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Abstract. We provide a theoretical framework to describe the interaction of a

propagating guided matter wave with a localized potential in terms of a quantum

scattering approach in a confined environment. This interaction generates entangled

states for which the longitudinal and transverse degrees of freedom are correlated. The

number of terms of the entangled state is dictated by the incident energy. We analyze

this scattering analytically under the Born approximation using a Gaussian localized

potential. In this limit, it is possible to engineer the potential and achieve the coherent

control of the output channels. The robustness of this approximation is studied by

comparing the stationary scattering theory to numerical simulations involving incident

wave packets. It remains valid in a domain of weak localized potential achievable

experimentally. We infer a possible method to determine the longitudinal coherence

length of a guided atom laser. Then, we detail the non-perturbative regime of the

interaction of the guided matter wave with the localized potential using a coupled

channel approach. This approach is worked out explicitly with a square potential.

It yields new non-perturbative effects such as the occurrence of confinement-induced

resonances. The perspectives opened by this work are, finally, discussed.

PACS numbers: 37.10.Gh,03.65.Nk,03.67.Bg
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The recent realization of guided atom lasers with a macroscopic fraction of the

atoms in the ground state of the transverse confinement is a crucial step for the

development of guided atom optics [1, 2, 3, 4]. The description of the propagation

in the presence of a single extra, localized, potential is an important issue in the context

of the exploration of more complex propagating structures. This extra potential, also

called defect in the following, can be generated by a local modification of the transverse

confinement such as a constriction [5, 6, 7], or a local curvature [8, 9]. Alternatively, one

can use a far-off resonance light beam‡ superimposed on the guide to produce a large

variety of shapes and strengths. This potential acts as an obstacle and enables one to

revisit superfluidity for quantum degenerate guided beams [11].

The interaction between a guided matter wave and a localized potential belongs to

the more general topic of elastic scattering in a multimode quantum waveguide. This

topic has already been the subject of experimental and theoretical investigations in

condensed matter [12, 13, 14, 15, 16, 17, 18, 19, 20]. The motivation therein was to study

the effect of disorder on the electron transmission and, in particular, on conductance

quantization in narrow constrictions.

Confinement can dramatically modify the scattering properties, and thus the

properties of interacting quantum gases as exemplified by the observation of the Tonks

gas regime in one dimension [21, 22], or the Kosterlitz Thouless transition in two

dimensions [23]. Recent theoretical studies on atom-atom interaction where the true

interacting potential is replaced by the standard Huang-Fermi pseudo-potential have

shown the occurrence of resonances in the two-body scattering length for atoms that

are strongly transversally confined by a waveguide or more generally confined to quasi

1D geometry. These confinement-induced resonances have been predicted by Olshanii

[24, 25], and experimental evidence of such resonances have been recently reported for

bosons [21, 22] and fermions [26].

In this article, we study the interaction of a guided atom laser with extra localized

optical potentials. The atom laser is modelled as a propagating matter wave without any

atom-atom interaction because of the diluteness of the experimentally realized guided

atom lasers [1, 2, 3]. In contrast with scattering length studies, we take into account

the details of the interaction potential and envision their tailoring to control the output

channels after the interaction. In Sec. 1, we derive the theoretical framework to describe

the interaction between a dilute guided atom laser and a localized potential using the

Green’s function formalism taking into account the transverse harmonic confinement

[27, 28, 29, 30]. This approach yields an expression of the solution as a series expansion

in the powers of the strength of the localized potential. In Sec. 2, we derive analytical

results for a weak localized potential using the Born approximation. We also investigate

the validity domain of the scattering results in the perturbative limit for a propagating

wave packet, and emphasize the role played by the longitudinal size of the wave packet.

For a sufficiently strong localized potential the calculation of higher-order contributions

‡ A theoretical study with an on-resonance laser beam has also been carried out in Ref. [10].
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is cumbersome. To circumvent this limitation, we develop, in Sec. 4, a non-perturbative

formalism inspired by the theory of vibrational energy transfer in non reactive collisions

investigated in the context of quantum chemistry [31]. Using a model potential, we

show how the coupling between external degrees of freedom that occurs in the localized

potential region generates controlled entangled states that correlate the longitudinal

wave vector to the transverse state, and yields resurgences of quantum reflection.

Without loss of generality, the theoretical description made in the following is

done for a two dimensional problem; the matter wave propagates along the x axis

and the transverse confinement, assumed to be harmonic with an angular frequency

ω⊥, is provided along an orthogonal direction, y. In the absence of extra potential, the

Hamiltonian is therefore given by

H0(x, y) = − h̄2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+
1

2
mω2

⊥y
2. (1)

The defect is taken into account as an extra potential term U(x, y), so that the total

Hamiltonian reads H(x, y) = H0(x, y) + U(x, y).

1. Green’s function formalism

To study the interaction of the guided atom laser with the defect, we determine the

scattering states by solving the stationary Schrödinger equation:

[H0 + U ] |ϕ〉 = E|ϕ〉. (2)

The formal solution of this equation is given by the implicit Lippmann-Schwinger form

as [32]

|ϕ〉 = |ϕ0〉 +G+U |ϕ〉, where G+ = lim
ǫ→0

1

E −H0 + iǫ
(3)

is the retarded propagator, 1 is the identity matrix, and |ϕ0〉 a solution in the absence of

extra potentialH0|ϕ0〉 = E|ϕ0〉. This formulation is well suited for a formal perturbative

expansion in powers of the localized potential U :

|ϕ〉 = |ϕ0〉 +G+U |ϕ0〉 +G+UG+U |ϕ0〉 + . . . . (4)

A natural basis of the Hilbert space for this scattering problem is provided by the

vectors {|k, n〉 = |k〉⊗ |n〉}, tensor products of the longitudinal plane wave eigenvectors

along the x direction by the eigenvectors of the harmonic potential associated to the

transverse degree of freedom. By definition, one has H0|k, n〉 = Ek,n|k, n〉, with Ek,n =

h̄2k2/2m+En, where En = (n+ 1/2)h̄ω⊥ is the energy of the nth level of the transverse

harmonic confinement. In space representation, 〈~r |k, n〉 = (2π)−1/2eikxψn(y), where

ψn(y) is the eigenvector wavefunction of eigenenergy, En. The space representation of

the retarded resolvent is by definition the Green’s function, and its expansion on the

{|k, n〉} basis gives [33]:

G+(~r, ~r ′;E) =
∞∑

n=0

ψn(y)ψ∗
n(y

′)g+(x, x′;E, n), (5)
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where g+(x, x′;E, n) is the Green function of an effective one-dimensional scattering

problem. Using the residue theorem, one finds

g+(x, x′;E, n) = −mi
h̄2

eikn(E)|x−x′|

kn(E)
, (6)

with h̄kn(E) = [2m(E −En)]1/2. We obtain two kinds of modes: propagating ones, for

which kn(z) is real, and evanescent ones, for which kn(z) is imaginary.

In the following we consider an incident wave function of the form |k0, 0〉. Such a

monomode incident beam is experimentally achievable as recently reported in Ref. [3]

where 85 % of the atoms of the guided atom laser occupy the transverse ground state of

the confinement. The interaction of the atom laser with the localized potential produces

the contamination of the modes |kn, n〉 in the forward direction and | − kn, n〉 in the

backward direction:

ϕ(x→ ∞, y) =
∑

n

tn〈~r |kn, n〉, (7)

ϕ(x→ −∞, y) = 〈~r |k0, 0〉 +
∑

n

rn〈~r | − kn, n〉, (8)

where tn and rn are respectively the transmission and reflection amplitude coefficients

in the nth transverse mode. The physical meaning of Eqs. (7) and (8) is clear. The

incoming plane wave propagates from the left to the right, the outgoing plane waves

resulting from the interaction move in both directions; to the right as transmitted waves

and to the left as reflected waves.

Therefore, the output wave resulting from the interaction of the incident wave with

the scattering potential U(x, y) is an entangled state that is a linear superposition of

correlated bipartite states involving both a transverse state of quantum number n and

a specific longitudinal state ±kn. By controlling the incident energy, one can choose the

number of propagating modes, and thus the number of bipartite states that participate

in the output state.

Let us consider an incident wave packet characterized by a linear superposition of

longitudinal wave vectors and transversally in the ground state of the confinement. In

the following, the mean value of the wave vectors of the initial packet is denoted k0.

After its interaction with the defect, the transmitted wave packet will undergo a kind of

distillation in the course of its propagation. Indeed, as a result of energy conservation,

for each incident wave vector component, k, the components with a non zero transverse

quantum number n have a reduced wave vector kn < k:

h̄2k2

2m
+ 0 =

h̄2k2
n

2m
+ nh̄ω⊥. (9)

For a sufficient long propagation time, one therefore expects the packet to split into

a sum of packets if the initial dispersion δk in k is small enough, and the front wave

packet will be made of the components correlated to the ground state i.e. whose state

has not changed after the interaction with the localized potential.
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2. Born approximation

Determination of the coefficients rn and tn is straightforward for a weak localized

potential. In this limit, one applies the Born approximation which consists in keeping

only the first two terms of the expansion of Eq. (4). From the space representation of

Eq. (4) combined with Eqs. (5) and (6), one obtains the expression for the transmission

and reflection coefficients in the Born limit for n > 0:

tn = − 2πmi

h̄2|kn|
〈kn, n|U |k0, 0〉 and rn = − 2πmi

h̄2|kn|
〈−kn, n|U |k0, 0〉. (10)

These expressions are valid in the perturbative regime, |tn| ≪ 1 and |rn| ≪ 1.

2.1. The Gaussian potential

Let us apply the previous formalism to a model potential that is of practical interest, a

dipole potential generated by a Gaussian beam:

Ug(x, y) = U0ug(x/wx)ug(y/wy) , (11)

where ug(x) = e−2x2

is a Gaussian function of waist unity. This potential explicitly

couples the longitudinal and transverse degrees of freedom. By combining Eqs. (10) and

(11), one finds:

t2p(k2p) = − i
U0

h̄ω⊥

√
π

2

e−(k2p−k0)2
w2

x
8

|k2p| a2
ho

wx g2p(η),

r2p(k2p) = t2p(−k2p) , (12)

where p is an integer, η = wy/2aho, aho =
√

h̄/(mω⊥) is the harmonic oscillator

length, and g2p(η) accounts for the matrix element of the potential U(x, y) between

the transverse oscillator states (see Appendix A):

g2p(η) = 〈2p|ug(y)|0〉 = (−1)p

√

2(2p)!

2p p!
η

(

1

1 + 2η2

)p+ 1

2

. (13)

The parity of the potential with respect to the y variable cancels out the contributions

of the odd terms.

2.2. Validity of the perturbative approach

The predictions of the Born approximation can be compared with the results of direct

simulations of the scattering of wavefunctions by such Gaussian potentials. An incident

ideal guided matter wave can be modeled by a wave packet or a statistical mixture

of wave packets [34]. We thus use Gaussian packets as initial state for the numerical

simulations. In order to test the robustness of the results of the Born approximation

that involves an incoming plane wave, we have chosen the wave packet π(x) with a

large but realistic longitudinal size, Lp, (i.e. a small momentum dispersion) defined as

π(x) = (2/π)1/2L−1
p exp(−2x2/L2

p). The time evolution of the wave packet is performed

using the split-operator technique, for which the evolution operator is approximated by
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Figure 1. Logarithm (decimal) of the probability of transmission Tn = kn|tn|2/k0

(even states only) from the numerical simulations (black stars) and from the Born

approximation (red circles), as a function of the transverse mode number n of the

guide, for a wave packet after the interaction with a defect of width w = 1 µm and

fixed power P = 10−7 W. The initial wave packet of longitudinal width Lp = 63 µm

and in the transverse mode n = 0 of the guide potential moves towards the defect at a

mean velocity of 10 mm.s−1. The guide is generated by a dipole beam of waist 45 µm

and is characterized by a frequency ω⊥ = 2π × 203 Hz.

the product of the potential and kinetic term for a succession of small time steps.

The results depend on several parameters, in particular the depth of the potential

(corresponding to the power, P , of the laser used to generate the defect) and its width

w = wx = wy.

The wave packet is launched towards the localized potential, then interacts with it

and the projections on the different transverse modes are eventually computed. Initially,

the wave packet is entirely on the first transverse mode n = 0. For the simulations, we

consider a matter wave of rubidium 87 atoms propagating, with a mean velocity of 10

mm.s−1, in a guide provided by a far-off resonance dipole beam, λ = 1070 nm, with a

waist of 45 µm. These values are consistent with recent experiments [3].

For small P and w, the projection of the scattered wavefunction on the different

transverse modes is in very good agreement with the predictions of the Born

approximation. Figure 1 shows that for P = 10−7 W and w = 1 µm the projections on

the first 16 transverse modes are well reproduced. Such widths of the defect, although

small, are within reach of current experimental possibilities. For higher transverse

modes, predicted values are so small that they are of no experimental relevance and, in

addition, the numerical precision chosen precludes to check accurately the theoretical

predictions.

For larger values of P , the Born prediction (12) is a priori interesting only in a

certain range of values of w: for small w it predicts projections too large to be valid,

while for large w the predictions are so small that they are practically useless (and almost
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Figure 2. Ratio of transmissions T2 = k2|t2|2/k0 to the transverse state n = 2 from

the numerical simulations and from the Born approximation (black stars), as a function

of the power of the defect P in W, for a wave packet with a defect of width w = 1 µm.

The initial wave packet is the same as in Fig. 1. Red bars denote the value of T2 given

by the Born approximation.

impossible to check within numerical accuracy). As an example, Born predictions are

useful for a width of the order of 12 µm with P = 10−3 W, and or a width of the order

of 20 µm with P = 10−1 W.

Numerical simulations allow one to determine quantitatively the range of validity

of Born approximation. The role of the higher-order terms in the expansion (4) is clear

for the power dependence since the localized potential is simply proportional to the

power. For instance, we find that, for small widths of the defect such as w = 1 µm

and w = 4 µm, the results of Born approximation remain approximately correct for the

first transverse mode up to values of P where a significant part of the atoms (≈ 40%) is

transferred from n = 0 to n = 2 (see Fig.2). The dependence of the higher order terms

of the expansion (4) on the width of the localized potential is non trivial. We find that

for larger values of the width, the agreement of Born predictions with the numerics is

less good than for smaller width even when a comparable fraction of atoms is transfered

(data not shown). This indicates that the higher-order terms in the expansion (4) grow

faster with the size w than with the power P of the Gaussian potential.

In conclusion, the interaction of a guided matter wave with a localized potential

enables one to investigate quantum scattering in confined environment both in the

perturbative and non-perturbative regimes with accessible values for the power and

the size of the dipole beam used to generate experimentally the defect.

2.3. Coherent control in the perturbative limit

When the transverse size of the localized potential is much larger than the oscillator

length, η ≫ 1, the excited levels of the transverse confinement are nearly not populated
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after the interaction with the localized potential. For typical experimental conditions

[1, 2, 3], the oscillator length is on the order of 1 µm. Our simple calculation confirmed

by numerical simulations thus suggests that, to control the population of the output

scattering states, the defect size should be on the same order as the oscillator length.

This conclusion remains valid for any localized potential. In practice, the realization

of such defect by optical means can be achieved using large aperture optical elements

as used in recent experiments, either to produce optical potentials or to image atoms

[35, 36, 37].

By engineering the localized potential, it is possible to control the population in

the different output channels. For instance, the following family of potentials

Um(x, y) = U0ug(x/wx)ug(y/wy) [Hm(y/aho) + C] , (14)

where Hm is the Hermite polynomial of order m and C a constant, permits one to

populate only the mth mode of the transverse guide in the large waist limit (η ≫ 1).

Indeed, the gp coefficients are given for p 6= 0 by

gp(η) = 〈p|ug(y/wy)[Hm(y/aho)+C]|0〉 ∝ 〈p|ug(y/wy)|m〉 ≃ 〈p|m〉 = δmp , (15)

where δmp is the Kronecker delta function. A direct consequence is the possibility of

creating propagating states in a linear superposition of transverse states by using an

interacting potential of the form (14) where the Hermite polynomial Hm is replaced by

a sum of Hermite polynomials.

3. Coherence length of a guided atom laser

3.1. Thermodynamical model

The coherence properties of a guided continuous atom laser have been investigated in

Ref. [34]. This study assumes the propagating beam to be transversally confined (with

two transverse dimensions x and y) and at thermal equilibrium in the frame moving

at its mean velocity. To characterize the coherence properties, one has to compute the

correlation functions for the atomic field operator Ψ̂(x, y, z) in close analogy with their

counterpart in optics [38]. The first order correlation function is defined by

g1(X) = 〈Ψ̂†(0, 0, 0)Ψ̂(X, 0, 0)〉 (16)

and is sensitive to the coherence of the atomic field between two points on the axis

separated by a distance |X|. For an ideal Bose gas, one finds an exponential decay with

a characteristic length ξ:

g1(X) ≃ mω⊥n1

πh̄
e−|X|/ξ, where ξ =

λ2n1

2π
, (17)

λ = h/
√

2πmkBT is de Broglie wave length and n1 is the linear atomic density. For a

weakly interacting Bose gas, the coherence length is magnified by a factor 2 [39]. The

exponential decay of the first order correlation, in contrast to the result obtained for a

three-dimensional homogeneous Bose-Einstein condensate, is due to thermal excitation
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and intrinsically related to the fact that there is no Bose-Einstein condensation in a one-

dimensional box in the thermodynamical limit. For the guided atom laser of Ref. [3],

one finds ξ ∼ 7 µm.

3.2. Scattering approach

However, it is not clear to which extent this thermodynamical model can be applied

to the guided atom lasers generated so far by outcoupling atoms from Bose Einstein

condensates. A different approach makes use of the scattering formalism described

in Sec. 1. Indeed, formally one can write any incoming wave packet in terms of the

scattering eigenfunctions {|ψk〉} in space representation as

ϕ0(x, y) =
∫ +∞

0

dk

2π
α(k)ψk(x, y) with α(k) =

∫ +∞

0
dxe−ikxϕ0(x, y). (18)

The time evolution of the wavefunction can then be written as

ϕ(x, y; t) =
∫ +∞

0

dk

2π
α(k)ψk(x, y) exp

(

−ih̄
2k2

2m
t

)

. (19)

Therefore, the correlation function of the wavefunction is obtained formally in the form:

g1(X) = 〈ϕ∗(x, y; t)ϕ(x+X, y; t)〉 =
∫ +∞

0

∫ +∞

0

dk

2π

dk′

2π
〈α∗(k)α(k′)〉ψ∗

k(x, y)ψk′(x+X, y) exp

(

−ih̄
2(k′2 − k2)

2m
t

)

. (20)

In the following, we show how the interaction of a guided atom laser with a defect of an

adjustable size provides information on the coherence length.

3.3. Measuring the coherence length using a localized potential

As discussed above, the scattering of a wave packet can be described by the scattering

of a coherent superposition of plane waves. The Born approximation remains valid for

each plane wave of the wave packet when its dispersion δk is small compared to its mean

wave vector k0. In this regime the scattering turns out to be well described by the Born

approximation result for a plane wave of wave vector k0. In Sec. 2, we have used this

regime of parameters.

Let us discuss the domain of validity of Born approximation by considering the

first excited state (most populated). When the kinetic energy in this excited state tends

to zero the Born approximation breaks down because of the 1/k2 dependence of the

reflection and transmission coefficients (see Eqs. (12)). This affects significantly the wave

packet scattering. Indeed, in Fourier space, one can distinguish three different zones of

wave vectors k: those sufficiently large so that Born approximation for k0 remains valid,

those for which the incident energy is not sufficient to populate any excited states, and

an intermediate zone where the Born approximation first increases the scattering to the

excited state then breaks down because of the divergence in 1/k2. When the dispersion

in k increases, one thus should expect an enhancement of the occupation of the excited

state when the intermediate zone becomes significantly populated. A further increase
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Figure 3. Transmissions T2 to the transverse state n = 2 from the numerical

simulations (black stars), as a function of the ratio of the width of the localized

potential, w, over the longitudinal length of the initial wave packet, Lp, for w = 1

µm and power P = 10−7 W. Except for Lp, the initial wave packet parameters

are the same as in Fig. 1. Red horizontal line corresponds to the prediction of the

Born approximation for a incoming plane wave of momentum h̄k0. We analyzed the

scattering after the same evolution time for each Lp.

of the dispersion in k should eventually at some point decrease the population of the

excited state as the momenta when no scattering occurs have more and more weight in

the wave packet.

Figure 3 shows the results of the simulation of wave packets of different size

compared to the Born approximation for k0. One sees clearly an increase in the

population of the excited state of more than 50 % starting from a longitudinal length

Lp ≈ 1 µm. This increase is followed by a decrease for smaller values of Lp, as predicted

by the theory. Actually, in this non stationary regime, the precise maximum value

obtained for T2 depends on the time at which the observation is made, since a part

of the wave packet has very small velocity components. Larger Lp can be probed, for

instance, by decreasing the initial velocity.

In summary, there is a regime of parameters in k for which the scattering strongly

depends on the longitudinal size Lp of the wave packet. The breakdown of Born

approximation in this regime may enable to probe the coherence length (∝ (δk)−1)

of the atoms from measurements of the population of the transverse modes through

the interaction of the matter wave. Note that other techniques, developed for quasi-

condensate in very elongated geometry, could be envisioned to determine the coherence

length such as Bragg spectroscopy [40] or ballistic expansion [41].
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4. Non-perturbative treatment

The results presented so far are valid only within the Born approximation. The higher

order terms of the expansion (4) couples not only the ground state with the mth mode,

but also any modes i and j such that |i − j| = m. In the non-perturbative limit, the

interaction of the matter wave with the potential (14) cannot selectively populate only

one level. More generally, the complete calculations beyond the Born approximation

can be performed by determining the contribution of the successive orders terms in

the expansion (4). This strategy turns out to be cumbersome and, in addition, the

convergence of the series is not necessarily ensured. In this section, we detail a matrix

approach inspired by the theory of vibrational energy transfer between simple molecules

in non-reactive collisions [31] or similarly by inelastic quantum scattering theory [42].

This method is non-perturbative with respect to the potential strength U0, and therefore

yields the non-perturbative response of the atom laser propagation while propagating

through the localized potential.

4.1. Matrix formalism

This approach consists of (i) expanding the scattering wave solution in terms of the

transverse harmonic oscillator wave functions as ψ(x, y) =
∑

n φn(x)ψn(y), and (ii)

taking the scalar product of the Schrödinger equation in the presence of the localized

potential with a given m state of the transverse harmonic oscillator. In this way, we

find that the longitudinal function φn(x) obeys a set of coupled second-order linear

equations:
[

d2

dx2
+ k2

m − Ũm,m(x)

]

φm(x) =
∑

n 6=m

Ũm,n(x)φn(x) (21)

with Ũm,n(x) = 2m〈m|U(x, y)|n〉/h̄2. The terms involving only the m index describe

the “elastic” component of the scattering, while the term which involves Ũm,n (with

m 6= n) is responsible for the coupling channel dynamics between the different transverse

oscillator states. In the absence of the coupling term Ũm,n, Eq. (21) provides an infinite

set of one-dimensional scattering problems in the renormalized potentials Ũm,m. The

coupling between these 1D problems due to the right hand side terms of Eq. (21)

gives rise to new resonances, as discussed in Sec. 4.4 on a particular example, that

are reminiscent of the coupled channel theory used to describe Feshbach resonances

[43].

The set of Eqs.(21) must be solved subject to the asymptotic conditions (equivalent

to Eqs. (7) and (8)) that an incident flux is coming from the right with a wave vector k0

and in the transverse ground state, while reflected and transmitted fluxes of wave vectors

−kn and kn respectively with a transverse wave function occupying the nth oscillator

state are moving out to the left and the right respectively:

φn(x → −∞) = 〈x|k0〉δn,0 + rn〈, x| − kn〉, (22)

φn(x → ∞) = tn〈x|kn〉. (23)
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Through conservation of the probability current, the coefficients rn and tn are related

by

k0 =
Np
∑

n=0

kn

(

|rn|2 + |tn|2
)

, (24)

where Np denotes the number of propagating modes. Such a relation is particularly

useful for checking the validity of numerical solutions, and permits one to define the

level of contamination of a transverse “vibrational” state, n, both for the reflection

Rn = kn|rn|2/k0 and the transmission Tn = kn|tn|2/k0 with the normalization rule
∑Np

n=1 (Rn + Tn) = 1.

4.2. Link with Green’s function formalism

In this section, we show how the matrix approach is consistent with the Green’s function

formalism. The relation between both formalism can be made readily explicit within

the Born approximation. Let us project Eq. (4) limited to the first power in U on

the nth oscillator state (n 6= 0) 〈ψn|ϕ〉(x) =
∫

dx′g+(x, x′;E, n)〈ψn|U |ψ0〉(x′). Since

g+(x, x′;E, n) is the Green’s function of the one-dimensional Schrödinger equation, the

integral equation for 〈ψn|ϕ〉(x) means that φn(x) = 〈ψn|ϕ〉(x) is solution of the equation:
[

d2

dx2
+ k2

n

]

φn(x) ≃ Ũn,0(x)φ0(x). (25)

This equation is the same as Eq. (21) where higher order terms are neglected. Only the

dominant contribution that involves φ0 remains, since the wave function is marginally

altered by the localized potential within the Born approximation. More elaborated

approximation schemes such as the distorded wave approximation could also be worked

out in this context [42].

4.3. A simple example

Let us consider the following model potential

U(x, y) = −U0ub(x;Lx)ub(y − Ly; 2Ly), (26)

where ub is the square function ub(x;Lx) = Θ(x)Θ(Lx − x) with Θ(x) the Heaviside

function. The localized potential is therefore centered transversally. In the regions

x ≤ 0 and x ≥ Lx, the wavefunction φn is given by the Eqs. (22) and (23) respectively.

In the region of the localized potential, one has to solve the equation:

d2 ~f

dx2
+ M~f = 0, (27)

where ~f is the vector of coordinate (φ0, φ1, . . . , φn, . . .) and M the matrix of elements

Mn,n′ = k2
nδn,n′ − Ũn,n′. The method used to solve this linear set of equations with the

potential (26) is detailed in Appendix B

As an example, we have plotted in Fig. 4 the total transmission probability T along

with the transmission probabilities, Tn, in each propagating mode (n = 0, 2 and 4) as
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Figure 4. Total probability of transmission T =
∑

n Tn (solid line), and the

probabilities of reflection Tn in the transverse state n (dotted and dashed lines), as a

function of the normalized depth û0 = 2ma2
0U0/h̄2 as a result of the interaction of a

guided matter wave with incoming longitudinal wave vector k0 = 3.3/a0 with a square

localized potential (see Eq. (26) with Lx = a0 and 2Ly = 0.5a0. In this example, there

are Np = 3 even propagating modes.

a function of the normalized depth û0 = 2ma2
0U0/h̄

2. In this example, the incident

wave vector is k0 = 3.3/a0 (there is therefore only Np = 3 propagating modes) and the

potential is chosen of the form Eq. (26) with Lx = a0 and 2Ly = 0.5a0.

The interaction of the matter wave with the localized potential leads to nearly

total transparency for some discrete specific values of the depth of the well (û0 ≃
−48.5, 111.5, 189.5 in Fig. 4). This phenomenon is reminiscent of the “Ramsauer-

Townsend” effect in one-dimensional scattering [44]. Conversely, resonances with a

large fraction of the wave retro-reflected also occur for discrete values of the well depth.

Those resonances correspond to “quasi bound states” for which the matter wave remains

in the well for a maximum time. In the case studied in this article, with accessible

excited oscillator states as output channels, new resonances occur with, for instance,

a maximum probability of transmission T2, i.e. with the transverse oscillator state

n = 2 more populated than the other modes. An example is provided in Fig. 4 for the

transmission probabilities at û0 ≃ −44.5, where less than 5% of the wave is reflected

and for which T0 ≃ 0.08, T2 ≃ 0.58 and T4 ≃ 0.3. At the exit of the localized potential

region, the state of the guided atom laser is a linear superposition of the propagating

eigenvectors |kn, n〉. The coefficients in front of each eigenvector are governed by the

shape of the potential and can, therefore, be adjusted.
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Figure 5. (a) Reflection probability for a one-dimensional square well of length L

and depth U0 as a function of the incident wave vector k̃0 = k0L normalized to L in

ordinate and the potential depth ũ0 = 2mL2U0/h̄2. Total reflection occurs when the

incident energy is low compared to the potential depth. (b) Total reflection probability

R =
∑

n Rn for a 2D scattering problem with a harmonic confinement in the transverse

and a localized potential of the form (26) as a function of the incident wave vector,

k̂0 = k0a0, normalized to the oscilator length a0 = (h̄/mω⊥)1/2 on the vertical axis

and the potential depth ũ0 = 2ma2
0U0/h̄2. Resonances in the reflection probabilities

are observed for discrete values of the incident wave vector: k
(n)
0 = (2n/a0)

1/2, they

correspond to resurgences of quantum reflection due to the coupling between transverse

and longitudinal degrees of freedom.

4.4. Total reflection resonances

Let us consider a one-dimensional square potential well of length L and depth U0. The

total reflection probability R for an incident wave vector k0 reads

R(k̃0, ũ0) =
(k̃2

0 − q̃2)2 sin2 q̂

(k̃2
0 + q̃2)2 sin2 q̃ + 4k̃2

0 q̃
2 cos2 q̃

, (28)

where we have introduced the dimensionless parameters k̃0 = k0L, ũ0 = 2mL2U0/h̄
2,

and q̃ = (k̃2
0 + ũ0)

1/2. A total quantum reflection is obtained when the incident energy

is low compared to the potential depth, k̃2
0 ≪ ũ0, as illustrated in Fig. 5a.

One may wonder how this purely quantum effect is affected by the confinement. For

this purpose, we consider the model potential of Eq. (26) with Lx = a0 and Ly = 0.1 a0.

The total reflection probability R =
∑

nRn as a function of the normalized incident wave

vector, k̂0 = k0a0, and the potential depth, ũ0 = 2ma2
0U0/h̄

2, is represented in Fig. 5b.

The matrix elements of the transverse potential renormalize the longitudinal potential,

as it clearly appears in the set of Eqs. (21). In addition, we have chosen to normalize

using the oscillator length a0. The scales of the abscissa of the two figures 5a and 5b

are therefore different. In Fig. 5b, one observes the appearance of new resonances for a

set of discrete values of the incident wave vector, k
(n)
0 = (2n/a0)

1/2, that correspond to

the opening of a new transverse channel accessible by the incident energy.
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Our interpretation of these resonances is as follows; when the incident wave

enters the localized potential zone, there is a strong coupling between transverse

and longitudinal degrees of freedom. This coupling favors a virtual excitation of the

transverse excited modes so that the longitudinal energy is, again, in a range for which

total reflection occurs in 1D occurs. This effect is reminiscent of the confinement-induced

resonances pointed out by M. Olshanii for atoms interacting through a Dirac potential

under a strong transverse confinement [24, 25, 45].

The matrix approach carried out in this section can be readily generalized to

a two dimensional transverse confinement at the expense of a much larger matrix

M for determining the transmission and reflection coefficients, since M would be a

2N(N + 1) × 2N(N + 1) matrix.

5. Discussion and conclusion

The calculations described in this article are motivated by the recent realization of

guided atom lasers in the ground state of the transverse confinement. The interaction of

the matter wave with a localized potential where open and closed channels are accessible

through the scattering of the matter wave on the potential is in direct analogy with non

reactive chemical reaction and guided electronic wave propagation in mesoscopic physics.

The possibility of shaping the localized potential using techniques established in

cold atom physics opens new perspectives:

• It allows for the generation and the manipulation of new kinds of entangled

states that correlate longitudinal and external degrees of freedom. More complex

potentials with a succession of interacting zones can be envisioned to code or stock

information in the external degrees of freedom, or in both internal and external

degrees. This latter prospect is reminiscent of the use of laser light for quantum

computation with cold trapped ions [46].

• It provides a new method to determine the coherence length of a guided atom laser

regardless of the thermodynamical equilibrium.

• It constitutes a new device to investigate coherent control of the population of

the discrete energy levels after their interaction with the localized potential. As

already emphasized, the control of the transmission output channels implies the

shaping of the localized potential on the typical scale of the harmonic oscillator

length corresponding to the transverse confinement§.
• It provides a test bed for inverse scattering problem in confined environment [47, 48].

For instance, it allows, in principle, to engineer potential with different shapes but

with the same output after the interaction. It therefore enables the investigation

§ Another advantage of a very local action of the extra potential lies in the fact that the reflection or

transmission effects become less sensitive to the de Broglie wavelength dispersion when the size of the

potential decreases, and are therefore more robust with respect to the longitudinal monochromaticity

of the incoming guided atom laser.
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of the non linear functional relationship between the potential details and the

scattering properties.

A natural extension of this work also lies in the inclusion of atom-atom interactions.

Many new effects are expected. For instance, the propagation of an interacting beam

through a constriction [6] (local increase in the strength of the transverse confinement)

has no stationary solution if the compression is sufficiently high, but solitonic like

solution [7]. This effect arises from the non linearity of the mean field term that

describes the interactions. Other effects are connected to the quantum turbulent regime

downstream the obstacle realized by the localized potential [49, 50]. Nonlinear atom

optical effects are expected to arise from atom-atom collisional interactions in a single-

mode atomic Fabry-Perot cavity driven by a coherent cw atom laser beam [51]. The

role of interaction within the mean field description on quantum scattering problems is

a fundamental issue related to the physics of non-linear Schrödinger equation that can

be addressed with guided atom lasers [52].
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Appendix A

In the Born approximation, the characterization of the interaction of a matter wave

with a localized potential through the reflection and transmission amplitude coefficients

requires the knowledge of the quantity 〈kn, n|U |k0, 0〉 (see Eq. 10). In this Appendix,

we detail the calculation of this matrix element in the case of the Gaussian localized

potential (11):

〈kn, n|U |k0, 0〉 =
U0

2 π

∫ +∞

−∞
e−i(kn−k0) x e−2x2/w2

xdx
∫ +∞

−∞
ψ∗

n(y)ψ0(y)e
−2y2/w2

ydy
︸ ︷︷ ︸

gn

. (29)

This expression contains two factors, the Fourier transform of the longitudinal Gaussian

potential ug(x/wx) which can be easily calculated, and an integral gn which involves the

eigenfunctions of the harmonic oscillator, defined by:

ψn(y) =
1

√

aho n! 2n
√
π
Hn

(
y

aho

)

e−y2/2a2

ho (30)

where aho = (h̄/mω⊥)1/2 is the harmonic oscillator length, and Hn(u) are the Hermite

polynomials of order n. The integral gn can therefore be rewritten as

gn =
∫ +∞

−∞

du√
2n n! π

Hn(u) e−u2 α2

, (31)
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where we have introduced the two dimensionless parameters η = wy/(2aho) and

α2 = 1 + 1/(2 η2).

Let us calculate explicitly the generating function, f(z), associated to the integrals

gn:

f(z) =
+∞∑

n=0

gn
zn

n!
=

1√
2n n! π

∫ +∞

−∞

(
+∞∑

n=0

Hn(u)
zn

n!

)

e−α2u2

du

=
1√

2n n! π

∫ +∞

−∞
e2uz−z2

e−α2u2

du

=
1√

2n n!

1

α

+∞∑

n=0

z2n

n!

(
1

α2
− 1

)n

. (32)

Identifying the different terms of this last Taylor expansion with those of the definition

of the generating function we deduce the expression for the integral, gn:

g2p(α) =
1

√

π(2p)!22p

√
π

α

(2p)!

p!

(
1

α2
− 1

)p

g2p+1(α) = 0, (33)

where p is an integer. This calculation demonstrates equation (13).

Finally, we find:

〈kn, n|U0 ug(x/wx) ug(y/wy) |k0, 0〉 =
U0

2π

√
π

2
wx e

(k2p−k0)2
w2

x
8 g2p(η). (34)

Appendix B

To find the solution of Eq. (27), one needs to diagonalize the matrix M. Let us introduce

the matrix P such that M = PDP−1 and the vector ~ℓ = P−1 ~f , Eq. (27) can be rewritten

in the diagonal form ~̈ℓ+D~ℓ = 0 whose solution reads

~f(x) = PeiD1/2x~a+ Pe−iD1/2x~b, (35)

where ~a and ~b are vectors that are determined by imposing the continuity of the

wave functions and their derivatives. Introducing the matrices Q = D1/2, (K)n,n′ =

knδn,n′, X = exp(iQL), Z = exp(iKL) and the vectors ~δ0 = (1, 0, . . . , 0, . . .), ~r =

(r0, r1, . . . , rn, . . .), ~t = (t0, t1, . . . , tn, . . .), we find:

~δ0 + ~r = P(~a+~b ), (36)

K(~δ0 − ~r) = PQ(~a−~b ), (37)

Z~t = P(X~a+ X−1~b ), (38)

KZ~t = PQ(X~a− X−1~b ). (39)

By combining, this set of matrix equations one determines the unknown vector

~r = −[A+X−1B+ + A−XB−]−1[A−XB+ + A+X−1B−]~δ0, (40)
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and infer from it the other unknown vectors

~a = (B+
~δ0 + B−~r )/2,

~b = (B−
~δ0 + B+~r )/2,

~t = Z−1P(X~a+ X−1~b ), (41)

with A± = KP ± PQ and B± = P−1 ± Q−1P−1K.

In practice, it is important to take into account a sufficient number of evanescent

modes to ensure the convergence of the result. For the results of Fig. 5, the number of

propagating modes is Np = 3 (modes 0,2,4) but we have solved the equations detailed

in this appendix using 25 modes since the convergence on the probabilities Ri and Ti

was obtained with typically 15 modes for our parameters.

References

[1] Guerin W, Riou J F, Gaebler J P, Josse V, Bouyer P and Aspect A 2006 Phys. Rev. Lett. 97

200402

[2] Couvert A, Jeppesen M, Kawalec T, Reinaudi G, Mathevet R and Guéry-Odelin D 2008 Europhys.
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[26] Günter K, Stöferle T, Moritz H, Köhl M and Esslinger T 2005 Phys. Rev. Lett. 95 230401

[27] Lupu-Sax A 1998 Ph.D. thesis Harvard University, Cambridge MA,

[28] da Luz M G E, Lupu-Sax A S and Heller E J 1997 Phys. Rev. E 56 2496

[29] Kim J I, Schmiedmayer J and Schmelcher P 2005 Phys. Rev. A 72 042711

[30] Peano V, Thorwart M, Mora C and Egger R 2005 New J. Phys. 7 192

[31] Rapp D and Kassal T 1968 Chem. Rev. 69 61



Interaction of a propagating guided matter wave with a localized potential 19

[32] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (McGraw-Hill, New

York, 1971)

[33] Morse P M and Feshbach H 1953 Methods of Theoretical Physics (McGraw Hill, New York, 1953)

[34] Castin Y, Dum R, EMandonnet, Minguzzi A and Carusotto I 2000 J. Mod. Opt. 47 2671

[35] Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L,

Bouyer P and Aspect A 2008 Nature 453 891
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