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ON THE STRUCTURE OF THE CATEGORY O FOR W-ALGEBRAS

IVAN LOSEV

Abstract. A W-algebra (of finite type) W is a certain associative algebra associated
with a semisimple Lie algebra, say g, and its nilpotent element, say e. The goal of this
paper is to study the categoryO forW introduced by Brundan, Goodwin and Kleshchev.
We establish an equivalence of this category with a certain category of g-modules. In the
case when e is of principal Levi type (this is always so when g is of type A) the category
of g-modules in interest is the category of generalized Whittaker modules introduced by
McDowell, and studied by Milicic-Soergel and Backelin.

1. Introduction

Let g be a semisimple Lie algebra over an algebraically closed field K of characteristic
zero. Choose a nilpotent element e ∈ g. Associated to the pair (g, e) is a certain associative
algebra W, which is closely related to the universal enveloping algebra U(g). It was
studied extensively during the last decade starting from Premet’s paper [Pr1], see also
[BGK],[BK1],[BK2],[GG],[Gi],[Lo1],[Lo2], [Pr2]-[Pr4]. Definitions of a W-algebra due to
Premet, [Pr1], and the author, [Lo1], are recalled in Section 2.

In the representation theory of U(g) a crucial role is played by the Bernstein-Gelfand-
Gelfand category O of U(g)-modules. In particular, all finite dimensional U(g)-modules
and all Verma modules belong to O. In [BGK] Brundan, Goodwin and Kleshchev in-
troduced the notion of the category O for W. This category also contains all finite
dimensional W-modules as well as analogs of Verma modules. See Section 3 for defini-
tions.

The BGK category O is not always very useful. For example, for a distinguished
nilpotent element e ∈ g (i.e., such that the centralizer zg(e) contains no nonzero semisimple
elements) O consists precisely of finite dimensional modules. The other extreme is the
case when e is of principal Levi type. This means that there is a Levi subalgebra l ⊂ g

such that e is a principal nilpotent element in l. Here the BGK category O looks quite
similar to the BGG one.

In [BGK], Conjecture 5.3, the authors conjectured that for e of principal Levi type
there exists a category equivalence between their category O and a certain category of
generalized Whittaker modules introduced by McDowell, [McD], and studied by Milicic
and Soergel, [MS], and Backelin, [Ba]. We postpone the description of this category until
Section 4. The main result of this paper, Theorem 4.1, gives a proof of that conjecture.

Let us describe the content of this paper. In Section 2 we recall the definition of W-
algebras and the basic theorem of our paper [Lo1], the so called decomposition theorem.
In Section 3 the notion of the category O for a W-algebra is recalled. In Section 4 we
introduce the category of generalized Whittaker modules. Special cases of this category

Key words and phrases: W-algebras, nilpotent elements, category O, generalized Whittaker modules,
multiplicities.
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2 IVAN LOSEV

are, firstly, Skryabin’s category of Whittaker modules (or, more precisely, the full sub-
category there consisting of all finitely generated modules) and, secondly, the categories
studied in [McD],[MS],[Ba]. Then we state the category equivalence theorem 4.1 gen-
eralizing the Skryabin equivalence theorem from the appendix to [Pr1] and proving the
conjecture of Brundan, Goodwin and Kleshchev. The proof of Theorem 4.1 is given in
Section 5. Essentially, we generalize the proof of the Skryabin equivalence theorem given
in [Lo1], Subsection 3.3, checking that certain topological algebras are isomorphic.

Finally, in Section 6 we will describe some applications of our results.
Acknowledgements. I am grateful to Alexander Kleshchev, who brought this problem

to my attention. I also thank Jonathan Brundan for explaining the application of my
results to the classification of representations of Yangians. Finally, I thank the referee for
useful comments on previous versions of this paper that helped to improve the exposition.

2. W-algebras

Throughout the paper everything is defined over an algebraically closed field K of
characteristic 0.

Let G be a reductive algebraic group, g its Lie algebra, and U the universal enveloping
algebra of g. Fix a nonzero nilpotent element e ∈ g. Choose an sl2-triple (e, h, f) in g and
set Q := ZG(e, h, f). Denote by T a maximal torus of Q. Also introduce a grading on g by
eigenvalues of ad h: g :=

⊕
g(i), g(i) := {ξ ∈ g|[h, ξ] = iξ}. Consider the one-parameter

subgroup γ : K× → G with d
dt
|t=0γ = h. Choose a G-invariant symmetric form (·, ·) on

g, whose restriction to any algebraic reductive subalgebra is non-degenerate. This form
allows one to identify g ∼= g∗. Let χ = (e, ·) be the element of g∗ corresponding to e.

Equip the space g(−1) with a symplectic form ωχ as follows: ωχ(ξ, η) = 〈χ, [ξ, η]〉. Fix
a lagrangian subspace l ⊂ g(−1) and define the subalgebra m := l⊕

⊕
i6−2 g(i) ⊂ g. Ac-

cording to Premet, [Pr1], a W-algebraW associated with e is, by definition, (U/Umχ)ad m,
where mχ := {ξ − 〈χ, ξ〉, ξ ∈ m}. As Gan and Ginzburg checked in [GG], W does not
depend on the choice of l up to some natural isomorphism. Thus we can choose a T -stable
lagrangian subspace l ⊂ g(−1) so we get an action of T on W. Note that the image of t

in U/Umχ consists of adm-invariants, for m is t-stable and χ is annihilated by t. So we
get an embedding t →֒ W. It is compatible with the action of T in the sense that the
differential of the T -action coincides with the adjoint action of t ⊂ W. In fact, from the
construction in [GG] it follows that Q acts on W by algebra automorphisms, see [Pr2],
Subsection 2.2, for details.

One important feature ofW is that the categoryW- Mod of (left)W-modules is equiv-
alent to a certain full subcategory in U-Mod to be described now. We say that a left
U-module M is a Whittaker module if mχ acts on M by locally nilpotent endomorphisms.
In this case Mmχ = {m ∈ M |ξm = 〈χ, ξ〉m, ∀ξ ∈ m} is a W-module. As Skryabin
proved in the appendix to [Pr1], the functor M 7→ Mmχ is an equivalence between the
category of Whittaker U-modules and W-Mod. A quasiinverse equivalence is given by
N 7→ S(N) := (U/Umχ)⊗W N , where U/Umχ is equipped with a natural structure of a
U-W-bimodule.

Note also that the center of W can be identified with the center Z of U , as follows. It
is clear that Z ⊂ Uad m whence we have a homomorphism Z →W. This homomorphism
is injective and its image coincides with the center of W, see [Pr2], the footnote to the
Question 5.1.
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An alternative description of W was given in [Lo1]. Define the Slodowy slice S :=
e + zg(f). It will be convenient for us to consider S as a subvariety in g∗. Define the
Kazhdan action of K

× on g∗ by t.α = t−2γ(t)α. This action preserves S and, moreover,
limt→∞ t.s = χ for all s ∈ S. Also note that Q acts on S in a natural way.

Set V := [g, f ]. Equip V with the symplectic form ω(ξ, η) = 〈χ, [ξ, η]〉, the action of
K×, t.v = γ(t)−1v, and the natural action of Q.

Now let Y be a smooth affine variety equipped with commuting actions of a reductive
group Q and of the one-dimensional torus K×. For instance, one can take Y = g∗, S, V ∗

equipped with the natural actions of Q = ZG(e, h, f) and the Kazhdan actions of K×.
Note that the grading on K[S] induced by the Kazhdan action is positive.

As follows from the explanation in [Lo2], Subsection 2.1, for Y = g∗, V ∗, S there are
certain star-products ∗ : K[Y ] ⊗K[Y ] → K[Y ][~], f ∗ g =

∑∞
i=0 Di(f, g)~2i, satisfying the

following conditions.

(1) ∗ is associative, that is, a natural extension of ∗ to K[Y ][~] turns K[Y ][~] into an
associative K[~]-algebra, and 1 is a unit for this product.

(2) D0(f, g) = fg for all f, g ∈ K[Y ].
(3) Di(·, ·) is a bidifferential operator of order at most i in each variable.
(4) ∗ is a Q-equivariant map K[Y ]⊗K[Y ]→ K[Y ][~].
(5) ∗ is homogeneous with respect to K

×. This, by definition, means that the degree
of Di is −2i for all i.

(6) There is a Q-equivariant map q→ K[Y ][~], ξ 7→ Ĥξ, such that ~−2[Ĥξ, •] coincides
with the image of ξ under the differential of the Q-action on K[Y ][~].

This construction allows one to equip K[g∗], K[V ∗], K[S] with new associative products
∗1 defined by f ∗1 g =

∑∞
i=0 Di(f, g). The algebras K[g∗], K[V ∗], K[S] with these new

products are T (and, in fact, Q)-equivariantly isomorphic to U , the Weyl algebra AV of
the vector space V , and the W-algebra W, respectively.

We finish this section by recalling a decomposition result from [Lo1], which plays a
crucial role in our construction.

Recall that if X is an affine algebraic variety and x a point of X we can consider
the completion K[X]∧x := lim

←−k
K[X]/K[X]mk

x, where mx denotes the maximal ideal cor-
responding to x. If X is an affine space, then taking x for the origin and choosing a
basis in X, we can identify K[X]∧x with the algebra of formal power series. The algebra
K[X]∧x is equipped with the topology of the inverse image. If D : K[X]⊗K[X]→ K[X] is
a bidifferential operator, then it can be uniquely extended to a continuous bidifferential
operator K[X]∧x ⊗K[X]∧x → K[X]∧x .

Since our star-products satisfy (3), we can extend them to the completions K[g∗]∧χ, K[V ∗]∧0 ,
K[S]∧χ . So we get new algebra structures on K[g∗]∧χ[[~]], K[V ∗]∧0 [[~]], K[S]∧χ[[~]]. These al-
gebras have unique maximal ideals, for instance, the maximal ideal m̃ ⊂ K[g∗]∧χ[[~]] is
the inverse image of the maximal ideal in K[g∗]∧χ. The algebra K[g∗]∧χ is complete in the
m̃-adic topology. The similar claims hold for the other two algebras.

Consider the algebra K[S]∧χ[[~]] ⊗K[[~]] K[V ∗]∧0 [[~]] and let m̃ denote its maximal ideal
corresponding to the point (χ, 0). Note that the algebra is not complete in the m̃-adic
topology. Taking the completion, we get the completed tensor product, which we denote by
K[S]∧χ [[~]]⊗̂K[[~]]K[V ∗]∧0 [[~]]. As a vector space, the last algebra is just K[S × V ∗]∧(χ,0)[[~]].

Finally, note that there is a natural identification ϕ : zg(e)⊕ V → g, (ξ, η) 7→ ξ + η.
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The first two assertions of the following Proposition follow from [Lo1], Theorem 3.1.3,
and the third follows from [Lo2], Theorem 2.3.1, for semisimple G and from Remark 2.3.2
for a general reductive group G.

Proposition 2.1. There is a Q×K×-equivariant isomorphism

Φ~ : K[g∗]∧χ[[~]]→ K[S]∧χ [[~]]⊗̂K[[~]]K[V ∗]∧0 [[~]]

of topological K[[~]]-algebras satisfying the following conditions:

(1) Φ~(
∑∞

i=0 fi~
2i) contains only even powers of ~.

(2) The map between cotangent spaces d0(Φ~)
∗ : zg(e)⊕V → g induced by Φ~ coincides

with ϕ.
(3) Let ι1, ι2 denote the embeddings of q into K[g∗]∧χ [[~]], K[S]∧χ[[~]]⊗̂K[[~]]K[V ∗]∧0 [[~]].

Then Φ ◦ ι1 = ι2.

This proposition allows to define a map from the set of two-sided ideals of W to the
analogous set for U . Namely, take a two-sided ideal I ⊂ W. As we noted in [Lo1],
Subsection 3.2, there is a unique ideal I~ ⊂ K[S][~] such that I = I~/(~ − 1) and I~

is ~-saturated, i.e., I~ ∩ ~K[S][~] = ~I~. Let I∧
~

denote the closure of I~ in K[S]∧χ[[~]].

Let J~ denote the intersection of Φ−1
~

(I∧
~
⊗̂K[[~]]K[V ∗]∧0 [[~]]) with K[g∗][~]. Finally, set

I† := J~/(~− 1) ⊂ U . By [Lo1], Proposition 3.4.1 and Theorem 1.2.2(ii), AnnU(S(N)) =
AnnW(N)† for any W-module N .

3. Category O for a W-algebra

Recall that we have an embedding t →֒ W. Also we have a natural embedding of the
cocharacter lattice X∗(T ) := Hom(K×, T ) of T into t. Choose an element θ ∈ X∗(T ) ⊂ t.
Let L stand for the centralizer of θ in G, this is a Levi subgroup of G. By l we denote
the Lie algebra of L, clearly, e, h, f ∈ l. Let T0 denote the unit component of Z(L) ∩ T
and t0 be the Lie algebra of T0. Note that θ ∈ t0.

The algebra W decomposes into the direct sum of weight spaces with respect to ad θ,
W =

∑
α∈Z
Wα. Set

(3.1) W>0 :=
⊕

α>0

Wα,W>0 :=
⊕

α>0

Wα,W+
>0 :=W>0 ∩WW>0.

It is clear thatW>0 is a subalgebra ofW, while W>0,W
+
>0 are two-sided ideals in W>0.

Let us make a remark on the choice of generators in the left W-ideal WW>0. Now we
consider W as the algebra K[S] with the modified multiplication. We have an embedding
zg(e) →֒ K[S] and zg(e) generates K[S] (for both multiplications). It is easy to see that
zg(e)>0 generates WW>0. Let f1, . . . , fn denote a homogeneous (with respect to ad θ)
basis in zg(e)>0.

Set W0 :=W>0/W
+
>0.

Remark 3.1. In [BGK] Brundan, Kleshchev and Goodwin constructed an isomorphism
between W0 and the W-algebra W constructed for the pair (l, e). We will also show that
there is an isomorphism between the two algebras in the course of the proof of Theorem
4.1. See also Remark 5.5.

We now proceed to the definition of full subcategories Õ(θ), Õt0(θ),O(θ),Ot0(θ) in the
category W-Mod of left W-modules.
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First, we say that a W-module M belongs to Õ(θ) if M is finitely generated and the
following condition holds:

(*) for any m ∈M there exists α ∈ Z such that Wβm = 0 for any β > α.

Clearly, Õ(θ) is an abelian subcategory in the category W-Mod. By definition, Õt0(θ)

consists of all modules in Õ(θ), where the action of t0 is diagonalizable.
For example, take a finitely generatedW0-module V . SetMθ(V ) :=W⊗W>0

V , where

W>0 acts on V via an epimorphism W>0 ։ W0. The module Mθ(V ) lies in Õ(θ). It

belongs to Õt0(θ) if and only if the action of t0 on V is diagonalizable.

Lemma 3.2. For a finitely generated W-module M the condition (∗) is equivalent to
either of the following two conditions:

(*′) W>0 acts on M by locally nilpotent endomorphisms.
(*′′) The elements fi ∈ W>0 act on M by locally nilpotent endomorphisms.

Proof. Clearly, (∗) ⇒ (∗′) ⇒ (∗′′). Let us prove the implication (∗′′) ⇒ (∗). Let
m1, . . . , mr generate M . Let N be such that fN

i mj = 0 for all i, j. Let I denote the
intersection of W>0 with the left ideal in W generated by fN

i . It is easy to see that gr(I)
contains K[S]>β for sufficiently large β. Since both I and the filtration are ad θ-stable,
we see that W>β ⊂ I. So W>β annihilates m1, . . . , mr. This condition implies (*). �

To define the two remaining subcategories we need a certain functor Õ(θ)→W0-Mod.
This is the functor of taking W>0-invariants. More precisely, set

F(M) = MW>0 := {m ∈M |w.m = 0, ∀w ∈ W>0}.

Note that the functor Mθ : W0-Mod → Õ(θ) is left adjoint to F : Õθ → W0- Mod.
Indeed,

HomW(W⊗W>0
N, M) = HomW>0

(N, M) = HomW0(N,F(M)), N ∈ W0- Mod, M ∈ Õ(θ).

By definition, O(θ) (resp., Ot0(θ)) consists of all modules M in Õ(θ) (resp., Õt0(θ))
with dimF(M) <∞. Note that all finite dimensional W-modules lie in O(θ).

Let us state some results describing the properties of our four categories.

Proposition 3.3. (1) The action of t0 on any module from O(θ) is locally finite.
(2) Any module in O(θ) contains a submodule from Ot0(θ).

Proof. The subspace F(M) ⊂ M is finite dimensional. Let F(M)diag be the sum of all
weight subspaces for t0 in F(M). Then F(M)diag is a W0-submodule in F(M). Let M0

be the image ofMθ(F(M)diag) in M under the natural homomorphism. Then the action
of t0 on M0 is diagonalizable. Hence the second assertion.

Since M is a Noetherian W-module, we see that there is a filtration M0 ⊂M1 ⊂ . . . ⊂
Mk = M such that the action of t0 on every quotient Mi/Mi−1 is locally finite. Assertion
1 follows. �

Proposition 3.4. Let M ∈ Õ(θ). Then the following conditions are equivalent:

(1) M ∈ O(θ).
(2) For any α ∈ K the root subspace Mα :=

⋃
i ker(θ − α)i is finite dimensional.

(3) For any α̃ ∈ t∗0 the root subspace M (eα) :=
⋃

i

(⋂
ξ∈t0

ker(ξ − 〈α̃, ξ〉)i
)

is finite

dimensional.
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In the proof of Proposition 3.4 we will need the following simple lemma.

Lemma 3.5. Define the partial order on K as follows: x � y if y − x is a nonnegative

integer. We write x ≺ y if x � y, x 6= y. For any M ∈ Õ(θ) there exist α1, . . . , αr ∈ K

such that for any eigenvalue β of θ on M there exists i with β � αi.

Proof. Take finite number of homogeneous generators of M and use the condition (*). �

Proposition 3.4 and Lemma 3.5 show that for t = t0 the category Ot(θ) consists of
the same modules as the category O(e) studied in [BGK]: for example, the implication
(1)⇒(3) shows that any module fromOt(θ) lies inO(e). Recall that in [BGK] the category
O(e) was defined as the full subcategory in W-Mod consisting of all modules, where t

acts diagonalizably, all weight subspaces are finite dimensional, and the set of weights is
bounded from above. Their notion of being ”bounded from above” is equivalent to that
mentioned in Lemma 3.5 although is stated in a different way.

Proof of Proposition 3.4. Let us check (1)⇒ (2). Assume the converse. Choose maximal
(w.r.t �) α ∈ K such that dim Mα = ∞. Let f1, . . . , fn be such as above. Then, by the
choice of α, we see that dim fiM

α <∞ for any i. We see that fiM
α ⊂

⊕
α≺β Mβ for any

i. It follows that the intersection of the kernels of fi in Mα is infinite dimensional. But
this intersection coincides with Mα ∩ F(M). Contradiction.

The implication (2) ⇒ (3) follows from M (eα) ⊂ M 〈eα,θ〉. So it remains to check that
(3)⇒ (1).

For any α̃ ∈ t∗0 the weight subspace

F(M)eα := {v ∈ F(M)|ξ.v = 〈α̃, ξ〉v, ∀ξ ∈ t0}

is a finite dimensional W0-submodule. Choose α̃ such that F(M)eα 6= {0}. Let M0 denote
the submodule in M generated by F(M)eα. Clearly, M0 is isomorphic to the quotient of

Mθ(F(M)eα). If M is irreducible, then M = M0. In particular, 〈β̃, θ〉 ≺ 〈α̃, θ〉 for any

t0-weight β̃ of F(M). It follows that M ∈ O(θ). In general, since F is a left exact functor,
it remains to check that M has finite length.

As Brundan, Goodwin and Kleshchev proved in [BGK], Corollary 4.11, the module
Mθ(V ) has finite length provided V is finite dimensional and irreducible. Actually, they
considered the case when t = t0 but their proof extends to the general case directly. Since
Mθ is a right exact functor, we see that Mθ(F(M)eα) has finite length. Thus M0 has
finite length. Finally, since M is Noetherian, we see that M has finite length. �

From this proposition and its proof we deduce the following

Corollary 3.6. The subcategory O(θ) is a Serre subcategory in Õ(θ) (i.e., it is closed
with respect to taking subquotients and extensions) and any module in O(θ) has finite
length. Furthermore, O(θ) contains all Verma modules Mθ(V ) for finite dimensional V .

As Brundan, Goodwin and Kleshchev noticed in [BGK] (in the case t = t0, the general
case is completely analogous), the following statement holds.

Proposition 3.7. Let V be an irreducible finite dimensional W0-module. There is a
unique simple quotient Lθ(V ) ofMθ(V ) and any simple module in O(θ) is isomorphic to
some Lθ(V ).
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Remark 3.8. Note that Õ(θ) depends on the choice of θ. However, it follows from

Lemma 3.2 that two categories Õ(θ1), Õ(θ2) consist of the same modules provided the
spaces zg(e)>0 constructed for θ1, θ2 coincide. So we get only finitely many different
categories O(θ).

4. Generalized Whittaker modules

In this section we introduce a certain category of U-modules generalizing Whittaker
modules mentioned in Section 2. Also we state our main result here.

Recall that we have fixed θ ∈ X∗(T )∩ t0. Let g>0 denote the sum of all eigenspaces for
ad θ with positive eigenvalues. Then g>0 := l⊕ g>0 is a parabolic subalgebra of g and g>0

is its nilpotent radical.
Recall the grading g =

⊕
i g(i) introduced in the beginning of Section 2. For l(i) :=

l ∩ g(i) we have l =
⊕

i l(i). By analogy with the subalgebra m ⊂ g define a subalgebra
m ⊂ l and its shift mχ so that we can define the W-algebra W = (U/(Umχ))ad m, where
U := U(l). Finally, set m̃ = m⊕ g>0, m̃χ := {ξ − 〈ξ, χ〉, ξ ∈ m̃}.

Let M be a finitely generated left U-module. We say that M is a generalized Whittaker
module for (e, θ) if m̃χ acts on M by locally nilpotent endomorphisms. The full subcategory
of U-Mod consisting of all generalized Whittaker modules for (e, θ) will be denoted by

W̃h(e, θ). By W̃h
t0
(e, θ) we denote the full subcategory in W̃h(e, θ) consisting of all

modules with diagonalizable action of t0.
For example, let V be a W-module. Set

Me,θ(V ) = U ⊗U(g>0) Sl(V ),

where Sl(V ) = (U/Umχ)⊗W V . This module always lies in W̃h(e, θ). It lies in W̃h
t0
(e, θ)

if and only if the action of t0 on V is diagonalizable.

Let us construct a functor from W̃h(e, θ) to the category W-Mod. Set G(M) := M emχ .
The algebra U acts naturally on Mg>0 . Since G(M) = (Mg>0)mχ, there is a natural
action of W on G(M). It is clear that G(M) 6= {0} provided M 6= {0}. We say that

M ∈ W̃h(e, θ) is of finite type if dimG(M) <∞. The category of all finite type modules

is denoted by Wh(e, θ). Finally, set Wht0(e, θ) = Wh(e, θ) ∩ W̃h
t0
(e, θ).

Note also that, analogously to the previous section, the functor Me,θ : W- Mod →

W̃h(e, θ) is left adjoint to G.
The following theorem is the main result of the paper.

Theorem 4.1. There is an equivalence K : W̃h(e, θ) → Õ(θ) of abelian categories and
an isomorphism Ψ :W →W0 satisfying the following conditions:

(1) AnnW(K(M))† = AnnU(M) for any M ∈ W̃h(e, θ).

(2) K maps W̃h
t0
(e, θ) to Õt0(θ), and Wh(e, θ) to O(θ).

(3) The functors Ψ∗ ◦ F ◦ K and G from W̃h(e, θ) to W-Mod are isomorphic. Here
Ψ∗ denotes the pull-back functor between the categories of modules induced by Ψ.

(4) The functors K ◦Me,θ,Mθ ◦Ψ−1∗ from W-Mod to Õ(θ) are isomorphic.

In particular, K induces an equivalence of abelian categories Wh(e, θ) → O(θ). More-
over, for any irreducible finite dimensional W-module V the U-module Me,θ(V ) has a
unique simple quotient Le,θ(V ). The last claim follows either from the theorem above or
can be proved in the same way as an analogous statement in [MS], Proposition 2.1.
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Now we consider an important special case. Till the end of the section we assume that
e is regular in l. The results below in this section will not be used in the proof of Theorem
4.1.

The following (quite standard) proposition shows that the category Wh(e, θ) coincides
with the category considered in [MS],[Ba].

Proposition 4.2. Let M ∈ W̃h(e, θ), where e is regular in l. Then the following two
conditions are equivalent:

(1) dimG(M) <∞.
(2) The action of the center Z of U on M is locally finite.

Proof. (1) ⇒ (2). Thanks to Theorem 4.1 and Corollary 3.6, we may assume that M is
irreducible. Thence the natural homomorphism Me,θ(G(M)) → M is surjective. Note
that G(M) is Z-stable. Since dimG(M) <∞, the Z-action on G(M) is locally finite. But
G(M) generates M hence the Z-action on M is locally finite.

(2) ⇒ (1). According to [MS], Theorem 2.6, M has finite length. So we may assume
that M is irreducible. Choose a eigenvector u ∈ Mg>0 for θ with eigenvalue α. All
eigenvalues of θ in Uv are � α and if u ∈ Uv has eigenvalue α, then u ∈ Uv. So Mg>0

is an irreducible U-module. By the Skryabin equivalence theorem (which in this case
was proved already by Kostant), G(M) is an irreducible W-module. The algebra W is
identified with the center Z of U . It is known that Z is finite over Z. Since the Z-action
on M is locally finite, we see that the W-action on G(M) is locally finite. Being both
locally finite and irreducible, the W-module G(M) is finite dimensional. �

Clearly, m̃ is a maximal subalgebra of g consisting of nilpotent elements. Let b := ng(m̃)
be the corresponding Borel subalgebra, h ⊂ b a Cartan subalgebra. Let ∆, ∆+, Π be, re-
spectively, the root system and the sets of positive roots and of simple roots corresponding
to (b, h). Let Π′ ⊂ Π consist of all simple roots α such that χ|gα

6= 0. Then Π′ is the
system of simple roots in l. Conjugating χ by an element of B ∩ L, where B is the
Borel subgroup of G corresponding to b, if necessary, we may assume that χ|gα

= 0 for
α ∈ ∆+ \ Π′. Finally, let W ′ ⊂ W be the Weyl group of l. As Kostant proved in [Ko],
W is identified with the center of U . So any irreducible W-module is one-dimensional.
These irreducible modules are parametrized by W ′-orbits in h∗ for the action given by
w · λ = w(λ + ρ) − ρ, where, as usual, ρ = 1

2

∑
α∈∆+

α. So we get ”Verma modules”

Me,θ(λ) withMe,θ(λ1) =Me,θ(λ2) if and only if λ1, λ2 are W ′-conjugate, and their sim-
ple quotients Le,θ(λ). As Milicic and Soergel checked in [MS], Proposition 2.1, Theorem

2.6, any simple module in W̃h(e, θ) is isomorphic to Le,θ(λ), and Le,θ(λ1) ∼= Le,θ(λ2) if
and only if λ1, λ2 are W ′-conjugate.

Since any module in W̃h(e, θ) (in particular,Me,θ(λ)) has finite length, the multiplicity
[Me,θ(λ) : Le,θ(µ)] is defined. Theorem 6.2 in [Ba] reduces the computation of this
multiplicity to a similar problem in the usual BGG category O. Let M(λ), L(λ) denote
the Verma module and the irreducible module with highest weight λ ∈ h∗.

Theorem 4.3 (Backelin). Let λ, µ ∈ h∗. If

(1) µ and λ are W -conjugate (with respect to the ·-action),
(2) and there is w ∈W ′ such that w ·µ is antidominant for l (i.e., 〈w ·µ+ρ, α∨〉 6∈ Z>0

for any α ∈ ∆+ with 〈α, θ〉 = 0), and λ− w · µ ∈ Span
Z>0

(∆+),

then [Me,θ(λ) : Le,θ(µ)] = [M(λ) : L(w · µ)]. Otherwise, [Me,θ(λ) : Le,θ(µ)] = 0.
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Thanks to Theorem 4.1, Theorem 4.3 allows one to compute the decomposition numbers
for the category O(θ).

5. Proof of the main theorem

The proof of Theorem 4.1 is based on a construction of completions from [Lo1], Sub-
section 3.2. Let us recall this construction here.

Let v be a finite dimensional graded vector space, v =
⊕

i∈Z
v(i), v 6= v(0), and

A := S(v). Suppose also that a torus T0 acts on v preserving the grading. The grading on
v gives rise to the grading A =

⊕
i∈Z

A(i) whence to the action K× : A. Let ∗ : A⊗A→
A[~2] be a T0-invariant homogeneous star-product, f ∗ g =

∑∞
i=0 Di(f, g)~2i. Suppose

Di : A⊗ A→ A is a bidifferential operator of order at most i at each variable. Then we
can form the associative product ◦ : A × A → A, f ◦ g =

∑∞
i=0 Di(f, g). We denote A

equipped with the corresponding algebra structure by A.
We have an action of T0 on A by algebra automorphisms. Suppose that we have an

embedding t0 →֒ A such that the differential of the T0-action on A coincides with the
adjoint action of t0.

For u, v ∈ v(1) denote by ω1(u, v) the constant term of u◦v−v◦u. Choose a T0-invariant
maximal isotropic (with respect to ω1) subspace y ⊂ v(1) and set m := y ⊕

⊕
i60 v(i).

Further, choose a homogeneous basis v1, . . . , vn of v such that v1, . . . , vm form a basis in m.
Let di denote the degree of vi. We may assume that the sequence d1, . . . , dm is increasing
and all vectors vi are T0-semiinvariant.

By A♥ we denote the subalgebra of the formal power series algebra K[[v∗]] consisting
of all formal power series of the form

∑
i<n fi for some n, where fi is a homogeneous

power series of degree i. For any f, g ∈ A♥ we have the well-defined element f ◦ g :=∑∞
i=0 Di(f, g) ∈ A♥. The space A♥ considered as an algebra with respect to ◦ is denoted by

A♥. Any element a ∈ A♥ can be written in a unique way as an infinite linear combination
ã of monomials

(5.1) vi1 ◦ . . . ◦ vil with i1 > i2 > . . . > il

such that
∑l

j=1 dij 6 c, where c depends on a. Let FcA denote the subspace consisting

of all elements, where degrees of monomials are bounded by c. Then the subspaces FcA
♥

form a filtration of A♥.
Pick θ ∈ X∗(T0) ⊂ t0. Let v>0, v>0 denote the sums of ad θ-eigenspaces corresponding,

respectively, to nonnegative and positive eigenvalues. Let A>0,A>0,A
♥
>0,A

♥
>0 be defined

analogously (although the action of ad θ on A♥ is not diagonalizable, the last definition
makes sense). Suppose that the eigenvalues of v1, . . . , vn are decreasing, and v>0 ⊂ m ⊂
v>0. Then A+

>0 := A>0 ∩ AA>0,A
♥+
>0 := A♥

>0 ∩ A
♥A♥

>0 are two-sided ideals in A>0,A
♥
>0.

Set A0 := A>0/A
+
>0,A

♥0 := A♥
>0/A

♥+
>0 . Note that there is a natural inclusion A0 →֒ A♥0.

Clearly, an element of A0 (resp., of A♥0) may be thought as a finite (resp., infinite
with finiteness condition stated after (5.1)) sum of monomials in vi ∈ v0. Also let us note
that A0 is obtained from S(v0) in the same way as A is obtained from S(v) (i.e., using a
star-product with properties listed in the beginning of the section). So we can construct
the algebra A0♥. However, it is clear that A0♥ = A♥0.

Consider the space A∧ := lim
←−
A/Amk. It follows from [Lo1] (Lemma 3.2.8 and the

discussion before it) that A∧ has a natural structure of a topological algebra such that
the natural map A → A∧ is an algebra homomorphism. Moreover, this map is injective
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and extends to an injective homomorphism of algebras A♥ → A∧. The algebra A∧

consists of all infinite sums of monomials (5.1) satisfying the following condition:
for any given j > 0 there are only finitely many monomials with nonzero coefficients

and vil−j
6∈ m.

Furthermore, we can compare algebras of the form A∧ for two different star-products.
The following result follows from [Lo1], Lemmas 3.2.8,3.2.9.

Proposition 5.1. Let v, A be as in the beginning of this section and ∗, ∗′ be two ∗-products
on A satisfying the above conditions. So we get new products ◦, ◦′ on A, the corresponding
algebras will be denoted by A,A′. Suppose there is a T0-stable subspace y ⊂ v(1) that is
maximal isotropic for both skew-symmetric forms. Suppose, further, that any element in A
can be represented as a finite sum of monomials (5.1) and also as a finite sum of analogous
monomials for ◦′. Finally, suppose there is a homogeneous T0-equivariant isomorphism
Φ : A♥ → A′♥ such that Φ(vi)− vi ∈ Fdi−2A + (Fdi

A ∩ v2A). Then Φ extends uniquely
to a topological algebra isomorphism Φ : A∧ → A′∧ with Φ(A∧m) = A′∧m.

Clearly, Φ induces an isomorphism A0♥ = A♥0 → A′♥0 = A′0♥, which is denoted by
Φ0. This isomorphism is extended to an isomorphism Φ0 : A0∧ → A′0∧, where A0∧ :=
lim
←−
A0/A0mk

0, m0 := m∩v0 and A′0∧ is defined analogously. Again, we have Φ0(A0∧m0) =

A′0∧m0.
Now we will discuss a certain category of A∧-modules. Namely, we consider topological

A∧-modules M equipped with discrete topology. This means that any vector in M is
annihilated by some neighborhood of zero, i.e., by someA∧mk. So this category is the same
as the category of A-modules, where m acts by locally nilpotent endomorphisms. This

category is denoted by W̃h(A, m). Also we need its subcategory W̃h
t0
(A, m) consisting of

all modules with diagonalizable action of t0.
In particular, we have the following straightforward corollary of Proposition 5.1.

Corollary 5.2. Preserve the assumptions of Proposition 5.1. Then there are equiva-

lences Φ∗ : W̃h(A, m) → W̃h(A′, m), W̃h
t0
(A, m) → W̃h

t0
(A′, m), Φ0

∗ : W̃h(A0, m0) →

W̃h(A′0, m0) induced by Φ and Φ0. Moreover,

(5.2) Φ∗(M
m) = Φ∗(M)m

for any A-module M (with locally nilpotent action of m).

Let us specify now A,A′, m.
The torus T0 we are going to consider is the same as in Section 3. Fix m ∈ N, m > 2+2d,

where d denotes the maximal eigenvalue of ad h in g. Consider the diagonal embedding
K× →֒ K× × T0, whose differential is given by d1(1) = (1,−mθ).

Consider the vector space v := {ξ − 〈χ, ξ〉, ξ ∈ g}. The group K× × T0 naturally acts
on this space (we consider the Kazhdan action of K× and the action of T0 coming from
the adjoint action of T0 on g). So v is graded, v =

⊕
i∈Z

v(i), the grading is induced
by the diagonal action of K×, i.e., v(i) := {ξ ∈ g|(h − mθ)ξ = (i − 2)ξ}. Put A := U .
As we explained at the end of Section 2, the product in U has the required form. Set
m := m̃χ. This subspace satisfies the requirements above (that is, v>0 ⊂ m ⊂ v>0 and the
eigenvalues of v1, . . . , vn are decreasing). Furthermore, v0 = l and A0 = U(l).

Note that v := zg(e) ⊕ V . So we can set A′ := AV (W), where we write AV (W) for
AV ⊗W. From the choice of m it follows that all θ-weight spaces of zg(e) with positive
weights lie in

⊕
i<0 v(i). Moreover, note that m̃∩V is a lagrangian subspace in V . Finally,
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we remark that A′
>0/A

′+
>0 is naturally identified with AV0

(W0), where V0 := V ∩ v0. Note
that m0 is contained in V0 and is a lagrangian subspace there.

Lemma 5.3. There is an isomorphism Φ : U♥ → AV (W)♥ satisfying the conditions of
Proposition 5.1. For the extension Φ : U∧ → AV (W)∧ we have

(5.3) Φ−1(AV (I)∧) ∩ U = I†,

where I = AnnW(M) for M ∈ Õ(θ), and AV (I)∧ denotes the closure of AV (I) := AV ⊗I
in AV (W)∧.

Proof. The algebras A♥,A′♥ are naturally identified with the quotients of K×-finite parts
of

K[g∗]∧χ[[~]], K[S]∧χ [[~]]⊗̂K[[~]]K[V ∗]∧0 [[~]]

by ~ − 1. So the isomorphism Φ~ from Proposition 2.1 induces a T0-equivariant isomor-
phism Φ : A♥ → A′♥. From the properties of Φ~ indicated in Proposition 2.1 it follows
that Φ has the required properties.

By [Lo1], Lemma 3.2.5, there is a natural identification of K[S][~] with the Rees algebra
R~(W). So we can consider R~(I) as an ideal in the quantum algebra K[S][~]. Consider
the closure I~ of R~(I) in K[S]∧χ [[~]]. The ideal

J ~ := K[[V ∗, ~]]⊗̂K[[~]]I~ ⊂ K[[v∗, ~]]

is closed, K×-stable and ~-saturated. By [Lo1], Proposition 3.2.2, there is a unique ideal
I‡ ⊂ A such that

R~(I
‡) = R~(A) ∩ Φ−1

~
(K[[V ∗, ~]]⊗̂K[[~]]I~).

Proposition 3.4.1 from [Lo1] asserts that I† = I‡. So we need to prove that

(5.4) Φ−1(AV (I)∧) ∩A = I‡.

We will prove that

(5.5) AV (I)∧ ∩AV (W)♥ = J
fin

~
/(~− 1),

where J
fin

~
denotes the K×-finite part of J ~. This will imply (5.4).

To prove (5.5) we will show that both sides equal AV (W)♥I. First, let us check this
for the right hand side. As we checked in [Lo1], Lemma 3.4.3, J ~ is generated by its
intersection with K[[S, ~]]. Recall that J ~ is K×-stable. But the K×-action we consider
differ from the Kazhdan one by an action by inner automorphisms, so J ~ ∩ K[[S, ~]] is
stable w.r.t the Kazhdan action. Since the Kazhdan grading on K[S] is positive, we see

that J ~ (and so also J
fin

~
) is generated by its intersection with K[S][~]. It follows that

the r.h.s of (5.5) is generated (as an ideal in AV (W)♥) by I.
The proof that the left hand side coincides with AV (W)♥I boils down to the following

two claims:
Claim 1. Any ideal in AV (W)♥ is generated by its intersection with W.
Claim 2. AV (I)∧ ∩W = I (here the condition that I is the annihilator of a module

from Õ(θ) is essential).
Let us prove Claim 1. Let J be a two-sided ideal in AV (W)♥. Consider the correspond-

ing ideal R~(J ) ⊂ R~(AV (W)♥) = K[[v∗, ~]]K×−fin and its closure R~(J ) ⊂ K[[v∗, ~]].

Then we can repeat the argument above and obtain that R~(J ) is generated by its inter-
section with K[S][~]. This yields J = AV (W)♥(J ∩W).
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Proceed to the proof of Claim 2. We can form the algebras W∧ and A∧
V from W

and AV using the general construction explained above, so that AV (W)∧ is decomposed
into the completed tensor product of A∧

V and W∧. The ideal AV (I)∧ coincides with
A∧

V ⊗̂I
∧, where I∧ is the closure of I in W∧. So it remains to check that I∧ ∩W = I.

Recall that I = AnnW(M) for some module M from Õ(θ). Then W∧ acts on M , and
I∧ ⊂ AnnW∧(M). It follows that I∧ ∩W ⊂ I. The inverse inclusion is obvious.

�

Remark 5.4. It is not clear at the moment whether (5.3) holds without the restriction

on I. It looks plausible that any ideal is the annihilator of a module from Õ(θ). On the
other hand, it may happen that the condition I∧ ∩W = I holds for any two-sided ideal
I, even if I is not the annihilator of a module from Õ(θ).

An isomorphism Φ : U(g)♥ → AV (W)♥ from the proof of Lemma 5.3 gives rise to an
isomorphism Φ0 : U(l)∧ → AV0

(W0)∧ mapping U(l)∧m0 to AV0
(W0)∧m0. This provides

an isomorphism

(5.6) Ψ :W = (U(l)∧/U(l)∧m0)
m0 → AV0

(W0)∧/(AV0
(W0)∧m0)

m0 =W0

we need in Theorem 4.1.
Before proceeding further let us make a remark on the isomorphism Ψ. We will use

this remark in [Lo3].

Remark 5.5. Let us discuss a relation between Ψ and the embeddings t0 →֒ W
0,W . It

turns out that Ψ does not intertwine them but induces a shift on t0.
It follows from assertion (iii) of Proposition 2.1 that the isomorphism Φ : U♥ →

AV (W)♥ intertwines the embeddings of t0. Let ιg, ιW , ιV denote the embeddings of t0
to g,W,AV , respectively. Of course, ιg(ξ) is nothing else but ξ itself, and Φ(ιg(ξ)) =
ιW(ξ) + ιV (ξ). Here we consider ιW(ξ), ιV (ξ) as elements of AV (W)∧ via the natu-
ral embeddings W,AV →֒ AV (W)∧. Let us describe ιV . Let χ1, . . . , χm denote all
characters (with multiplicities) of the representation of t0 in the lagrangian subspace
m ∩ V = (n+ ∩ V ) ⊕ m0 ⊂ V . Let u+

1 , . . . , u+
m be the corresponding eigenvectors and let

u−
1 , . . . , u−

m ∈ V be such that ωV (u−
i , u+

j ) = δij so that ξ.u−
i = −〈χi, ξ〉u

−
i . Note that

〈χi, θ〉 > 0 for all i and 〈χi, θ〉 = 0 if and only if u+
i ∈ m0. Now

ιV (ξ) =
1

2

m∑

i=1

〈χi, ξ〉(u
+
i u−

i + u−
i u+

i ) =
m∑

i=1

〈χi, ξ〉u
−
i u+

i −
1

2
〈

m∑

i=1

χi, ξ〉.

Let π :W>0 ։W0 be the natural projection. Recall that AV (W)♥0 is naturally identified
with AV0

(W0). The image of ιW(ξ) + ιV (ξ) in AV0
(W0) coincides with

(5.7) π(ιW(ξ)) +
∑

i,〈χi,θ〉=0

〈χi, ξ〉u
−
i u+

i −
1

2
〈

m∑

i=1

χi, ξ〉.

Now let ιl, ιW , ιV0
denote the embeddings of t0 into l,W,AV0

, respectively, and let Φ0 be
an isomorphism U(l)∧ → AV0

(W)∧ similar to that from [Lo1], Theorem 1.2.1. Then, by
[Lo2], Theorem 2.3.1 and Remark 2.3.2, we have Φl(ιl(ξ)) = ιW(ξ) + ιAV0

(ξ). So

(5.8) Φl(ιl(ξ)) = ιW(ξ) +
∑

i,〈χi,θ〉=0

〈χi, ξ〉u
−
i u+

i −
1

2
〈

∑

i,〈χi,θ〉=0

χi, ξ〉.
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Since Ψ is given by (5.6), from (5.7),(5.8) we see that Ψ−1 maps π(ιW(ξ)) to

ιW(ξ) +
1

2
〈

∑

i:〈χi,θ〉>0

χi, ξ〉

In [BGK], Subsection 4.1, Brundan, Goodwin and Kleshchev also constructed an iso-
morphism W0 → W (in the case when t = t0). Their isomorphism sends π(ιW(ξ)) to
ιW(ξ)− 〈δ, ξ〉, where δ is defined as follows. Pick a Cartan subalgebra h ⊂ g containing t

and h. Let ∆− denote the set of all roots α with 〈α, θ〉 < 0. Then

δ =
1

2

∑

α∈∆−,〈α,h〉=−1

α +
∑

α∈∆−,〈α,h〉6−2

α.

Let us check that δ|t0 = −1
2

∑
i,〈χi,θ〉>0 χi.

Since e, h are t0-invariant, the representation theory of sl2 implies

δ|t0 =
1

2


 ∑

α∈∆−,〈α,h〉=−1

α|t0


 +

1

2


 ∑

α∈∆−,〈α,h〉6−2

α|t0 +
∑

α∈∆−,〈α,h〉>2

α|t0


 =

1

2

∑

α∈∆−

α|t0 −
1

2

∑

α∈∆−,〈α,θ〉=0,1

α|t0

The last expression is the sum of weights of t0 in n− ∩ V = [n−, f ]. Since n− ∩ V and
n+ ∩ V are dual t0-modules, we are done.

Let us complete the proof of Theorem 4.1. Note that W̃h(e, θ) = W̃h(A, m), W̃h
t0
(e, θ) =

W̃h
t0
(A, m). On the other hand, let us construct an equivalence W̃h(A′, m)→ Õ(θ). This

functor is given by K′ : M 7→ Mm∩V , M ∈ W̃h(A′, m). A quasiinverse functor is given by

N 7→ K[m∩V ]⊗N, N ∈ Õ(θ). The claim that these two functors are quasiinverse follows
from the representation theory of Heisenberg Lie algebras, see the proof of Proposition
3.3.4 in [Lo1]. It follows directly from the construction of K′ that

(5.9) Mm = (K′(M))W>0 .

Now we set K := K′◦Φ∗. Let us check that K has the required properties. The equality
AnnW(K(M))† = AnnU(M) stems from Lemma 5.3. (5.9) and (5.2) imply assertion 3.
Assertion 4 follows from assertion 3 and the adjointness of functors mentioned in Sections
3,4. The second assertion of the theorem now follows from Corollary 5.2.

6. Applications

Let us discuss some applications of Theorem 4.1. In [Lo3] we will apply it to the study
of one-dimensional representations of W-algebras. More precisely, we will give a criterium
for dim Lθ(V ) < ∞ in terms of the annihilator of Ψ∗(V ) ∈ W-Mod. In particular, this
criterium will prove of Conjecture 5.2 from [BGK]. Although it is mentioned in [BGK]
that their Conjecture 5.3 (which is a special case of Theorem 4.1) implies Conjecture 5.2,
[BGK] contains no proof of the implication.

Then, under some conditions on e, we will get a criterium (in terms of V ) for a fi-
nite dimensional module Lθ(V ) to have dimension 1. More precisely, we will check that
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whenever q is semisimple, the following conditions are equivalent provided Lθ(V ) is finite
dimensional:

• dim Lθ(V ) = 1.
• dim V = 1 and t acts by 0 on V (considered as a W0-module).

Since the criterium for Lθ(V ) to be finite dimensional is stated, in a sense, in terms of
W , we need Remark 5.5. The condition that q is semisimple is fulfilled for all so called
rigid nilpotent elements in exceptional Lie algebras. Together with results of Premet,
[Pr4], on ”parabolic induction” for one-dimensional representations of W-algebras (also
reproved in [Lo3]) this should allow one to complete the proof of Premet’s conjecture,
[Pr2], that any W-algebra has a one-dimensional representation.

Another application, as we learned from Jonathan Brundan, is to finite dimensional
irreducible representations of Yangians. For type A, Brundan and Kleshchev identified W-
algebras with quotients (truncations) of shifted Yangians. The latter generalize the usual
Yangians introduced by Drinfeld, see [BK1]. Using this presentation of W-algebras, they
classified, [BK2], all their irreducible finite dimensional representations (Theorem 7.9)
and also all irreducible finite dimensional representations of shifted Yangians (Corollary
7.10), generalizing results of Drinfeld, [D], on the usual Yangians. The classification for
W -algebras is made in terms of some Young diagrams. On the other hand, using the
results announced in the previous paragraph, it is possible to describe irreducible W-
modules V such that dim Lθ(Ψ−1

∗ (V )) < ∞ using the classical results of Joseph, [J], on
combinatorial description of primitive ideals in U(sln) with given associated variety (which
is again stated in terms of some Young diagrams). In this way one can recover Brundan-
Kleshchev classification for W-algebras, see Section 5.2 of [BGK]. Then, perhaps after
some work, one can recover the classification for shifted Yangians.

In the other classical types Brown identified the W-algebras for rectangular nilpotent
elements e with the truncations of so called twisted Yangians, see [Br1]. Recall that a
nilpotent element in a classical Lie algebra is called rectangular if all the numbers in
the corresponding partition are the same. Such an element is always of principal Levi
type. In [Br2] Brown used Molev’s classification, [Mo], of irreducible finite dimensional
representations for twisted Yangians to classify those for W-algebras (in the rectangular
case). The answer is given in purely combinatorial terms. On the other hand, [BGK],
Conjecture 5.2, together with results of Barbash and Vogan, [BV], should make it possible
to recover Brown’s classification.
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