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A generative model for rank data based on aninsertion sorting algorithmChristophe Biernaki a, Julien Jaques a
AbstratRank data arise from a sorting mehanism whih is generally unobservablefor the statistiian. Assuming that this proess relies on paired omparisons,the insertion sorting algorithm is known as being the best andidate for min-imizing the number of potential paired mislassi�ations. Combining this op-timality argument with a Bernoulli event at the paired omparison step, anoriginal and very meaningful probabilisti generative model for rank data isobtained: This model is the �rst whih takes into aount the initial presen-tation order. Its theoretial properties are studied among whih unimodality,symmetry and identi�ability. In addition, maximum likelihood priniple anbe easily performed through an EM algorithm thanks to an unobserved latentvariables interpretation. Finally, the pratial relevane of the proposal is il-lustrated by both its adequay with several real datasets and a omparisonwith a usual rank data model. In partiular, its spei� ability for reveal-ing some fundamental hidden struture in the data mehanism generation isunderlined.Key words and phrases. EM algorithm, insertion algorithm, quiz data, rank data,sorting proess.1 IntrodutionRanking data are of great interest in human ativities involving preferenes, atti-tudes or hoies like Web Page ranking, Sport, Politis, Eonomis, EduationalTesting, Biology, Psyhology, Soiology, Marketing, et. Ranks are so meaningfulthat it is not unusual they result from a transformation of other kinds of data.Rank data are multivariate but highly strutured data. So, beyond standard butgeneral data analysis methods (means, fator analysis, et.), some spei� desriptivemethods whih respet this struture have been proposed, for instane the permu-tation polytope for plotting the rank vetors in Eulidean spae ([Tho93a, Tho93b℄and an example on Figure 1) or also suitable distanes for de�ning the entre andaLaboratoire P. Painlevé, UMR 8524 CNRS Université Lille I, Bât M2, Cité Sienti�que, F-59655 Villeneuve d'Asq Cedex, Frane. 0



spread of a dataset [Ken38, Mal57, FV86℄.From an inferene point of view, distanes are useful for testing the distribution ofthese data (uniformity, populations omparison [FA86, Mar95℄) or for modeling thedistribution itself (for instane the Mallows Φ model relies on the Kendall distane[Ken38, Cri85℄). More generally, parametri probabilisti models, if relevant andallowing easy parameter interpretation, are useful for summarizing and understand-ing suh quite omplex data and are a basi tool for density estimation, preditionor lustering. Major rank data models date from the mid 20th entury and most ofthe urrent works on the topi uses these models.Pointing out that a rank is the result of a sorting proess, we make the natu-ral assumption that it relies on suessive objet paired omparisons. In this ase,potential errors in the �nal ranking (aording to a referene rank) are only a on-sequene of some erroneous omparisons and, so, an optimal sorting strategy shouldminimize its total number of paired omparisons. Adopting the insertion sortingalgorithm for this reason, we obtain a new kind of generative model whih enjoysgood theoretial properties and whose originality is to involve the initial presentationorder of the objets.The paper is organized as follows. Setion 2 is devoted to the notation and theinterpretation of usual rank data models as the modeling of partiular sorting algo-rithms. Setion 3 introdues and builds the proposed model whih is based on aninsertion sorting algorithm, and its theoretial properties (unimodality, symmetry,identi�ability) are detailed in Setion 4. Maximum likelihood estimation is onsid-ered in Setion 5 by the mean of an EM algorithm sine a missing data interpretationof the proposed model an be pointed out. Numerial illustrations are presented inSetion 6 to evaluate the relevane of the proposed model on real data sets both froma distributional adequay point of view and from a omparison with the usual Mal-lows Φ model. Sine this work sheds a new light on rank data modeling, numerousrelated perspetives are disussed in the last setion (Setion 7).2 Notation and usual rank data modelsThe rank datum, whih is the statistial unit of interest in this paper, results froma ranking of m objets O1, . . . ,Om by a judge (human or not). Two representationsof these data are ommonly used: Ranking or ordering. The ranking represen-tation x−1 = (x−1
1 , . . . , x−1

m ) ontains the ranks given to the objets, and meansthat Oi is in the x−1
i th position (i = 1, . . . , m). A ranking is then an element of

P, the set of permutations of the m �rst integers. The ordering representation
x = (x1, . . . , xm) is also an element of P and signi�es that Objet Oxi

is the ith(i = 1, . . . , m). Let onsider the following example to illustrate these two notations:A judge, whih has to rank by preferene order three holidays destinations (O1 =Campaign, O2 = Mountain and O3 = Sea), ranks �rst Sea, seond Campaign, andlast Mountain. The ordering result of the judge is x = (3, 1, 2) whereas the rankingresult is x−1 = (2, 3, 1). In the following both ordering and ranking notations willbe used for rank data. 1



The two most popular lasses of models for rank data onsist in modeling diretlythe hypothetial ranking proess followed by the judge. For a omplete review, referto [Mar95, Chap. 5 to 10℄. The �rst lass is derived from a paired omparisonproess [KS40℄: The judge onstruts a rank by �rst omparing eah pair of objets,and seond ensuring the onsisteny of these paired omparisons (if O1 is preferedto O2 and O2 to O3, O1 must be prefered to O3). It follows the Babington Smithmodel for a rank x: p(x) ∝
∏

1≤i<j≤m

pij ,with pij the probability that Oxi
is prefered to Oxj

, and where the proportionality isdue to the need of onsisteny of the paired omparisons. The number of parametersof this model being very large, espeially when m grows, some simpli�ations havebeen onsidered. [BT52℄ assoiate to eah objet Oj a sore uj indiating an overalldegree of preferene of this objet, and onnet these sores to pij by pij = ui/(ui +
uj), whih de�nes the Bradley�Terry�Mallows model. [Mal57℄ goes forward into thesimpli�ation by imposing that pij = π if and only if µ−1

xi
< µ−1

xj
(pij only depends onthe sign of µ−1

xi
−µ−1

xj
), where µ is a �referene� rank. It leads after reparameterizationto the famous Mallows Φ model :p(x; µ, λ) = C(λ)−1 exp−λK(x,µ),where K is the Kendall distane between two ranks [Ken38, Cri85℄, λ = −1

2
ln π

1−πis a preision parameter (λ ∈ R) and
C(λ) =

m−1
∏

j=1

1 − exp(−(m − j + 1)λ)

1 − exp(−λ)is a normalization onstant [FV86℄. For instane, a high λ value leads to strongunimodality around µ.The seond popular lass of rank data models is multistage models, whih onsid-ers the following iterative ranking proess: The judge selets �rstly the best objetamong the m ones, then the best among the m − 1 remaining ones, and so forth.Noting vi the probability that Oxi
is ranked �rst among the m objets, the or-responding Plakett-Lue model [Lu59, Pla75℄ de�nes the probability of a rank xas p(x) =

m−1
∏

j=1

vj

vj + vj+1 + . . . + vm
.The term in the produt means the probability thatOxj
is ranked �rst among objets

Oxj
to Oxm

. It ould be notied that this model orresponds to a Thurstonian model[Thu27, Bö93℄ with a Gumbel density. [FV86, FV88℄ introdue an alternativemultistage model by onsidering another form of the probability at eah step of the2



ranking proess. Let Vj = α if at the stage j the (α + 1)th best of the remainingobjets is seleted (α = 0, . . . , m − j), so Vj = 0 indiates a orret hoie at stage
j. The probability of a rank x aording to the Fligner and Verdui's stronglyunimodal model is: p(x) =

m−1
∏

j=1

p(Vj , j)where p(α, β) is a probability parameterized by α and β (0 ≤ α ≤ m − β and
1 ≤ β ≤ m − 1) satisfying ∑m−β

α=0 p(α, β) = 1, the probability p(., β) being nonin-reasing for all 1 ≤ β ≤ m−1 and where p(0, β) > p(1, β). Assuming spei� formsfor the probability p(α, β) ould lead to the Mallows Φ model or to a generalizationof this latter named Φ omponent-model.The ranking proesses whih have motivated these two lasses of rank data mod-els an be interpreted as two di�erent sorting proesses, in whih stohasti errorsare introdued to de�ne a probability distribution on the whole rank data spae.The natural question involved by this interpretation is whether the used sortingalgorithms are the most appropriate. E�etively, in paired omparison models itseems not optimal to do so muh omparisons sine it leads to a sorting algorithmwith exessively high omputational omplexity. In pratie a human judge wouldprobably not exhaustively proeed to all paired omparisons. For multistage models,the assoiated ranking proess an be likened to a seletion sorting algorithm. It isreasonnable to assume that it relies also on underlying paired omparisons even if itis not expliitly modeled in this way. Under this assumption, the seletion sortingalgorithm is one of the most simple but it is well known for its lak of optimalityfrom the number of paired omparisons point of view [Knu73℄. Here, we propose agenerative model for rank data based on the (straight) insertion sorting algorithm,whih is one of the most powerful among the usual sorts when m ≤ 10 [Knu73,Chap. 5℄.3 A generative model for rank data based on aninsertion sorting3.1 Motivation for an insertion sorting algorithmWe assume there exists an ordering µ = (µ1, . . . , µm) on the m objets, so thata judge who perfetly sorts these objets returns this referene rank µ. Makingalso the natural assumption that a rank x = (x1, . . . , xm) is the result of a sortingproess relying on suessive objet paired omparisons, any di�erene between the�nal rank x and µ is neessarily attributed to some inorret paired omparisons.As a onsequene, reduing the gap between x and µ is strongly orrelated to mini-mizing the number of paired omparisons involved in the sorting proess. Thus, an�optimal judge� should adopt the insertion sorting algorithm whih is optimal for3



a �reasonable� number of objets (m ≤ 10) [Knu73, Chap. 5℄. Sine it is naturalto model the reliability of the judge for the ranking by the risk of wrongly order apair of objets, eah paired omparison an be usefully interpreted as the result of aBernoulli experiment whose outome is a orret omparison (aording to µ) withprobability π and an inorret omparison with probability 1 − π. We assume alsothat eah pair ranking operation is independent of the others and that the prob-ability π is onstant throughout the sorting proess. Merging both deterministiinsertion algorithm and random paired omparison leads to a meaningful generativemodel for rank data that is now presented at length.Let the ordering y = (y1, . . . , ym) be the presentation order of the objets tothe judge, this latter using the following insertion sorting algorithm to rank theseobjets. First, the urrent objet to be sorted is plaed on the left of the alreadysorted objets, and is ompared to the �rst objet on its right. If the relative positionof both objets in this pair is orret (aording to µ), this pair order is unhangedand the next objet in y is inserted far left. Otherwise, the pair order is reversed anda new pair omparison is performed with the next objet on the right (if it exists).And so forth.3.2 Modeling of the resulting distributionBased on this modeling of a stohasti insertion sorting, the question is now toalulate the probability p(x|y; µ, π) to obtain a rank x from an initial presentationorder y and a referene rank µ. To do so, let introdue the following notations,where j = 1, . . . , m denotes the step in the sorting algorithm onsisting in rankingthe objet Oyj
. The notations and their use in the proposed sorting algorithm areboth illustrated by an example in Table 1.

• δii′(µ) = 1{µ−1
i < µ−1

i′ } is equal to 1 if Oi is orretly ranked before Oi′(aording to µ), 0 otherwise (i, i′ = 1, . . . , m, i 6= i′).
• A−

j (x, y) = {i : x−1
yi

< x−1
yj

, 1 ≤ i < j} is the set of the indies of the presen-tation order y for whih the already sorted objets Oy1 , . . . ,Oyj−1
are rankedin x before the urrent objet Oyj

, and onsequently on its left. Its ardinal
A−

j (x, y) is onsequently the number of all omparisons of the urrent objetwith the objets already ranked (aording to x) on its left, if they exist.
• A+

j (x, y) = {i : i = arg min1≤i′<j{i
′ : x−1

yi′
> x−1

yj
}} is the index of the rank ydesignating the objet sorted in x just after (so on the right of) Oyj

amongthe already sorted objets Oy1 , . . . ,Oyj−1
, if it exists. This set has at most oneelement. Its ardinal A+

j (x, y) indiates if the urrent objet Oyj
is ompared,at the j step of the sorting, with the objet ranked in x just on its right.

• G−
j (x, y, µ) =

∑

i∈A−

j
(x,y) δyiyj

(µ) is the number of good omparisons (aordingto µ) of the urrent objet Oyj
with the objets already ranked on its left, ifthey exist. 4



• G+
j (x, y, µ) =

∑

i∈A+
j

(x,y) δyjyi
(µ) is the indiator of good omparison (aordingto µ) of the urrent objet Oyj
with the objet already ranked just on its right,if it exists.We will use also intensively the following shorter and meaningful notations:

• Aj(x, y) = A−
j (x, y) + A+

j (x, y) and A(x, y) =
∑m

j=1 Aj(x, y) are the totalnumber of all paired omparisons respetively for the step j and for the wholeproess.
• Gj(x, y, µ) = G−

j (x, y, µ) + G+
j (x, y, µ) and G(x, y, µ) =

∑m
j=1 Gj(x, y, µ) arethe total number of good paired omparisons respetively for the step j andfor the whole proess.Table 1: An example to illustrate both the notations and the insertion sortingproess with µ = (1, 2, 3), y = (1, 3, 2), and x = (3, 1, 2). The notation x(j), de�nedin Appendix A, means the ranking of the j �rst objets in y in the order imposedby x.step j A−

j A+
j A−

j A+
j Aj G−

j G+
j Gj x(j)1 {} {} 0 0 0 0 0 0 (1)2 {} {1} 0 1 1 0 0 0 (3, 1)3 {3, 1} {} 2 0 2 1 0 1 (3, 1, 2)

A = 3 G = 1With these notations, the probability to obtain a rank x from an initial presen-tation order y is given by:p(x|y; µ, π) = πG(x,y,µ)(1 − π)A(x,y)−G(x,y,µ). (3.1)The proof of this formula is given in Appendix A. The �rst term orresponds tothe probability of performing G(x, y, µ) good paired omparisons and the seondterm is the probability of performing A(x, y)−G(x, y, µ) wrong paired omparisons.Finally, if the presentation order is unknown but of probability p(y), the marginaldistribution of x is given by:p(x; µ, π) =
∑

y∈P

p(x|y; µ, π)p(y). (3.2)In this paper, we assume the presentation orders are uniformly distributed, andthen p(y) = m!−1 for all y ∈ P. In the following the rank data model de�ned byDistribution (3.2) will be named isr for Insertion Sorting Rank data model. Wewill note shortly isr(µ, p) this model and its assoiated parameters.5



Remark The onditional probability (3.1) is invariant to an inversion of the �rsttwo elements of the presentation order (Lemma B.1 of Appendix B). Consequently,the number m! of presentation orders y to be onsidered in the alulus of theprobability (3.2) may be redued by half, what will be omputationally helpful forthe model parameters estimation.4 Properties of the isr modelIn this setion the main properties of the isr model are stated: The possibility forthe isr distribution to be uniform for a speial value of π, the existene of modaland anti-modal ranks, the symmetry of the isr distribution, and its identi�ability.The proofs rely on applying permutation properties on both ranking and orderingnotations on P. Composition τ ◦ x is noted shortly τx for any τ and x in P.4.1 Uniformity for π = 1
2Proposition 4.1 proves the uniformity for π = 1

2
, and requires Lemma B.3 of Ap-pendix B.Proposition 4.1. For all x, µ ∈ P, p(x; µ, 1

2
) = m!−1.Proof. Let e be the identity permutation of P. Using �rstly Lemma B.3 of Ap-pendix B and then using the fat that p(.|e; µ, 1

2
) is a probability distribution on P,we havep(x; µ, 1

2
) ∝

∑

y∈P

p(x|y; µ, 1
2
) =

∑

y∈P

p(y−1x|y−1y; µ, 1
2
) =

∑

y∈P

p(y−1x|e; µ, 1
2
) = 1.

4.2 Mode and anti-modeWe prove in this setion one of the most important properties whih an be expetedfrom the isr distribution: The referene rank µ is the unique mode of the distributionif π > 1
2
(Proposition 4.2). Let µ̄ be de�ned by µ̄ = µē where ē = (m, . . . , 1) is thepermutation of total inversion. This rank µ̄ is the furthest from µ for the Kendalldistane. We symmetrially prove in this setion that the unique anti-mode (therank of smallest probability) is µ̄ if π > 1

2
(Corollary 4.1). Finally, Proposition 4.3establishes that the mode is uniformly more pronouned when π grows. Proofsrequire Lemmas B.2 and B.6 of Appendix B.Proposition 4.2. For all x 6= µ ∈ P and π > 1

2
, p(µ; µ, π) > p(x; µ, π).Proof. Using suessively the fat that {π > 1

2
⇔ π > 1 − π}, x 6= µ and thenLemma B.2, we obtain:

m! p(x; µ, π) <
∑

y∈P

πA(x,y) =
∑

y∈P

πA((µx−1)x,(µx−1)y) =
∑

y′∈P

πA(µ,y′) = m! p(µ; µ, π).The last equality omes from the fat that A(µ, y′) = G(µ, y′, µ).6



Corollary 4.1. For all x 6= µ̄ ∈ P and π > 1
2
, p(µ̄; µ, π) < p(x; µ, π).The proof, symmetrial to that of Proposition 4.2, is left to the reader.Proposition 4.3. For all x, µ ∈ P, p(µ; µ, π)− p(x; µ, π) is an inreasing funtionof π ≥ 1

2
.Proof. Noting ∆(π) = p(µ; µ, π) − p(x; µ, π), ∂∆(π)/∂π an be written

∂∆(π)

∂π
=

1

m!

∑

y∈P

{

A(µ, y)πA(µ,y)−1 − G(x, y, µ)πG(x,y,µ)−1(1 − π)A(x,y)−G(x,y,µ)
}

+ cwhere c is a non-negative term. Sine π ≥ 1
2
, we dedue that

G(x, y, µ)πG(x,y,µ)−1(1 − π)A(x,y)−G(x,y,µ) ≤ G(x, y, µ)πA(x,y)−1.Using the fat that A(µ, y) ≥ G(x, y, µ), we dedue that ∂∆(π)/∂π ≥ 0.4.3 SymmetryIn this setion a symmetry of the isr distribution is proved with the following sense:Distributions isr(µ, π) and isr(µ̄, 1−π) are equivalent (Proposition 4.4 below). Thisproperty will be espeially useful to exhibit the identi�ability onditions of the isrdistribution in the next setion. Proposition 4.4 requires Lemma B.4 in Appendix B.Proposition 4.4. For all x, µ ∈ P and all π ∈ [0, 1], p(x; µ̄, 1 − π) = p(x; µ, π).Proof. Using Lemma B.4, we an write:p(x; µ̄, 1 − π) ∝
∑

y∈P

πA(x,y)−(A(x,y)−G(x,y,µ))(1 − π)A(x,y)−G(x,y,µ) ∝ p(x; µ, π).

4.4 Identi�abilityA neessary identi�ability ondition is immediately suggested by Propositions 4.1and 4.4: The uniformity for π = 1
2
of the isr distribution and its symmetry lead toimpose π > 1

2
. The su�ieny of this ondition is proved in the next proposition.Its proof needs Lemma B.5 of Appendix B.Proposition 4.5. The isr distribution is identi�able sine π > 1

2
.Proof. The identi�ability problem an onern parameters π and/or µ.

• First, there exists none ouple (µ, µ′) ∈ P2 with µ 6= µ′ suh that p(x; µ, π) =p(x; µ′, π) for any x ∈ P and any π > 1
2
. Indeed, hoosing x = µ, from LemmaB.5 we have p(µ; µ, π) 6= p(µ; µ′, π).7



• Seond, for a given µ ∈ P, assume there exists π 6= π′ suh that p(x; µ, π) =p(x; µ, π′) for any x ∈ P. In partiular, for x = µ, in the proof of Lemma B.5 itis obtained that G(x, y, x) = A(x, y), thus ∑y∈P πA(µ,y) =
∑

y∈P π′A(µ,y). Thestrit inreasing of the funtion p 7→ πn on the interval [1
2
, 1] for all n ∈ N∗ensures that π = π′.

• Assume �nally there exists (µ, µ′) ∈ P2 with µ 6= µ′ and π < π′ suh thatp(x; µ, π) = p(x; µ′, π′) for any x ∈ P. In the proof of Lemma B.5, it isobtained also that G(x, y, µ) < A(x, y) when x 6= µ, thusp(x|y; µ, π) < πA(x,y) < π′A(x,y)
= p(x|y; x, π′)and then by averaging over all y in P gives p(x; µ, π) < p(x; x, π′). Choosing

x = µ′ ensures the identi�ability of the isr model.
5 Estimation of the model parametersThe isr model for rank data has two parameters: The probability π, whih is areal in [1

2
, 1] and the referene rank, or modal rank, µ, whih an take its values in

P. Note that the ase π = 1
2
is kept although this is a non-identi�ability situationbeause it leads to the uniformity of the isr distribution, what an be of interestfor pratial appliations. Considering (x1, . . . , xn) as an independent sample of nranks from isr(µ, π), we present in this setion estimation of (µ, π) by maximizingthe log-likelihood of the isr model whih is given by

l(µ, π) =

n
∑

i=1

ln

(

1

m!

∑

y∈P

p(xi|y; µ, π)

)

.5.1 Using an EM algorithmAs the presentation orders (y1, . . . , yn) are unknown (latent variables), we use anEM algorithm [DLR77℄ to maximize this observed data log-likelihood. Denotingby (µ, π){0} the starting parameter of EM and by (µ, π){q} the urrent value ofthe parameters at the step q (q ∈ N), the two steps (E and M) of this algorithmare desribed as follows. We have assumed that pairs (xi, yi) arise independently(i = 1, . . . , n).The E step The omplete-data log-likelihood is given by
lc(µ, π) =

n
∑

i=1

∑

y∈P

1{y = yi} ln

(

1

m!
p(xi|y; µ, π)

)

.

8



The E step onsists in omputing the onditional expetation Q of lc expressed by:
Q((µ, π), (µ, π){q}) =

n
∑

i=1

∑

y∈P

t
{q}
iy ln

(

1

m!
p(xi|y; µ, π)

)where the onditional probability that yi = y is noted
t
{q}
iy =

p(xi|y; (µ, π){q})
∑

τ∈P p(xi|τ ; (µ, π){q})
.The M step The M step onsists in hoosing the value (µ, p){q+1} whih maximizesthe onditional expetation Q omputed at the E step:

(µ, π){q+1} = argmax
(µ,π)∈P×[

1
2

,1]

Q((µ, p), (µ, π){q}).As the parameter spae P for µ is disrete, the maximization simply onsists, butpotentially omputationally expensively, of browsing the entire P (we give a moreute strategy in Setion 5.2). For the probability π, maximizing Q leads to thefollowing maximum:
π{q+1} =

∑n
i=1

∑

y∈P t
{q}
iy G(xi, y, µ{q})

∑n
i=1

∑

y∈P t
{q}
iy A(xi, y)

.Note that this value of π{q+1} an be interpreted as the proportion of good manip-ulations (swithing to the right or stop) in the insertion sorting algorithm.5.2 Initializing EM and reduing its omputational ostWe propose �rst an immediate asymptoti bound on π and then a strategy to redue,often drastially, the number of possible values for µ. Both results are useful forinitializing EM and also for reduing highly the omputational ost of the M step.They rely on the following two propositions.Proposition 5.1. Denoting by f0 the empirial modal relative frequeny, the interval
[π̂−, π̂+] asymptotially ontains π where

π̂− = f
1

m−1

0 and π̂+ = f
2

m(m−1)

0 . (5.1)Proof. Using Lemma B.6 and also the fat that, for any µ and y, p(µ|y; µ, π) =
πA(µ,y) (see the proof in Lemma B.5), it leads to the following bounds for the prob-ability of µ:

πm(m−1)/2 ≤ p(µ; µ, π) ≤ πm−1.Sine f0 is a onsistent estimator of p(µ; µ, π), it ends the proof.9



As soon as π̂− and π̂+ are greater than 1
2
, this result is useful for initializing πin EM by hoosing uniformly at random π{0} in the interval given by (5.1). If only

π̂+ ≥ 1
2
, the interval beomes [1

2
, π̂+]. If both bounds are lower than 1

2
, then theinterval [1

2
, 1] must be used. In Table 2 of Setion 6, bounds assoiated to all datasets are greater than 1

2
and the retained intervals are quite narrow in omparison to

[1
2
, 1], so the strategy makes the job. The next proposition is now foused on µ butrequires the result of Proposition 5.1.Proposition 5.2. Let Nx be the number of individuals equal to x ∈ P among a nrandom sample from isr(µ, π). Denoting by

hα(π) = #{x : p(Nx ≥ Nµ; µ, π) ≥ α}the number of ranks for whih the empirial frequeny an be greater or equal (withprobability at least α ∈ [0, 1]) than the empirial frequeny assoiated to the theoret-ial modal rank µ, then the following inequality asymptotially holds for any µ ∈ Pand π ∈ [1
2
, 1]:

hα(π) ≤ hα

(

π̂−
)

.Proof. We know from Proposition 5.1 that asymptotially π̂− ≤ π. For onludingthe proof, it is su�ient to use Proposition 4.3.The following strategy an be only used if π̂− ≥ 1
2
. Firstly, hα (π̂−) is estimatedwith a parametri bootstrap [ET93℄ ofM repliations from isr(µ, π̂−). The key pointis that it is independent on µ, so any µ ∈ P an be used. Then the hα (π̂−) distintmost frequent distint ranks in the sample (x1, . . . , xn) are retained as possible µvalues among the potential m!/2 possibilities and are used both as potential initialvalues µ{0} and also as values to browse at the M step. In other words, the idea isto browse the empririal modal rank in assoiation with some other ranks havingquite high empirial relative frequeny.The proposed strategy is aimed to signi�antly redue the number of andidatesfor µ. It dereases when the size of the observed sample n grows sine hα (π̂−)

p
→ 1when n → ∞. So, the browsed ranks are asymptotially redued to the empirialmodal rank whih is known to be a onsistent estimate of µ. Note that the sele-tion of the possible ranks should be arried out only one before to start the EMalgorithm.Table 2 (Column �#µ�) of Setion 6 illustrates through numerial examples thatthis proedure e�etively redues the number of possible ranks for µ in omparisonto the m!/2 possible values.6 Numerial illustration6.1 Presentation of the �ve real data setsThe isr distribution is now ompared to the Mallows Φ model on �ve real datasets: Two general knowledge quizzes (the answers of the 40 questioned students are10



in Appendix C), four nations rugby league rankings, Fligner and Verdui's wordsassoiations rankings [FV86℄ and Louis Roussos's sports rankings [Mar95℄.
• Football quiz. This �rst quiz onsists in ranking four national football teamsaording to inreasing number of vitories in the football World Cup: O1 =Frane, O2 = Germany, O3 = Brasil, O4 = Italy. The orret answer is

µ∗ = (1, 2, 4, 3).
• Cinema quiz. This quiz onsists in ranking hronologially the followingQuentin Tarantino movies: O1 = Inglourious Basterds, O2 = Pulp Fition,
O3 = Reservoir Dogs, O4 = Jakie Brown. The orret answer is µ∗ =
(3, 2, 4, 1).

• Rugby. This data set is the result of the four nations rugby league, from 1883to 1909 (exept years 1888 and 1889 beause only three nations were in thetournament, and exept years 1886, 1890, 1897, 1898 and 1906 due to tie),whih opposed O1 = England, O2 = Sotland, O3 = Ireland and O4 = Walles.
• Words. [FV86℄ examined the data olleted under the auspies of the GraduateReord Examination Board. A sample of 98 ollege students were asked to rank�ve words aording to strength of assoiation (least to most assoiated) withthe target word �Idea�: O1 = Thought, O2 = Play, O3 = Theory, O4 = Dreamand O5 = Attention.
• Sports. This last data set is due to Louis Roussos [Mar95℄ who asked 130students at the University of Illinois to rank seven sports aording to theirpreferene in partiipating: O1 = Baseball, O2 = Football, O3 = Basketball,
O4 = Tennis, O5 = Cyling, O6 = Swimming, O7 = Jogging.Empirial distribution of the �rst three data sets (for whih the number of objetsto rank is 4) is graphially displayed on the left olumn of Figure 1 in the rankingspae (orderings are displayed on eah node).6.2 Estimation resultsFor eah dataset, the isr distribution and the Mallows Φ model are estimated. Forisr the onvergene threshold for the growth of the log-likelihood in the EM algo-rithm was �xed to 1e−6 and only one initialization of π in [π̂−, π̂+] has been used (nohange on the results have been observed with several initializations). For Mallows

Φ model, the numerial optimization has been arried out by the optim funtionof r (programmed in ) with a quasi-Newton method and the same onvergenethreshold than for isr (1e − 6).The isr distribution of the �rst three data sets is graphially displayed on theright olumn of Figure 1 for a visual omparison with the empirial distribution.In addition, a χ2 adequay test, where the distribution under the null assump-tion is estimated by bootstrap [ET93℄ based on 1000 repliations, is performed for11
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Figure 1: Empirial (left) and estimate isr (right) distributions for Football andCinema quizzes and four nations rugby league (from top to bottom).
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both models and for all data sets and the results are displayed in Table 2 (Col-umn �p̂-value�). We notie that both models an be suitable for some data sets butnot all of them and not neessarily the same ones. This fat is orroborated whenomparing maximum log-likelihood values (Column �l�; The highest likelihoods arein bold). Consequently, isr ould be a natural ompetitor to be onsidered besideother lassial models in any rank data analysis. Additional arguments for using israppear also when analysing further Table 2.Table 2: isr and Mallows Φ models estimation results: Estimate parameters µ̂,
π̂ (isr) and λ̂ (Mallows), maximum log-likelihood l, estimated p-value of the χ2adequay test, number of possible µ explored (#µ; For isr it orresponds to ĥα(π̂−)with α = 0.05 and M = 100 repliations), lower and upper bounds π̂− and π̂+ for π(isr only) and times of exeution (in seonds).data set model µ̂ π̂ or λ̂ l p̂-value #µ π̂− π̂+ timesFootball isr (1, 2, 4, 3) 0.834 -88.53 0.001 1 0.794 0.891 2Mallows (1, 2, 4, 3) 1.106 -89.17 0.001 1 - - 1Cinema isr (4, 3, 2, 1) 0.723 -111.97 0.042 14 0.630 0.794 4Mallows (4, 3, 2, 1) 0.628 -112.12 0.029 2 - - 1Rugby isr (2, 4, 1, 3) 0.681 -58.68 0.538 12 0.585 0.765 3Mallows (2, 4, 1, 3) 0.528 -58.33 0.395 2 - - 2Words isr (2, 5, 4, 3, 1) 0.879 -275.43 0.001 1 0.762 0.897 6Mallows (2, 5, 4, 3, 1) 1.431 -251.27 0.019 1 - - 2Sports isr (1, 3, 2, 4, 5, 7, 6) 0.564 -1102.12 0.999 1 0.534 0.836 1069Mallows (1, 3, 4, 2, 5, 6, 7) 0.083 -1102.84 0.045 11 - - 187Firstly, we note that the isr model estimation an be ahieved in a reasonabletime (olumn �times�, obtained with a Bi Xeon proessor running at 3.0GHz and32GB of RAM) with a program1 in r, although greater than Mallows Φ modelestimation (in ): Only few seonds until �ve objets to rank, less than 20 minutesfor 7 objets. This estimation time is alloated as follows: About 1% for the strategyleading to redue the number of possible referene ranks (Setion 5.2), 98% for a pre-proessing step onsisting of the omputation of the terms G(x, y, µ) and A(x, y) forall observed ranks x, all retained referene ranks µ and all presentation orders y, and�nally only 1% for the EM algorithm. Sine the pre-proessing step is done by threenested loops (on x, y and µ), we an expet that a  program an drastially reduethe orresponding omputing time suh that we an deal with 9, perhaps 10, objetsin few minutes (reall that m = 10 is the �optimality limit� for isr). Contributing tothe redution of the omputing time, the strategy seleting the number of possiblereferene ranks to explore (Setion 5.2) is very e�etive. Indeed, only one andidatefor µ has been seleted by this strategy for the three data sets Football, Words andSports (Column �#µ�). Conerning the Mallows Φ model, the estimation of µ is1Software available on the authors website: http://math.univ-lille1.fr/∼jaques/soft.html13



arried out by a quite empirial iterative loal researh (in the sense of the Kendalldistane) around the modal rank [FV88℄ whih appears to be e�etive yet.We disuss now the meaningful interpretation of isr parameters. For eah ofthe Football and Cinema quizzes, the estimation of the referene rank µ oinideswith the real rank. This underlines that the right answers are, on the whole, knownby this population of students, and the auray level of students knowledge inthese areas is re�eted by the probability π of well paired omparison: 0.834 forthe Football quiz and 0.723 for the Cinema one. Thus, these students have betterknowledge in Football than in Cinema. The isr model estimation on the Rugbydata set enhanes a natural ranking between these four nations: During this timeSotland were the best, then Walles, England and �nally Ireland. But the low valueof the probability π (0.681) means that this ranking was not very �agrant. On theopposite, the high value of π (0.879) for the Fligner and Verdui's Word data setshows that the questionned students overall had the same thinking for the assoiationwith the word Idea: Play is the least assoiated then Attention, Dream, Theory and�nally Thought is the most assoiated. The last dataset is also very interesting. Thereferene rank (1, 3, 2, 4, 5, 7, 6) estimated for the isr model re�ets a preferene ofthe students at the University of Illinois for olletive sports: Baseball, Basketballand Football are at the top three plaes while individual sports are at the end of theranking: Cyling, Jogging and Swimming. Tennis, whih is intermediate betweena olletive sport and an individual sport, is rationally ranked between these twogroups.From the Mallows Φ parameters point of view, most results are highly onsistentwith isr: Main modal ranks are idential and the dispersion parameter λ is also wellorrelated with π, though λ is more abstrat and ould be less easy to understandby a pratitioner. Only the modal rank of the last data set (Sports data set) di�ers:The Mallows Φ model lassi�es Tennis inside the olletive sports olletion insteadof being put at the borderline of olletive and individual sports, as isr does.6.3 Spei�ity and oherene of isrHere, we propose to exploit a spei�ity of the isrmodel: It is possible to retrieve in-formation on the order with whih the objets to rank have been presented. For thispurpose, we propose to ompute for eah possible y ∈ P its probability onditionallyto the observed sample (x1, . . . , xn) and to the fat that all ranks of this sample havebeen generated with the same presentation order: p(y|x1, . . . , xn, y1 = . . . = yn).Thus, if there exists a ommon presentation order, we an expet to retrieve onerank with a high probability ompared to the others, and in the ontrary ase, theprobabilities must be more equidistributed. Figure 2 displays these probabilities foreah possible presentation order y. In fat only the half of P is taken into onsider-ation sine the relative presentation order of the �rst two objets has no importane(last remark in Setion 3). On this �gure the probabilities are ranked by dereasingorder of importane, and only the twenty largest are presented for the dataset with
m > 4.As expeted, for the two Football and Cinema quizzes, where we know that14
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the objets have been presented in the same order for all the students (reall it is aquizz the authors have built), we retrieve the fat that one presentation order is moreprobable than the other. Clearly, the same result is also obtained for the Flignerand Verdui's Words and the Louis Roussos's Sports data sets, whih suggests thatexatly the same quizz has been also presented to all students. Finally, for theRugby dataset, where no presentation order exists with as muh evidene (reallit is not a quizz), the probabilities of the presentation orders are more balaned.These experiments highlight the high oherene of isr sine it is able to retrievesome important but hidden information in the data.Remark However, we have notied that isr fails in retrieving the true initialordering y for the �rst two quizzes (we know y for both). This observation will leadto interesting omments for future researh diretions in the disussion of the lastsetion below.7 DisussionIn this paper we suggest to onsider rank data as the result of a paired ompar-isons sorting algorithm, where the possibility of wrong omparisons exists and anbe randomly modelized. It opens a new way for proposing many distributions onrankings, all of them bene�ting from very meaningful parameters (the referene rank
µ and the probability π of good paired omparison) and also allowing to retrievethe latent initial rank y at the beginning of the proess. Considering the ase of
m ≤ 10 objets to rank and aiming to minimize the number of paired omparisonsfor avoiding as muh as possible the potential wrong omparisons, the insertion sort-ing algorithm has been retained in this paper for its optimality in this ontext. Theresulting distribution, the so-alled isr, has been established and many desirableproperties have been pointed out. In addition, the latent variable interpretation ofthe model allows to derive a spei� EM algorithm whih an be easily aeleratedby drastially reduing the number of potential referene ranks µ to onsider.Thus, the insertion sorting algorithm an be view as a �rst step in this new lassof models, hoie guided by optimality arguments. However, a seletion sorting pro-edure an be for instane loser to the proess followed by human judges and a�rst perspetive of this work should be to establish the distribution and the orre-sponding properties in this ase. This intuition is orroborated by the fat that theMallows Φ model, whih is somewhat based on a seletion sorting algorithm, appearsto be a hard ompetitor for the isr model in our previous experiments. Moreover,this ould be the reason for whih we fail in retrieving exatly whih presentationorder has been used for the data sets studied in Setion 6. For many objets tosort (m ≥ 10), we an alternatively onsider other proedures as the quik sort, andso on. Note that, for �high� m values, a partiular attention should be paid to theomputation ost involved in our models.Another interesting prospet initialized by the present work is the possibility toinlude some information about the initial ranking y in the model and its orre-16



sponding estimation. Indeed, in questionnaires this initial order is often known andit is a useful information whih an be naturally used by our lass of models. Itis also possible to onsider some more di�use information about y, for instane toignore the exat y value but to know that all y are the same for all questionnaires (re-alisti situation for many ranks oming from quiz studies), or other realisti variants[BJ10℄.Although the isr is unimodal (as many other distributions for ranks), multi-modality an be easily taking into aount through mixture of isr distributionsand a spei� identi�ability study. For instane, we an think that in our footballquiz, girls and boys responses will probably not follow the same distribution, as itis suggested by the quite low estimated p-value [JB10℄.At last, there is also a need to adapt our models to other situations than fullrank data. This approah needs to be extended to other types of ranks, frequentlyenountered in pratie, as partially ranked data, tied data or even ranks resultingfrom multiple preferene responses.A Building the isr distributionThe goal of this appendix is to prove that Formula (3.1) orresponds to the stohastileft insertion sorting algorithm with probability π of good paired omparison andindependene between the paired omparisons. The notations are those de�ned inSetion 3.Proof. Let x(j) be the ordering of the j (1 ≤ j ≤ m) �rst objets in y in the orderimposed by x (so x(m) = x). An example of this notation is in Table 1. Thus, thereexists the following relationship between x(j) and x(j−1):
x(j) = (x

(j−1)
1 , . . . , x

(j−1)

A−

j
(x,y)

, yj, x
(j−1)

A−

j
(x,y)+1

, . . . , x
(j−1)
j−1 ).Formula (3.1) is now proved by indution on j. It is true for j = 1 while there isonly one objet y1 to sort: p(x(1)|y; µ, π) = 1. Sine the result of the ranking x(j)from x(j−1) is the result of Aj(x, y) independent Bernoulli experiments of parameter

π, then, onditionally to x(j−1), the probability of x(j) isp(x(j)|x(j−1), y; µ, π) = πGj(x,y,µ)(1 − π)Aj(x,y)−Gj(x,y,µ).We onlude the proof by notiing thatp(x(j)|y; µ, π) = p(x(j)|x(j−1), y; µ, π)p(x(j−1)|y; µ, π),from the following impliation relationship between events: x(j) ⇒ x(j−1).B LemmasLemma B.1. Let ẽ = (2, 1, 3, . . . , m) be the permutation inverting the �rst twoelements. For all x, y, µ ∈ P and π ∈ [0, 1], p(x|y; µ, π) = p(x|yẽ; µ, π).17



Proof. We use notations x(j) already introdued in Appendix A. The key point of theproof is to notie that the �rst two objets in y lead to the same paired omparison atthe seond step of the sorting proess whatever is their order in y, so p(x(2)|yẽ, π) =p(x(2)|y, π). Combining this result with the fat that p(x|x(2), yẽ, π) = p(x|x(2), y, π),sine ẽ only a�ets the �rst two objets, onludes the proof.Lemma B.2. For all x, y, τ ∈ P, A(x, y) = A(τx, τy).Proof. First we prove that A−
j (x, y) = A−

j (τx, τy). For any j = 1, . . . , m, we have(notie that i is always suh that 1 ≤ i < j)
A−

j (τx, τy)

= #{i : (τx)−1
(τy)i

< (τx)−1
(τy)j

} = #{i : (x−1τ−1τy)i < (x−1τ−1τy)j}

= #{i : (x−1y)i < (x−1y)j} = #{i : x−1
yi

< x−1
yj
} = A−

j (x, y).By notiing that A+
j (x, y) = 1{A−

j (x, y)+1 ≤ j−1} we dedue also that A+
j (x, y) =

A+
j (τx, τy). Consequently, Aj(x, y) = Aj(τx, τy) and, so, A(x, y) = A(τx, τy).Lemma B.3. For all x, y, µ, τ ∈ P, p(x|y; µ, 1

2
) = p(τx|τy; µ, 1

2
).Proof. When π = 1

2
, we obtain by using Lemma B.2p(τx|τy; µ, 1

2
) =

(

1
2

)A(τx,τy)
=
(

1
2

)A(x,y)
= p(x|y; µ, 1

2
).Lemma B.4. For all x, y, µ ∈ P G(x, y, µ̄) = A(x, y) − G(x, y, µ).Proof. Let ē be the permutation of total inversion previously introdued in Se-tion 4.2 and i, i′ = 1, . . . , m, i 6= i′. We �rst prove that G−

j (x, y, µ̄) = A−
j (x, y) −

G−
j (x, y, µ). Using suessively the fat that µ̄ = µē, ē = ē−1, {i < i′ ⇔ ēi > ēi′}and i 6= i′, we have

δii′(µ̄)

= 1{(µē)−1
i < (µē)−1

i′ } = 1{ē−1

µ−1
i

< ē−1

µ−1
i′

} = 1{ēµ−1
i

< ēµ−1
i′
}

= 1{µ−1
i > µ−1

i′ } = 1 − 1{µ−1
i < µ−1

i′ } = 1 − δii′(µ),we dedue then that:
G−

j (x, y, µ̄) =
∑

i∈A−

j
(x,y)

(1 − δyiyj
(µ)) = A−

j (x, y) − G−(x, y, µ).In a similar way, we an prove that G+
j (x, y, µ̄) = A+

j (x, y)−G+
j (x, y, µ). The prooffollows immediately from these two results.Lemma B.5. For all x, µ ∈ P, x 6= µ and π > 1

2
, p(x; µ, π) < p(x; x, π).18



Proof. Remark �rst that G(x, y, µ) < A(x, y) for µ 6= x. Sine {π > 1
2
⇔ 1−π < π},we dedue for µ 6= x that p(x|y; µ, π) < πA(x,y). Notie also that G(x, y, x) = A(x, y),thus p(x|y; x, π) = πA(x,y). Consequently, we have p(x|y; µ, π) < p(x|y; x, π) and theproof is onluded by averaging over all possible presentation orders y in P.Lemma B.6. For all µ, y ∈ P, m − 1 ≤ A(µ, y) ≤ m(m − 1)/2.Proof. Left bound: There is no omparison when the �rst element arises and at leastone omparison for the m − 1 others. Right bound: There is still no omparisonwhen the �rst element arises and at most j − 1 omparisons at the jth step for eahnew objet to rank, so A(µ, y) ≤

∑m
j=1(j − 1) = m(m − 1)/2.C Quiz data setsTable 3: Quiz answers of the 40 students.Cinema Footballordering frequeny ordering frequeny

(4, 3, 2, 1) 10 (1, 2, 4, 3) 20
(4, 2, 3, 1) 9 (1, 4, 2, 3) 12
(3, 2, 4, 1) 4 (2, 4, 1, 3) 2
(3, 4, 2, 1) 3 (3, 1, 4, 2) 2
(1, 3, 2, 4) 2 (3, 4, 2, 1) 2
(1, 3, 4, 2) 2 (3, 2, 1, 4) 1
(2, 3, 1, 4) 2 (4, 2, 1, 3) 1
(3, 1, 4, 2) 2 other 0
(1, 2, 3, 4) 1
(2, 3, 4, 1) 1
(2, 4, 3, 1) 1
(3, 2, 1, 4) 1
(4, 1, 2, 3) 1
(4, 3, 1, 2) 1other 0
Referenes[BJ10℄ C. Biernaki and J. Jaques. Modèles génératifs de rangs relatifs à unalgorithme de tri par insertion. In 42th Journées de Statistique organiséepar la Soiété Française de Statistique, Marseille, Frane, 2010.[Bö93℄ U. Bökenholt. Appliations of Thurstonian models to ranking data. InProbability models and statistial analyses for ranking data (Amherst, MA,19
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