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Abstract. Processing large images is a common issue in the computer
vision framework with applications such as satellite or microscopic im-
ages. The major problem comes from the size of those images that pre-
vents them from being loaded globally into memory. Moreover, such im-
ages contain different information at different levels of resolution. For ex-
ample, global features, such as the delimitation of a tissue, appear at low
resolution whereas finer details, such as cells, can only be distinguished
at full resolution. Thus, the objective of this paper is the definition of a
suitable hierarchical data structure that would provide full access to all
the properties of the image by representing topological information. The
idea consists in transposing the notion of tile for top-down topological
pyramids to control accurately the amount of memory required by the
construction of our model. As a result, this paper defines the topological
model of tiled top-down pyramid and proposes a construction scheme
that would not depend on the system memory limitations.

Key words: Irregular pyramid; Topological model; Tiled data struc-
ture; Combinatorial map;

1 Introduction

The automatic or semi-automatic analysis of high resolution images such as
whole slide microscopic images has to face at least two important challenges.
Firstly, the size of these images is too important: most of the time, they cannot
be stored globally into memory. This drawback induces a decomposition of global
images into smaller ones called tiles. Secondly, because of the important amount
of information present at full resolution, global structures of images only appear
at low resolutions. These images naturally induce a mixed multi-resolution and
hierarchical representation. An automatic analysis scheme of such images should
thus incorporate these constraints.
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The segmentation phase is the first abstraction step of an image analysis
or interpretation algorithm. Usually, the data structures used for encoding par-
titions within a segmentation scheme do not provide a full access to all the
properties of a partition. These properties include topological information such
as the set of neighbors of a region, the set of regions inside a single region or
the region containing a given region. The geometrical information includes the
geometrical boundary of a region or the geometrical segment between two re-
gions. Topological maps [3, 4] have been designed to provide an efficient access
to both geometrical and topological information while allowing modifications of
the partitions through split and merge operations. However, these models only
encode a single partition and thus, do not provide a hierarchy of partitions.

Quadtrees and regular pyramids are the first hierarchical structures used
for hierarchical image segmentation. Both structures are based on psycho-visual
properties. Quadtrees use the top-down notion of focus of attention: segmenta-
tion is performed by recursive splitting operations of a given geometrical shape.
Regular pyramids use the bottom-up concept of reduction window [1]: each pixel
of a level corresponds to a larger set of pixels in the level below. However,
both structures have several drawbacks [1] concerning their ability to encode
connected regions of any size and shape and to provide an efficient access to
the neighborhood of a region. The framework introduced by Meer and Montan-
vert [12, 13] allows the definition of bottom-up [7, 10] irregular pyramids which
encode hierarchies of partitions made of connected regions. This pyramidal model
provides an efficient access to the neighborhood of any region of the hierarchy.
Finally, in order to access both geometrical and topological information, [2, 14]
propose a model of irregular pyramids composed of combinatorial maps.

However, a bottom-up analysis scheme induces at least two problems when
processing high resolution images. First, the encoding of the initial partition that
corresponds to a very large image may require large amount of memory. This
problem is accentuated by the computation of the remaining levels of the pyra-
mid. Second, since these images encode different objects at different resolutions,
a better analysis would consist in performing a top-down construction scheme of
the pyramid where each region (defined at a given level of resolution) may influ-
ence the way its sons (defined at higher resolution) will be processed. Therefore,
a top-down construction scheme of irregular pyramids based on topological maps
have been defined in [6]. Besides, even when using a top-down analysis scheme,
the number of regions defined at a given level of the pyramid is only bounded
by the size of the image encoding this level. Since this size may be large for
high resolution images, we still have to face the issue of the important amount
of memory required by irregular pyramids on high resolution images.

The objective of this paper is the definition of a tiled structure for top-down
irregular pyramids. We recall in Sect. 2 the topological models used by our model
of tiled top-down pyramid. Section 3 defines the notions of topological tile and
tiled pyramid. We detail in Sect. 4 the construction scheme of such a pyramid.
Finally, we present some experiments and comparisons in Sect. 5 that highlight
involved memory requirements and computational times.
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2 Recalls

2.1 Combinatorial Maps

In two dimensions, a combinatorial map (noted 2-map) is a set of vertices, edges
and faces that encodes the subdivision and incidence relationships of a topologi-
cal space [11]. A complete decomposition of an image results in a set of abstract
basic elements that we call darts. We introduce two operators noted βi, i ∈ {1, 2}
that apply on darts in order to represent adjacency relationships (Fig. 1).

Definition 1 (2-dimensional combinatorial map). A two-dimensional com-
binatorial map M (or 2-map) is a triplet M = (D,β1, β2) where:

(1) D is a finite set of darts;
(2) β1 is a permutation4 on D;
(3) β2 is an involution5 on D.

Fig. 1. Combinatorial maps: construction by successive decompositions. (A) Original
image. (B) Decomposed faces. (C) Decomposed edges. (D) 2-Map: arrows represent
darts, β1 and β2 operators are respectively represented by arcs and segments.

Intuitively, we can consider a map as a planar graph where βi operators
explicitly define the relationships between edges and where darts allow to differ-
entiate the two extremities of an edge (a dart may be assimilated to a half-edge).
In practice, the β1 permutation allows to turn around a face: it links a dart of
the face to the next one encountered while turning in a clockwise orientation.
The β2 involution separates two adjacent regions: it links a dart to the other
dart that belongs to the same edge but has an opposite orientation.

2.2 Topological Maps

Topological maps extend the model of combinatorial maps in order to provide a
full representation for the partition of an image since a 2-map can only encode
the topology of a connected set of objects. The definition of a topological map [3,
4] proposes to combine three distinct models: a 2-map that encodes topological
relationships, a matrix of interpixel elements ([9, 8]) that encodes the geometry
of the partition elements, and a tree of regions for inclusion relationships.

4 A permutation is a one to one mapping from S onto S.
5 An involution f is a one to one mapping from S onto S such that f = f−1.
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Fig. 2. Topological map: three complementary models for image representation.
(A) Original image. (B) Combinatorial map for topology: the image contains 4 regions
ri, i ∈ {1, 2, 3, 4}. (C) Interpixel matrix for geometry: pointels and linels are represented
by bold circles and segments and correspond to the embedding of the darts. (D) Tree
of regions for inclusion relationships: r1 contains r2, r3 and r4. r2 and r3 are adjacent.

The combinatorial map encodes the topological relationships thanks to the βi

operators and is minimal : the removal of any element would change the topology
(Fig. 2.B).

The geometrical matrix uses pointels, linels and pixels to represent the ge-
ometry of a partition. Associating a geometrical information to a topological
element is called embedding : for example, the embedding of an edge is a se-
quence of linels (Fig. 2.C). Pointels, linels and pixels are respectively referred to
as i-cells (i ∈ {0, 1, 2}) and we call degree of an i-cell the number of (i + 1)-cells
touching this cell.

The tree of regions describes inclusion relationships: a region will be the
father of the regions it contains (Fig. 2.D). The root of the tree is called the
infinite region. It encodes the background of the image and allows to close the
2-map topologically. The model links darts and regions: a dart knows the region
it belongs to and a region knows a representative dart (arbitrary chosen on the
external border of the region). Note that the infinite region may be omitted in
some figures for visibility reasons.

2.3 Top-down Pyramids

In order to fit the hierarchical framework, the topological map model has been
extended to top-down pyramids. Each level Gk of a top-down pyramid is a
topological map where each dart and region is connected to its parent in Gk−1

and its first child in Gk+1. These links are called up/down relationships. The
hierarchy is induced by sets of connected elements having the same parent.

The construction scheme of such a pyramid extracts a first level from a
segmentation of the image in few regions (or even a single region). Then, it
duplicates the bottom level, links the darts and regions between the two levels
and finally, performs splitting operations based on segmentation criteria that
transform the level (Fig. 3). The resolution of the image at level k + 1 is always
greater or equal to the one defined at level k.

If we consider the construction scheme of a top-down pyramid, its main draw-
back is that for each level, we have to load the whole image associated with this
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Fig. 3. Representation of a top-down pyramid composed of two levels Gk and Gk+1.
(A) Original image. (B) Pyramid: β1 and β2 operators are represented by arcs and
segments. Arrows between the levels show up/down relationships between darts and
regions. Level Gk is composed of a single region rk

1 . The splitting operation on Gk+1

allows to differentiate the two regions rk+1

2 and rk+1

3 .

level and represent the whole topological map which encodes the partition de-
fined at this level. Assuming that the image is small enough not to soak memory,
the topological map of a level quickly becomes too large as its number of darts
and regions increases.

3 Definition of a Tiled Top-down Pyramid Model

In order to define the notion of topological tile, we establish an analogy between
the common notion of a tile in image processing: in both cases, a tile represents a
regular and arbitrary subdivision of a set and reconstructing the whole initial set
is obtained by the juxtaposition of all the tiles it has been split into. Therefore, we
define a topological tile as a local topological map composed of a combinatorial
map, a geometrical matrix associated with the subdivision and a tree of regions.
The topological tile also disposes of additional information specific to the concept
of tile.

Since a tile corresponds to an arbitrary subdivision of the image, its border
may not mark any real frontier between image components and, in such a case,
this border should be considered as fictive. Geometrically, two adjacent tiles
share a same edge (Fig. 4.C). Topologically, we define the β′

2 operator on the
darts that belongs to the border of a tile so that all the darts of the border of
the tile know both their β2 in the tile (those of the infinite region) and their β2

in the adjacent tile (Fig. 4.D).
Now that the notion of topological tile has been introduced, we can define

a hierarchical model based on those tiles, called a tiled top-down topological
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Fig. 4. Topological tile. (A) An image divided into 4 tiles. (B) Geometrical represen-
tation. (C) Topological representation. β′

2 operators are represented by bold segment.
(D) Detail of the connection between t(0, 0) and t(1, 0). Darts 2 and 3 belong to the
infinite region. β2(1) = 2, β2(4) = 3, β′

2(1) = 4.

pyramid. Each level of the pyramid is a set of topological tiles that have the
same depth. For each tile, the pyramid assigns a level and a location within the
image which is defined at this level. The pyramid also makes the correspondence
between the image and the topological maps, handles the fictive borders of the
tiles and may swap or load the tiles between memory and disk.

Definition 2 (Tiled top-down topological pyramid). A tiled top-down pyra-
mid P composed of l + 1 levels is defined by:

P = {t(i, j, k)}k∈{0,...,l},(i,j)∈{0,...,Wk}×{0,...,Hk} where t(i, j, k) is a topological
tile and ∀k, 0 ≤ k ≤ l:

(1) WkHk and (i, j) ∈ {0, . . . ,Wk}×{0, . . . ,Hk} encode respectively the number
of tiles and the coordinates of one tile at level k.

(2) t(i, j, k) is a topological tile encoding a partition of the geometrical tile (i, j)
defined at level k;

(3) t(i, j, k+1), k < l is deduced from t(i, j, k) by performing splitting operations.

Several strategies can be considered for the subdivision in tiles such as a
constant size of tiles (in pixels) or a constant number of tiles per level. We will
arbitrary choose this last representation since it allows to validate the concept
of tiled pyramids and suits the case when the image associated with each level
has a constant resolution. The choice of a constant number of tiles per level with
a regular subdivision does not impact the irregular pyramid framework of the
model: within a tile, the construction scheme remains irregular.

The pyramid defines a hierarchy by introducing up/down relationships be-
tween the tiles, similar to the relationships defined on darts and regions by a
top-down pyramid. Except for the tiles of top and bottom levels of the pyramid
that will not have respectively any parent and any child, each tile knows its
single parent (tile up) and its first child (tile down). Note that several tiles of
the same level may have the same parent: since all the children of a given tile
are adjacent, we can efficiently retrieve all the children of a tile starting from
the tile down and finding all its neighbors that share the same tile up.
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The interesting point in dividing the levels of the pyramid in tiles is that
most of processings and algorithms require only a few tiles at the same time:
we can store apart unused tiles by swapping them on disk so that a maximum
of memory space is available for the tiles being processed. A simple solution to
record a tile is to apply a unique label for each dart and region that identify
them in a file on disk.

We introduce the notion of local pyramid which is the set of tiles currently
loaded in memory. Since modifications such as splitting or merging operations
only apply on the local pyramid, its role is to keep the model coherent by spread-
ing modifications to the other tiles. For example, if we split the border of a tile
in memory, the local pyramid updates the adjacent tiles that are either on disk
or in memory. Finally, when we load or swap a tile, the local pyramid updates
the borders of its neighbors so that adjacent tiles are correctly connected.

4 Construction Scheme of a Tiled Pyramid

4.1 Connection of Adjacent Tiles

If we want a level of the pyramid to be topologically coherent, we have to connect
adjacent tiles in order to find darts and regions that belong to several tiles. We
will call basic dart a dart d whose edge embedding is a single linel. Algorithm 1
describes the operation and can be divided into the three main steps illustrated
by Fig. 5.

Algorithm 1: Connecting two adjacent tiles

Data: Two adjacent tiles t and t′;
Result: t and t′ connected.
Let s the set of darts adjacent to t′ and that belong to the infinite region of t;
Let s′ the set of darts adjacent to t and that belong to the infinite region of t′;
Split s and s′ into basic darts;
while ∃ dart d ∈ s|d is unmarked do

p← pointel(d);
Let d′ the dart of s′ such as pointel(β2(d

′)) = p;
p′ ← pointel(β2(d

′);
β′

2(β2(d))← β2(d
′);

if degree(p) = degree(p′) = 2 then
Vertex removal(d);
Vertex removal(d′);

else
Mark(d);

We will note s (resp. s′) the set of darts that are adjacent to t′ (resp. t) and
that belong to the infinite region of t (resp. t′). First, we split s and s′ such as
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they are only composed of basic darts. This splitting operation ensures that s
and s′ share the same number of darts (Fig. 5.A). Second, we link t and t′ thanks
to the β′

2 operator by traversing simultaneously the darts of s and s′ (Fig. 5.B).
Finally, since the previous steps may have created degree 2 vertices, we have
to perform a simplification pass in order to maintain the minimal property of
the model. The idea is to process each vertex that belongs to the shared border
(s, s′) of two adjacent tiles t and t′, and remove it (according to the method
in [5]) if its embedding is a pointel whose degree equals two in both t and t′

(Fig. 5.C) 6.

Fig. 5. Connection of borders between two tiles. (A) Splitting of the border into basic
darts. (B) β′

2 connection: d and d′ are two basic darts that belong to the infinite region
of t and t′ and verify p = pointel(d) = pointel(β2(d

′)). Connecting the t and t′ comes
to link β2(d) with β2(d

′) such as β′

2(β2(d)) = β2(d
′). (C) Simplification: the degree of

pointel p1 equals 2 in t but 3 in t′ whereas the degree of pointel p2 equals 2 in both t

and t′: the vertex removal operation is only performed on pointel p2.

4.2 Extraction Process

The global construction scheme of a tiled top-down pyramid starts with the
creation of the first level G0. An arbitrary subdivision of the image defines the
geometry of the tiles. Each tile of G0 is composed of a single region that repre-
sents its associated subdivision. Then, the creation of a new level only requires
a local pyramid composed of four tiles. Indeed, we use an incremental algorithm
scanning the subdivisions line by line, starting from the top-left subdivision. A
tile t(i, j, k+1) is defined from t(i, j, k) by performing splitting operations. So, we
need in memory the tile up t(i, j, k) and the left and top neighbors (t(i−1, j, k+1),
t(i, j−1, k+1)) to connect the left and top borders of t(i, j, k+1). The right and
bottom borders of t(i, j, k + 1) will be connected when processing respectively
t(i+1, j, k+1) and t(i, j+1, k+1). Note that if t(i−1, j, k+1) or t(i, j−1, k+1)
are not defined, (i = 0 or j = 0), the tile t(i, j, k+1) belongs to the border of the
image and does not need to be connected with neighbors. Finally, even in the

6 The vertex removal operation on a dart d ensures that β1(β0(d)) ← β1(d) and
β1(β0(β2(β1(d))))← β2(d). Then, it deletes d and β1(β2(d)).
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case when those four tiles are still too large for the memory limitations of the
system, we can simply adjust the initial subdivision by reducing the dimensions
of the tiles to ensure the feasibility of the process. Algorithm 2 describes the
main steps of the extraction of a tiled level.

Algorithm 2: Construction of a tiled level

Data: An image I.
Result: A tiled top-down pyramid P composed of m + 1 levels.
Build first level G0 of P ;
Associate I to P ;
foreach tile t ∈ G0 do

Save t;1

for k = 0 to m− 1 do

foreach tile t(i, j, k) ∈ Gk do

Load t(i− 1, j, k + 1) and t(i, j − 1, k + 1);2

Create t(i, j, k + 1) from t(i, j, k);3

Connect neighbors of t(i, j, k + 1);4

Save t(i, j, k + 1), t(i− 1, j, k + 1), t(i, j − 1, k + 1) and t(i, j, k);5

Unload t(i− 1, j, k + 1), t(i, j − 1, k + 1) and t(i, j, k);6

– L.1: Saving a tile records its map, geometry and tree of regions on disk.
We have to traverse all darts and regions and save all their connections,
geometry and up/down relationships.

– L.2: The loading operation of a tile t reads the corresponding file on disk
and constructs a new tile before adding it to the pyramid. We first create
darts and regions instances in the topological map before filling their prop-
erties from reading the corresponding files. Indeed, the operation cannot be
performed in a single pass because darts and regions are linked together (a
region has a representative dart, a dart knows its region). A region must
have been created before it is assigned to a dart and vice versa.

– L.3: Creating t = t(i, j, k + 1) from t′ = t(i, j, k) is similar to adding a level
in a top-down pyramid: we first create t as a copy of t′, then we set up/down
relationships between t and t′ and finally, we refine t with a split and merge
technique [6]. Note that since the segmentation aspect is not the objective
of this paper, we use a criterion based on a basic comparison of average
gray levels that was already defined for top-down pyramids. This results in
a segmentation which is local to each tile.

– L.4: This step connects the left and top neighbors (t(i− 1, j, k), t(i, j − 1, k))
with t(i, j, k) according to the method detailed in Sect. 4.1.

– L.5: Since t(i, j, k) has been created, we can record it on disk. It is necessary
to save the neighbors too because their borders have been updated in the
previous step.
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– L.6: An unloading operation removes the tile of the local pyramid. Step 5
ensures that the information relative to the tile has been correctly recorded.
The operation frees memory so that the size of the local pyramid does not
grow too much.

5 Experiments

We have implemented our model of tiled top-down pyramid in C++. Results have
been computed on a personal computer with a CPU AMDX2 3800+ (2GHz) and
2GB of RAM on a Linux system. In order to compare results, all the pyramids
have the same number of levels (Gk, k ∈ {0, 1, 2, 3}) and each level has the
same number of tiles (each tile has exactly one parent and one child). All the
pyramids are composed of four levels which are created with the same splitting
method defined in [6]: a basic segmentation criterion merges adjacent regions
if the difference of their average grey values is below the thresholds defined as
25/15/5 for levels G1/G2/G3. The subdivision of the levels in tiles is regular and
tiles and images are squared.

Table 1. Maximum theoretical memory of the topological model that represents a tile
given its size.

tile side (px) 64 128 256 512 1 024 2 048

memory (MB) 1.3 5.2 20.9 83.8 335.5 1 342.1

The maximum size of a tile is reached when each pixel corresponds to a
different region. In this case, the size of the topology can be estimated by:
4 × sizeof(dart) × ♯pixels + sizeof(region) × ♯pixels. Table 1 presents the re-
quired memory for different sizes in our model (sizeof(dart) = 60 bytes and
sizeof(region) = 80 bytes). In practice, the values obtained in our experiments
are quite similar because the splitting method bursts regions and produces one
single region per pixel before the merging step. Thus, in order to process large
images, we choose a fine enough subdivision with tiles smaller than 1 024×1 024.
Note that the real amount of memory which is necessary may be more important
as we need to store the geometry and the image. Since we can not load the full
image in memory, we use the tiled subdivision of the libtiff library in order to
load only the subdivisions that are necessary to the tiles being processed.

Table 2 gives the computational times and memory usages of top-down pyra-
mids that do not take advantage of tiled subdivision. Indeed, each level is com-
posed of a single tile of the size of the image. The results are computed for
successive scalings of the image Lena. The second column gives computational
times for the whole extraction of the pyramid. The third column is the real
memory usage of the application. Fourth and fifth columns give the number of
darts and regions for each level. We quickly show the limitations of the top-down
model as it cannot process images larger than 2 048 × 2 048.
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Table 2. Extraction of top-down pyramids without tiled subdivision for different scal-
ings of the image Lena. Each level is composed of a single tile.

image side extraction memory darts regions
(pixels) time (s) (MB) G1/G2/G3 G1/G2/G3

512 3.7 92.2 70/2 084/47 268 19/460/10 056
1 024 14.8 366.6 74/1 938/47 242 19/428/10 057
2 048 58.2 1 412.3 80/2 010/47 098 20/444/10 027
4 096 na

Table 3. Extraction of tiled top-down pyramids from large images based on different
scalings of the image Lena. The subdivision in tiles allows to overcome the memory
limitations of the system.

image tiles per extraction memory disc darts regions
side (px) level time (MB) (MB) G1/G2/G3 G1/G2/G3

512 1 5 s 92 7 1 212/5 458/54 222 216/989/10 796
2 048 16 53 s 95 20 486/4 332/51 460 77/832/10 494
8 192 256 14mn 95 272 3 382/9 968/66 764 663/1 757/12 498

32 768 4 096 6 h 38mn 111 4 315 35 936/48 280/128 858 8 537/10 228/23 309

Table 3 shows the advantage of using a tiled top-down model compared to
the plain top-down extraction. The fourth column represents the size of the
whole pyramid on disc (set of files that encode the tiles). We notice that the
tiled approach allows to process any large image because we only need to refine
the subdivision of the image (smaller tiles) to decrease the amount of required
memory.

Table 4. Comparison of computational times and memory usages according to the size
of the tiles for a tiled top-down pyramid associated to the image Lena (1024× 1024).

tile side tiles per extraction memory disc
(pixels) level time (s) (MB) (MB)

1 024 1 15.0 366.7 6.8
512 4 14.1 93.4 7.0
256 16 14.2 24.6 7.9
64 256 17.3 2.8 22.0

Table 4 shows the impact of the tiles size during the construction process of
a tiled top-down pyramid associated with the image Lena. It provides memory
usage and computational time for four different subdivisions. We can note two
interesting points in this experiment. First, the amount of memory required by
the local pyramid decreases with smaller tiles. Second, a too fine subdivision in-
creases the computational time of construction and the global amount of memory
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space. This comes from the additional information required by each tile (labels,
up/down relationships, β′

2 operators), from the repeated calls of algorithms that
connect the tiles and from the increasing number of swapping on disk opera-
tions. Therefore, in order to obtain the best extraction time for a given amount
of available memory, the size of the tiles should be enlarged as long as the size
of the local pyramid does not exceed this amount.

Fig. 6. Each row represents the levels G1, G2 and G3 of a tiled top-down pyramid
associated with the image Lena. First row uses a subdivision of 64 tiles/level, second
row has a subdivision of 4 tiles/level.

Figure 6 illustrates the tiled construction of a top-down pyramid with a basic
segmentation criterion. We can notice that the segmentation may vary although
the criterion is the same. Indeed, the split and merge operation that refines
a tile is local to this tile and thus, depends on the initial subdivision. Note
that fictive borders are represented to illustrate the delimitations of the tiled
subdivision. The subdivision has been arbitrary chosen regular (for simplicity
and homogeneity between results) but the model is an irregular pyramid since
for any tile t(i, j, k + 1) of a tiled top-down pyramid P , the top-down pyramid
P ′ = {G0 = t(i, j, k), G1 = t(i, j, k + 1)} is irregular.

Figure 7 illustrates the tiled construction of a top-down pyramid associ-
ated with a multi-resolution image. Indeed, our model easily adapts to multi-
resolution images by associating each level of the pyramid to a level of the image.
In this example, we use the same number of tiles for each level: we just need
to expand the geometrical matrix to make the correspondence between a tile
t(i, j, k) and its descendant t(i, j, k + 1).

6 Conclusion

In this paper, we have defined a topological model of tiled top-down pyramid.
Top-down pyramids are composed of an initial topological map successively re-
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Fig. 7. Extraction of a tiled top-down pyramid from a multi-resolution image based
on the image Cameraman. First row displays the resolutions of the original image
(16× 16, 32× 32, 64× 64, 128× 128, 256× 256). Second row presents the levels G1 to
G5 of the tiled top-down pyramid (subdivision of 16 tiles/level).

fined by splitting operations. The main advantage in extending this model in a
tiled structure is to process large images while controlling the memory require-
ments of the model. Thus, each level of the pyramid is decomposed into a set of
topological tiles. A topological tile derives from a topological map and adds com-
plementary information for hierarchical representation between tiles, connecting
the border of adjacent neighbors and recording the tile on disk.

We have proposed an algorithm for an incremental construction of a tiled
top-down pyramid that ensures that a maximum of four tiles is necessary in the
local pyramid (the part of the pyramid that is loaded in memory). Therefore,
our experiments have confirmed that we can process any image as long as the
size of the local pyramid fits the available memory in the system.

In our future work, we plan to improve the performance of the model with
different splitting techniques and multi-threading support. Indeed, the actual
model is fast enough for common images but still too slow for very large images
although it has shown that the process was viable regarding memory usage.
We also intend to compare different strategies of tiled subdivisions in order to
improve the association of the pyramid with multi-resolution images. Finally,
we will focus on the segmentation aspect in order to define global operations
that would not be affected by the local nature of the tiles and would exploit the
tiled top-down data structure. This would lead to a structure of tiled top-down
irregular pyramid where the irregular aspect is not confined within the tiles.
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