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Introduction

The purpose of this note is to give a survey on the results of joint work with Lutz Hille [START_REF] Hille | Exceptional sequences of invertible sheaves on rational surfaces[END_REF] and to provide some explicit examples. The general problem addressed in [START_REF] Hille | Exceptional sequences of invertible sheaves on rational surfaces[END_REF] is to understand the derived category of coherent sheaves on an algebraic variety (for an introduction and overview on derived categories over algebraic varieties we refer to [START_REF] Huybrechts | Fourier-Mukai transforms in algebraic geometry[END_REF]; see also [START_REF] Bridgeland | Derived categories of coherent sheaves[END_REF]). An important approach to understand derived categories is to construct exceptional sequences:

Definition ([Rud90]): A coherent sheaf E on X an algebraic variety X is called exceptional if E is simple and Ext i X (E, E) = 0 for every i = 0. A sequence E 1 , . . . , E n of exceptional sheaves is called an exceptional sequence if Ext k X (E i , E j ) = 0 for all k and for all i > j. If an exceptional sequence generates D b (X), then it is called full. A strongly exceptional sequence is an exceptional sequence such that Ext k X (E i , E j ) = 0 for all k > 0 and all i, j.

In [START_REF] Hille | Exceptional sequences of invertible sheaves on rational surfaces[END_REF] we have considered exceptional and strongly exceptional sequences on rational surfaces which consist of invertible sheaves. Though this seems to be a quite restrictive setting, it still covers a large and interesting class of varieties, and the results uncover interesting aspects of the derived category which had not been noticed so far. In particular, it seems that toric geometry plays an unexpectedly important role.

Besides giving a survey, we also want to consider in these notes some aspects related to noncommutative geometry, which have not been touched in [START_REF] Hille | Exceptional sequences of invertible sheaves on rational surfaces[END_REF]. By results of Bondal [START_REF] Bondal | Representation of associative algebras and coherent sheaves[END_REF], the existence of a full strongly exceptional sequence implies the existence of an equivalence of categories RHom(T , . ) :

D b (X) -→ D b (A -mod),
where T := n i=1 E i , which is sometimes called a tilting sheaf, and A := End(T ). This way, a strongly exceptional sequence provides a non-commutative model for X. The algebra A is finite and can be described as a path algebra with relations. One of the themes of this note will be to provide some interesting and explicit examples of such algebras. 

Exceptional sequences and toric systems

Our general setting will be that X is a smooth complete rational surface defined over some algebraically closed field. We will always denote n the rank of the Grothendieck group of X. Note that Pic(X) is a free Z-module of rank n -2. We are interested in exceptional sequences of invertible sheaves. That is, we are looking for divisors E 1 , . . . , E n on X such that the sheaves O(E 1 ), . . . , O(E n ) form a (strongly) exceptional sequence. In this situation, computation of Ext-groups reduces to compute cohomologies of divisors, i.e. for any two invertible sheaves L, M, there exists an isomorphism Ext k X (L, M) ∼ = H k (X, L * ⊗ M) for every k. So, the O(E i ) to form a (strongly) exceptional sequence, it is necessary in addition that H k X, O(E j -E i ) = 0 for every k and every i > j (or for every k > 0 and every i, j, respectively). For simplifying notation, we will usually omit references to X and for some divisor D on X we write h k (D) instead of dim H k X, O(D) . Note that for any divisor D and any blow-up b : X ′ → X the vector spaces H k X, O(D) and H k X ′ , b * O(D) are naturally isomorphic. This way there will be no ambiguities on where we determine the cohomologies of D.

In essence, we are facing a quite peculiar problem of cohomology vanishing: constructing a strongly exceptional sequence of invertible sheaves is equivalent to finding a set of divisors E 1 , . . . , E n such that h k (E i -E j ) = 0 for all k > 0 and all i, j. Formulated like this, the problem looks somewhat ill-defined, as it seems to imply a huge numerical complexity (the Picard group has rank n -2 and one has to check cohomology vanishing for ∼ n 2 divisors). This can be tackled rather explicitly for small examples (see [START_REF] Hille | A Counterexample to King's Conjecture[END_REF]), but such a procedure becomes very unwieldy in general.

Simple examples show that standard arguments for cohomology vanishing via Kawamata-Viehweg type theorems usually are not sufficient to solve the problem (however, see [START_REF] Perling | Divisorial cohomology vanishing on toric varieties[END_REF] for another kind of vanishing theorem which may be helpful here). So, to deal more effectively with the problem, we have to make more use of the geometry of X. Recall that Pic(X) (or better, Pic(X) ⊗ Z R) is endowed with a bilinear quadratic form of signature (1, -1, . . . , -1), which is given by the intersection form. Moreover, the geometry of X gives us a canonical quadratic form on Pic(X), the Euler form χ, which by the Riemann-Roch theorem is of the form

χ(D) = 1 + 1 2 (D 2 -K X .D)
for D ∈ Pic(X). The condition that E 1 , . . . , E n yield an exceptional sequence implies that χ(E j -E i ) = 0 for every i > j. So, we get another bit of information which tells us that we should look for divisors which are sitting on a quadratic hypersurface in Pic(X) which is given by the equation χ(-D) = 0 for D ∈ Pic(X). However, looking for integral solutions of a quadratic equation still does not help very much. To improve the situation, we have to exploit the Euler form more effectively. Considering its symmetrization and antisymmetrization:

χ(D) + χ(-D) = 2 + D 2 and χ(D) -χ(-D) = -K X .D,
we get immediately:

Lemma 2.1: Let D, E ∈ Pic(X) such that χ(-D) = χ(-E) = 0, then (i) χ(D) = -K X .D = D 2 + 2; (ii) χ(-D -E) = 0 iff E.D = 1 iff χ(D) + χ(E) = χ(D + E).
Now, using Lemma 2.1, we can bring an exceptional sequence O(E 1 ), . . . , O(E n ) into a convenient normal form. For this, we pass to the difference vectors and set A i := E i+1 -E i for 1 ≤ i < n and

A n := -K X - n-1 i=1 A i .
By Lemma 2.1, we get:

(i) A i .A i+1 = 1 for 1 ≤ i ≤ n; (ii) A i .A j = 0 for i = j and {i, j} = {k, k + 1} for some 1 ≤ k ≤ n; (iii) n i=1 A i = -K X .
Note that here the indices are to be read in the cyclic sense, i.e. we identify integers modulo n. This leads to the following definition:

Definition 2.2: We call a set of divisors on X which satisfy conditions (i), (ii), and (iii) above a toric system.

A toric system seems to be the most efficient form to encode an exceptional sequence of invertible sheaves. But why the name? It turns out that a toric system encodes a smooth complete rational surface. Consider the following short exact sequence:

0 -→ Pic(X) A -→ Z n -→ Z 2 -→ 0,
where A maps a divisor class D to the tuple (A 1 .D, . . . , A n .D). Denote l 1 , . . . , l n the images of the standard basis fo Z n in Z 2 . It is shown in [START_REF] Hille | Exceptional sequences of invertible sheaves on rational surfaces[END_REF] that the l i form a cyclically ordered set of primitive elements in Z 2 such that l i , l i + 1 forms a basis for Z 2 for every i. This is precisely the defining data for a smooth complete toric surface. On the other hand, the construction of the l i from the A i is an example for Gale duality. In particular, if we dualize above short exact sequence, we obtain a standard sequence from toric geometry:

0 -→ Z 2 L -→ Z n -→ Pic(Y ) -→ 0,
where Y denotes the toric surface associated to the toric system A 1 , . . . , A n and L the matrix whose rows are the l i which act via the standard Euklidian inner product as linear forms on Z 2 . By this duality, Pic(X) and Pic(Y ) and their intersection products can canonically be identified. So we get the following remarkable structural result: Theorem 2.3 ([HP08]): Let X be a smooth complete rational surface, let O X (E 1 ), . . . , O X (E n ) be a full exceptional sequence of invertible sheaves on X, and set E n+1 := E 1 -K X . Then to this sequence there is associated in a canonical way a smooth complete toric surface with torus invariant prime divisors D 1 , . . . , D n such that D 2 i + 2 = χ(E i+1 -E i ) for all 1 ≤ i ≤ n. This theorem at once gives us information about the possible values for χ(A i ) and the combinatorial types of quivers associated to strongly exceptional sequences, but it does not give us a method for constructing them. This will be discussed in the next section. We conclude with some remarks on some ambiguities related to toric systems. Of course, for a given exceptional sequence O(E 1 ), . . . , O(E n ), the associated toric system A 1 , . . . , A n is unique. However, from A 1 , . . . , A n we will get back the original sequence only up to twist, i.e. by summing up the A

i we get O X , O(A 1 ), O(A 1 + A 2 ), . . . , O( n-1 i=1 A i ).
Of course, this does not really matter, as we are interested only in the differences among the divisors.

By construction, the condition that the cohomologies vanish a priori apply only to the A i with 1 ≤ i < n, but it follows from Serre duality that also h k (-A n ) = 0 for all k. More generally, it follows that every cyclic enumeration of the A i gives rise to an exceptional sequence. Moreover, if A 1 , . . . , A n yields an exceptional sequence, then so does A n , . . . , A 1 .

The case where the E i form a strongly exceptional sequence has less symmetries in general. In particular, we cannot expect that the higher cohomologies of A n vanish in this case. However, if A 1 , . . . , A n give rise to a strongly exceptional sequence, then also A n-1 , . . . , A 1 , A n does. This system then corresponds to the dual strongly exceptional sequence, given by O(-E n ), . . . , O(-E 1 ).

Examples of toric systems and standard augmentations

The easiest examples of toric systems exist on P 2 and the Hirzebruch surfaces F a . We first consider the case of P 2 . Its Picard group is isomorphic to Z and generated by the class H of a line. In this case, there exists a unique toric system which is given by H, H, H, which corresponds to a strongly exceptional sequence given by O P 2 , O P 2 (1), O P 2 (2). The quiver with relations of the endomorphism algebra is shown in figure 1 (see also [START_REF] Bondal | Representation of associative algebras and coherent sheaves[END_REF]). The toric surface associated to this toric system is P 2 again. For the case of F a , we have a slightly more complicated picture. First we choose a basis P, Q for Pic(F a ), where P is the class of a fiber of the ruling and Q is chosen such that Q -aP is the class of the base of the ruling. This choice is such that P and Q are the two generators of the nef cone of F a and hence have no higher cohomologies. With respect to these coordinates, there exists a unique family of toric systems which is associated to exceptional sequences:

• • • b i a j = b j a i for i = j
P, sP + Q, P, -(a + s)P + Q, where s ∈ Z.
The associated toric surface is isomorphic to F a+2s . The associated sequence is strongly exceptional for s ≥ -1. For both s, -(a + s) ≥ -1, we obtain cyclic strongly exceptional sequences, which we will discuss in section 5, and which lead to special quivers in each case. Otherwise, we will get rather uniformly looking quivers. Figure 2 shows the quiver with relations for For s = -1 and a ≥ 3, figure 3

• • . . . • • c i a 1 = c i+1 a 2 for 1 ≤ i < a d 1 c i = d 2 c i+1 for 1 ≤ i < a b 2 a 1 = b 2 a 2 d 1 b 1 = d 2 b 1 a1 a2 c1 ca d1 d2 b1 b2 Figure 2. The quiver associated to O Fa , O Fa (P ), O Fa (Q), O Fa (P + Q).
for s ≥ 0 and a + s ≥ 1. The quivers and relations can quite directly be computed using toric methods (see [START_REF] Perling | Some quivers describing the derived category on the toric del Pezzo surfaces[END_REF], for instance). We call toric systems on P 2 or F a standard toric systems. By the classification of rational surfaces, we know that for any given surface X, there exists a sequence of blow-downs

• • . . . . . . • • a1 a2 b0 bs c0 cs+a d1 d2 b i a 1 = b i+1 a 2 for 0 ≤ i < s d 1 c i = d 2 c i+1 for 0 ≤ i < s + a c i a 1 = c i+1 a 2 for 0 ≤ i < s + a d 1 b i = d 2 b i+1 for 0 ≤ i < s
X = X t bt -→ X t-1 bt-1 -→ • • • b2 -→ X 1 b1 -→ X 0 ,
where X 0 is either P 2 or some F a . We assume now that one such sequence (which is far from unique, in general) is fixed. Denote R 1 , . . . , R t the classes of the total transforms on X of the exceptional divisors of the blow-ups b i . Using these, we obtain a nice basis for Pic(X). If X 0 ∼ = P 2 , we get H, R 1 , . . . , R t as a basis with the following intersection relations:

H 2 = 1, R 2 i = -1 for every i, R i .R j = 0 for every i = j, H.R i = 0 for every i. If X 0 ∼ = F a ,
we get P, Q, R 1 , . . . , R t (where we identify H and P, Q, respectively, with their pull-backs in Pic(X)) with

P 2 = 0, Q 2 = a, P.Q = 1, R 2 i = -1 for every i, R i .R j = 0 for every i = j, P.R i = Q.R i = 0 for every i.
If we start with any given toric system on X 0 , then we can successively produce new toric systems as follows. Assume that X 0 ∼ = P 2 and start with the unique toric system H, H, H on P 2 . After blowing up once, we can augment this toric system by inserting R 1 in any place and subtracting R 1 in the two neighbouring positions, i.e., up to symmetries, we obtain a toric system

H -R 1 , R 1 , H -R 1 , H on X 1 .
Continuing with this, we essentially get two possibilities on X 2 , namely

H -R 1 -R 2 , R 2 , R 1 -R 2 , H -R 1 , H H -R 1 , R 1 , H -R 1 -R 2 , R 2 , H -R 2 .
It is easy to see that all of these examples lead to strongly exceptional sequences for any choice of A n , with exception of the first one in the case where b 2 is a blow-up of an infinitesimal point, where we necessarily have to choose the enumeration of the A i such that

A n = R 1 -R 2 . Similarly, if X 0 ∼ = F a ,
we can start with some toric system of the form P, sP + Q, P, -(a + s)P + Q and augment this sequence successively. In this case, we already have less symmetries for the first augmentation and there are essentially two possibilities:

P -R 1 , R 1 , sP + Q -R 1 , P, -(a + s)P + Q P, sP + Q, P -R 1 , R 1 , -(a + s)P + Q -R 1 .
We can augment these toric systems along the b i in the same fashion. Toric systems obtained this way play a special role in what follows, so they need a name: Definition 3.1: We call a toric system obtained by augmentation as above of a toric system on some X 0 a standard augmentation.

It is straightforward to show that standard augmentations always lead to full exceptional sequences of invertible sheaves. So, we recover the following well-known result (compare [START_REF] Orlov | Projective bundles, monoidal transformations, and derived categories of coherent sheaves[END_REF]): Theorem 3.2 ([HP08]): On every smooth complete rational surface exists a full exceptional sequence of invertible sheaves.

We have not yet determined the existence of strongly exceptional sequences. A nice class of examples comes from simultaneous blow-ups,where we assume X to be a blow-up of X 0 simultaneously at several points. That is, we do not blow-up infinitesimal points. Assuming X 0 ∼ = P 2 , we get:

Proposition 3.3: The toric system R t , R t-1 -R t , . . . , R 1 -R 2 , H -R 1 , H, H - t i=1 R i
corresponds to a strongly exceptional sequence of invertible sheaves. Proof. A toric system which is a standard augmentation corresponds to a strongly exceptional sequence iff h k (± i∈I A i ) = 0 for every interval I ⊂ {1, . . . , n -1}. So, there are only a few types of divisors to check, namely

R i , R i -R j , H -R i , 2H -R i , H, 2H.
The assertion is clear for R i , H, 2H. A divisor of type R i -R j has no cohomology iff R i does not lie over R j or vice versa; this is clear, because we assumed that no infinitesimal points are blown up. As H and 2H are very ample, the linear systems |H| and |2H| are base-point free and we can conclude that

h k ± (H -R i ) = h k ± (2H -R i ) = 0 for all k > 0.
More explicitly, the toric system of Proposition 3.3 corresponds to the strongly exceptional sequence

O X , O(R t ), . . . , O(R 1 ), O(H), O(2H).
Figure 4 shows the quiver (without relations) and the fan associated to the toric system of Proposition 3.3 (the relations of this quiver will be described in section 7). The black rays denote the fan associated to the toric system H, H, H, the grey rays indicate the rays added to the fan by augmenting the toric system. Similarly, one can produce a strongly exceptional sequence if X can be obtained from P 2 by

• • • . . . • • • • 1 2 . . . t Figure 4
. Quiver and fan associated to a toric system coming from a simultaneous blow-up of P 2 .

blowing up two-times in several points. That is, we can partition the blow-ups such that b 1 , . . . , b r blow up points on P 2 and b r+1 , . . . , b t blow up infinitesimal points on the exceptional divisors of the first group of blow-ups. A toric system which corresponds to a strongly exceptional sequence then is given by

R r , R r-1 -R r , . . . , R 1 -R 2 , H -R 1 , H -R r+1 , R r+1 -R r+2 , . . . , R t-1 -R t , R t , H - t i=1 R i .
This can be shown similarly as in Proposition 3.3. Figure 5 shows the corresponding quiver and fan. The

• • • . . . • • • • • . . . • • • r + 1 r + 2 . . . t 1 2 . . . r Figure 5
. Quiver and fan associated to a toric system coming from two times blowing up P 2 .

quiver arises from the quiver of figure 1 by inserting r additional vertices, corresponding to the divisors R 1 , . . . , R t , between the first and second vertex, and tr vertices between the second and third. The strongly exceptional sequence associated to this toric system is

O X , O(R r ), . . . , O(R 1 ), O(H), O(2H -R r+1 ), . . . , O(2H -R t ).
Similarly, we can write down a strongly exceptional toric system for the case where X comes from blowing up a Hirzebruch surface two times:

R r , R r-1 -R r , . . . , R 1 -R 2 , P -R 1 , sP +Q, P -R r+1 , R r+1 -R r+2 , . . . , R t-1 -R t , R t , -(a+s)P +Q- t i=1 R i with strongly exceptional sequence O X , O(R r ), . . . , O(R 1 ), O(P ), O((s + 1)P + Q), O(P ), O((s + 2)P + Q -R r+1 ), . . . , O((s + 2)P + Q -R t ).
Figure 6 shows the corresponding quiver and fan. The quiver arises from the quiver shown in figure 3 •

• • . . . • • • . . . • • • . . . • • • 1 2 . . . r r + 1 r + 2 . . . t Figure 6
. Quiver and fan associated to a toric system coming from two times blowing up F a . by inserting r additional vertices corresponding to the divisors R 1 , . . . , R r between the first and second vertex, and tr vertices corresponding to R r+1 , . . . , R t between the third and fourth vertex. Note that to maintain the additivity property of the Euler characteristic (Lemma 2.1) we also have to insert additional arrows from the first layer of new vertices to the former third vertex and from the former second vertex to the second layer of new vertices. We conclude:

Theorem 3.4 ([HP08]): Any smooth complete rational surface which can be obtained by blowing up a Hirzebruch surface two times (in possibly several points in each step) has a full strongly exceptional sequence of invertible sheaves.

Note that there is no loss of generality, as P 2 blown up in one point is isomorphic to F 1 . To create above strongly exceptional toric systems, we have made use of the "slots" in the toric systems on X 0 . So, as there are at most four such slots (for X 0 ∼ = F a ), it is conceivable that we can expect by using standard augmentations only to get sequences if X comes from blowing up X 0 simultaneously at most four times. But note that we have used A n in above construction to collect all the cohomological "dirt" coming from the augmentations. This does not leave too much degree of freedom for further augmentations. Indeed, it turns out that above type of toric system is maximal: Theorem 3.5 ([HP08]): Let P 2 = X be a smooth complete rational surface which admits a full strongly exceptional sequence whose associated toric system is a standard augmentation. Then X can be obtained by blowing up a Hirzebruch surface two times (in possibly several points in each step). So far it is not clear, whether every strongly exceptional toric system is related to a standard augmentation. We will see in the next section that this at least is true for toric surfaces. Conjecturally, this is true for any rational surface.

A toric example and counterexample

As mentioned before, on toric surfaces it suffices just to consider standard augmentations: Theorem 4.1 ([HP08]): Let X be a smooth complete toric surface, then every full strongly exceptional sequence of invertible sheaves comes from a toric system which is a standard augmentation.

Note that we suppress here some technical details which are hidden in the formulation "comes from". For a given toric system we may need to perform a certain normalization process. This process is trivial but it may be one reason why the general problem of constructing exceptional sequences of invertible sheaves was perceived as somewhat unwieldy. An immediate consequence is the following: Theorem 4.2 ([HP08]): Let P 2 = X be a smooth complete toric surface. Then there exists a full strongly exceptional sequence of invertible sheaves on X if and only if X can be obtained from a Hirzebruch surface in at most two steps by blowing up torus fixed points.

We can immediately give a bound for toric surfaces which admit a full strongly exceptional sequence of invertible sheaves: Corollary 4.3: Let X be a smooth complete toric surface which admits a full strongly exceptional sequence of invertible sheaves. Then rk Pic(X) ≤ 14.

Proof. We have rk Pic(F a ) = 2; moreover, F a , as a toric variety, has four torus fixed points. Its blow-up in these four points has 8 fixed points. Hence we can blow up at most twelve points and the bound follows.

On the other hand, a Picard number smaller or equal 14 does not imply that given toric surface admits such a sequence. Indeed, there is only the trivial bound: Corollary 4.4: Let X be a smooth complete toric surface with rk Pic(X) ≤ 4. Then X admits a strongly exceptional sequence of invertible sheaves.

Proof. If rk Pic(X) ≤ 4, then either X ∼ = P 2 or X is obtained by blowing up some F a at most two times.

In [START_REF] Hille | A Counterexample to King's Conjecture[END_REF], a counterexample with Picard number 5 has explicitly been verified. The following generalizes this example: Corollary 4.5 ([HP06]): A toric surface given by the following fan for k = 0, 1 does not admit a full strongly exceptional sequence of invertible sheaves:

k -1 0 -k -3 -2 -2 -1
(note that the integers denote the self-intersection numbers of the corresponding toric prime divisors).

We leave it to the reader to write down other counterexamples of Picard number 5. A funny observation is that the non-existence of a full strongly exceptional sequence does not imply the non-existence on blowups. The following example is a blow-up of a toric variety of the type as in Corollary 4.5 for k = 2.

Corollary 4.6: The toric surface described by the following fan admits a full strongly exceptional sequence of invertible sheaves:

1 -1 -1 -2 -3 -2 -2 -1
To see this, we have only to give an appropriate sequence of simultaneous blow-downs:

0 -1 -1 -2 -3 -2 -2 -1 0 0 -1 -2 -2 -1 0 1 0 -1
Remark 4.7: It would possibly be of interest for some readers to compare the explicit computations in [START_REF] Hille | A Counterexample to King's Conjecture[END_REF] with the methods of [START_REF] Hille | Exceptional sequences of invertible sheaves on rational surfaces[END_REF]. In particular, the methods for determine cohomology vanishing on toric varieties have significantly been improved. Unfortunately, providing the setup for this is beyond the scope of this note. Therefore we have to refer the reader to [START_REF] Hille | Exceptional sequences of invertible sheaves on rational surfaces[END_REF].

Cyclic strongly exceptional sequences

Consider a toric system A 1 , . . . , A n . So far, we have considered the element A n in a toric system as a placeholder on which we could conveniently dump cohomologies from augmentation. However, it is reasonable to ask whether there can be a statement for strongly exceptional sequences analogous to the fact that if the toric system gives rise to an exceptional sequence, then this is true for every cyclic renumbering of the A i . This leads in a natural way to the following definition:

Definition: An infinite sequence of sheaves . . . , E i , E i+1 , . . . is called a (full) cyclic strongly exceptional sequence if E i+n ∼ = E i ⊗ O(-K X ) for every i ∈ Z and if every subinterval E i+1 , . . . , E i+n forms a (full) strongly exceptional sequence.

Our notion of cyclic strongly exceptional sequences is very close to the concept of a helix as developed in [START_REF] Rudakov | Helices and vector bundles: seminaire Rudakov[END_REF], and in particular to the geometric helices of [START_REF] Bondal | Homological properties of associative algebras: the method of helices[END_REF]. The difference is that we do not require that cyclic strongly exceptional sequences are generated by mutations. By a result of Bondal and Polishchuk, the maximal periodicity of a geometric helix on a surface is 3, which implies that P 2 is the only rational surface which admits a full geometric helix. Our weaker notion admits a bigger class of surfaces, but still imposes very strong conditions. First note that if A 1 , . . . , A n corresponds to a cyclic strongly exceptional sequence, then we have h k (±A i ) = 0 for all k > 0 and all 1 ≤ i ≤ n. This implies by Lemma 2.1 and Theorem 2.3 that for the associated toric surface Y , the associated prime divisors D 1 , . . . , D n have self-intersection numbers ≥ -2. It is a well-known fact of toric geometry that this in turn implies that -K Y is nef. There are actually only 16 such toric surfaces, which are shown in table 1. So, if any surface X admits a cyclic strongly exceptional sequence, then by Theorem 2.3 its Picard group is isomorphic to the Picard group of one of the toric surfaces in table 1. In particular, we get: Theorem 5.1 ([HP08]): Let X be a smooth complete rational surface which admits a full cyclic strongly exceptional sequence of invertible sheaves. Then rk Pic(X) ≤ 7. 1. The 16 complete smooth toric surfaces whose anticanonical divisor is nef. This is a rather strong bound which implies that not even every del Pezzo surface admits such a sequence. As in Corollary 4.5, a small Picard number does not necessarily imply the existence of a full cyclic strong exceptional sequence. However, there are the following existence results: Theorem 5.2 ([HP08]): Let X be a del Pezzos surface with rk Pic(X) ≤ 7, then there exists a full cyclic strongly exceptional sequence of invertible sheaves on X.

Name self-intersection numbers

D 2 1 , . . . , D 2 n P 2 1, 1, 1 P 1 × P 1 0, 0, 0, 0 F 1 0, 1, 0, -1 F 2 0, 2, 0, -2 5a 0, 0, -1, -1, -1 5b 0, -2, -1, -1, 1 6a -1, -1, -1, -1, -1, -1 6b -1, -1, -2, -1, -1, 0 6c 0, 0, -2, -1, -2, -1 6d 0, 1, -2, -1, -2, -2 7a -1, -1, -2, -1, -2, -1, -1 7b -1, -1, 0, -2, -1, -2, -2 8a -1, -2, -1, -2, -1, -2, -1, -2 8b -1, -2, -2, -1, -2, -1, -1, -2 8c -1, -2, -2, -2, -1, -2, 0, -2 9 -1, -2, -2, -1, -2, -2, -1, -2, -2 Table
Theorem 5.3 ([HP08]): Let X be a smooth complete toric surface, then there exists a full cyclic strongly exceptional sequence of invertible sheaves on X if and only if -K X is nef.

A particular interest in cyclic strongly exceptional sequences comes from the fact that the total space π : ω X → X of the canonical bundle is a local Calabi-Yau manifold. It follows from results of Bridgeland [START_REF] Bridgeland | t-structures on some local Calabi-Yau varieties[END_REF] that a full strongly exceptional sequence E 1 , . . . , E n on X is cyclic iff the pullbacks π * E 1 , . . . , π * E n form a strongly exceptional sequence on ω X (note that the sheaves π * E i are not simple, so that on ω X we have to consider a slightly different notion for exceptional sequences, see [START_REF] Bridgeland | t-structures on some local Calabi-Yau varieties[END_REF]). The direct sum n i=1 π * E i represents a tilting sheaf, whose associated endomorphism algebra in general is not finite. It can be represented by a quiver with relations which has loops and contains the quiver of ⊕ i E i as a subquiver. Table 2 shows all possible cyclic strongly exceptional toric systems and their quivers for varities with Picard numbers 1 and 2. These are well-known and their relations can be found elsewhere ([Bon90], [START_REF] King | Tilting bundles on some rational surfaces[END_REF], [START_REF] Perling | Some quivers describing the derived category on the toric del Pezzo surfaces[END_REF]).

We can see in table 2 that P 1 × P 1 admits two cyclic strongly exceptional toric systems, whose associated toric surfaces are isomorphic to P 1 × P 1 and F 2 , respectively. On the other hand, F 2 admits only one such toric system, and its associated toric surface is isomorphic to P 1 × P 1 . This phenomenon occurs also for other toric weak del Pezzo surfaces, where more symmetric cases admit more types of cyclic strongly exceptional toric systems than the less symmetric ones. Using toric methods (which we will not discuss here, see Remark 4.7), it is a somewhat tedious but straightforward exercise to check all possible standard augmentations for the 16 cases. The result is shown in table 3. surface toric system quiver

P 2 H, H, H • • • P 1 × P 1 P, Q, P, Q • • • • P 1 × P 1 P, P + Q, P, -P + Q • • • • F 1 P, Q, P, -P + Q • • • • F 2 P, -P + Q, P, -P + Q • • • • Table 2.
The cyclic strongly exceptional sequences for Picard numbers 1 and 2. surface type of toric system

P 2 P 2 P 1 × P 1 P 1 × P 1 , F 2 F 1 F 1 F 2 P 1 × P 1 5a 5a, 5b 5b 5a 6a
6a, 6b, 6c, 6d 6b 6a, 6b, 6c 6c 6a, 6b 6d 6a 7a 7a, 7b 7b 7a 8a 8a, 8b, 8c 8b 8a, 8b 8c 8a 9 9 Table 3. The table shows which toric weak del Pezzo surfaces can appear as cyclic strongly exceptional toric system on another toric surface.

Some noncommutative resolutions of singularities

There are precisely five toric weak del Pezzos surfaces such that the space ω X provides a crepant resolution of a quotient singularity. More precisely, in these cases, we have a diagram 1 :

ω X X C 3 C 3 /G,
1 we assume in this section that our base field is where the vertical morphism is the contraction of the base of ω X and G a finite abelian subgroup of SL 3 (C). In these five case we can construct cyclic strongly exceptional toric systems such that the corresponding quiver coincides with the McKay quiver of the action of G on C 3 . Table 4 shows the five cases and their corresponding quivers. It turns out that the associated algebras are isomorphic to the skew group algebras C[x, y, z] * G with respect to the induced action of G on C[x, y, z]. To exemplify this, consider the case of C 3 /Z 4 . The group Z 4 acts with weights (1, 1, 2) on C 3 . The quiver with relations is given by:

C P 2 • • • C 3 /Z 3 F 2 • • • • C 3 /Z 4 6d • • • • • • C 3 /Z 6 8c • • • • • • • • C 3 /Z 2 × Z 4 9 • • • • • • • • • C 3 /Z 3 × Z 3 Table 4.
• • • • b 2 a 1 = b 1 a 2 c 2 b 1 = c 1 b 2 d 2 c 1 = d 1 c 2 a 2 d 1 = a 1 d 2 e 1 a i = c i f 2 for i = 1, 2 f 2 b i = d i e 1 for i = 1, 2 e 2 c i = a i f 2 for i = 1, 2 f 1 d i = b i e 2 for i = 1, 2 a1 a2 b1 b2 c1 c2 d1 d2 f1 f2 e1 e2
One compares this directly with the quiver corresponding to C[x, y, z] * Z 4 (see [START_REF] Craw | Moduli of McKay quiver representations. II: Gröbner basis techniques[END_REF], Remark 2.7). Skew group algebras are examples for noncommutative crepant resolutions in the sense of van den Bergh [vdB04a], [vdB04b].

Commutative and Non-commutative deformations

Tilting correspondence provides a way to study noncommutative deformations of algebraic varieties via deformations of their derived categories. We will give two straightforward examples of such deformations by means of deformations of the endomorphism algebras of tilting sheaves, i.e. if A is such an algebra and A t a deformation of this algebra with respect to some parameter t, then D b (A tmod) is considered as deformation of D b (A-mod). However, we will not consider any formal setup for this kind of deformation, so one should more carefully speak of a mere parametrization of certain derived categories. We will see below (Theorem 7.2) that this kind of parametrization is compatible with well-known geometric deformations. In a similar spirit, deformations have been studied in the context of homological mirror symmetry (e.g. see §2 of [START_REF] Auroux | Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves[END_REF] ).

Consider first the quiver with relations as shown in figure 7. Here, we have a quiver with relations

• • . . . • • a1 a2 l0 l k+1 d1 d2 p i (l i a 1 -l i+1 a 2 ) for 0 ≤ i < k q i (d 1 l i -d 2 l i+1 ) for 0 ≤ i < k
Figure 7. A path algebra whose relations depend on parameters p i , q i . which depend on parameters p i , q i from our base field. For fixed k we denote M k the 3k-dimensional parameter space of parameters p i , q i , r i as above.

Theorem 7.1: The parameter space M k contains the path algebras associated to the toric systems of the form P, sP + Q, P, -(s + a)P + Q on F a , where a = k -1 -2s and 0 ≤ s < k+1 2 .

Proof. For some integer 0 ≤ s < k+1 2 we just consider the limit p s , q s -→ 0, and p i , q i -→ 1 for all other parameters, we obtain precisely the quiver with relations corresponding to the strongly exceptional toric system P, sP + Q, P, -(s + a)P + Q on F a , where a = k -1 -2s, as in figure 3. This way, via the derived category, we have found a noncommutative deformation space which allows to deform surfaces F a and F b into each other for 0 ≤ a, b < k and b ≡ a mod 2. 2 Note that the parametrization presented here is just chosen for simplicity, as, of course, there are more possibilities for choosing such parameters which specialize as desired.

In more general cases it is more difficult to describe noncommutative deformations via such explicit parametrizations. We give an example where we embed a parameter space of some rational surfaces as locally closed subset into a noncommutative parameter space. Consider algebraic surfaces X which can be obtained by simultaneously blowing up P 2 in t > 1 points. By Proposition 3.3, the following is a strongly exceptional toric system on X:

R t , R t-1 -R t , . . . , R 1 -R 2 , H -R 1 , H, H - t i=1 R i .
Using the canonical isomorphism with Pic(Y ), where Y is the toric surface associated to the toric system, we can identify Pic(X) and Pic(X ′ ) for any two simultaneous blowups X and X ′ of P 2 in t points. In particular, we can consider this toric system as a universal strongly exceptional toric system for all simultaneous blow-ups of P 2 in t points.

The natural parameter space for these blow-ups is given by the open subset of (P 2 ) t given by the complement of the diagonals. We denote this parameter space by M and write X ∈ M for a rational surface which is a blow-up of P 2 in t distinct points. If one is interested in proper isomorphism classes, one also has to take the diagonal action of PGL 3 on M into account. However, we will neglect this aspect for simplicity.

The quiver associated to our toric system is the same for every X ∈ M and looks as shown in figure 4. We denote A the path algebra which corresponds to this quiver. The algebra which corresponds to our toric system then is of the form A X ∼ = A/I X , where I X is an ideal of relations which depends on X.

2 Actually their derived categories. Note that two rational surfaces with equivalent derived categories are isomorphic (see [START_REF] Huybrechts | Fourier-Mukai transforms in algebraic geometry[END_REF], §12).

Both algebras are finite-dimensional: dim A = 18t + 6 and dim A X = I h 0 ( i∈I A i ) = 9t + 15, where the first sum runs over all intervals I ⊂ {1, . . . , n -1}. Parameter spaces we are interested in are given by any parametrization of ideals of A which contains the I X for X ∈ M. We want to describe explicitly a map X → I X by specifying the ideal I X as explicit as possible. This way we will have an embedding of M into an appropriate parameter space.

For this, we have to relate the vector spaces e i Ae j and e i A X e j , where e i , e j are idempotents of A (and therefore of A X ), enumerated as in figure 8. We denote V a three-dimensional vector space such that P 2 ∼ = PV . Then: the natural inclusion of Γ X, O(H -R i ) into Γ X, O(H) . In particular, these inclusions encode the geometric information coming from X: we can identify H i with the hyperplane in V * which is dual to the corresponding i-th point in PV which gets blown up. We get:

Theorem 7.2: With notation as specified above, the ideal I X is generated by:

ker H i ⊗ V * -→ S 2 V * for 1 ≤ i ≤ t, ker t i=1 H i -→ V * , ker V * ⊗ V * -→ S 2 V * ).
Proof. These maps represent the relations among paths of lengths 2 and 3 and follow from the explicit representations of the e i Ae j and e i A X e j above. For paths of length 3 just note that every such path passes through e t+2 and therefore can be represented by an element of e t+1 A X e t+2 ⊗e t+2 A X e t+3 ∼ = V * ⊗V * .

Note that the last relation corresponds to the relations of type a i b j = a j b i as for the case of P 2 (see figure 1).
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Figure 1 .

 1 Figure 1. The quiver associated to O P 2 , O P 2 (1), O P 2 (2).

Figure 3 .

 3 Figure 3. The quiver associated to O Fa , O Fa (P ), O Fa (s+1)P +Q , O Fa (s+2)P +Q for s ≥ 0 and a + s ≥ 1.

  The five Mckay quivers coming from cyclic strongly exceptional toric systems on toric surfaces.

e

  t+2 Ae i = e t+2 A X e i = Γ X, O(H -R i ) =: H i for 1 ≤ i ≤ t e i Ae t+1 = e i A X e t+1 = Γ X, O(R i ) for 1 ≤ i ≤ t e t+3 Ae t+2 = e t+3 A X e t+2 = Γ X, O(H) = Γ P 2 , O(H) = V * e t+2 A X e t+1 = Γ X, O(H) = Γ P 2 , O(H) = V * e t+3 A X e t+1 = Γ X, O(2H) = Γ P 2 , O(2H) = S 2 V * e t+3 A X e i = im H i ⊗ V * -→ S 2 V * e t+3 Ae i = H i ⊗ V * e t+2 Ae t+1 = t i=1 H i e t+3 Ae t+1 = t i=1 H i ⊗ V * .

Figure 8

 8 Figure8indicates the vector spaces as situated in the quiver. Note that the map from H i to V * is just

Figure 8 .

 8 Figure 8. Quiver for A X .