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Introduction

Representation theory has a very different flavour in positive characteristic. When one studies the category of representations of a finite group or a reductive group over a field of characteristic 0 (e.g. C), one of the first observations to be made is that this category is semi-simple, meaning that every representation is isomorphic to a direct sum of irreducible representations. This fundamental fact helps answer many basic questions, e.g. the dimensions of simple modules, character formulae, and tensor product multiplicities. However, when one considers representations over fields of positive characteristic (often referred to as "modular" representations) the resulting categories are generally not semi-simple. This makes their study considerably more complicated and in many cases even basic questions remain unanswered. 1It turns out that some questions in representation theory have geometric counterparts. The connection is obtained via the category of perverse sheaves, a certain category that may be associated to an algebraic variety and whose structure reflects the geometry of the underlying variety and its subvarieties. The category of perverse sheaves depends on a choice of coefficient field and, as in representation theory, different choices of coefficient field can yield very different categories.

Since the introduction of perverse sheaves it has been realised that many phenomena in Lie theory can be explained in terms of categories of perverse sheaves and their simple objects -intersection cohomology complexes. In studying representations of reductive groups and related objects, singular varieties arise naturally (Schubert varieties and their generalizations, nilpotent varieties, quiver varieties. . . ). It turns out that the invariants of these singularities often carry representation theoretic information. For an impressive list of such applications, see [START_REF] Lusztig | Intersection cohomology methods in representation theory[END_REF]. This includes constructing representations, computing their characters, and constructing nice bases for them.

However, most of these applications use a field k of characteristic zero for coefficients. In this paper, we want to give the reader a flavour for perverse sheaves and intersection cohomology with positive characteristic coefficients.

In the first section of this article we survey three connections between modular representation theory and perverse sheaves.

The geometric setting for the first result -known as the geometric Satake theorem -is a space (in fact an "ind-scheme") associated to a complex reductive group G. This space, G(C((t)))/G(C[[t]]), commonly referred to as the affine Grassmannian, is a homogeneous space for the algebraic loop group G(C((t))). Under the action of G(C[[t]]), it breaks up as a union of infinitely many finite-dimensional orbits. Theorems of Lusztig [START_REF] Lusztig | Singularities, character formulas, and a q-analog of weight multiplicities[END_REF], Ginzburg [START_REF] Ginzburg | Perverse sheaves on a loop group and langlands duality[END_REF], Beilinson-Drinfeld [BD], and Mirković-Vilonen [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF] explain that encoded in the geometry of the affine Grassmannian and its orbit closures is the algebraic representation theory over any field (and even over the integers) of the split form of the reductive group G ∨ with root data dual to that of G, also known as the Langlands dual group.

The second family of results that we discuss involves the geometry of the finite flag variety G/B where again G is a complex reductive group, and a generalization of it closely related to the affine Grassmannian known as the affine flag variety G(C((t)))/I. We describe theorems of Soergel [START_REF] Soergel | On the relation between intersection cohomology and representation theory in positive characteristic[END_REF] and Fiebig [START_REF] Fiebig | Multiplicity one results in Kazhdan-Lusztig theory and equivariant intersection cohomology[END_REF][START_REF] Fiebig | Sheaves on affine Schubert varieties, modular representations and Lusztig's conjecture[END_REF][START_REF] Fiebig | Lusztig's conjecture as a moment graph problem[END_REF][START_REF] Fiebig | An upper bound on the exceptional characteristics for Lusztig's character formula[END_REF] which show that the geometry of these spaces can be used to understand the modular representation theory of the Langlands dual group G ∨ k for k a field of characteristic larger than the Coxeter number of G ∨ k . In doing so, Fiebig is able to give a new proof of the celebrated Lusztig conjecture with an explicit bound on the characteristic. The third theorem to be discussed is centered around the geometry of the variety N of nilpotent elements of a Lie algebra g, known as the nilpotent cone. The nilpotent cone has a natural resolution and, in 1976, Springer [START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF] showed that the Weyl group acts on the ℓadic cohomology of the fibers of this resolution. He showed moreover that from this collection of representations one could recover all of the irreducible ℓ-adic representations and that they came with a natural labelling by a nilpotent adjoint orbit with an irreducible G-equivariant local system. This groundbreaking discovery was followed by a series of related constructions, one of which, based on the Fourier-Deligne transform, has recently been used by the first author [START_REF] Juteau | Modular Springer correspondence and decomposition matrices[END_REF] to establish a modular version of the Springer correspondence.

The second goal of this article which occupies the second and third sections is to provide an introduction to "modular" perverse sheaves, in other words perverse sheaves with coefficients in a field of positive characteristic. We begin by recalling the theory of perverse sheaves, highlighting the differences between characteristic zero and characteristic p, and also the case of integer coefficients. We treat in detail the case of the nilpotent cone of sl 2 .

In the last part, we treat more examples in nilpotent cones. We calculate all the IC stalks in all characteristics = 3 for the nilpotent cone of sl 3 , and all the IC stalks in all characteristics = 2 for the subvariety of the nilpotent cone of sl 4 consisting of the matrices which square to zero. Before that, we recall how to deal with simple and minimal singularities in type A, for two reasons: we need them for the three-strata calculations, and they can be dealt with more easily than for arbitrary type (which was done in [START_REF] Juteau | Cohomology of the minimal nilpotent orbit[END_REF][START_REF] Juteau | Decomposition numbers for perverse sheaves[END_REF]). As a complement, we give a similar direct approach for a minimal singularity in the nilpotent cone of sp 2n .

The first two parts partly correspond to the talks given by the first and third author during the summer school, whose titles were "Intersection cohomology in positive characteristic I, II". The third part contains calculations that the three of us did together while in Grenoble. These calculations were the first non-trivial examples involving three strata that we were able to do.

It is a pleasure to thank Michel Brion for organizing this conference and allowing two of us to speak, and the three of us to meet. We would like to thank him, as well as Alberto Arabia, Peter Fiebig, Jim Humphreys, Jens Carsten Jantzen, Joel Kamnitzer and Wolfgang 32 3.4. Subregular class in sl n 34 3.5. IC stalks on the nilpotent cone of sl 3 for p = 3 36 3.6. Some IC stalks on the nilpotent cone of sl 4 for p = 2 38 References 40

Motivation

Perverse sheaves with coefficients in positive characteristic appear in a number of different contexts as geometrically encoding certain parts of modular representation theory. This section will provide a survey of three examples of this phenomenon: the geometric Satake theorem, the work of Soergel and Fiebig on Lusztig's conjecture, and the modular Springer correspondence. The corresponding geometry for the three pictures will be respectively affine Grassmannians, finite and affine flag varieties, and nilpotent cones.

Throughout, G Z will denote a split connected reductive group scheme over Z. Given a commutative ring k, we denote by G k the split reductive group scheme over k obtained by extension of scalars

G k = Spec k × Spec Z G Z .
In Sections 1.1 and 1.2 we will consider G C , while in Section 1.3, we will consider G Fq .

We fix a split maximal torus T Z in G Z . We denote by

(X * (T Z ), R * , X * (T Z ), R * )
the root datum of (G Z , T Z ). We denote by (G ∨ Z , T ∨ Z ) the pair associated to the dual root datum. Thus G ∨ Z is the Langlands dual group. In Subsections 1.1 and 1.2, we will consider representations of

G ∨ k = Spec k × Spec Z G ∨ Z ,
where k can be, for example, a field of characteristic p. We have

X * (T ∨ Z ) = X * (T Z ) and X * (T ∨ Z ) = X * (T Z ). We also fix a Borel subgroup B Z of G Z containing T Z . This deter- mines a Borel subgroup B ∨ Z of G ∨ Z containing T ∨ Z .
This also determines bases of simple roots ∆ ⊂ R * and ∆ ∨ ⊂ R * . It will be convenient to choose ∆ * := -∆ ∨ as a basis for R * instead, so that the coroots corresponding to B ∨ Z are the negative coroots R - * = -R + * .

1.1. The geometric Satake theorem. In this subsection and the next one, to simplify the notation, we will identify the group schemes

G C ⊃ B C ⊃ T C with their groups of C-points G ⊃ B ⊃ T .
We denote by K = C((t)) the field of Laurent series and by O = C[[t]] the ring of Taylor series. The affine (or loop) Grassmannian Gr = Gr G is the homogeneous space G(K)/G(O). It has the structure of an ind-scheme. In what follows we will attempt to sketch a rough outline of this space and then briefly explain how perverse sheaves on it are related to the representation theory of G ∨ k , where k is any commutative ring of finite global dimension. We refer the reader to [BD, BL94a, LS97, MV07] for more details and proofs.

We have a natural embedding of the coweight lattice X * (T ) = Hom(G m , T ) into the affine Grassmannian: each λ ∈ X * (T ) defines a point t λ of G(K) via

Spec K = Spec C((t)) c -→ G m = Spec C[t, t -1 ] λ -→ T i -→ G where c comes from the inclusion C[t, t -1 ] ֒→ C((t)) and i : T → G is the natural inclusion, and hence a point [t λ ] in Gr = G(K)/G(O).
For example, when G = GL n and T is the subgroup of diagonal matrices the elements of X * (T ) consist of n-tuples of integers λ = (λ 1 , . . . , λ n ) and they sit inside of Gr as the points

    t λ 1 t λ 2 . . . t λn     • G(O)
As in the finite case, one has a Cartan decomposition of G(K)

G(K) = λ∈X * (T ) + G(O)t λ G(O)
where X * (T ) + = {λ ∈ X * (T ) | ∀α ∈ ∆, α, λ ≥ 0} is the cone of dominant coweights. Thus the affine Grassmannian is the union of the G(O)-orbits of the points [t λ ] for λ ∈ X * (T ) + . Another important feature of the affine Grassmannian is a special C * -action. As in the topological loop group, there is a notion of "loop rotation". In our case, this rotation comes in the form of C * acting on G(K) by composing a K-point of G with the automorphism of Spec K induced by the action of C * on itself. More naively, this means replacing t by zt. This action clearly preserves the subgroup G(O) and thus gives a well-defined action on the quotient Gr.

It is useful to get a sense of the geometry of the G(O)-orbits. As we saw above, these orbits are labelled by the dominant coweights. We begin by studying a subvariety of the G(O)-orbits. For λ ∈ X * (T ) + , consider the G-orbit of [t λ ]. It turns out that for such a dominant coweight, the point [t λ ] is fixed by a Borel subgroup. Thus, the Gorbit is a (partial) flag variety. In fact, the stabilizer of [t λ ] in G is a parabolic subgroup P λ with Levi factor corresponding to the roots α ∈ ∆ such that α, λ = 0. We conclude that G • [t λ ] is isomorphic to the (partial) flag variety G/P λ . It is an easy exercise to check these claims for G = GL n .

The points [t λ ] of Gr are in fact fixed by loop rotation. To see this, note that the reduced affine Grassmannian for T , T (K)/T (O) ∼ = X * (T ) is discrete, embeds in Gr G as the set of points [t λ ] for λ ∈ X * (T ), and is preserved by loop rotation. As C * is connected and the subset [t λ ] discrete, each such point is fixed under loop rotation. But of course the group G ⊂ G(O) is certainly fixed by loop rotation, thus the G-orbit G • [t λ ] is fixed under loop rotation as well.

Not only are these G-orbits G • [t λ ] fixed, they form precisely the fixed point set of the action of loop rotation on the affine Grassmannian. Moreover, the

G(O)-orbit G(O) • [t λ ] is a locally trivial fibration over G•[t λ ] ∼ = G/P λ
with fibres isomorphic to affine spaces. To see this, note that the G(O)-stabiliser S λ of the point [t λ ] is contained in the preimage P λ of P λ under the evaluation map G(O) → G. Then we have the map

G(O) • [t λ ] ∼ = G(O)/S λ = G(O) × P λ P λ /S λ → G(O)/P λ ∼ = G/P λ .
The fibers are isomorphic to P λ /S λ which can be given the structure of an affine space and on which loop rotation acts by a contracting character. A corollary of this remark is that the G(O)-orbits are simply-connected.

For λ and µ dominant, the orbit G(O) • [t λ ] is of dimension 2ρ(λ) (here ρ is half the sum of the positive roots) and is contained in

G(O) • [t µ ] if and only if µ -λ is a sum of positive coroots.
As a concrete example, it is instructive to consider the case G = P SL 2 . Choose T to be the subgroup of diagonal matrices (up to scale) and B the upper triangular matrices (again, up to scale). The torus T is one dimensional, so the lattice X * (T ) is isomorphic to a copy of the integers and X * (T ) + to the non-negative ones. Thus the G(O)-orbits are labelled by the non-negative integers. The parabolic subgroup corresponding to any positive number is the Borel subgroup B, and that correpsonding to the trivial weight is the whole group P SL 2 . Thus, as a topological space, the affine Grassmannian for P SL 2 is a union of a point and a collection of locally trivial bundles over P 1 with affine space fibres. Considering the remark of the previous paragraph, as the coroot lattice for P SL 2 is a subgroup of index two in the coweight lattice, the affine Grassmannian consists of two connected components.

Remark 1.1. One way to see some of the geometry is through the moment map with respect to the action of the torus T extended by loop rotation. This idea, from the differential point of view and in slightly different language, can be found in [START_REF] Atiyah | Convexity and loop groups[END_REF]. Yet another picture of the affine Grassmannian is provided by the spherical building, whose vertices are the F q -points of the affine Grassmannian where the Laurent and Taylor series are defined over F p instead of C. This picture in the rank one case can be found in chapter 2 of [START_REF] Serre | Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass[END_REF], although the affine Grassmannian is not mentioned explicitly.

Beginning with pioneering work of Lusztig, it was understood that the geometry of the affine Grassmannian is closely related to the representation theory of the Langlands dual group G ∨ , i.e. the reductive group with dual root data. In particular, Lusztig showed [START_REF] Lusztig | Singularities, character formulas, and a q-analog of weight multiplicities[END_REF] that the local intersection cohomology (with complex coefficients) of the G(O)-orbits was a refinement of the weight multiplicities of the corresponding representation of G ∨ .

This connection was further developed by Ginzburg [START_REF] Ginzburg | Perverse sheaves on a loop group and langlands duality[END_REF] (see also Beilinson-Drinfeld [BD]), who noted that the category of G(O)equivariant perverse sheaves (with C-coefficients) carried a convolution product and using Tannakian formalism on the total cohomology functor that the category was tensor equivalent to the category of representations of the Langlands dual group G ∨ . In other words: Theorem 1.2. There is an equivalence of tensor categories:

(P G(O) (Gr G ; C), * ) ≃ (Rep(G ∨ C ), ⊗).
This result can be interpreted as a categorification of the much earlier work of Satake [START_REF] Satake | Theory of spherical functions on reductive algebraic groups over p-adic[END_REF] which identified the algebra of spherical functions (approximately bi-G(O)-invariant functions of G(K)) with W -invariant functions on the coweight lattice, C[Λ] W .

Remark 1.3. In the case of the affine Grassmannian, the category of G(O)-equivariant perverse sheaves is equivalent to the category of perverse sheaves constructible with respect to the G(O)-orbit stratification. For a proof, see the appendix to [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF].

It was understood by Beilinson and Drinfeld [BD] that the affine Grassmannian described above should be thought of as associated to a point on an algebraic curve. Understood as such, there is a natural global analogue of the affine Grassmannian living over a configuration space of points on a curve. Using this Beilinson-Drinfeld Grassmannian, one can produce a natural commutativity constraint for the convolution product by identifying it as a "fusion product". From this point of view, the geometric Satake theorem becomes identified with the local geometric Langlands conjecture.

For the remainder of this paragraph let k be a Noetherian commutative ring of finite global dimension. Mirković-Vilonen [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF] generalized and rigidified the picture further by producing the analogue of the weight functors for perverse sheaves with coefficients in an arbitrary k. Consider the functor F ν : P G(O) (Gr; k) → k-mod for each ν ∈ X * which takes compactly supported cohomology along the U(K)-orbit containing [t ν ], where U denotes the unipotent radical of B. They prove that these cohomology groups vanish outside of degree 2ρ(ν) and that the functors are exact. Summing over all ν, they prove that there is a natural equivalence of functors

H * ∼ = ν∈X * (T ) F ν : P G(O) (Gr; k) → k-mod.
This more refined fiber functor together with some delicate arithmetic work allowed them to prove that geometric Satake is true for any such k, meaning the category of G(O)-equivariant perverse sheaves with kcoefficients is tensor equivalent to the category of representations of the split form of the Langland dual group G ∨ over k. In other words, Theorem 1.4. There is an equivalence of tensor categories: ⊗). 1.2. Finite and affine flag varieties. In this subsection we give an overview of work of Soergel [START_REF] Soergel | On the relation between intersection cohomology and representation theory in positive characteristic[END_REF] and Fiebig [START_REF] Fiebig | Multiplicity one results in Kazhdan-Lusztig theory and equivariant intersection cohomology[END_REF][START_REF] Fiebig | Sheaves on affine Schubert varieties, modular representations and Lusztig's conjecture[END_REF][START_REF] Fiebig | Lusztig's conjecture as a moment graph problem[END_REF] relating the rational representation theory of reductive algebraic groups over a field k of positive characteristic to sheaves on complex Schubert varieties with coefficients in k.

(P G(O) (Gr G ; k), * ) ≃ (Rep(G ∨ k ),
Fix a field k of characteristic p. Recall that G denotes a reductive algebraic group over C and that G ∨ k is the split reductive algebraic group over a field k with root datum dual to that of G. In this section we assume that G is connected, simple and adjoint. It follows that G ∨ k is simply connected.

The previous section explained how one may give a geometric construction of the entire category of representations of G ∨ k in terms of G. The constructions which follow establish a relation between blocks (certain subcategories) of representations of G ∨ k and sheaves on (affine) Schubert varieties associated to G.

In order to explain this we need to recall some standard facts from representation theory which one may find in [START_REF] Jantzen | of Mathematical Surveys and Monographs[END_REF]. Recall that we have also fixed a Borel subgroup and maximal torus

G ∨ k ⊃ B ∨ k ⊃ T ∨
k , that we write R * and R + * for the roots and positive roots of (G ∨ k , T ∨ k ) respectively, chosen so that -R + * are the roots determined by B ∨ k . By duality we may identify X * (T ) and X * (T ∨ k ). We denote by Rep G ∨ k the category of all finite dimensional rational representations of

G ∨ k . To each weight λ ∈ X * (T ∨ k ) one may associate a G ∨ k -equivariant line bundle O(λ) on G ∨ k /B ∨ k . Its global sections H 0 (λ) = H 0 (G ∨ k /B ∨ k , O(λ)
) contain a unique simple subrepresentation L(λ), and all simple G ∨ kmodules arise in this way. The module H 0 (λ) is non-zero if and only if λ is dominant.

It is known that the characters of H 0 (λ) are given by the Weyl character formula and that L(µ) can only occur as a composition factor in H 0 (λ) if λµ ∈ NR + * . It follows that in order to determine the characters of the simple G ∨ k -modules, it is enough to determine, for all dominant λ, µ ∈ X * (T ∨ k ), the multiplicities:

(1) [H 0 (λ) : L(µ)] ∈ N.
In fact, many of these multiplicities are zero. Recall that the Weyl group W acts on X * (T ∨ k ) and we may consider the "dot action" given by w

• λ = w(λ + ρ) -ρ
where ρ denotes the half-sum of the positive roots. Denote by W the subgroup of all affine transformations of X * (T ∨ k ) generated by (w•) for w ∈ W and (+µ) for all µ ∈ pZR * . As an abstract group this is isomorphic to the affine Weyl group associated to the root system

R * ⊂ X * (T ∨ k ) of G ∨ k 2 . The category of rational representations of G ∨ k decomposes as 3 Rep G ∨ k = Ω Rep Ω G ∨ k
where Ω runs over the orbits of W on X * (T ∨ k ) and Rep Ω G ∨ k denotes the full subcategory of Rep G ∨ k whose objects are those representations all of whose simple factors are isomorphic to L(λ) for λ ∈ Ω.

Assume from now on that p > h, where h denotes the Coxeter number of the root system of G ∨ k . Then the "translation principle" allows one to conclude that it is enough to know the characters of the simple modules in Rep Ω G ∨ k , where Ω = W • 0. This fact, combined with the Steinberg tensor product theorem, allows one to reduce the problem to calculating the multiplicities

(2) [H 0 (x • 0) : L(y • 0)] ∈ N
where x • 0 and y • 0 lie in the "fundamental box":

I = {λ ∈ X * (T ∨ k ) | α ∨ , λ < p for all α ∨ simple}.
A celebrated conjecture of Lusztig expresses the multiplicity in (2) for x • 0 and y • 0 lying in I in terms of certain Kazhdan-Lusztig polynomials evaluated at 1. Kazhdan-Lusztig polynomials are the Poincaré polynomials of the local intersection cohomology of Schubert varieties (here in the affine case) [START_REF] Kazhdan | Schubert varieties and Poincaré duality[END_REF], and they can be defined through an inductive combinatorial procedure (which provided their original definition in [START_REF] Kazhdan | Representations of Coxeter groups and Hecke Algebras[END_REF]). This conjecture is known to hold for almost all p by work of Andersen, Jantzen and Soergel [START_REF] Andersen | Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p[END_REF].

We now return to geometry. Recall that G is a reductive algebraic group whose root system is dual to that of G ∨ k . We identify the Weyl groups of G and G ∨ k in the obvious way. For each simple reflection s ∈ S we may associate a minimal parabolic B ⊂ P s ⊂ G and we have a projection map π s : G/B → G/P s .

Let D b c (G/B, k) denote the bounded derived category of constructible sheaves of k-vector spaces on G/B. In [Soe00], Soergel considers the category K defined to be the smallest additive subcategory of D b (G/B; k) such that:

(1) the skyscraper sheaf on

B/B ∈ G/B is in K; (2) if F ∈ K then so is π * s π s * F; (3) if F ∈ K
then so is any object isomorphic to a shift of a direct summand of F. If k were of characteristic 0 then one could use the decomposition theorem to show that any indecomposable object in K isomorphic to a (shift of) an intersection cohomology complex of the closure of a B-orbit on G/B. However, as k is of positive characteristic this is not necessarily the case. Somewhat surprisingly, for each x ∈ W , it is still true that there exists up to isomorphism a unique indecomposable object

F x ∈ K supported on BxB/B and such that (F x ) BxB/B ≃ k BxB/B [ℓ(x)]. Each F x is self-dual and any indecomposable object in K is isomorphic to F x [m] for some x ∈ W and m ∈ Z.
Soergel goes on to establish a connection between K and the representation theory of G ∨ k as follows. Let

ρ = 1 2 α∈R + * α ∈ X * (T ∨ k )
and st = (p -1)ρ be the Steinberg weight. He shows:

Theorem 1.5 ([Soe00], Theorem 1.2). With k as above, for x, y ∈ W , one has [H 0 (st + xρ) : L(st + yρ)] = dim(F y ) x
where dim(F y ) x denotes the total dimension of the cohomology of the stalk (F y ) x .

A disadvantage of the above approach is that it offers a geometric interpretation for only a small part of the representation theory of G ∨ k . In recent work Fiebig has developed a more complete (and necessarily more complicated) picture.

Before we describe Fiebig's work we recall a construction of Tequivariant intersection cohomology due to Braden and MacPherson in [START_REF] Braden | From moment graphs to intersection cohomology[END_REF]. Let T ≃ (C * ) n be an algebraic torus and X a complex T -variety with finitely many zero-and one-dimensional orbits. To this situation one may associate a labelled graph called the "moment graph", which encodes the structure of the zero-and one-dimensional orbits (see the notes of Jantzen from this conference). Under some additional assumptions on X (the most important being a T -invariant stratification into affine spaces) Braden and MacPherson describe a method to calculate the T -equivariant intersection cohomology of X with coefficients in Q. This involves the inductive construction of a "sheaf" M(X, Q) on the moment graph of X; the equivariant intersection cohomology is then obtained by taking "global sections" of this sheaf.

As Fiebig points out, Braden and MacPherson's construction makes sense over any field k and produces a sheaf on the moment graph M(X, k); however it is not clear if what one obtains in this way has anything to do with the intersection cohomology with coefficients in k.

Let G and B be as above and consider the affine flag variety G((t))/I where I denotes the Iwahori subgroup, defined as the preimage of B under the evaluation map G(O) → G, t → 0. As with the loop Grassmannian, G((t))/I may be given the structure of an ind-scheme. The I-orbits on G((t))/I are affine spaces parametrized by W . Recall that earlier we defined the fundamental box

I ⊂ X * (T ∨ k ). Define W res = {w ∈ W | -w • 0 ∈ I}.

Fiebig shows:

Theorem 1.6. If the stalks of the sheaf on the moment graph M(IxI/I, k) are given by Kazhdan-Lusztig polynomials for all x ∈ W res then Lusztig's conjecture holds for representations of G ∨ k . For a more precise statement we refer the reader to [START_REF] Fiebig | Lusztig's conjecture as a moment graph problem[END_REF]. This result enables Fiebig to give a new proof of the Lusztig's conjecture in almost all characteristics. Actually, Fiebig is able to give an explicit bound, although it is still very big [START_REF] Fiebig | An upper bound on the exceptional characteristics for Lusztig's character formula[END_REF]. Moreover he is able to prove the multiplicity one case of the conjecture for all characteristics greater than the Coxeter number [START_REF] Fiebig | Multiplicity one results in Kazhdan-Lusztig theory and equivariant intersection cohomology[END_REF].

It is expected that one may obtain the sheaf on the moment graph M(IxI/I, k) by applying a functor similar to that considered by Braden and MacPherson to a sheaf

F x ∈ D b G[[t]] (G((t))/I; k).
(This sheaf should be analogous to the indecomposable sheaves considered by Soergel.) If this is the case then Fiebig's theorem asserts that Lusztig's conjecture would follow from a certain version of the decomposition theorem with coefficients in k.

The modular Springer correspondence.

In this subsection, the base field is not C but F q , where q is a power of some prime p. Perverse sheaves still make sense in this context, using the étale topology [START_REF] Beȋlinson | Faisceaux pervers[END_REF]. Now G will be G Fq , which we identify with its set of F p -points, endowed with a Frobenius endomorphism F . We denote by g its Lie algebra, and by W its Weyl group. For simplicity, we assume that p is very good for G, so that the Killing form provides a non-degenerate G-invariant symmetric bilinear form on g. Thus we can identify g with its dual g ′ .

In 1976, Springer established a link between the ordinary (that is, characteristic zero) representations of W , and the nilpotent cone N of g [START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF]. More precisely, he constructed the irreducible representations of W in the top cohomology (with ℓ-adic coefficients, ℓ being a prime different from p), of some varieties attached to the different nilpotent orbits, the Springer fibers. To each irreducible representation of W corresponds a nilpotent orbit and an irreducible G-equivariant local system on this orbit.

The modular Springer correspondence [START_REF] Juteau | Modular Springer correspondence and decomposition matrices[END_REF] establishes such a link for modular representations of W , over a field of characteristic ℓ. The modular irreducible representations of W are still largely unknown, for example if W is a symmetric group of large rank. One would like to know their characters, and this is equivalent to determining the entries in the so-called decomposition matrix, relating ordinary and modular irreducible characters. Using the modular Springer correspondence, one can show that this decomposition matrix can be seen as a submatrix of a decomposition matrix for G-equivariant perverse sheaves on the nilpotent cone. As a result, just as the geometric Satake isomorphism implies that the modular representation theory of reductive groups is encoded in the singularities of the complex affine Grassmannian of the dual group, one can say that the modular representation theory of the Weyl group of a Lie algebra is encoded in the singularities of its nilpotent cone.

We fix a Borel subgroup B of G, with Lie algebra b. We denote by U the unipotent radical of B, and by u the Lie algebra of U. Then u is the orthogonal of b. The group G acts transitively on the set of Borel subalgebras of g, and the normalizer of the Borel subalgebra b is B, so the flag variety B := G/B can be identified with the set of all Borel subalgebras of g. It is a smooth projective variety.

One then defines Ñ := {(x, gB) ∈ N × G/B | x ∈ Ad(g)b}. One can check that the second projection makes it a G-equivariant vector bundle over B = G/B, and that we have G-equivariant isomorphisms:

Ñ ≃ G × B u ≃ G × B b ⊥ ≃ G × B (g/b) * ≃ T * (G/B) = T * B
where the first isomorphism is given by (y, gB) → g * Ad(g -1 )y. The first projection gives a resolution π N : Ñ → N of the nilpotent cone, called the Springer resolution.

Springer constructed an action of the Weyl group W on the ℓ-adic cohomology of the fibers B x := π -1 N (x) of this resolution, which are called Springer fibers. These are connected projective varieties, which are usually singular. All their irreducible components have the same dimension d x := 1 2 codim N G.x. In particular, to each adjoint orbit of N one can associate the representation of W on the top cohomology of the corresponding Springer fiber. In type A, this is in fact a bijection between the nilpotent orbits and the irreducible representations of S n . Note that both are parametrized by the set of all partitions of the integer n. It turns out that the bijection is given by the conjugation of partitions.

More generally, for a point x ∈ g, let C G (x) denote the centralizer of

x in G and A G (x) = C G (x)/C G (x) o its component group; for G = GL n these groups are trivial. As π N is G-equivariant, the centralizer C G (x)
acts on the fiber B x , and the group A G (x) acts on the cohomology of B x . This action commutes with the action of W . Note that the action of A G (x) on the top cohomology of B x is just the permutation representation of A G (x) on the set of irreducible components of B x . It turns out that H 2dx (B x ) is an irreducible W × A G (x)-module. We can decompose it into A G (x)-isotypic components:

H 2dx (B x ) = ρ ρ ⊗ V x,ρ
where ρ runs over all irreducible representations of A G (x) such that the ρ-isotypic component of H 2dx (B x ) is non-zero, and V x,ρ is a welldefined irreducible representation of W . Springer showed that the V x,ρ , for x running over a set of representatives of the nilpotent orbits, form a complete collection of irreducible representations of the Weyl group W . So to each irreducible representation of W we can assign a pair (x, ρ). This is the Springer correspondence.

Later a number of related constructions were obtained by other mathematicians, as in [START_REF] Slodowy | Four lectures on simple groups and singularities[END_REF][START_REF] Kazhdan | A topological approach to Springer's representations[END_REF]. It turns out that the pairs (x, ρ) also parametrize the simple G-equivariant perverse sheaves on the nilpotent cone. Let us denote them by IC(x, ρ). Lusztig and Borho-McPherson gave a construction using perverse sheaves [START_REF] Lusztig | Green polynomials and singularities of unipotent classes[END_REF][START_REF] Borho | Partial resolutions of nilpotent varieties[END_REF]. Note, however, that all these approaches give a parametrization which differs from the original one obtained by Springer by tensoring with the sign character of W . On the other hand, other approaches, using some kind of Fourier transform, give the same parametrization as the one by Springer. One can use a Fourier transform for D-modules [START_REF] Hotta | The invariant holonomic system on a semisimple Lie algebra[END_REF] if the base field is C, or a Fourier-Deligne transform in our context where the base field is F q [Bry86], using perverse K-sheaves, where K is a finite extension of Q ℓ . One advantage of the latter approach is that it still makes sense over finite extensions O (resp. F), of Z ℓ (resp. F ℓ ), so that it is possible to define a modular Springer correspondence [START_REF] Juteau | Modular Springer correspondence and decomposition matrices[END_REF].

The Fourier-Deligne transform is an equivalence of derived categories of constructible sheaves between V and V ′ , where V is a vector bundle ξ : V → S of constant rank r over a scheme S of finite type over F q , and ξ ′ : V ′ → S is its dual. In particular, if S = Spec F q , then V is just an F q -vector space. For g → Spec F q , we get an auto-equivalence of D b c (g, K), since we identify g with its dual. Though we will use the Fourier-Deligne transform in the particular case S = Spec F q , at some point we will also need to use the relative version, with S = B.

This equivalence is a sheaf-theoretic version of the ordinary Fourier transform for functions on R n . Recall that the ordinary Fourier transform of a function f : R n → C is the function f : (R n ) * → C given by the formula:

f (ζ) = R n f (x)e -2πi x,ζ dx.
In other words, the Fourier transform takes a function f on R n , and • pulls it back by the first projection to the product

R n × (R n ) * ;
• multiplies it by the pull-back of the exponential function t → e -2πit via the evaluation map R n × (R n ) * → R; • pushes it forward to (R n ) * by integrating along the fibres of the second projection. In order to mimic this procedure sheaf-theoretically, we need to find a replacement for the exponential function. This role is played by an Artin-Schreier sheaf, and this is the reason why we use F q as a base field, instead of a field of characteristic zero.

First, let us define a Fourier transform for C-valued functions on F n q . Instead of the exponential character R → C * , t → e -2πit , we have to choose a non-trivial character ψ of F q . For example, we can take the character t → e -2πi p t of F p , and compose it with Tr Fq/Fp . For f :

F n q → C, we set f (ζ) = x∈F n q f (x)e -2πi p ψ( x,ζ ) .
Let k denote either K, O or F (see above). We can replace C-valued functions by k-valued functions, as soon as k × contains the pth roots of unity, which we assume from now on.

Let us now define the Fourier-Deligne transform. We consider the Artin-Schreier covering of the affine line:

A 1 → A 1 , t → t -t q .
It is a Galois finite étale morphism, with Galois group F q . Thus to the character ψ corresponds a local system on A 1 , which we will denote by L ψ . We can pull it back to V × S V ′ by the canonical pairing µ :

V × S V ′ → A 1 .
As with functions, the Fourier-Deligne transform is a convolution against a kernel. It is defined as

F = (pr ′ ) ! (pr * (-) ⊗ µ * L ψ ) : D b c (V, k) -→ D b c (V ′ , k)
, where the notation is fixed by the following diagram:

(3) V × S V ′ pr z z v v v v v v v v v pr ′ $ $ I I I I I I I I I µ / / A 1 V $ $ I I I I I I I I I I I V ′ z z u u u u u u u u u u u

S

Most properties of the ordinary Fourier transform still hold for the Fourier-Deligne transform, if translated appropriately: it interchanges the extension by zero of the constant sheaf on the zero section with the constant sheaf in degreedim V (and more generally interchanges the constant sheaf on a sub-bundle with the constant sheaf on its annihilator up to a shift), it "squares to the identity" up to a sign, which implies that it is an equivalence of triangulated categories, and it behaves well under base-change. Moreover, it takes perverse sheaves to perverse sheaves and, restricted to such, is in fact an equivalence of abelian categories.

We will now briefly describe the Springer correspondence using this Fourier-Deligne transform. Let us consider the adjoint quotient χ : g → g//G. The morphism χ is flat and surjective. By Chevalley's restriction theorem, we have g//G ≃ t/W . We denote by φ : t → t/W the quotient morphism, which is finite and surjective. For t ∈ t, we will write φ(t) = t. One can see the nilpotent cone N as χ -1 (0). On the other hand, if t is a regular element in t, then χ -1 (t) ≃ G/T is smooth. The fibers χ -1 (t), for t varying in t/W , interpolate these two extreme cases. Grothendieck found a way to obtain a resolution for all the fibers of χ simultaneously. We introduce g :

= {(x, gB) ∈ g × G/B | x ∈ Ad(g)b}.
The second projection makes it a G-equivariant vector bundle over B, isomorphic to G × B b. The first projection defines a proper surjective morphism π : g → g. Then one can form a commutative diagram:

g π / / θ g χ t φ / / t/W where θ is the map G × B b → b/[b, b] ≃ t.
This is a smooth surjective morphism. Then for all t ∈ t, the morphism π t : θ -1 (t) → χ -1 (t) is a resolution of singularities.

In the case of gl n , one can see χ as the map taking a matrix to its eigenvalues (with multiplicities) up to ordering. On the other hand, the variety G/B can be identified with the variety of all complete flags

F • = (0 ⊂ F 1 ⊂ • • • ⊂ F n = C n ).
Then θ is identified with the map taking a pair (x, F • ) to (a 1 , . . . , a n ) where a i is the eigenvalue of x on

F i /F i-1 .
Inside of g, we have the dense open subvariety g rs of regular semisimple elements. Consider for a moment the case of gl n , then the semisimple regular elements are those that are diagonalizable with pairwise distinct eigenvalues. For such a matrix consider the set of Borel subalgebras containing it. This is equivalent to the set of full flags preserved by the matrix. But the matrix decomposes C n into a direct sum of n lines with distinct eigenvalues. Thus any subspace preserved by the matrix is a sum of such lines. It follows that the collection of such flags is a torsor for the symmetric group on the eigenspaces. More generally, the restriction π rs : grs → g rs of π over g rs is a principal Weyl group bundle: one can show that it is a Galois finite étale morphism with Galois group W .

A local system on g rs can be identified with a representation of the fundamental group of g rs . By the above, W is a finite quotient of this fundamental group. Actually, the local systems which correspond to a representation factoring through W are those whose pull-back to grs is trivial. The local system π rs * k grs corresponds to the regular representation of the group algebra kW . Its endomorphism algebra is the group algebra kW .

It is known that π * k g[dim g] = IC(g, π rs * k grs ) because π is a small proper morphism (this notion will be recalled in Subsection 2.2). But, in general, the IC complex is given by an intermediate extension functor j rs! * which is fully faithful, where j rs : g rs → g is the open immersion. Thus the endomorphism algebra of π * k g[dim g] is still kW .

We have

F (π N * k Ñ [dim N ]) ≃ π * k g[dim g]
(we ignore Tate twists). To see this one uses the descriptions of Ñ and g as G × B u and G × B b respectively. These are two orthogonal subbundles of the trivial bundle g×B over B, hence they are exchanged by the Fourier-Deligne transform with base B. By base change, it follows that the perverse sheaves π N * k Ñ [dim N ] and π * k g[dim g] are exchanged by the Fourier-Deligne transform on g (here the former is considered as a perverse sheaf on g by extension by zero). As the Fourier-Deligne transform is an equivalence of categories, we can conclude that the endomorphism algebra of π N * k Ñ [dim N ] is again kW . Now, assume k is K or F. Given a simple kW -module E, one can consider the corresponding local system L E on g rs . Then one can show that F (IC(g, L E )) is a simple G-equivariant perverse sheaf supported on N , thus we can associate to E a nilpotent orbit and a representation of the centralizer component group. In this way, one obtains a Springer correspondence for arbitrary characteristic: a map Ψ k from Irr kW to the set P k of such pairs consisting of an orbit and representation of the component group (for characteristic zero coefficients, see [START_REF] Brylinski | Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques[END_REF]; for characteristic ℓ, see [START_REF] Juteau | Modular Springer correspondence and decomposition matrices[END_REF]). For example, in the case G = GL n , the simple kS n -modules are denoted D µ , where µ runs over a subset of the partitions of n, whose elements are called ℓ-regular partitions, and it turns out that the modular Springer correspondence is given, as in characteristic zero, by the transposition of partitions [Jut07, §6.4].

The fact that there is an inverse Fourier transform implies that the map Ψ k is an injection. The fact that the Fourier transform of the constant perverse sheaf is the sky-scraper sheaf concentrated in zero implies that the pair corresponding to the trivial representation consists of the trivial orbit and the trivial character. Now, if E is a KW -module, we can choose an O-lattice E O stable by W . Then F ⊗ O E O is an FW -module whose class in the Grothendieck group does not depend on the choice of the lattice [START_REF] Serre | Représentations linéaires des groupes finis[END_REF]. Thus we have well-defined multiplicities d W E,F = [F ⊗ O E O : F ] for F an FWmodule. One can similarly define decomposition numbers d N (x,ρ),(y,σ) for G-equivariant perverse sheaves on the nilpotent cone, where (x, ρ) ∈ P K and (y, σ) ∈ P F . Then we have

d W E,F = d N Ψ K (E),Ψ F (F )
which shows that the decomposition matrix of W is a submatrix of the decomposition matrix for G-equivariant perverse sheaves on the nilpotent cone [START_REF] Juteau | Modular Springer correspondence and decomposition matrices[END_REF]. It follows that the stalks of IC sheaves in characteristic ℓ on the nilpotent singularities encode the modular representation theory of Weyl groups.

Perverse sheaves

2.1. Constructible sheaves. Throughout, k will denote a field or Z. All varieties will be varieties over the complex numbers equipped with the classical topology and all morphisms will be morphisms of varieties. Dimension will always mean the complex dimension.

Let X be a variety. We will denote by S a decomposition (4) X = S∈S S of X into finitely many locally closed (in the Zariski topology) connected smooth subvarieties. A sheaf of k-vector spaces F on X will be called S-constructible if the restriction of F to each S ∈ S is a local system (a sheaf of k-modules which is locally isomorphic to a constant sheaf with values in a finitely generated k-module). A sheaf F is constructible if there exists an S as above making it S-constructible.

Let D b (X, k) denote the bounded derived category of sheaves of kvector spaces. Given K ∈ D b (X, k) we denote its cohomology sheaves by H m (K). We denote by

D b c (X, k) (resp. D b S (X, k)) the full subcat- egory of D b (X, k) with objects consisting of complexes K ∈ D b (X, k) such that H m (K) is constructible (resp. S-constructible) for all m.
We have truncation functors τ ≤i and τ >i on

D b (X, k), D b c (X, k) and D b S (X, k). For example, H m (τ ≤i K) is isomorphic to H m (K) if m ≤ i and is 0 otherwise.
We have internal bifunctors RHom and ⊗ L k on D b c (X, k), which are the derived functor of the usual bifunctors on categories of sheaves. For any morphism f : X → Y we have functors:

D b c (X, k) f * ,f ! $ $ D b c (Y, k) f * ,f ! d d
The functors f * and f ! , sometimes denoted Rf * and Rf ! , are the right derived functors of the direct image and direct image with compact support (both functors are left exact). The inverse image functor f * for sheaves is exact, and passes trivially to the derived category. The pair (f * , f * ) is adjoint. It turns out that the derived functor f ! has a right adjoint, namely f ! .

In the case where Y is a point, for

F ∈ D b c (X, k) we have f * F = RΓ(X, F), f * k pt = k X , f ! F = RΓ c (X, F), f ! k pt = D X ,
where D X is the dualizing sheaf of X. It allows one to define the dualizing functor:

D = RHom(-, D X ) : D b c (X, k) op -→ D b c (X, k).
Its square is isomorphic to the identity functor. For example, if X is smooth of dimension d and L is a local system on X then D

(L[d]) ≃ L ∨ [d],
where L ∨ denotes the dual local system. In that case, we have

D X ≃ k X [2d], and k X [d] is self-dual.
In general, we have isomorphisms Df * ≃ f ! D and Df * ≃ f ! D. If Y is a point, X is smooth and L is a local system then the first isomorphism yields Poincaré duality between H * (X, L) and H * c (X, L ∨ ). In what follows, we will fix a decomposition S of X as in (4) and assume additionally that S is a Whitney stratification. For S to be a stratification, we require that the closure of a stratum is a union of strata. The Whitney conditions,4 which we are not going to describe, will ensure that the functors induced by inclusions of unions of strata, and the duality, preserve the notion of S-constructibility. Any stratification of X can be refined into a Whitney stratification.

As an important special case, if X is a G-variety with finitely many orbits, where G is a connected algebraic group, we can choose for S the set of G-orbits on X. In that case, we will be interested in G-equivariant sheaves. This notion will be explained below.

2.2.

Perverse sheaves with coefficients in a field. Throughout this section we assume that k is a field. As in the previous section we fix a variety X with a Whitney stratification S. The category of perverse sheaves constructible with respect to S, denoted P S (X, k), consists of the full subcategory of those objects F ∈ D b S (X, k) such that:

(1) for all S ∈ S, i * S F is concentrated in degrees ≤dim S, (2) for all S ∈ S, i ! S F is concentrated in degrees ≥dim S.

Note that these two conditions are exchanged by D. It follows that D preserves P S (X, k). We say that P S (X, k) is the heart of the t-structure (D ≤0 S (X, k), D ≥0 S (X, k)) where D ≤0 S (X, k), resp. D ≥0 S (X, k), is the full subcategory of D b S (X, k) with objects satisfying condition (1), resp. (2). For F ∈ P S (X, k), we are interested in the stalks of the cohomology sheaves of F. An induction shows that any perverse sheaf F only has non-trivial stalks in degrees ≥ -d, where d = dim X. Hence, we see that F is perverse if and only if the cohomology sheaves of both F and DF along strata are of the following form (see [START_REF] Arabia | Faisceaux pervers sur les variétés algébriques complexes[END_REF]):

strata . . . -d -d + 1 . . . -1 0 S d 0 * 0 0 0 0 S d-1 0 * * 0 0 0 . . . 0 . . . . . . . . . 0 0 S 1 0 * * . . . * 0 S 0 0 * * . . . * *
Here S m denotes the union of strata of dimension m and * denotes the possibility of a non-trivial cohomology sheaf. For example, the first line tells us that the restriction of F to an open stratum is either zero or a local system concentrated degree -d. The last line tells us that the stalks and costalks of F at 0-dimensional strata can be non-trivial in degrees between -d and 0. The category P S (X, k) is an abelian category and every object has finite length. The exact sequences in P S (X, k) are those sequences

F 1 → F 2 → F 3 which can be completed, via a map F 3 → F 1 [1] (necessarily unique in this case), to distinguished triangles in D b S (X, k).
As in any abelian category of finite length, it is important to understand the simple objects. One has a bijection: This bijection may be described as follows. Given a pair (S, L) there exists a unique object IC(S, L) ∈ P S (X, k) such that

(1) i * S IC(S, L) ≃ L[d S ], (2) IC(S, L) is supported on S,
and, for all strata T ⊂ S with T = S,

(2

) i * T IC(S, L) is concentrated in degrees < -dim T , (3) i ! T IC(S, L) is concentrated in degrees > -dim T .
The object IC(S, L) is called the intersection cohomology complex corresponding to (S, L). A different convention is to shift this complex by dim S, so that it is concentrated in non-negative degrees. The normalization we use has the advantage that the intersection cohomology complexes are perverse sheaves.

Note that we must have DIC(S, L) ≃ IC(S, L ∨ ). This explains the existence of a Poincaré duality between IH * (X, L) and IH * c (X, L ∨ ).

It is useful to note the special form of the restrictions to the strata of an intersection cohomology complex IC(S, L), depicted as before (note the zeroes on the diagonal). Let d S denote the dimension of S, so that

S ⊂ S d S . strata -d . . . -d S -1 -d S -d S + 1 . . . -1 0 S d 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 S d S +1 0 0 0 0 0 0 0 0 S d S 0 0 0 i S * L 0 0 0 0 S d S -1 0 0 0 * 0 0 0 0 . . . 0 0 0 * * 0 0 0 S 1 0 0 0 * * * 0 0 S 0 0 0 0 * * * * 0
Let us make a small digression about equivariance. We follow [Lus84, §0]. Assume X is endowed with an action of a connected algebraic group G. Let a : G × X → X and pr : G × X → X denote the action morphism and the second projection. A perverse sheaf F is called G-equivariant if there is an isomorphism α : a * F ∼ -→ pr * F. This isomorphism is unique if we impose the condition that the induced isomorphism i * a * F ∼ -→ i * π * F is the identity of F, where the morphism i : X → G × X, x → (1, x) is a section of a and π, so that i * a * F = F and i * π * F = F. This follows from [BBD82, Prop. 4.2.5] (Deligne). Then α satisfies the usual associativity condition. Note that this definition of G-equivariance for perverse sheaves does not work for arbitrary complexes.5 It also works, though, for usual sheaves (complexes concentrated in one degree), and in particular for local systems. The G-equivariant local systems on an orbit S correspond bijectively to the finite dimensional representations of the finite group of components of the isotropy group of a point x in S. We are particularly interested in the case where G has finitely many orbits in X, and we take the stratification of X into its G-orbits. Then the simple G-equivariant perverse sheaves correspond to pairs consisting of an orbit and an irreducible G-equivariant local system on that orbit.

We now recall Deligne's construction of intersection cohomology complexes. As above let S m denote the union of strata of dimension m and denote by X m the union of all strata of dimension greater than or equal to m. We have a sequence of inclusions:

X d j d-1 ֒→ X d-1 j d-2 ֒→ X d-2 ֒→ • • • ֒→ X 1 j 0 ֒→ X 0 = X.
Now let L be an irreducible local system on S ∈ S. We still denote by L its extension by zero to X d S . One has an isomorphism

IC(S, L) ≃ (τ ≤-1 • j 0 * ) • (τ ≤-2 • j 1 * ) • • • • • (τ ≤-d S • j d S -1 * )(L[d S ]).
This allows the calculation of IC(X, L) inductively on the strata. We will see examples of this construction below. However, the j * functors are not easy to compute explicitly in general.

In characteristic zero, the decomposition theorem provides a much more powerful means of calculating the stalks of intersection cohomology complexes. Given a Laurent polynomial P =

a i v i ∈ N[v, v -1 ] and K ∈ D b (X, k), we define P • K = K[i] ⊕a i . We call a complex K ∈ D b S (X, k) semi-simple if one has an isomorphism K ≃ P S,L S • IC(S, L S ) for some P S,L S ∈ N[v, v -1 ],
where the sum is over all pairs (S, L) consisting of an irreducible local system on a stratum S. In other words, an object K ∈ D b S (X, k) is semi-simple if it is isomorphic to a direct sum of shifts of irreducible intersection cohomology complexes. One version of the decomposition theorem is the following:

Theorem 2.1 ([BBD82], [Sai89], [dCM05]). Let π : Y → X be a proper map from a smooth variety Y . If k is of characteristic zero, then π * k Y [dim Y ] is semi-simple.
We will see examples below of the failure of the decomposition theorem in positive characteristic. Some conditions on the dimensions of the fibers of a resolution, however, have consequences which hold for arbitrary coefficients. Let π : Y → X be a proper morphism between n-dimensional irreducible varieties, and assume X is endowed with a stratification S such that π is a weakly stratified mapping, that is, for each stratum S in S, the restriction of π to π -1 (S) is a topological fibration with base S and fibre F S . Then π is said to be semi-small if, for all S, we have dim F S ≤ 1 2 codim X (S). A stratum S is relevant for π if equality holds. We say that π is small if the only relevant stratum is the dense one. The following proposition is well-known [BM81, BM83, GM83]: Proposition 2.2. Let π : Y → X be a proper morphism as above with Y smooth.

(1

) If π is semi-small then π * k Y [dim Y ] is a perverse sheaf. (2) If π is small then π * k Y [dim Y ] is an intersection cohomology complex.
2.3. Perverse sheaves over the integers. In this section, we will give a flavour of the subtleties that occur when we take integer coefficients. See [BBD82, §3.3], and [START_REF] Juteau | Decomposition numbers for perverse sheaves[END_REF] for a more detailed study.

Let us first consider the bounded derived category of constructible sheaves of Z-modules on the point pt = Spec C. These are just complexes of Z-modules with finitely many non-zero cohomology groups, all of which are finitely generated over Z. The duality functor is D = RHom(-, Z). The perverse sheaves on pt are just finitely generated Z-modules placed in degree zero. They form the heart of the usual t-structure, corresponding to the perversity p. We will see that this t-structure is not preserved by the duality.

Since Z is hereditary (of global dimension 1), any object of D b c (pt, Z) is isomorphic to the direct sum of its shifted cohomology objects. So the indecomposable objects in D b c (pt, Z) are concentrated in one degree, and they are isomorphic, up to shift, either to Z or to Z/ℓ a for some prime number ℓ, and some positive integer a.

First consider the indecomposable Z. It is a free, hence projective Z-module, and thus we have

D(Z) = RHom(Z, Z) = Hom(Z, Z) = Z.
Here there is no problem. The dual of a torsion-free module remains in the heart of the natural t-structure. Now consider the case of Z/ℓ a . Here we cannot apply the functor Hom(-, Z) directly to the module Z/ℓ a . First we have to replace Z/ℓ a by a projective resolution, as Z ℓ a -→ Z, with the first Z in degree -1. Now we can apply the functor Hom(-, Z), and we get the complex Z ℓ a -→ Z with the last Z in degree 1. So the dual of Z/ℓ a is isomorphic to Z/ℓ a [-1]. This is another way to say that Hom(Z/ℓ a , Z) = 0, Ext 1 (Z/ℓ a , Z) ≃ Z/ℓ a , and Ext i (Z/ℓ a , Z) = 0 for i > 1.

This shows that the usual t-structure (for the perversity p) is not stable by the duality. We see that the problem comes from the torsion. The duality exchanges a free module in degree n with a free module in degree -n, but it exchanges a torsion module in degree n with a torsion module in degree 1n. The duality exchanges the usual t-structure (D ≤0 , D ≥0 ) on D b c (pt, Z) with another t-structure (D ≤0 + , D ≥0 + ), defined by:

K ∈ D ≤0 + ⇐⇒ H 1 (K) is torsion and H i (K) = 0 for i > 1 K ∈ D ≥0 + ⇐⇒ H 0 (K) is torsion-free and H i (K) = 0 for i < 0
Remember that we constructed the t-structure for the perversity p by taking on each stratum S the usual t-structure shifted by dim S, and gluing them together. Over the integers, we can either do the same, or take on each stratum the dual of the usual t-structure, shifted by dim S (here we consider torsion versus torsion-free local systems on S), and then again glue them together. In the second case, obtain the following t-structure, corresponding to the perversity p + :

F ∈ D ≤0 + S (X, Z) ⇐⇒ H m (i * S F) is zero for m > -dim S + 1 and is torsion for m = -dim S + 1 F ∈ D ≥0 + S (X, Z) ⇐⇒ H m (i ! S F) = 0 is zero for m < -dim S and torsion-free for m = -dim S
We will denote the heart of the classical t-structure by P S (X, Z), and the heart of this new t-structure by P + S (X, Z). The abelian category P S (X, Z) is Noetherian but not Artinian (again, this is already the case for X = pt). However, given any local system L on a stratum S one still has a unique extension IC(S, L) satisfying the same conditions as for a field. Keeping the notation of the previous section, this may be defined by:

IC(S, L) := (τ ≤-1 • j 0 * ) • (τ ≤-2 • j 1 * ) • • • • • (τ ≤-d S • j d S -1 * )(L[d S ]).
To obtain the dual of an intersection cohomology complex IC(S, L) in P + S (X, k) one needs to consider a variant of the truncation functors on D b (X, Z), which we denote τ + ≤i and τ

+ >i . If K ∈ D b (X, Z) then H m (τ + ≤i K) is isomorphic to H m (K)
for m ≤ i, to the torsion submodule of H m (K) for m = i + 1, and is zero otherwise. One defines

IC + (S, L) := (τ + ≤-1 • j 0 * ) • (τ + ≤-2 • j 1 * ) • • • • • (τ + ≤-d S • j d S -1 * )(L[d S ]).
As IC(S, L), the complex IC + (S, L) may be characterized in terms of the stalks of i * S and i ! S . As one might expect, the complexes IC(S, L) and IC + (S, L ∨ ) are exchanged by the duality.

2.4. First example: the nilpotent cone of sl 2 . Let sl 2 be the Lie algebra of 2 × 2 traceless matrices over C and let N ⊂ sl 2 be its nilpotent cone. It is isomorphic to a quadratic cone inside affine 3-space:

N = x y z -x x 2 + yz = 0 ⊂ sl 2 ≃ A 3
Note also that N is isomorphic to the quotient of a two dimensional vector space V = Spec C[u, v] by the scalar action of {±1}. If we choose coordinates (u, v) on V then an isomorphism is given by

V /{±1} -→ N ±(u, v) -→ uv -v 2 u 2 -uv .
The conjugation action of SL 2 (C) on N has two orbits, O reg and {0}, and we let S denote the stratification of N into these two orbits. We will be interested in calculating IC(N , k) for k = Q, Z and F p (of course IC({0}, k) is always a skyscraper sheaf on {0} in degree 0). We will first examine Springer's resolution

T * P 1 → N .
Concretely, we may identify T * P 1 with pairs (ℓ, x) where ℓ ∈ P 1 is a line containing the image of x ∈ N . The map π is then obtained by forgetting ℓ; it is clearly an isomorphism over O reg and has fibre P 1 over {0}. Hence, for any k the stalks of π * k T * P 1 [2] are given by

-2 -1 0 O reg k 0 0 {0} k 0 k
If k is of characteristic 0, then we know by the decomposition theorem that π * k T * P 1 [2] is semi-simple and hence

π * k T * P 1 [2] ≃ IC(N , k) ⊕ IC({0}, k). It follows that IC(N , k) is isomorphic to k N [2].
To handle the case k = F p requires more care. Recall that the Deligne construction tells us that

IC(N , k) ≃ τ ≤-1 • j * (k Oreg [2]),
where j : O reg ֒→ N is the open immersion. Since this complex is an extension of k Oreg [2], the only stalk that we have to compute is the stalk at zero. Let us compute (j * k Oreg ) 0 . Then it will be a trivial matter to shift and truncate.

We have

(j * k Oreg ) 0 ≃ lim V ∋0 RΓ(V \ {0}, k)
where V runs over the open neighbourhoods of 0 in N .

We can replace this limit by a limit over a basis of neighbourhoods of zero, as for example V n , n ≥ 1, the intersection of N with the open ball of radius 1/n centered at 0 in C 3 . But N is a cone: it is stable by multiplication by a scalar in C * , and in particular in R >0 . We can use this to see that all the V n \ {0} are homeomorphic: they are actually homeomorphic to N \ {0} = O reg itself. Thus we have

(j * k Oreg ) 0 ≃ lim n RΓ(V n \ {0}, k) ≃ RΓ(O reg , k).
(this argument applies for any cone). However, as we observed above, N ≃ V /{±1} and hence

O reg ≃ (V \ {0})/{±1} = (C 2 \ {0})/{±1}, which is homotopic to S 3 /{±1} = RP 3 . Thus (j * k Oreg ) 0 ≃ RΓ(RP 3 , k) ≃ (k 0 -→ k 2 -→ k 0 -→ k),
the latter complex being concentrated in degrees between 0 and 3.

Hence, if k is a field of characteristic p, the stalks of j * k Oreg [2] are given by:

-2 -1 0 1 O reg k 0 0 0 {0} k (k) 2 (k) 2 k
where (k) 2 means k if p = 2, and 0 otherwise. We obtain the stalks of IC(N , k) by truncating:

-2 -1 0 O reg k 0 0 {0} k (k) 2 0
In fact, the decomposition theorem holds here if and only if p = 2.

One may calculate the stalks of IC(N , Z) and IC + (N , Z) and one obtains:

-2 -1 0 O reg Z 0 0 {0} Z 0 0 -2 -1 0 O reg Z 0 0 {0} Z 0 Z/2Z
From this information, we can calculate the decomposition numbers for GL 2 -equivariant perverse sheaves on its nilpotent cone [START_REF] Juteau | Decomposition numbers for perverse sheaves[END_REF], and we get:

(1 2 ) (2) (1 2 ) (2)
1 0 1 1 from which we can extract the decomposition matrix for S 2 in characteristic 2:

D (2) S (2) S (1 2 ) 1 1

Some stalks in nilpotent cones

In this section we give more examples of calculations of stalks of intersection cohomology sheaves on nilpotent cones, motivated by the modular Springer correspondence. Actually, in type A the nilpotent singularities also occur in the affine Grassmannian [START_REF] Lusztig | Green polynomials and singularities of unipotent classes[END_REF], so the geometric Satake theorem is another motivation.

First we recall a parabolic generalization of Springer's resolution, providing a resolution of some Richardson orbit closures. Then we deal with the minimal nilpotent orbit closure in sl n and sp 2n , and with the singularity of the nilpotent cone of sl n at the subregular orbit, by a direct approach. Note that minimal and simple singularities have been dealt with in all types in [START_REF] Juteau | Cohomology of the minimal nilpotent orbit[END_REF][START_REF] Juteau | Decomposition numbers for perverse sheaves[END_REF], but in the special cases we treat here, the calculation can be done quickly. Finally, we give more computations of stalks of intersection cohomology complexes in characteristic p, which might be new: we give all the stalks in the nilpotent cone of sl 3 for p = 3, and all the stalks in the subvariety of the nilpotent cone of sl 4 consisting of the matrices which square to zero, for p = 2.

All our calculations will be completed for varieties over C in the metric topology, however all the results and most proofs can be translated into the étale situation: we mostly use basic facts about the cohomology of projective spaces and flag varieties, Gysin sequences etc. which have direct translations in étale cohomology. We will always outline how a calculation can be performed in the étale topology when such a direct translation is not possible.

Throughout we will use the following notation (already used in the last section). If k is a field of characteristic p and n is an integer then

(k) n = k if p divides n, 0 otherwise. 
3.1. Generalized Springer resolutions. Remember the Springer resolution:

π N : T * (G/B) = G × B u -→ N = O reg g * B x -→ (Ad g)(x)
We will see a generalization of this morphism, where we replace the Borel subgroup B by a parabolic subgroup P , with unipotent radical U P . We denote by u P the Lie algebra of U P . One can naturally define the proper morphism (called "generalized Springer resolution"):

π P : T * (G/P ) = G × P u P -→ N g * P x -→ (Ad g)(x)
but what is the image of π P ? And is it birational ?

Since u P is irreducible and there are only finitely many nilpotent orbits, there is a unique nilpotent orbit O P such that O P ∩ u P is dense in u P . This orbit is called the Richardson orbit associated to P . One can see that the image of π P is the closure of O P .

Recall the notations for centralizers and their groups of components from Section 1.3. We have [START_REF] Borho | Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen[END_REF]§7] and also [START_REF] Borho | Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules[END_REF]§2.6]. It is birational if C G (x) ⊂ P , and in particular when A G (x) is trivial. In that case, it induces a semi-small resolution of O P , which is used in [START_REF] Borho | Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes[END_REF].

C G (x) 0 ⊂ C P (x) ⊂ C G (x) for x ∈ O P . The morphism π P is generically finite, but not always birational. It is of degree [C G (x) : C P (x)] = [A G (x) : A P (x)], see
In GL n , all nilpotent orbits are Richardson and all A G (x) are trivial, but in general this is not so. The regular nilpotent orbit, though, is clearly always Richardson: it is the one associated with B.

Let us describe the situation in the case G = GL n . If λ = (λ 1 , . . . , λ s ) is a partition of n, let O λ denote the nilpotent orbit consisting of the nilpotent matrices whose Jordan normal form x λ has Jordan blocks of sizes given by the parts of λ. We denote by P λ the parabolic subgroup of GL n stabilizing the standard partial flag of shape λ:

F λ • := (0 ⊂ F λ 1 ⊂ • • • ⊂ F λ s = C n ) where F λ
i is spanned by the λ 1 + • • • + λ i first elements of the canonical basis of C n . The partial flag variety G/P λ can be interpreted as the variety F λ of all partial flags of shape λ, that is, sequences of subspaces

F • = (0 ⊂ F 1 ⊂ • • • ⊂ F s = C n ) with dim F i = λ 1 + • • • + λ i . We have G × P u P λ ∼ -→ {(x, F • ) ∈ N × F λ | x(F i ) ⊂ F i-1 } g * P λ x -→ (Ad g(x), g(F λ • )) For x ∈ N , we have x ∈ O λ ⇐⇒ ∀i, dim Ker x i = λ ′ 1 + • • • + λ ′ i and x ∈ O λ ⇐⇒ ∀i, dim Ker x i ≥ λ ′ 1 + • • • + λ ′ i
where λ ′ is the partition conjugate to λ. Let us note that we have

O µ ⊂ O λ ⇐⇒ ∀i, µ ′ 1 + • • • + µ ′ i ≥ λ ′ 1 + • • • + λ ′ i ⇐⇒ µ ′ ≥ λ ′ ⇐⇒ µ ≤ λ
where ≤ is the usual dominance order on partitions. Now assume x is in the image of π P λ ′ . Then there is a flag F • of type λ ′ such that x(F i ) ⊂ F i-1 for all i. In particular, we have F i ⊂ Ker x i for all i, and hence dim Ker Note that this gives, in principle, a method to compute all the IC stalks with Q coefficients of closures of nilpotent orbits in sl n , by induction, using the decomposition theorem: the direct image

x i ≥ λ ′ 1 + . . . λ ′ i for all i. Thus x ∈ O λ . Consequently, the image of π P λ ′ is included in O λ . If x ∈ O λ , then there is a unique flag F • of type λ ′ such that x(F i ) ⊂ F i-1 , namely F i = Ker x i .
π P λ ′ * Q[dim O λ ]
decomposes as a direct sum of IC(O λ , k) and some copies of IC sheaves for lower strata, which we know by induction. The stalks of the direct image are given by the cohomology of the fibers. One finds the stalks of the IC sheaf of O λ by removing the stalks of the other summands. It is a nice exercise to do that for small ranks. We will see some examples below. Note, however, that all stalks of G-equivariant IC complexes on nilpotent cones are known in characteristic zero, as there is an algorithm to compute them [START_REF] Lusztig | Character sheaves[END_REF]V], as soon as one has determined the generalized Springer correspondence defined in [START_REF] Lusztig | Intersection cohomology complexes on a reductive group[END_REF], which has also been done, by work of several authors. In the case of GL n , the answer (which is in terms of Kostka polynomials) has been known since [START_REF] Lusztig | Green polynomials and singularities of unipotent classes[END_REF].

With Z or F p coefficients, however, one cannot use the decomposition theorem, and the calculations are much more difficult. To find the answer in general is a very deep and important problem; in particular, such information would be sufficient to determine the decomposition matrices of the symmetric groups, which is a central problem in the modular representation theory of finite groups. We will see some examples below where the calculations can be done.

3.2. Minimal class in sl n . The goal of this paragraph will be to generalize the calculation 2.4 of the stalk at the origin of the IC sheaf on the nilpotent cone for sl 2 to that of the closure of the minimal non-trivial nilpotent orbit in sl n . The minimal orbit

O min = O (2,1 n-2 )
is the set of nilpotent matrices with 1-dimensional image and (n -1)dimensional kernel. Let us apply the considerations of the last subsection. Here λ = (2, 1 n-2 ), and λ ′ = (n -1, 1). The parabolic subgroup P = P (n-1,1) is the stabilizer of a hyperplane. The partial flag variety G/P is identified with the projective space P n-1 of hyperplanes in C n . We get a resolution of O min by taking pairs (x, H) consisting of a nilpotent element x (necessarily in O min ) and a hyperplane H contained in the kernel of x. (Dually, we could have considered pairs (x, ℓ) where x is nilpotent and ℓ is a line such that Im(x) ⊂ ℓ.)

Thus we have a proper morphism:

T * P n-1 → O min = O min ∪ {0}
which is an isomorphism over O min and has fibre P n-1 over {0}. Hence, for any k the stalks of π * k T * P n-1 [2n -2] are given by:

-2n + 2 -2n + 1 -2n + 2 . . . -1 0 O min k 0 0 . . . 0 0 {0} k 0 k . . . 0 k
If k is of characteristic 0, then we know by the decomposition theorem that π * k T * P n-1 [2n -2] is semi-simple and hence

π * k T * P n-1 [2n -2] ≃ IC(O min , k) ⊕ IC({0}, k).
It follows that the cohomology of IC(O min , k) 0 is isomorphic to k in even degrees between -2n + 2 and -2, and zero otherwise.

As in the sl 2 case, to handle the cases k = F p or Z, we use Deligne's construction:

IC(O min , k) ≃ τ ≤-1 • j * (k O min [2n -2])
where j is the open immersion O min ֒→ O min . Again, O min is a cone and thus we have:

(j * k O min ) 0 ≃ RΓ(O min , k).
Now we have observed that O min is isomorphic to the complement of the zero section to the cotangent bundle of P n-1 . The cohomology can thus be read off the Gysin sequence:

• • • -→ H i-2n+2 e -→ H i -→ H i (O min ) -→ H i-2n+3 e -→ H i+1 -→ • • •
where H i := H i (P n-1 , Z) and e is the Euler class of the cotangent bundle. But this is simply the Euler characteristic n = χ(P n-1 ) times a generator of H 2n-2 (P n-1 , Z) ≃ Z. We deduce that H i (O min , Z) is isomorphic to Z for i = 0, 2, . . . , 2n -4, to Z/n for i = 2n -2, and then again to Z for i = 2n -1, 2n + 1, . . . , 4n -5, and zero otherwise:

0 1 2 • • • 2n -3 2n -2 • • • 4n -3 4n -4 4n -5 Z 0 Z • • • 0 Z/n • • • Z 0 Z We have RΓ(O min , k) = k ⊗ L Z RΓ(O min , Z).
Thus each copy of Z is replaced by k. For k = Q or F p with p ∤ n, the torsion group Z/n in degree 2n -2 is killed. For k = F p with p | n, Z/n is replaced by two copies of F p , one in degree 2n -3, one in degree 2n -2.

We obtain the stalks of IC(O min , k) by shifting and truncating. For k = F p , we get:

-2n + 2 -2n + 3 -2n + 4 • • • -2 -1 0 O min k 0 0 • • • 0 0 0 {0} k 0 k • • • k (k) n 0
For k = Z, we get:

-2n + 2 -2n + 3 -2n + 4 • • • -2 -1 0 O min Z 0 0 • • • 0 0 0 {0} Z 0 Z • • • Z 0 0
For IC + (O min , k), one adds a copy of Z/n in degree 0 at {0}. The above calculations give a geometric proof that the natural representation of S n (which corresponds to the minimal orbit) remains irreducible modulo ℓ if and only if ℓ ∤ n, while if ℓ | n its modular reduction involves the trivial representation once.

Minimal class in sp 2n

. In this section, we will treat the case of the minimal class O min in g = sp 2n . We view G = Sp 2n as the subgroup of GL 2n stabilizing some symplectic form on C 2n given by a matrix Q with respect to the canonical basis.

A matrix M ∈ GL 2n will be in Sp 2n if and only if t MQM = Q. Then g can be identified with the Lie algebra of the matrices H ∈ gl 2n such that the following identity holds in GL 2n (C[ε]):

(1 + ε t H)Q(1 + εH) = Q where C[ε] = C[X]/(X 2
) and ε is the image of X in this quotient. This is equivalent to (5)

t HQ + QH = 0 in gl 2n . Now, the minimal class O min consists of those matrices in sp 2n which are nilpotent with Jordan type (2, 1 2n-2 ). They are also characterized in sp 2n by the fact that they are of rank one (all matrices in sp 2n have zero trace).

A matrix H ∈ gl 2n of rank one is of the form H = u t v, where u and v are non-zero vectors in C 2n . Moreover, u and v are uniquely determined up to multiplying u by some non-zero scalar λ and dividing v by the same scalar λ. Now suppose H is in O min . Then (5) writes

v t uQ + Qu t v = 0 that is, (Qu) t v = v t (Qu)
using the fact that Q is anti-symmetric. Since Q is non-degenerate, we have Qu = 0, which implies that v is proportional to Qu.

Let E denote the bundle {(H, ℓ) ∈ sp 2n × P 2n-1 | Im H ⊂ ℓ} over P 2n-1 . The first projection gives a morphism

π : E → O min = O min ⊔ {0}
which is a resolution of singularities. It is an isomorphism over O min , and the exceptional fiber is the null section.

The above discussion shows that we have

E ≃ O(-1) ⊗ O O(-1) ≃ O(-2).
Let H i denote H i (P 2n-1 , Z), and let t ∈ H 2 be the first Chern class of O(-1). Then we have H * (P 2n-1 , Z) ≃ Z[t]/t 2n . The Euler class e of E is 2t. As O min is isomorphic to E minus the null section, we have a Gysin sequence:

• • • -→ H i-2 e -→ H i -→ H i (O min , Z) -→ H i-1 e -→ H i+1 -→ • • •
As the cohomology of P 2n-1 is concentrated in even degrees, for i even, we get H i (O min , Z) ≃ Coker(e : H i-2 → H i ) which is isomorphic to Z for i = 0, to Z/2 if i is an even integer between 2 and 4n -2, and 0 otherwise. For i odd, we have H i (O min , Z) ≃ Ker(e : H i-1 → H i+1 ) which is isomorphic to Z for i = 4n -1, and zero otherwise. With F p coefficients, p odd, O min has the cohomology of a sphere. With F 2 coefficients, it has cohomology F 2 [u]/u 4n , with u in degree one.

Again, O min is a cone, so we have

IC(O min , k) 0 = τ ≤-1 • j * (k O min [2n]) 0 ≃ τ ≤-1 (RΓ(O min , k)[2n])
where j : O min ֒→ O min is the open immersion. Thus for k = F p , the stalks of IC(O min , k) are as follows:

-2n -2n + 1 -2n + 2 • • • -2 -1 0 O min k 0 0 • • • 0 0 0 {0} k (k) 2 (k) 2 • • • (k) 2 (k) 2 0
For k = Z, we get:

-2n -2n + 1 -2n + 2 • • • -2 -1 0 O min Z 0 0 • • • 0 0 0 {0} Z 0 Z/2 • • • Z/2 0 0
and, for the p + version, one has to add a copy of Z/2 in degree 0 for the trivial orbit.

Let us give an alternative point of view, in more concrete terms. If we take Q = 0 -J J 0 , where

J =   0 1 . . . 1 0  
then we have a morphism q : C 2n → O min which sends the vector (x 1 , . . . , x n , y 1 , . . . , y n ) to the matrix

         -x 1 y n • • • -x 1 y 1 . . . . . . . . . -x n y n • • • -x n y 1 x 1 x n • • • x 2 1 . . . . . . . . . x 2 n • • • x n x 1 -y 1 y n • • • -y 2 1 . . . . . . . . . -y 2 n • • • -y n y 1 y 1 x n • • • y 1 x 1 . . . . . . . . . y n x n • • • y n x 1         
This can be identified with the quotient by {±1}. In particular, this explains why O min is p-smooth for p = 2. The map q induces q 0 : C 2n \ {0} → O min , which is the quotient by {±1}, which implies that O min ≃ (C 2n \ {0})/{±1} is homotopic to RP 4n-1 . We have

RΓ(O min , k) = RΓ(RP 4n-1 , k) = (k 0 -→ k 2 -→ k 0 -→ . . . 2 -→ k 0 -→ k)
where the last complex has a copy of k in each degree between 0 and 4n -1, and the differential is alternatively 0 and 2. We recover the preceding calculation.

Let us note that, for n = 1, we recover the sl 2 calculation.

Subregular class in sl

n . Let us consider the nilpotent cone N of sl n . The regular nilpotent orbit O reg = O (n) is open dense in N . There is a unique open dense orbit O subreg = O (n-1,1) in its complement. It is of codimension 2. Let U := O reg ∪ O subreg .
In this section we will compute the stalks of IC(N , k) restricted to U and find a condition on the characteristic of k for this restriction to be a constant sheaf.

By [START_REF] Brieskorn | Singular elements of semi-simple algebraic groups[END_REF][START_REF] Slodowy | Four lectures on simple groups and singularities[END_REF][START_REF] Slodowy | Simple singularities and simple algebraic groups[END_REF], the singularity of N along O subreg is a simple surface singularity of type A n-1 . This is the singularity at 0 of the variety S = C 2 /µ n , where µ n is the group of nth roots of unity in C * , and ζ ∈ µ n acts on C 2 by

ζ 0 0 ζ -1 . This implies that IC(U, k) x [-dim N ] ≃ IC(S, k) 0 [-2], where x ∈ O subreg . We have S = Spec C[u, v] µn = Spec C[u n , v n , uv] = Spec C[x, y, z]/(xy -z n )
and there is a C * -action on C 3 = Spec C[x, y, z], contracting to the origin, stabilizing S, given by t.(x, y, z) = (t n x, t n y, t 2 z). The same argument as with a cone shows that

(j * k S\{0} ) 0 = RΓ(S \ {0}, k) = RΓ(S 3 /µ n , k) = (k 0 -→ k n -→ k 0 -→ k)
(a complex in degrees between 0 and 3), where j : S \ {0} ֒→ S is the open immersion.

Thus if k is a field of characteristic p, then the stalks of IC(U, k) are given by:

-dim N -dim N + 1 -dim N + 2 O reg k 0 0 O subreg k (k) n 0 
For k = Z and for the perversity p, we get the constant sheaf on X in degreedim N . For the perversity p + , we get an extra stalk Z/n in degreedim N + 2 for O subreg .

Remark 3.1. Here and in the previous section, we have relied on knowledge of the cohomology ring of real projective spaces and lens spaces in order to calculate the cohomology of spaces like (C m \{0})/µ n . Thus it is not immediately clear how to proceed in the étale situation. However, instead one can use the fact that RΓ(C m \ {0}, k) is a perfect complex of kµ n -modules, because µ n acts freely on C m \ {0}. As there are only two non-trivial cohomology groups, there is only one possibility up to quasi-isomorphism. Then one can take derived invariants to recover RΓ((C m \ {0})/µ n , k). This proof makes sense if we replace C by F q . Alternatively, one could also use comparison theorems.

For completeness, and for future use, let us describe the Springer fiber B x . It is the union of n -1 projective lines L 1 , . . . , L n-1 , where L i is identified with the variety of flags F • such that F j = Im x n-1-j for 1 ≤ j ≤ i -1 and F j = Ker x j-1 for i + 1 ≤ j ≤ n. These projective lines intersect as the Dynkin diagram of type A n-1 . Let π U : Ũ → U be the restriction of the Springer resolution to U. Then the stalks of π U * k Ũ [dim N ] are given by:

-dim N -dim N + 1 -dim N + 2 O reg k 0 0 O subreg k 0 k n-1
When k is of characteristic zero, we can use the decomposition theorem for another proof of the above calculation in that case. Let us note that, for n = 2, we recover the sl 2 calculation.

3.5. IC stalks on the nilpotent cone of sl 3 for p = 3. Let us consider the nilpotent cone in sl 3 and a field of coefficients k of characteristic p different from 3. We have three nilpotent orbits, indexed by the partitions (3), ( 21) and (1 3 ): the regular orbit O reg of dimension 6, the minimal orbit O min of dimension 4 and the trivial orbit {0}.

The complex IC({0}, k) is trivial. By Subsection 3.2, we know the stalks of IC(O min , k). We wish to compute the stalks of IC(N , k).

Let U := O reg ∪ O subreg . By Subsection 3.4, we have:

IC(U, k) = k U [6]
since k is assumed to be of characteristic p = 3. In other words, U is p-smooth if p = 3. This fact will allow us to compute the stalk IC(N , k) 0 as in the preceding cases, where the complement of the origin was smooth. Let j : U ֒→ N denote the open immersion. Since N is a cone, we have: (j * k U ) 0 = RΓ(U, k)

As in Subsection 3.4, we will consider the restriction of the Springer resolution π U : Ũ → U. We will consider the truncation distinguished triangle:

τ ≤-6 π U * k Ũ [6] -→ π U * k Ũ [6] -→ τ >-6 π U * k Ũ [6]
By what we said in Subsection 3.4, if i : O min ֒→ U denotes the (closed) inclusion this is isomorphic to the triangle:

(6) k U [6] -→ π U * k Ũ [6] -→ i * k 2 O min [4]
Since all the objects involved are actually perverse sheaves, we have a short exact sequence of perverse sheaves:

0 -→ k U [6] -→ π U * k Ũ [6] -→ i * k 2
O min [4] -→ 0 with left and right terms intersection cohomology complexes. We will see that the sequence splits. For this, we have to show that the degree one morphism of the triangle above is zero. Finally if we can compute the cohomology of Ũ and O min with coefficients in k, then we will have computed the cohomology of U and equivalently, as U is p-smooth, its intersection cohomology.

Recall that Ũ is the cotangent bundle to the flag variety G/B with the zero section removed. We can then apply the Gysin sequence

• • • -→ H i-6 e -→ H i -→ H i ( Ũ , k) -→ H i-5 e -→ H i+1 -→ • • •
where H i := H i (G/B, k) and e denotes multiplication by the Euler class of T * (G/B), which in this case is given by χ(G/B) = 6 times a generator of H 6 . Recalling that the cohomology of G/B is as follows: 0 1 2 3 4 5 6 k 0 k 2 0 k 2 0 k we find the cohomology of of the complex RΓ( Ũ, k)[6] is given by: -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 k 0 k 2 0 k 2 (k) 6 (k) 6 k 2 0 k 2 0 k 0 We have computed the cohomology of O min in Subsection 3.2. Since p = 3, the cohomology of the complex RΓ(O min , k)[4] is given by: -4 -3 -2 -1 0 1 2 3 k 0 k 0 0 k 0 k Subtracting two copies of the cohomology of RΓ(O min , k)[4] from the cohomology of RΓ( Ũ , k)[6], we obtain the cohomology of RΓ(U, k)[6] for p = 3:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 k 0 0 0 0 (k) 2 (k) 2 0 0 0 0 k 0 By truncation, we obtain the stalk IC(N , k) 0 for p = 3: Theorem 3.2. Let k be a field of characteristic p = 3. Then

IC(N , k) 0 = k[6] ⊕ k[1] if p = 2, k[6] if p > 3.
This completes the geometric determination of the decomposition matrix of GL 3 -equivariant perverse sheaves on its nilpotent cone, and hence of the symmetric group S 3 , in characteristic 2: Kraft and Procesi show [START_REF] Kraft | Minimal singularities in GLsn[END_REF] that the singularity of U ′ along O min is equivalent to a simple A 1 singularity, that of the nilpotent cone of sl 2 that we studied in Section 2.4. It follows that the stalks of IC(O (2 2 ) , k) restricted to U ′ are as follows:

-8 -7 -6 O (2 2 ) k 0 0 O min k (k) 2 0 From now on, let k be a field of characteristic p = 2 (so that U ′ is p-smooth). Using the Deligne construction and the fact that O (2 2 ) is a cone we have

IC(O (2 2 ) , k) 0 = (τ ≤-1 j * k U ′ [8]) 0 = τ ≤-1 (RΓ(U ′ , k)[8])
where j : U ′ ֒→ O (2 2 ) denotes the inclusion. We will proceed as in the previous section, calculating RΓ(U ′ , k) with the help of the resolution π : T * (G/P ) → O (2 2 ) defined in Section 3.1. Here G = SL 4 and P is the parabolic subgroup stabilizing C 2 ⊂ C 4 . The fiber over a nilpotent element N with Jordan blocks (2, 1 2 ) is the collection of 2-planes V ∈ Gr(2, 4) which are in the kernel of N and contain its image. The image of N is 1-dimensional and is contained in the kernel which is 3-dimensional. Thus the collection of such 2-planes forms a projective line P 1 . Similarly to above, let Ũ′ denote the preimage of U ′ under π and denote by π U ′ : Ũ′ → U ′ the restriction of π to U ′ . We consider the push-forward π U ′ * k Ũ ′ [8]. The last paragraph implies that the stalks of this push-forward are as follows:

-8 -7 -6 O (2 2 ) k 0 0 O min k 0 k

Let i : O min ֒→ U denote the closed inclusion. We have a truncation distinguished triangle analogous to Section 3.5:

k U ′ [8] -→ π U ′ * k Ũ ′ [8] -→ i * k O min [6]
or equivalently a short exact sequence of perverse sheaves:

0 -→ k U ′ [8] -→ π U ′ * k Ũ ′ [8] -→ i * k O min [6] -→ 0.
This sequence splits by the same calculation as in Section 3.5. Hence We already know the cohomology of O min by Section 3.2. Hence all that remains is to compute RΓ( Ũ′ , k) [8]. Recall that the cohomology of Gr(2, 4) has an integral basis given by Schubert cells. In particular its cohomology over Z is: 0 1 2 3 4 5 6 7 8 Z 0 Z 0 Z 2 0 Z 0 Z

π U ′ * k Ũ ′ [8] = k U ′ [8] ⊕ i * k O min
The space Ũ′ is the cotangent bundle to Gr(2, 4) with the zero section removed. Using the Gysin sequence we can compute the cohomology of Ũ′ from that of Gr(2, 4). Thus the cohomology of k Ũ ′ [8] is given by: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 k 0 k 0 k 2 0 k (k) 6 (k) 6 k 0 k 2 0 k 0 k We computed the cohomology of O min in Section 3.2 (shifted here by 6) for p = 2 to be:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 k 0 k 0 k 0 0 k 0 k 0 k By (7) we obtain the desired cohomology of U ′ (for p = 2) shifted by 8:

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 k 0 0 0 k 0 0 (k) 3 (k) 3 0 0 k 0 0 0 k Finally, all that remains is to truncate:

  But we haveHom(i * k O min [4], k U [7]) = Hom(k U [5], i * k O min [4]) by duality = Hom(i * k U [5], k O min [4]) by adjunction = Hom(k O min , k O min [-1]) = 0.This is another way of saying that Ext1 (i * k O min [4], k U [6]) = 0. Thus we have π U * k Ũ [6] = k U [6] ⊕ i * k 2 O min [4]. Taking global sections yields RΓ( Ũ , k)[6] = RΓ(U, k)[6] ⊕ RΓ(O min , k) 2 [4].

  . Some IC stalks on the nilpotent cone of sl 4 for p = 2. In this subsection, we calculate the stalks of the intersection cohomology complex on O (2 2 ) in characteristic p = 2. The closure O (2 2 ) consists of three orbits: O (2 2 ) , O min = O (2,1 2 ) and {0} of dimensions 8, 6 and 0. Let U ′ = O (2 2 ) ∪ O min .

  , k)[8] = RΓ(U ′ , k)[8] ⊕ RΓ(O min , k)[6].

  Thus the image of π P λ ′ contains O λ , and hence O λ , as it is a proper morphism. Thus the image of π P λ ′ is equal to O λ , and π P λ ′ is an isomorphism over O λ . Since it is proper, it is a resolution of singularities.

For an introduction to the modular representation theory of finite groups we recommend the third part of[START_REF] Serre | Représentations linéaires des groupes finis[END_REF], and for that of reductive groups,[START_REF] Jantzen | of Mathematical Surveys and Monographs[END_REF].

We follow the terminology[START_REF] Jantzen | of Mathematical Surveys and Monographs[END_REF]. In particular, this is the affine Weyl group associated to the dual root system in the Bourbaki's terminology.

By this we mean that there are no homomorphisms between objects ofRep Ω G ∨ k and Rep Ω ′ G ∨ k if Ω = Ω ′ .Note that this is not the finest such decomposition (see[START_REF] Jantzen | of Mathematical Surveys and Monographs[END_REF], II.7.2).

See [Whi65] p.

540, [B + 08] A'Campo §IV.1 p. 41, or [Lip00] §1-2.

One should instead consider the equivariant derived category as defined in[START_REF] Bernstein | Equivariant sheaves and functors[END_REF].

David Ben-Zvi, for partially funding the travel allowing

Theorem 3.3. Let k be a field of characteristic p = 2. Then

We get the following parts of the decomposition matrices for p = 3: