Extraction of tiled top-down irregular pyramids from large images

Romain Goffe¹ Guillaume Damiand² Luc Brun³

¹SIC-XLIM, Université de Poitiers, CNRS, UMR6172, Bâtiment SP2MI, F-86962, Futuroscope Chasseneuil, France

²LIRIS, Université Lyon, CNRS, UMR5205, Université Lyon 1, F-69622, Villeurbanne, France

³GREYC, ENSICAEN, CNRS, UMR6072, 6 Boulevard du Maréchal Juin, F-14050, Caen, France

November 20, 2009

- 2 Definition of a Tiled Topological Model
- 3 Application and Segmentation

Conclusion and Perspectives

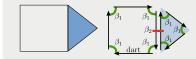
Context

Application

- ANR Project FoGrImMi: Search
 Through Large Microscopic Images
- Medical imaging (histology, cytology)
- Whole Slide Imaging for microscopical images
- Large multi-resolution images (30GB)

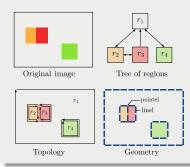
Requirements: efficient tools for automatic analysis and processing of very large images.

Objectives


- Define a top-down topological model
- Efficient update after splitting operations
- Hierarchical structure complying with causality principle
- Memory usage

Constraints and proposed solutions

- Topological properties
 ⇒ combinatorial maps
- Multi-resolution images
 ⇒ hierarchical model
- Very large images
 ⇒ top-down construction


Combinatorial and Topological Maps

Combinatorial maps

- Dart: \sim half-edge
- β_1 permutation: turns around a face
- β_2 involution: opposite face

Topological maps

- Represent any partition
- Describe adjacency and inclusion relationships
- Efficient processing algorithms

Framework for Irregular Combinatorial Pyramids

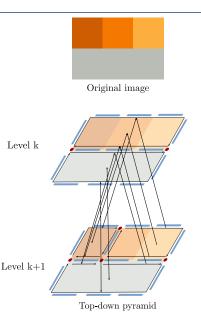
Definition

Stack of combinatorial maps successively transformed.

Bottom-up pyramids

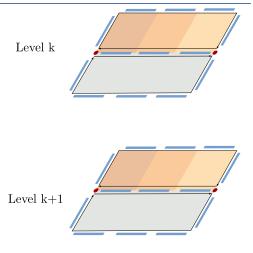
- Main operation: merge
- Drawbacks:
 - encode the whole initial partition
 ⇒ high memory requirements

Top-down pyramids


- Main operation: split
- Advantages:
 - encode upper levels until given segmentation
 - focus of attention

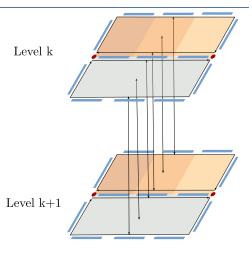
Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure


- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging

Definition

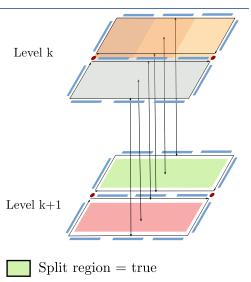
- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure


- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging.

Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging.

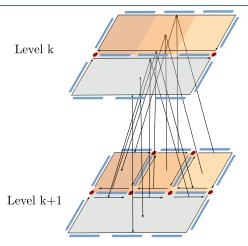


Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

Construction

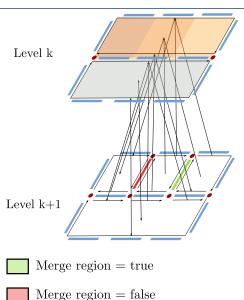
- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging



Split region = false

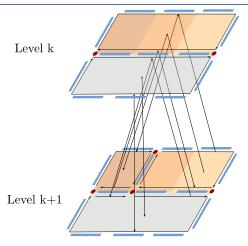
Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure


- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging

Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure


- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging

Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging

2 Definition of a Tiled Topological Model

Application and Segmentation

8/19

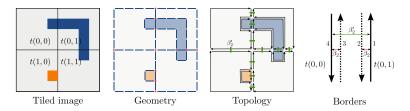
Presentation

Constraint

- Top-down construction only minimizes memory
- Application requires a bound memory usage

Proposed solution

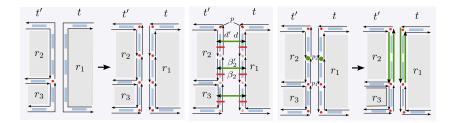
- · Geometrical division of a map in topological tiles
- Insertions of fictive darts on the borders


Integration in the pyramidal model

- New operator on darts for adjacent tiles connection
- Swap/load operations
- Incremental construction

Definitions

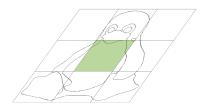
Topological tile


- Topological tile t(i,j,k): partition of a geometrical subdivision (i,j) at level k
- t(i,j,k+1) deduced from t(i,j,k) by splitting operation

Tiled top-down pyramid

- Tiled top-down pyramid: set of topological tiles
- Local pyramid: set of tiles loaded in memory

Connection of Adjacent Tiles

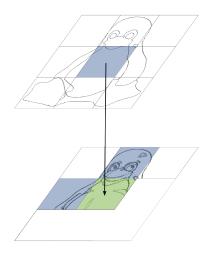


Main steps

Splitting borders

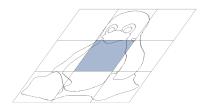
 \Rightarrow ensures two adjacent tiles share the same number of darts on their borders

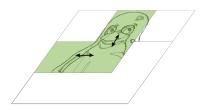
- Connection of the darts on shared border
 ⇒ set β'₂ relations
- Simplification step for minimality
 - \Rightarrow if the degree of a vertex equals 2 in both tiles



Algorithm

- Load t(i − 1, j, k + 1) and t(i, j − 1, k + 1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i, j, k + 1), t(i − 1, j, k + 1), t(i, j − 1, k + 1) and t(i, j, k)


- Scanline extraction
- 4 tiles at most in memory



Algorithm

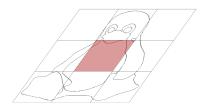
- Load t(i − 1, j, k + 1) and t(i, j − 1, k + 1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i, j, k + 1), t(i − 1, j, k + 1), t(i, j − 1, k + 1) and t(i, j, k)

- Scanline extraction
- 4 tiles at most in memory

Algorithm

- Load *t*(*i* − 1, *j*, *k* + 1) and *t*(*i*, *j* − 1, *k* + 1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i,j, k + 1), t(i 1, j, k + 1), t(i, j - 1, k + 1) and t(i, j, k)

- Scanline extraction
- 4 tiles at most in memory


Algorithm

For each tile t(i, j, k) in level k:

- Load t(i − 1, j, k + 1) and t(i, j − 1, k + 1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i, j, k + 1), t(i 1, j, k + 1), t(i, j - 1, k + 1) and t(i, j, k)

• Unload t(i - 1, j, k + 1), t(i, j - 1, k + 1) and t(i, j, k)

- Scanline extraction
- 4 tiles at most in memory

Algorithm

- Load t(i − 1, j, k + 1) and t(i, j − 1, k + 1)
- Create *t*(*i*, *j*, *k* + 1) from *t*(*i*, *j*, *k*)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i, j, k + 1), t(i 1, j, k + 1), t(i, j - 1, k + 1) and t(i, j, k)

- Scanline extraction
- 4 tiles at most in memory

Criteria

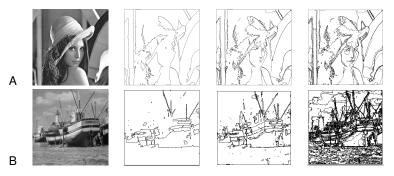


Figure: Basic segmentations for 4 levels pyramids. (A) Hierarchical criterion: standard deviation of up regions; (B) Colorimetric criterion: average gray levels comparison.

Criteria can take into account:

- colorimetric features of regions
- topological features of a level
- hierarchical features of the pyramid

Construction from a Multi-resolution Image

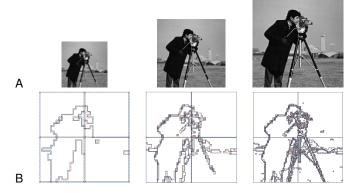


Figure: (A) Image resolutions; (B) Pyramid levels.

- Tiled structure \Rightarrow fictive borders are displayed
- Multi-resolution images
 - \Rightarrow pyramid levels and image resolutions are independent notions
- Irregular pyramid \Rightarrow irregular model within the tiles

Table: Memory usage: extraction for different scalings of image Lena.

image side (px)	tiles per level	memory (MB)	disc (MB)
512	1	92	7
2048	16	95	20
8192	256	95	272
32768	4 0 9 6	111	4315

- Extreme configuration: 4 levels 32K*32K
- Natural segmentation: lots of darts and regions
- Controlled memory usage

- 2 Definition of a Tiled Topological Model
- Application and Segmentation

Conclusion

- Definition of a data structure
 - topological representation
 - hierarchical causal structure
 - top-down construction

- Implementation
 - based on topological maps
 - tiled subdivision
 - · colorimetric, topological and hierarchical segmentation criteria
 - integrated with multi-resolution images

Perspectives

- Segmentation aspect
 - integration of clustering and quantization methods
 - specific application to medical images

Model improvements

- compare different strategies for the subdivision in tiles
- faster processing for very large images
- different splitting techniques
- multi-threading support