] will
be considered:

Rr =
4

(1 + |ΓL|)2
Pr

|I+
0 |2 , (27)

referring to the current-distribution (3) used as an initial
guess, i.e., assuming no radiation losses. In fact, even
though this current-distribution does not necessarily suit
the actual current-distribution, it provides a fairly good
estimate ofRr. Now it is possible to compute the new
propagation constant as:

γ =
√

(ze + rr)ye, (28)

where ze and ye are, respectively, the external p.u.l.
impedance and admittance of the line, defined under a
quasi-TEM approximation.



Fig. 3. A detail of the model of a single-wire line used in the numerical
validation and in the derivation of the empirical error model (30).
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Fig. 4. Validation of (24) by comparison to full-wave numerical simu-
lations and experimental data. The results prove the possibility to extend
the model validity to higher-frequencies through the two-step procedure.
The measurement configuration under which the experimentalresults
have been obtained is described in Section V.

IV. N UMERICAL VALIDATION AND ACCURACY

ANALYSIS

It is now important to check the ability of the approach
here described to predict the behaviour of actual lines:
this is more of a test of fitness of TLT, rather than of the
proposed model, since (24) holds as long as the current-
distribution (3) is valid. This task can be accomplished
by means of full-wave numerical simulations. We focus
on a single-wire structure, in order to identify under
which conditions (24) fails, and thus to give a rule
for the characterization of the approximation error it
involves. To this end, a grand-total of 24 configurations
was studied. All the numerical results have been obtained
by using the Finite Integral Technique as implemented

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

z (mm)

C
ur

re
nt

 (
A

)

 

 

full−wave model
eq. (24), lossless
eq. (24), two−step

Fig. 5. The current distribution along the overhead wire forthe example
in Fig. 4, as computed at the TRP peak atf = 2.029 GHz.

by CST’s Microwave Studio. A single-wire line, as the
one in Fig. 3, has been modelled for a wire height
h = {20, 30, 50} mm, a lengthL = 80 cm and a load
resistanceRL = {0, 20, 50, 100, 250, 500, 103, 106} Ω.
The numerically computed radiation efficiencyη has been
obtained by assessing the power-loss in the structure
through its scattering parameters, having paid attention
to avoid any ohmic losses:

η = 1 − |S11|2 − |S21|2. (29)

The radiation efficiency estimated by means of (24) will
be hereafter referred to aŝη. An example of these results
is shown in Fig. 4, forh = 30 mm andRL = 0 Ω:
the lossless version of (24) works rather well as long
as η̂ is well below the unity. This is directly linked to
having required negligible radiation losses. Conversely,
the two-step procedure allows a better estimation ofη.
The disagreements in the lower frequency-range are due
to the fact that the line is electrically very close to
the ground-plane. In this case the TRP is dominated
by the vertical risers contribution, since they behave as
electrically-short vertical monopoles.

It is also interesting to check the accuracy of the pro-
posed model in the evaluation of the current-distribution.
An example is shown in Fig. 5, for the configuration
of Fig. 4, at f = 2.029 GHz; this corresponds to one
of the TRP peaks. These results show how the two-step
procedure can account for the modification of the input
impedance of the line, and thus of the current-distribution.

The numerical results were then compared to (24),
relating the errorη̂ − η to η̂. A typical example of
error distribution is shown in Fig. 6a, forh = 50 mm,
L = 80 cm andRL = 0 Ω. Figure 6b shows how the
two-step procedure affects the error distribution: indeed,
the procedure is effective in reducing the non-physical
overestimation of̂η.

Concerning the estimation error for the lossless case,
the results in Fig. 6 are representative of the proposed
model; the standard deviation for a given value ofη̂ is
typically about 0.5 dB around the average error. For this
reason, and for the sake of clarity, only the average error
distributions are hereafter shown.

The distributions thus obtained are collected in Fig. 7;
it is clear from these results that the overestimation
of the TRP through TLT and equation (24) follows a
law that is monotonous and well fitted by a quadratic
curve. Interestingly, the fitting curve can fairly represent
all of the load and geometry configurations considered;
the dependence on the actual configuration is indeed
indirectly accounted for by recalling that configurations
with low radiation efficiency will produce error curves in
the lower-end of Fig. 7, while highly resonant lines will
sweep the entire span of values. In other words, current-
distributions associated to low radiations will be fairly
representative of the reality, whereas in the case of high
radiation levels the TRP associated will be not correct,
since underestimating the importance of radiation losses.

The fitting curve shown in Fig. 7 is given by:

η̂ − η = (e0 + e1η̂)
2 η̂ > −12.8, (30)
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Fig. 6. Error distributions between the estimation of the TRP given
by (24) and obtained through full-wave simulations (a) and after the
application of the two-step procedure and of the empirical error model
(b), accounting for radiation losses. The intensity of the dark tones
indicates the frequency of occurrence for a given bin.
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Fig. 7. Average error in the TRP given by (24). Several load resistances
were considered, for the two casesh = {20, 50} mm. The parameters
of the empirical model (solid line with dots) were obtained by fitting
(30) to these data.

having consideredη and η̂ as expressed in dB; the model
parameters aree0 = 1.82, e1 = 0.15. Although this result
was apparently not derived from extensive simulations,
the configurations studied covered all the possible cases;
indeed, three parameters are responsible for the behaviour
of the line, i.e.,k0L , k0h and ΓL. The fact that the
error was analyzed over a frequency-range spanning the
entire range of validity of the TLT indicates that a few
geometrical configurations hold enough information for
all the possible cases (an example of the results obtained
for a different structure is given in Fig. 8). By doing so
for the entire spectrum of values ofΓL ensures that (30)
is a general result. This will be shown to hold even in the
case of MTLs in Section VIII.
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Fig. 8. Results obtained by applying the empirical model to astructure
different from the original set of data: the example of a verylong single-
wire line (h = 3 cm, L = 3 m, ΓL = −1).

The fact that the error-law is monotonous can be
exploited by using it to correct̂η in the lossless case.
An example of the effects of such a correction is given
in Figures 4 and 6b. Although not physically sound as
the inclusion of radiation losses, (30) can be effectively
used to extend the validity of (24), with no need to use
the two-step procedure. This simple empirical law has
no pretention of representing exactly the error between
the lossless estimate and the actual TRP. As a matter
of fact, the fitting has been derived over the averaged
errors, and it is affected by a maximum fitting error
of 1 dB. Nevertheless, equation (30) accounts for the
average error in the TRP estimation. Its merit is that
of having been defined independently of the geometrical
and electrical configuration. Besides allowing to avoid the
two-step procedure in the single-wire case, this approach
is fundamental for the MTL case described in Section VII,
where the two-step procedure is not available. It is funda-
mental to understand that (30) does not operate over the
current-distribution, but merely on the estimated TRP.

V. EXPERIMENTAL VALIDATION IN AN MSRC

As recalled in the Introduction, there are two ways
of rapidly measuring the TRP of a line: through power-
balance methods or by using a MSRC. The problem with
the first method is that it requires the knowledge of the
entire scattering matrix of the line and that the TRP
is not linearly related to the current distribution along
the line. This means that a change in the termination
loads cannot be accounted for by just recalculating a
new scattering matrix from the measured one. The TRP
estimated from power-balance methods is therefore valid
just for the actual load configuration at the moment of the
measurement. This means that the input impedances of the
network analyzer need to be set to the actual values that
the user wants to test as termination loads. Furthermore,
superposition of effects is not an option here, due to the
quadratic relationship between the scattering parameters
and the TRP. This is an issue in the case of multiple-
sources configurations, in particular in the case of MTLs.
Much simpler is the measurement of the TRP with an
MSRC, using lumped loads.

A line like the one in Fig. 9 has been considered.
The line was kept suspended by two vertical supports,



Fig. 9. The line used for the experimental validation.

whereas the line ends were connected to two SMA-type
connectors. The first connector was used for loading
the line with SMA-type loads, and the other one was
connected to a coaxial cable for the line excitation.

The MSRC was used as described in [5]; the stirrer
has a major role in ensuring the statistical independence
of the data. It was set to perform a complete turn in 7 s, by
360 finite steps for each frequency investigated. Since the
MSRC dimensions were 1.9x2.65x2.9 m, the minimum
frequency for which the chamber can be regarded as
overmoded is about 700 MHz. The line was fed through a
function generator kept outside the MSRC and connected
to the line through a coaxial cable passing through a via
in the MSRC wall. In the same way a horn was used as
the receiving antenna, connected to a spectrum analyzer
outside the MSRC.

The resultingPline obtained with this procedure is not
yet a correct evaluation of the TRP: in fact, it includes
insertion losses. These include cable losses, mismatches,
and the MSRC insertion losses (its Q being finite).
Because of this, the line was substituted by another
horn antenna (identical to the receiving one), and the
entire procedure was repeated, thus obtaining a reference
measurementPref .

These two measurements can be represented as follows,
by decomposing them into several basic contributions:

Pline = Pav

(

1 − |Γline|2
)

TlineTIL, (31)

Pref = Pav

(

1 − |Γhorn|2
)

ThornTIL, (32)

wherePav is the available power provided by the power
generator andΓline and Γhorn are the reflection coeffi-
cients as seen from the input port of, respectively, the
line and the horn antenna. The termTline is a transfer
function defined as the ratio between the power radiated
by the line (i.e., its TRP) and the active power going into
it through its input ports. In other words,Tline accounts
for the radiation efficiency of the line. In the same way
the transfer functionThorn has been defined for the horn
antenna. Finally,TIL is the insertion loss accounting for
all the losses between the actual TRP and the power
measured by the spectrum analyzer. The TRP can thus
be expressed asPr = Pav

(

1 − |Γline|2
)

Tline.
Because of the way it was defined,Thorn can be

assumed to be equal to one, thus obtaining the radiation
efficiencyη of the line:

Pr

Pav
= η =

Pline

Pref
(1 − |Γhorn|2). (33)
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Fig. 10. Numerical results for the TRP of a 80 cm long single-wire line,
h = 3 cm, for two widths of the vertical risers, respectively 200 mm
and 50 mm. The shaded area corresponds to the frequency-range where
vertical-risers are expected to radiate effectively.

Attention should be paid to the fact thatΓhorn is meant to
be measured for the actual setup configuration, i.e., with
the horn antenna inside the MSRC, because reflections
modify its input impedance.

Some experimental results are shown in Fig. 4: the
line under test was short-circuited at its far-end, with
h = 3 cm, L = 80 cm; the diameter of the metallic core
of the wire was 0.7 mm, its PVC coating 0.15 mm thick
and the ground-plane dimensions were 60 cm by 100 cm.
The TRP was studied in the frequency-range 700 MHz
to 2 GHz, hence considering the line as electrically long
(L /λ ≃ 1.9 at 700 MHz). These results highlight how
radiation losses get more important as the frequency
increases, in particular for reactive loads leading to a
resonant behaviour. As expected, radiation losses can be
neglected as long ash/λ ≪ 1. In fact, below 1 GHz
the results obtained by directly applying (24) are very
satisfying. In general, the experimental results shown in
Fig. 4 are well reproduced by the proposed model, with
an average absolute error attaining 2 dB around the TRP
minima. Major discrepancies occurring between 750 MHz
and 1500 MHz are due to the presence of the vertical
risers. Indeed, the currents flowing through them radiate
a field that is not negligible as soon as the length of the
current paths correspond to a quarter of wavelength. In
these cases, the current distribution effectively radiates,
being in a monopole-like configuration. Hence, the verti-
cal risers can be expected to radiate more strongly over
the frequency-rangef ∈ c/(4hi)[0.5, 1], since the current
paths typically have a length in the range[h, 2h] (see
Fig. 10).

Moreover, the use of narrow vertical risers imposes, in
their proximity, a deformation of the currents path over
the ground plane (current channeling). This means that
the assumption of line uniformity is no more valid. This
can be accounted for by looking for an equivalent model
of the line ends, and to consider just the central portion
of the line as a uniform structure, as suggested in [12].

It is interesting to note that the experimental data are
characterized by a stronger attenuation than the numerical
ones. This is likely due to two reasons: ohmic losses were
neglected in the numerical simulations, and contact resis-
tances were certainly not negligible between the vertical
risers and the ground plane, these not being soldered.



VI. A N APPLICATION TO MTL S

Although (24) holds just for a single-wire line, it
can be usefully employed for an MTL, too. Indeed, in
EMC the most dramatic effects regarding the radiated
emission/immunity problems are due to the common-
mode (CM) current, or bulk currentIb(z). Let us consider
the modal description for the current-distribution along an
N -wire MTL [20]:

I(z) = T
[

P+(z)I+
m0 − P−(z)I−m0

]

, (34)

Ib(z) =

N
∑

i=1

Ii(z) = QIm(z)

=

N
∑

i=1

N
∑

k=1

TikIm,k(z), (35)

whereT is a square matrix relating the modal currents
to the physical ones,P±(z) = diag(exp(∓γz)) are
the propagation matrices,γ is the vector of the line
propagation constants, andI±m0 are the excitation factors
for the forward- and backward-travelling modal-currents.
The row-vectorQ relating the modal currents to the
bulk one is defined as the sum of the row-vectorsTi

constituting the matrixT:

Q =

N
∑

i=1

Ti (36)

The far-field behaviour of the EM field radiated by an
MTL is mainly dominated by the CM current, as long as
the line conductors are “packed” together. With reference
to Fig. 1, in the context of this work a “packed” line
requiresk0|h̄− hi| ≪ 1 andk0|d̄− di| ≪ 1 ∀i ∈ [1, N ],
as well ashi ≃ h̄, where h̄ and d̄ stand for the mean
values of, respectively,hi anddi.

Let us consider a uniform MTL: the magnetic field can
be expressed, in the far-field, as:

H(ρ, ϑ, ϕ) = ϕ̂
k0

2πρ
sinϑ sin(k0hix̂ · ρ̂)e−γ0ρ ·

·
N

∑

i=1

e−γ0diŷ·ρ̂

∫ L

0

N
∑

k=1

TikIm,k(z)e−γ0zẑ·ρ̂dz (37)

which can be approximated, for a packed line as:

H(ρ, ϑ, ϕ) ≃ ϕ̂
k0

2πρ
sinϑ sin(k0hx̂ · ρ̂)e−γ0ρ ·

· e−γ0dŷ·ρ̂

∫ L

0

Ib(z)e
−γ0zẑ·ρ̂dz. (38)

This result derives from (35), and shows that the main
contribution to the radiated field is due to the CM current.
The importance of this result lays in the fact that whenever
the current-distribution of the CM can be approximated
by (3), the results obtained for the single-wire configura-
tion can be applied to a multi-wire one. For these cases the
single-wire current-distribution of the CM can be derived
from the modal description as:

Ib(z) = I+
b0e

−γbz − I−b0e
+γbz , (39)

I±b0 = I±m0,j

N
∑

i=1

Tij , (40)
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Fig. 11. Common-mode and differential-mode normalized propagation
constantsξ for a two-wire line as a function of wire distanced. The
wires were at a varying distanced, h1 = h2 = {3.5, 5, 10, 20, 30} mm,
conductors radiir1 = r2 = 1 mm, dielectric coating 1 mm thick with
ǫr = 3.5.

whereγb corresponds to the CM propagation constant in
γ, as its j-th element. Since the medium surrounding the
metallic wires is generally not homogeneous, the vector of
the propagation constants is expected to have elements all
different from each other. Due to the fact that the transver-
sal topography of the electromagnetic field associated
to the CM has force-lines mostly in air, its propagation
constant is very near to that of air. Conversely, differential
modes present the opposite situation, so that the CM is
easily recognizable.

On the other hand, for a homogeneous mediumγi =
γ ∀i ∈ [1, N ], so that the previous procedure is no longer
available. Thus,P±(z) = exp(∓γz)I so that:

Ib(z) = Q[I+
m0e

−γz − I−m0e
+γz] = I+

b0e
−γz − I−b0e

+γz.
(41)

In this case the single-wire representation of the current-
distribution of the CM is exact, and no approximation
is needed. Moreover, the above relationship can be also
invoked for MTLs with dielectrically coated wires, as long
as they are sufficiently wide apart to behave as a line in air.
An example supporting this approach is shown in Fig. 11,
where the normalized propagation constantsξi have been
computed for a two-wire line, as a function of the wires
distanced and their heighth. These results show that the
conditionξ ≃ 1 is not just met by the CM, but also the
DMs converge quite rapidly towards this value.

VII. E XTENSION TO A MULTICONDUCTOR LINE

As conductors get wider apart, the contributions from
modes other than the CM can be no longer neglected.

In order to overcome this limitation, the same approach
previously applied to the single-wire line can be utilized
for a multiwire structure. In this case the overall power-
density flux to be integrated is no longer generated by
a single conductor, but rather by a set ofN parallel
conductors, for which the overall far-field magnetic field
Ht is given by the contributions of theN conductors:

Ht =

N
∑

i=1

Hi, (42)



whereHi is the contribution to the magnetic field due
to the current-distribution along thei-th conductor. Here-
after, the argumentsρ, ϑ andϕ will be dropped for the
sake of clarity. Now, (2) can be recast as follows

Pr =
1

2

∫

Ω

ζ0 |Ht|2 dΩ =
1

2

∫

Ω

ζ0

∣

∣

∣

∣

∣

N
∑

i=1

Hi

∣

∣

∣

∣

∣

2

dΩ. (43)

The summation can be brought out of the modulus
symbol by means of the following equivalence:

∣

∣

∣

∣

∣

N
∑

i=1

Hi

∣

∣

∣

∣

∣

2

=
N

∑

k=1

|Hk|2 + 2
∑

t>k

Re {HkH
∗

t } . (44)

This expression allows the integral in (43) to be broken
down into simpler integrals; by defining the quantityPkt

as

Pkt , ζ0

∫

Ω

Re {HkH
∗

t }dΩ, (45)

(43) can be rewritten as

Pr =
1

2

N
∑

k=1

Pkk +
∑

t>k

Pkt. (46)

This more general approach incorporates the same
result obtained in (24) for the single-wire configuration.
In particular, in that case only the termP11 is to be con-
sidered; this gives us the key for a physical interpretation
of the terms in (46): the termsPkk yield the power that
would be radiated by the current-distribution along the
k-th conductor, were it in a single-wire configuration.
For this reason, one can refer to these terms as single-
wire contribution terms. In other words, the first sum
in (46) neglects any interference between the EM fields
generated by the different current-distributions along the
N conductors. Conversely, the termsPkt just take into
account the mutual interference between each pair of
contributions. Therefore, these terms can be referred to
as mutual terms.

Thanks to (46), the TRP for an MTL can be eas-
ily estimated once a solution for the generic termPkt

in (45) is available. As for the single-wire case, the
MTL is analyzed through a quasi-TEM approach, so that
transmission-line theory can be applied. By employing the
same modal description introduced in (35) and applied in
(37), the following general result can be derived:

Hk =
k0 sinϑ

2πρ
sin (k0hkx̂ · ρ̂) e−γ0dkŷ·ρ̂ ·

·
N

∑

i=1

Tki

(

I+
m0,i∆

+
i − I−m0,i∆

−

i

)

, (47)

having defined

∆±

i ,
1 − e−L (γ0 cos ϑ±γi)

γ0 cosϑ± γi
. (48)

Expression (47) has been obtained by analytically inte-
grating the current-distribution over the entire lengthL

of the line. Now, this expression is too complex to fit the
target of this work, i.e., to propose a simple analytical
solution. Therefore a simplifying hypothesis is introduced,
by assumingγi ≃ γ0. It was shown in the previous

Section that this hypothesis can be met even with coated
wires, whenever they are sufficiently far away from each
other. Therefore this assumption is not a limitation but it
rather identifies an open line, i.e., a scenario that is thus
complementary to the packed-line case.

By applying the above hypothesis we get∆±

i ≃ ∆±,
by substitutingγi with γ0. We are now in a position to
effectively simplify (47):

Hk =
k0 sinϑ

2πρ
sin (k0hkx̂ · ρ̂) e−γ0dkŷ·ρ̂ ·

·
[

∆+I+
k (0) − ∆−I−k (0)

]

, (49)

where

I±k (0) =

N
∑

i=1

TkiI
±

m0,i (50)

are the forward- and backward-travelling wave contribu-
tions to the current-distribution along thek-th wire, as
computed at its left-end.

By inserting (49) into (45) and basically following the
same procedure applied for the single-wire configuration,
a general solution for the termPkt can be derived,
obtaining:

Pkt =
ζ0

4π2

∞
∑

n=1

an

[

(τ ′κc − σ′)S2n+1 +

+ 2σ′S2n−1 +

− 2σ′κcψn +

+ (σ′κc − τ ′ − σ′κsk0L /n)ψn+1

]

, (51)

whereτ ′ = Re {γ exp(−γ0L ) + δ exp(+γ0L )}, σ′ =
Re {α+ β} and

α = I+
m0,kI

+∗

m0,t (52)

β = I−m0,kI
−∗

m0,t (53)

γ = I+
m0,kI

−∗

m0,t (54)

δ = I−m0,kI
+∗

m0,t. (55)

The termsψn(·) and the coefficientsSn have been
already introduced for the solution to the single-wire case
in (25) and (26). The series expansion coefficientsan

depend on the indexesk and t and are defined as

an = −an−1

(

k0

2n

)2 ρ2n
− − ρ2n

+

ρ
2(n−1)
− − ρ

2(n−1)
+

, (56)

whereρ2
± = (dk −dt)

2 +(hk ±ht)
2 andc1 = 2πk2

0hkht.
The solution proposed in (46) is interesting also be-

cause of the possibility to apply a topological analysis
to the problem of radiation from an MTL. Indeed, the
Pkt terms allow to identify the dominant contributions
to the TRP, hence the subgroups of wires (and their
electrical configuration due to the end loads) that are more
critical to radiated immunity/emissions. This possibility
should provide a better insight into the mechanisms of
radiation and its minimization for the case of a uniform
transmission line, in particular during the design phase.

Unlike the single-wire solution (24), no two-step pro-
cedure can be envisaged for the moment. Indeed, since
radiation losses have a very different physical origin
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Fig. 12. The cross-section of the MTL (a) and the electrical config-
uration used during the experimental validation (b). The active wire is
identified by the tag “2”. All the loads are 50Ω resistances.

than ohmic ones, an eventual radiation resistance matrix
would depend not just on the geometry of the line (like
for ohmic losses), but also on the current distribution.
Although a clear relationship can be defined for a single-
wire line, linking the TRP and the current distribution
through the radiation resistance (27), the extension of
this approach to a multiconductor configuration is not
trivial. Researches are currently in progress, with the aim
to propose an empirical redistribution of the radiation
losses for an MTL configuration. Nevertheless, the use
of the empirical error model (30) provides a zero-order
correction of the TRP estimation, as already shown for
the single-wire configuration and proved in further tests
on MTL structures (see next Section).

The assumptionξi ≃ 1 does not exclude the possibility
to have a finite conductivity for the ground-plane, as long
as the wave propagation can be regarded as a perturbation
of the ideal case. This hypothesis could reduce the validity
of (51) in the high-frequency range for this specific case.

VIII. V ALIDATION FOR AN OPEN MTL

In order to check the validity of the results provided
by (46) and (51), the same procedure used for the vali-
dation of the single-wire configuration will be followed.
Rather than exciting several conductors at the same time
by means of a multiwire excitation, only one conductor
is connected to the power generator, while the others will
be excited by coupling (see Fig. 12). This choice is due to
the practical difficulties that arise when trying to provide
a multiwire excitation external to the MSRC. Therefore
just one conductor is active, whereas the others act as
passive ones, modifying the radiation properties of the
entire system.

The experimental estimation of the TRP was carried out
as already described in Section V. The results obtained,
shown in Fig. 13, prove the ability of (51), when applied
with the empirical model (30), to correctly predict the
total power radiated by a uniform MTL. As for the single-
wire model, there is a disagreement over the frequency-
range where the vertical-risers act as tuned monopole
antennas. Conversely, the agreement with the rest of the
experimental data is fairly good, but for a stronger atten-
uation that was already pointed out during the validation
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Fig. 13. Validation of (51) for the line in Fig. 12 by comparison to full-
wave numerical simulations and experimental data. The results prove the
possibility of using (24) even for a non-packed line. The empirical error
model is also shown to give very good results, with no need to assess
radiation losses.

of the single-wire model. The TRP obtained for the bulk-
current is very close to the results yielded by all the
propagating modes, although major differences appear
near the minima of the TRP, because the assumption of
packed-line are not fully satisfied.

Figure 13 also shows the TRP that would be generated
by the current-distribution along the active conductor,
should it be in a single-wire configuration. The compar-
ison highlights that the passive conductors play a non-
negligible role in the overall TRP. This implies that the
actual configuration used for the experimental validation
is not a degenerate case of MTL.

A remarkable result of this validation is that the use of
the empirical error model can be extended to MTL. This
conclusion is supported by the results obtained through
many other tests, some of which are shown in Fig. 14. It is
interesting to notice how the empirical model can always
reduce the TRP error to values below 2 dB. Moreover,
these tests also show how the bulk-current model may
fail in open configurations. In particular, the only fact
of supplying the line of Fig. 12 on the highest wire
(tag no. 1) leads to underestimating the TRP of 5 dB
in the lower frequency-range (Fig. 14a). Similar results
are shown in Fig. 14e, where the two lower conductors,
although conveying very low current levels with respect
to the higher one, affect the power radiated by the active
wire in a non-negligible way. These results demonstrate
the usefulness of (51): a single-wire model cannot account
for the actual excitation of a wire-bundle when it is not
packed.
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Fig. 14. Numerical validation results for an MTL: a) same configuration
than in the previous validation case, but with wire no. 1 now active
(see Fig. 12), and b) withL = 1.3 m and a 1 kΩ load resistance
at the far-end of the active wire; c) three-wire configuration with d =

{−25,−5, 25} mm, hi = 50 mm, L = 80 cm, active wire at the
furthest left, all loads set as 50Ω resistances but for the one at the
far-end of the active wire, set at 1 kΩ, d) same structure, but with
hi = 20 mm, L = 50 cm, active wire short-circuited at its far-end;
e) same configuration as in c) but withd = {−20, 0, 20} mm, hi =

{50, 5, 5} mm, L = 1 m, all loads set as 50Ω resistances but for the
one at the far-end of the active wire, set at 0Ω. All configurations have
wire diameters of 0.7 mm, with PVC coating 0.15 mm thick.
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Fig. 15. TRP computed from (24) and (51) for a two-wire line at
f = 2 GHz, as a function of wire distanced; the wires were not coated,
with r1 = r2 = 1 mm, h1 = h2 = {20, 50} mm andL = 1 m.
Modal currents corresponding to the CM and the DM were set to the
ratios IDM/ICM = {1, 2, 4}.

IX. CONSIDERATIONS ON THE USE OF

EQUATIONS (24) AND (51)

The previous Sections have highlighted how (24) and
(51) are not just related to two different electrical con-
figurations, i.e., a single-wire and a multiconductor line,
but rather to two different operating modes. Indeed, for
a given MTL, the TRP can be estimated with one of
these two equations, depending on whether radiation
mechanisms are dominated by the CM or by the DMs
propagating along the line, and not just depending on
the number of conductors. A quantitative example of this
interplay is given in Fig. 15, where a two-wire line with
h1 = h2 is considered. The distance between the two
wires has been varied in order to assess the accuracy of
the bulk-current model when the line conductors are not
packed. Since the performances of (24) and (51) depend
on the relative importance of the CM or the DM, the
current distribution along the line was imposed by directly
setting the modal current coefficientsI±m0, so to have
a certain ratio between the CM and DM currents. The
wires were considered not coated, in order to avoid any
approximation introduced by the hypothesis at the base
of the two analytical solutions; the results given by (51)
are thus exact and can be considered as a reference. The
results in Fig. 15 show that even for distances that are
electrically non-negligible, the bulk approach provides
accurate results even for a ratioIDM/ICM = 2. This is
due to the well-known inefficient radiation mechanisms
involved with DMs. Conversely, forIDM/ICM = 4 the
bulk-current model approach is valid as long asd/λ≪ 1
(d < 15 mm at 2 GHz). Otherwise (51) could not be
avoided even for a packed line.

X. SUMMARY

We have presented two analytical solutions for the TRP
for an MTL above a ground-plane. The solutions, ex-
pressed as series expansions, appear to be fast-convergent,
already yielding a good estimate with just one term. The
novelty of the proposed models lies in the fact that they do
not require the line to be electrically short, nor electrically
close to the ground-plane. Besides, being based upon TLT,



they are a natural extension to it; for instance, simulators
based on TLT already have access to modal data regarding
the propagation along a transmission-line, so that the
actual implementation of these models has no additional
costs.

The first part of this paper has dealt with the single-
wire configuration, showing that it is possible to cover
a very wide frequency-range by means of a two-step
procedure. To this end, we defined an estimator for
the radiation losses, which was subsequently used for
assessing the attenuation introduced in the propagation
along the line. The validity of this approach was checked
through numerical and experimental investigations; the
by-product of this validation was the definition of an
empirical model for evaluating the overestimation of the
TRP as computed with (24). This model proved to be
configuration-independent, thus extremely simple to be
applied.

In the second part of this work we introduced an
extension of the model to open MTLs, where the bulk-
current model may fail. In this case too, the experimental
results have confirmed the validity of the proposed model,
so that it can be usefully employed for the analysis of
open lines. The empirical error model was shown to be
still valid in the MTL case; it thus extends the range of
validity of (51) to MTLs with high radiation efficiencies,
with typical errors of about 1 dB and a maximum one of
3 dB.
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