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A generative model for rank data based on an
insertion sorting algorithm

Christophe BIERNACKI? Julien JACQUES?

Abstract

Rank data arise from a sorting mechanism which is generally unobservable
for the statistician. Assuming that this process relies on paired comparisons,
the insertion sorting algorithm is known as being the best candidate for min-
imizing the number of potential paired misclassifications. Combining this op-
timality argument with a Bernoulli event at the paired comparison step, an
original and very meaningful probabilistic generative model for rank data is
obtained: This model is the first which takes into account the initial presen-
tation order. Its theoretical properties are studied among which unimodality,
symmetry and identifiability. In addition, maximum likelihood principle can
be easily performed through an EM algorithm thanks to an unobserved latent
variables interpretation. Finally, the practical relevance of the proposal is il-
lustrated by both its adequacy with several real datasets and a comparison
with a usual rank data model. In particular, its specific ability for reveal-
ing some fundamental hidden structure in the data mechanism generation is
underlined.

Key words and phrases. EM algorithm, insertion algorithm, quiz data, rank data,
sorting process.

1 Introduction

Ranking data are of great interest in human activities involving preferences, atti-
tudes or choices like Web Page ranking, Sport, Politics, Economics, Educational
Testing, Biology, Psychology, Sociology, Marketing, etc. Ranks are so meaningful
that it is not unusual they result from a transformation of other kinds of data.

Rank data are multivariate but highly structured data. So, beyond standard but
general data analysis methods (means, factor analysis, etc.), some specific descriptive
methods which respect this structure have been proposed, for instance the permu-
tation polytope for plotting the rank vectors in Euclidean space ([Tho93a, Tho93b]
and an example on Figure 1) or also suitable distances for defining the centre and
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spread of a dataset [Ken38, Mal57, FV86|.

From an inference point of view, distances are useful for testing the distribution of
these data (uniformity, populations comparison [FA86, Mar95|) or for modeling the
distribution itself (for instance the Mallows ® model relies on the Kendall distance
[Ken38, Cri85|). More generally, parametric probabilistic models, if relevant and
allowing easy parameter interpretation, are useful for summarizing and understand-
ing such quite complex data and are a basic tool for density estimation, prediction
or clustering. Major rank data models date from the mid 20th century and most of
the current works on the topic uses these models.

Pointing out that a rank is the result of a sorting process, we make the natu-
ral assumption that it relies on successive object paired comparisons. In this case,
potential errors in the final ranking (according to a reference rank) are only a con-
sequence of some erroneous comparisons and, so, an optimal sorting strategy should
minimize its total number of paired comparisons. Adopting the insertion sorting
algorithm for this reason, we obtain a new kind of generative model which enjoys
good theoretical properties and whose originality is to involve the initial presentation
order of the objects.

The paper is organized as follows. Section 2 is devoted to the notation and the
interpretation of usual rank data models as the modeling of particular sorting algo-
rithms. Section 3 introduces and builds the proposed model which is based on an
insertion sorting algorithm, and its theoretical properties (unimodality, symmetry,
identifiability) are detailed in Section 4. Maximum likelihood estimation is consid-
ered in Section 5 by the mean of an EM algorithm since a missing data interpretation
of the proposed model can be pointed out. Numerical illustrations are presented in
Section 6 to evaluate the relevance of the proposed model on real data sets both from
a distributional adequacy point of view and from a comparison with the usual Mal-
lows ® model. Since this work sheds a new light on rank data modeling, numerous
related perspectives are discussed in the last section (Section 7).

2 Notation and usual rank data models

The rank datum, which is the statistical unit of interest in this paper, results from
a ranking of m objects Oy, ..., O,, by a judge (human or not). Two representations
of these data are commonly used: Ranking or ordering. The ranking represen-
tation 27! = (27',..., 2 !) contains the ranks given to the objects, and means
that O; is in the x; 'th position (i = 1,...,m). A ranking is then an element of
P, the set of permutations of the m first integers. The ordering representation
x = (x1,...,2,) is also an element of P and signifies that Object O,, is the ith
(t=1,...,m). Let consider the following example to illustrate these two notations:
A judge, which has to rank by preference order three holidays destinations (O; =
Campaign, Oy = Mountain and O3 = Sea), ranks first Sea, second Campaign, and
last Mountain. The ordering result of the judge is x = (3,1, 2) whereas the ranking
result is z7! = (2,3,1). In the following both ordering and ranking notations will
be used for rank data.



The two most popular classes of models for rank data consist in modeling directly
the hypothetical ranking process followed by the judge. For a complete review, refer
to [Mar95, Chap. 5 to 10]. The first class is derived from a paired comparison
process [KS40]: The judge constructs a rank by first comparing each pair of objects,
and second ensuring the consistency of these paired comparisons (if O; is prefered
to Oy and Oy to Oz, O must be prefered to O3). It follows the Babington Smith
model for a rank x:

pr)oc [[ i

1<i<j<m

with p;; the probability that O,, is prefered to O,;, and where the proportionality is
due to the need of consistency of the paired comparisons. The number of parameters
of this model being very large, especially when m grows, some simplifications have
been considered. [BT52| associate to each object O; a score u; indicating an overall
degree of preference of this object, and connect these scores to p;; by p;; = w;/(u; +
u;), which defines the Bradley—Terry—Mallows model. |[Mal57| goes forward into the
simplification by imposing that p;; = 7 if and only if 41, " < i, ' (pi; only depends on
the sign of ,u;il — ,u;jl), where 0 is a “reference” rank. It leads after reparameterization
to the famous Mallows ® model:

p(z; 11, A) = C(N) " exp M),

where K is the Kendall distance between two ranks [Ken38, Cri85|, A = —1In =
is a precision parameter (A € R) and
m—1 .
1 —exp(—(m—j+1)A)
C(\) =
) H 1 —exp(—A)

J=1

is a normalization constant [FV86|. For instance, a high A\ value leads to strong
unimodality around .

The second popular class of rank data models is multistage models, which consid-
ers the following iterative ranking process: The judge selects firstly the best object
among the m ones, then the best among the m — 1 remaining ones, and so forth.
Noting v; the probability that O, is ranked first among the m objects, the cor-
responding Plackett-Luce model [Luc59, Pla75| defines the probability of a rank z
as

m—1

Yj
plx) = .
() HU]+U]+1++Um

The term in the product means the probability that O,; is ranked first among objects
Oxj to O,,,. It could be noticed that this model corresponds to a Thurstonian model
[Thu27, B6c93| with a Gumbel density. [FV86, FV88| introduce an alternative
multistage model by considering another form of the probability at each step of the
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ranking process. Let V; = « if at the stage j the (o + 1)th best of the remaining
objects is selected (v = 0,...,m — j), so V; = 0 indicates a correct choice at stage
j. The probability of a rank x according to the Fligner and Verducci’s strongly
unimodal model is:

m—1

p(z) = [ p(v}.5)

Jj=1

where p(a, 3) is a probability parameterized by a and f (0 < a« < m — § and
1 < B < m — 1) satisfying ZZZOﬁ p(a, B) = 1, the probability p(., 3) being nonin-
creasing for all 1 < 8 < m — 1 and where p(0, 3) > p(1, #). Assuming specific forms
for the probability p(«, ) could lead to the Mallows ® model or to a generalization
of this latter named ® component-model.

The ranking processes which have motivated these two classes of rank data mod-
els can be interpreted as two different sorting processes, in which stochastic errors
are introduced to define a probability distribution on the whole rank data space.
The natural question involved by this interpretation is whether the used sorting
algorithms are the most appropriate. Effectively, in paired comparison models it
seems not optimal to do so much comparisons since it leads to a sorting algorithm
with excessively high computational complexity. In practice a human judge would
probably not exhaustively proceed to all paired comparisons. For multistage models,
the associated ranking process can be likened to a selection sorting algorithm. It is
reasonnable to assume that it relies also on underlying paired comparisons even if it
is not explicitly modeled in this way. Under this assumption, the selection sorting
algorithm is one of the most simple but it is well known for its lack of optimality
from the number of paired comparisons point of view [Knu73|. Here, we propose a
generative model for rank data based on the (straight) insertion sorting algorithm,
which is one of the most powerful among the usual sorts when m < 10 [Knu73,

Chap. 5].

3 A generative model for rank data based on an
insertion sorting

3.1 Motivation for an insertion sorting algorithm

We assume there exists an ordering p = (p1,..., i) on the m objects, so that
a judge who perfectly sorts these objects returns this reference rank p. Making
also the natural assumption that a rank = = (xy,...,2,,) is the result of a sorting

process relying on successive object paired comparisons, any difference between the
final rank = and g is necessarily attributed to some incorrect paired comparisons.
As a consequence, reducing the gap between = and p is strongly correlated to mini-
mizing the number of paired comparisons involved in the sorting process. Thus, an
“optimal judge” should adopt the insertion sorting algorithm which is optimal for



a “reasonable” number of objects (m < 10) [Knu73, Chap. 5|. Since it is natural
to model the reliability of the judge for the ranking by the risk of wrongly order a
pair of objects, each paired comparison can be usefully interpreted as the result of a
Bernoulli experiment whose outcome is a correct comparison (according to p) with
probability 7 and an incorrect comparison with probability 1 — 7. We assume also
that each pair ranking operation is independent of the others and that the prob-
ability 7 is constant throughout the sorting process. Merging both deterministic
insertion algorithm and random paired comparison leads to a meaningful generative
model for rank data that is now presented at length.

Let the ordering y = (y1,...,ym) be the presentation order of the objects to
the judge, this latter using the following insertion sorting algorithm to rank these
objects. First, the current object to be sorted is placed on the left of the already
sorted objects, and is compared to the first object on its right. If the relative position
of both objects in this pair is correct (according to p), this pair order is unchanged
and the next object in y is inserted far left. Otherwise, the pair order is reversed and
a new pair comparison is performed with the next object on the right (if it exists).
And so forth.

3.2 Modeling of the resulting distribution

Based on this modeling of a stochastic insertion sorting, the question is now to
calculate the probability p(z|y; u, 7) to obtain a rank = from an initial presentation
order y and a reference rank p. To do so, let introduce the following notations,
where j = 1,...,m denotes the step in the sorting algorithm consisting in ranking
the object O,,. The notations and their use in the proposed sorting algorithm are
both illustrated by an example in Table 1.

o Sin(p) = {u;' < p;'} is equal to 1 if O; is correctly ranked before Oy
(according to p), 0 otherwise (i,¢ = 1,...,m,i #7').

o Aj(z,y) = {i:z,! <z ' 1 <i<j}is the set of the indices of the presen-
tation order y for which the already sorted objects O, ..., O, , are ranked
in z before the current object O, , and consequently on its left. Tts cardinal
Aj (z,y) is consequently the number of all comparisons of the current object

with the objects already ranked (according to x) on its left, if they exist.

o Aj(x,y) = {i:i=argmincy;{i': 2,7 >z, '}} is the index of the rank y
designating the object sorted in x just after (so on the right of) O, among
the already sorted objects O,,, ..., O, ,, if it exists. This set has at most one
element. Its cardinal Aj(x, y) indicates if the current object O, is compared,
at the j step of the sorting, with the object ranked in x just on its right.

o Gj(v,y,p) = ZieAj_(x,y) dy,y,; (1) is the number of good comparisons (according

to p) of the current object O, with the objects already ranked on its left, if
they exist.



o Gf(x,y,p) = ZieAj(w) dy,y; (1) is the indicator of good comparison (according

to p) of the current object O, with the object already ranked just on its right,
if it exists.

We will use also intensively the following shorter and meaningful notations:

o Aj(z,y) = Aj(z,y) + Af (z,y) and A(z,y) = 377, Aj(z,y) are the total
number of all paired comparisons respectively for the step 7 and for the whole
process.

o Gi(z,y,p) = G5 (x,y, 1) + G (w,y, p) and G(x,y, p) = 37", Gy, y, p) are
the total number of good paired comparisons respectively for the step j and
for the whole process.

Table 1: An example to illustrate both the notations and the insertion sorting
process with = (1,2,3), y = (1,3,2), and = = (3,1,2). The notation z), defined
in Appendix A, means the ranking of the j first objects in y in the order imposed
by x.
stepj A7 AT AT AT A G GFGy
1 {} {} © 0 0 0 0 0
2 {} {1} 0 1 1 0 0 0
3 {3,1} {} 2 0 2 1 0 1
A=3 G=1

With these notations, the probability to obtain a rank x from an initial presen-
tation order y is given by:

p(x‘:% I, 7T) _ 7_{_G(a:,y,,u)(l _ W)A(a:,y)—G(w,y,u)' (31)

The proof of this formula is given in Appendix A. The first term corresponds to
the probability of performing G(z,y, i) good paired comparisons and the second
term is the probability of performing A(x,y) — G(z,y, n) wrong paired comparisons.
Finally, if the presentation order is unknown but of probability p(y), the marginal
distribution of x is given by:

p(w; ) = > plaly; 1, m)p(y)- (3.2)

yeP

In this paper, we assume the presentation orders are uniformly distributed, and
then p(y) = m!™! for all y € P. In the following the rank data model defined by
Distribution (3.2) will be named ISR for Insertion Sorting Rank data model. We
will note shortly 1SR(p, p) this model and its associated parameters.



Remark The conditional probability (3.1) is invariant to an inversion of the first
two elements of the presentation order (Lemma B.1 of Appendix B). Consequently,
the number m! of presentation orders y to be considered in the calculus of the
probability (3.2) may be reduced by half, what will be computationally helpful for
the model parameters estimation.

4 Properties of the ISR model

In this section the main properties of the ISR model are stated: The possibility for
the 1SR distribution to be uniform for a special value of 7, the existence of modal
and anti-modal ranks, the symmetry of the ISR distribution, and its identifiability.
The proofs rely on applying permutation properties on both ranking and ordering
notations on P. Composition 7 o x is noted shortly 72 for any 7 and x in P.

4.1 Uniformity for = = %
Proposition 4.1 proves the uniformity for = = %,

pendix B.

and requires Lemma B.3 of Ap-

Proposition 4.1. For all x,pn € P, p(x; u, %) =m! L.

Proof. Let e be the identity permutation of P. Using firstly Lemma B.3 of Ap-
pendix B and then using the fact that p(.|e; u, %) is a probability distribution on P,
we have

p(wsp,3) o > plely; ) =Y py aly yim3) =D ply  ale; p, 3) =1

yeP yeP yeP

4.2 Mode and anti-mode

We prove in this section one of the most important properties which can be expected
from the ISR distribution: The reference rank p is the unique mode of the distribution
if 7 > £ (Proposition 4.2). Let i be defined by ji = pe where € = (m,...,1) is the
permutation of total inversion. This rank f is the furthest from p for the Kendall
distance. We symmetrically prove in this section that the unique anti-mode (the
rank of smallest probability) is i if 7 > 5 (Corollary 4.1). Finally, Proposition 4.3
establishes that the mode is uniformly more pronounced when 7 grows. Proofs
require Lemmas B.2 and B.6 of Appendix B.

Proposition 4.2. For allz # pu € P and ™ > %, (s p, ) > pla; p, ).

1

Proof. Using successively the fact that {7 > 3

Lemma B.2, we obtain:

pa; p, ZW z,y) ZWA( z,(pr~y) Z 7 AWY) — ) (s pu, ).

yeP yeP y' eP

& 7w >1—7}, v # p and then

The last equality comes from the fact that A(u,y") = G(u, v/, p). O
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Corollary 4.1. Forallxz # € P and 7 > %, (i p, ) < pa; p, ).
The proof, symmetrical to that of Proposition 4.2, is left to the reader.

Proposition 4.3. For all x,u € P, p(p; u, ) — p(x; p, m) is an increasing function
of m > %

Proof. Noting A(7) = p(u; p, m) — p(x; p, 7), OA(w)/Or can be written

OA(m
on

) — i‘ Z {A(,u, y)ﬁA(uﬂy)—l — G(z, v, M)WG(:v,y,u)—l(l _ 7T)A(ﬂc,y)—G(@",y,u)} +e
m!
yeP

where ¢ is a non-negative term. Since m > 3, we deduce that
T e e O

Using the fact that A(u,y) > G(x,y, 1), we deduce that OA(w) /O > 0. O

4.3 Symmetry

In this section a symmetry of the ISR distribution is proved with the following sense:
Distributions ISR(u, ) and ISR(f, 1 —) are equivalent (Proposition 4.4 below). This
property will be especially useful to exhibit the identifiability conditions of the ISR
distribution in the next section. Proposition 4.4 requires Lemma B.4 in Appendix B.

Proposition 4.4. For all x,;n € P and all m € [0, 1], p(x; 1,1 — 7) = p(x; p, ).

Proof. Using Lemma B.4, we can write:

p(:r, ﬂ7 1 _ 7T) o< Z 7TA($7y)_(A($7y)_G($’ynu‘))(1 _ W)A(:B’y)_G($7y’ﬂ) X p(ZE, 1, 7T)
yeP

4.4 Identifiability

A necessary identifiability condition is immediately suggested by Propositions 4.1
and 4.4: The uniformity for = = % of the ISR distribution and its symmetry lead to
impose ™ > % The sufficiency of this condition is proved in the next proposition.
Its proof needs Lemma B.5 of Appendix B.

Proposition 4.5. The ISR distribution is identifiable since ™ > %
Proof. The identifiability problem can concern parameters 7 and/or p.

e First, there exists none couple (u, i') € P? with u # p/ such that p(x; pu, ) =
p(z; i/, ) for any x € P and any 7 > 5. Indeed, choosing = p, from Lemma,

B.5 we have p(u; p, ) # p(p; i/, 7).



e Second, for a given u € P, assume there exists 7 # 7' such that p(x; p, 7) =
p(z; p, 7') for any x € P. In particular, for = p, in the proof of Lemma B.5 it
is obtained that G(z,y,x) = A(z,y), thus > TAlY) = > yep 7 AEY)  The
strict increasing of the function p — 7" on the interval [1,1] for all n € N*
ensures that = = 7.

e Assume finally there exists (u,p’') € P? with u # p/ and 7 < 7 such that
p(z;p,m) = p(x;p/,7') for any x € P. In the proof of Lemma B.5, it is
obtained also that G(x,y, 1) < A(x,y) when = # pu, thus

p(aly; p,7) < 7A@V < 74D = p(aly; 2, 7)
and then by averaging over all y in P gives p(x; u, 7) < p(z;x, 7). Choosing
x =y’ ensures the identifiability of the ISR model.

0

5 Estimation of the model parameters

The 1SR model for rank data has two parameters: The probability 7, which is a
real in [%, 1] and the reference rank, or modal rank, u, which can take its values in
P. Note that the case m = % is kept although this is a non-identifiability situation
because it leads to the uniformity of the ISR distribution, what can be of interest
for practical applications. Considering (x!,...,z") as an independent sample of n
ranks from ISR(ju, ), we present in this section estimation of (y, ) by maximizing

the log-likelihood of the 1SR model which is given by

p,m) = Z In (% > o'y 1, W)) :

T yep

5.1 Using an EM algorithm

As the presentation orders (y',...,y") are unknown (latent variables), we use an
EM algorithm [DLR77| to maximize this observed data log-likelihood. Denoting
by (i, 7)1 the starting parameter of EM and by (u,7){? the current value of
the parameters at the step ¢ (¢ € N), the two steps (E and M) of this algorithm
are described as follows. We have assumed that pairs (z%,") arise independently
(1=1,...,n).

The E step The complete-data log-likelihood is given by

(™) =Y ) 1y =y'}In (%p(ﬂ\y; , W)) '

i=1 yeP



The E step consists in computing the conditional expectation Q of [. expressed by:
Q). (1)) = 5 St (p(e o)
i=1 yeP

where the conditional probability that y* = v is noted

Aoy _ _ p(@ly; (g, m) 1)

v e p(a T ()l

The M step The M step consists in choosing the value (u, p){9*1} which maximizes
the conditional expectation @ computed at the E step:

{g+1} = argmax Q((lu’ap)7 (,LL, 71-){q})
(nm)EPx[21]

(1, )

As the parameter space P for p is discrete, the maximization simply consists, but
potentially computationally expensively, of browsing the entire P (we give a more
cute strategy in Section 5.2). For the probability 7, maximizing Q leads to the
following maximum:

D i Zyep tfg}A(xz Y)

Note that this value of 7{¢*} can be interpreted as the proportion of good manip-
ulations (switching to the right or stop) in the insertion sorting algorithm.

5.2 Initializing EM and reducing its computational cost

We propose first an immediate asymptotic bound on 7 and then a strategy to reduce,
often drastically, the number of possible values for p. Both results are useful for
initializing EM and also for reducing highly the computational cost of the M step.
They rely on the following two propositions.

Proposition 5.1. Denoting by fy the empirical modal relative frequency, the interval
(7=, 7T asymptotically contains ™ where

_1 2
AT =77 and &= f0 (5.1)

Proof. Using Lemma B.6 and also the fact that, for any p and y, p(uly; p,7) =
7AWY) (see the proof in Lemma B.5), it leads to the following bounds for the prob-
ability of pu:

m(m—1)/2 m—l‘

7T <p(wp,m) <m

Since fy is a consistent estimator of p(u; u, 7), it ends the proof. O
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As soon as 7~ and 77 are greater than I, this result is useful for initializing 7

Y
in EM by choosing uniformly at random ’/T{O% in the interval given by (5.1). If only
7t > %, the interval becomes [%,ﬁ*]. If both bounds are lower than %, then the
interval [3,1] must be used. In Table 2 of Section 6, bounds associated to all data
sets are greater than % and the retained intervals are quite narrow in comparison to
[%, 1], so the strategy makes the job. The next proposition is now focused on u but
requires the result of Proposition 5.1.

Proposition 5.2. Let N, be the number of individuals equal to x € P among a n
random sample from 1SR(u, ). Denoting by

ha(m) = #42 : p(Ny > Ny, m) > a)

the number of ranks for which the empirical frequency can be greater or equal (with
probability at least o € [0, 1]) than the empirical frequency associated to the theoret-
tcal modal rank p, then the following inequality asymptotically holds for any u € P
and 7 € [3,1]:

ho(m) < heo (7%_) )

Proof. We know from Proposition 5.1 that asymptotically 7= < 7. For concluding
the proof, it is sufficient to use Proposition 4.3. O

The following strategy can be only used if 77 > % Firstly, h, (77) is estimated
with a parametric bootstrap [ET93] of M replications from 1SR(u, 7). The key point
is that it is independent on pu, so any p € P can be used. Then the h, (77) distinct
most frequent distinct ranks in the sample (z!,... 2") are retained as possible
values among the potential m!/2 possibilities and are used both as potential initial
values ;1% and also as values to browse at the M step. In other words, the idea is
to browse the emprirical modal rank in association with some other ranks having
quite high empirical relative frequency.

The proposed strategy is aimed to significantly reduce the number of candidates
for pu. Tt decreases when the size of the observed sample n grows since h, (77) = 1
when n — o0o. So, the browsed ranks are asymptotically reduced to the empirical
modal rank which is known to be a consistent estimate of u. Note that the selec-
tion of the possible ranks should be carried out only once before to start the EM
algorithm.

Table 2 (Column “# ") of Section 6 illustrates through numerical examples that
this procedure effectively reduces the number of possible ranks for x4 in comparison
to the m!/2 possible values.

6 Numerical illustration

6.1 Presentation of the five real data sets

The 1SR distribution is now compared to the Mallows ® model on five real data
sets: Two general knowledge quizzes (the answers of the 40 questioned students are
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in Appendix C), four nations rugby league rankings, Fligner and Verducci’s words
associations rankings |[FV86| and Louis Roussos’s sports rankings [Mar95|.

e Football quiz. This first quiz consists in ranking four national football teams
according to increasing number of victories in the football World Cup: O, =
France, O = Germany, O3 = Brasil, O, = Italy. The correct answer is
w=(1,2,4,3).

e (inema quiz. This quiz consists in ranking chronologically the following
Quentin Tarantino movies: O; = Inglourious Basterds, O, = Pulp Fiction,
O3 = Reservoir Dogs, O4 = Jackie Brown. The correct answer is pu* =
(3,2,4,1).

e Rugby. This data set is the result of the four nations rugby league, from 1883
to 1909 (except years 1888 and 1889 because only three nations were in the
tournament, and except years 1886, 1890, 1897, 1898 and 1906 due to tie),
which opposed O; = England, Oy = Scotland, O3 = Ireland and O, = Walles.

o Words. [FV86| examined the data collected under the auspices of the Graduate
Record Examination Board. A sample of 98 college students were asked to rank
five words according to strength of association (least to most associated) with
the target word “Idea”™ (O; = Thought, O, = Play, O3 = Theory, O, = Dream
and Oy = Attention.

e Sports. This last data set is due to Louis Roussos [Mar95| who asked 130
students at the University of Illinois to rank seven sports according to their
preference in participating: O = Baseball, O, = Football, O3 = Basketball,
O, = Tennis, O5; = Cycling, Og = Swimming, O; = Jogging.

Empirical distribution of the first three data sets (for which the number of objects
to rank is 4) is graphically displayed on the left column of Figure 1 in the ranking
space (orderings are displayed on each node).

6.2 Estimation results

For each dataset, the ISR distribution and the Mallows ® model are estimated. For
ISR the convergence threshold for the growth of the log-likelihood in the EM algo-
rithm was fixed to le—6 and only one initialization of 7 in [#~, 7] has been used (no
change on the results have been observed with several initializations). For Mallows
® model, the numerical optimization has been carried out by the optim function
of R (programmed in C) with a quasi-Newton method and the same convergence
threshold than for 1SR (le — 6).

The 1SR distribution of the first three data sets is graphically displayed on the
right column of Figure 1 for a visual comparison with the empirical distribution.
In addition, a x? adequacy test, where the distribution under the null assump-
tion is estimated by bootstrap [ET93] based on 1000 replications, is performed for
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Figure 1: Empirical (left) and estimate ISR (right) distributions for Football and
Cinema quizzes and four nations rugby league (from top to bottom).
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both models and for all data sets and the results are displayed in Table 2 (Col-

umn “p—/vme”). We notice that both models can be suitable for some data sets but
not all of them and not necessarily the same ones. This fact is corroborated when
comparing maximum log-likelihood values (Column “I”; The highest likelihoods are
in bold). Consequently, ISR could be a natural competitor to be considered beside
other classical models in any rank data analysis. Additional arguments for using ISR
appear also when analysing further Table 2.

Table 2: ISR and Mallows ® models estimation results: Estimate parameters i,
7 (1sR) and A (Mallows), maximum log-likelihood I, estimated p-value of the y?
adequacy test, number of possible p explored (#u; For ISR it corresponds to iza(fr_)
with @ = 0.05 and M = 100 replications), lower and upper bounds 7~ and 7" for 7
(1SR only) and times of execution (in seconds).

data set model L #or A l pﬁe H#u o T AT times
Football 1SR (1,2,4,3) 0.834 -88.53 0.001 1 0794 0.891 2
Mallows (1,2,4,3) 1.106 -89.17 0.001 1 - - 1
Cinema ISR (4,3,2,1) 0.723  -111.97 0.042 14 0.630 0.794 4
Mallows (4,3,2,1) 0.628 -112.12 0.029 2 - - 1
Rugby ISR (2,4,1,3) 0.681 -58.68 0.538 12 0.585 0.765 3
Mallows (2,4,1,3) 0.528 -58.33 0.395 2 - - 2
Words ISR (2,5,4,3,1) 0.879 -275.43 0.001 1 0.762 0.897 6
Mallows (2,5,4,3,1) 1.431  -251.27 0.019 1 - - 2
Sports ISR (1,3,2,4,5,7,6) 0.564 -1102.12  0.999 1 0534 0.836 1069
Mallows (1,3,4,2,5,6,7) 0.083 -1102.84 0.045 11 - - 187

Firstly, we note that the ISR model estimation can be achieved in a reasonable
time (column “times”, obtained with a Bi Xeon processor running at 3.0GHz and
32GB of RAM) with a program! in R, although greater than Mallows ® model
estimation (in €): Only few seconds until five objects to rank, less than 20 minutes
for 7 objects. This estimation time is allocated as follows: About 1% for the strategy
leading to reduce the number of possible reference ranks (Section 5.2), 98% for a pre-
processing step consisting of the computation of the terms G(z, y, 1) and A(x,y) for
all observed ranks x, all retained reference ranks i and all presentation orders y, and
finally only 1% for the EM algorithm. Since the pre-processing step is done by three
nested loops (on x, y and ), we can expect that a C program can drastically reduce
the corresponding computing time such that we can deal with 9, perhaps 10, objects
in few minutes (recall that m = 10 is the “optimality limit” for I1SR). Contributing to
the reduction of the computing time, the strategy selecting the number of possible
reference ranks to explore (Section 5.2) is very effective. Indeed, only one candidate
for p has been selected by this strategy for the three data sets Football, Words and
Sports (Column “#p”). Concerning the Mallows ® model, the estimation of yu is

!Software available on the authors website: http://math.univ-lillel.fr/~jacques/soft.html
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carried out by a quite empirical iterative local research (in the sense of the Kendall
distance) around the modal rank |[F'V88| which appears to be effective yet.

We discuss now the meaningful interpretation of ISR parameters. For each of
the Football and Cinema quizzes, the estimation of the reference rank p coincides
with the real rank. This underlines that the right answers are, on the whole, known
by this population of students, and the accuracy level of students knowledge in
these areas is reflected by the probability 7 of well paired comparison: 0.834 for
the Football quiz and 0.723 for the Cinema one. Thus, these students have better
knowledge in Football than in Cinema. The ISR model estimation on the Rugby
data set enhances a natural ranking between these four nations: During this time
Scotland were the best, then Walles, England and finally Ireland. But the low value
of the probability 7 (0.681) means that this ranking was not very flagrant. On the
opposite, the high value of 7 (0.879) for the Fligner and Verducci’s Word data set
shows that the questionned students overall had the same thinking for the association
with the word Idea: Play is the least associated then Attention, Dream, Theory and
finally Thought is the most associated. The last dataset is also very interesting. The
reference rank (1,3,2,4,5,7,6) estimated for the ISR model reflects a preference of
the students at the University of Illinois for collective sports: Baseball, Basketball
and Football are at the top three places while individual sports are at the end of the
ranking: Cycling, Jogging and Swimming. Tennis, which is intermediate between
a collective sport and an individual sport, is rationally ranked between these two
groups.

From the Mallows ® parameters point of view, most results are highly consistent
with ISR: Main modal ranks are identical and the dispersion parameter \ is also well
correlated with 7, though A is more abstract and could be less easy to understand
by a practitioner. Only the modal rank of the last data set (Sports data set) differs:
The Mallows ® model classifies Tennis inside the collective sports collection instead
of being put at the borderline of collective and individual sports, as ISR does.

6.3 Specificity and coherence of ISR

Here, we propose to exploit a specificity of the ISR model: It is possible to retrieve in-
formation on the order with which the objects to rank have been presented. For this
purpose, we propose to compute for each possible y € P its probability conditionally
to the observed sample (2!, ..., 2") and to the fact that all ranks of this sample have
been generated with the same presentation order: p(y|z',...,2" y' = ... = y").
Thus, if there exists a common presentation order, we can expect to retrieve one
rank with a high probability compared to the others, and in the contrary case, the
probabilities must be more equidistributed. Figure 2 displays these probabilities for
each possible presentation order y. In fact only the half of P is taken into consider-
ation since the relative presentation order of the first two objects has no importance
(last remark in Section 3). On this figure the probabilities are ranked by decreasing
order of importance, and only the twenty largest are presented for the dataset with
m > 4.

As expected, for the two Football and Cinema quizzes, where we know that
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Figure 2: Presentation order probability for Football and Cinema quizzes, 4 Na-
tions Rugby League, Fligner and Verducci’s Words association data set, and Louis
Roussos’s Sport ranking.
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the objects have been presented in the same order for all the students (recall it is a
quizz the authors have built), we retrieve the fact that one presentation order is more
probable than the other. Clearly, the same result is also obtained for the Fligner
and Verducci’s Words and the Louis Roussos’s Sports data sets, which suggests that
exactly the same quizz has been also presented to all students. Finally, for the
Rugby dataset, where no presentation order exists with as much evidence (recall
it is not a quizz), the probabilities of the presentation orders are more balanced.
These experiments highlight the high coherence of ISR since it is able to retrieve
some important but hidden information in the data.

Remark However, we have noticed that ISR fails in retrieving the true initial
ordering y for the first two quizzes (we know y for both). This observation will lead
to interesting comments for future research directions in the discussion of the last
section below.

7 Discussion

In this paper we suggest to consider rank data as the result of a paired compar-
isons sorting algorithm, where the possibility of wrong comparisons exists and can
be randomly modelized. It opens a new way for proposing many distributions on
rankings, all of them benefiting from very meaningful parameters (the reference rank
w1 and the probability 7w of good paired comparison) and also allowing to retrieve
the latent initial rank y at the beginning of the process. Considering the case of
m < 10 objects to rank and aiming to minimize the number of paired comparisons
for avoiding as much as possible the potential wrong comparisons, the insertion sort-
ing algorithm has been retained in this paper for its optimality in this context. The
resulting distribution, the so-called ISR, has been established and many desirable
properties have been pointed out. In addition, the latent variable interpretation of
the model allows to derive a specific EM algorithm which can be easily accelerated
by drastically reducing the number of potential reference ranks p to consider.

Thus, the insertion sorting algorithm can be view as a first step in this new class
of models, choice guided by optimality arguments. However, a selection sorting pro-
cedure can be for instance closer to the process followed by human judges and a
first perspective of this work should be to establish the distribution and the corre-
sponding properties in this case. This intuition is corroborated by the fact that the
Mallows ® model, which is somewhat based on a selection sorting algorithm, appears
to be a hard competitor for the ISR model in our previous experiments. Moreover,
this could be the reason for which we fail in retrieving exactly which presentation
order has been used for the data sets studied in Section 6. For many objects to
sort (m > 10), we can alternatively consider other procedures as the quick sort, and
so on. Note that, for “high” m values, a particular attention should be paid to the
computation cost involved in our models.

Another interesting prospect initialized by the present work is the possibility to
include some information about the initial ranking y in the model and its corre-
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sponding estimation. Indeed, in questionnaires this initial order is often known and
it is a useful information which can be naturally used by our class of models. It
is also possible to consider some more diffuse information about ¥, for instance to
ignore the exact y value but to know that all y are the same for all questionnaires (re-
alistic situation for many ranks coming from quiz studies), or other realistic variants
[BJ10].

Although the ISR is unimodal (as many other distributions for ranks), multi-
modality can be easily taking into account through mixture of ISR distributions
and a specific identifiability study. For instance, we can think that in our football
quiz, girls and boys responses will probably not follow the same distribution, as it
is suggested by the quite low estimated p-value [JB10].

At last, there is also a need to adapt our models to other situations than full
rank data. This approach needs to be extended to other types of ranks, frequently
encountered in practice, as partially ranked data, tied data or even ranks resulting
from multiple preference responses.

A Building the 1SR distribution

The goal of this appendix is to prove that Formula (3.1) corresponds to the stochastic
left insertion sorting algorithm with probability m of good paired comparison and
independence between the paired comparisons. The notations are those defined in
Section 3.

Proof. Let 219 be the ordering of the j (1 < j < m) first objects in y in the order
imposed by z (so (™ = z). An example of this notation is in Table 1. Thus, there
exists the following relationship between zU) and 2U~b:

G) — (.01 (-1 EESY (j-1)
aV = (a7, A;(Ivy),yj,xA;(w)H,...,xjfl ).

Formula (3.1) is now proved by induction on j. It is true for j = 1 while there is
only one object y; to sort: p(zM|y; u, 7) = 1. Since the result of the ranking /)
from 201 is the result of A;(z,y) independent Bernoulli experiments of parameter
7, then, conditionally to Y=Y, the probability of zU) is

p(x(J) |x(j_1)7 y’ M? ﬂ-) — ﬂ-Gj(:B’yﬂu‘)(]_ _ W)Aj(IB,y)—Gj(IB,y“U‘)‘
We conclude the proof by noticing that

from the following implication relationship between events: () = 20U~ O

B Lemmas

Lemma B.1. Let ¢ = (2,1,3,...,m) be the permutation inverting the first two
elements. For all x,y,u € P and 7 € [0,1], p(z|y; u, 7) = p(x|yé; p, 7).
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Proof. We use notations V) already introduced in Appendix A. The key point of the
proof is to notice that the first two objects in y lead to the same paired comparison at
the second step of the sorting process whatever is their order in v, so p(z® lye, m) =
p(z® |y, 7). Combining this result with the fact that p(z|2®, yé, ) = p(z|2®, y, 7),
since e only affects the first two objects, concludes the proof. O

Lemma B.2. For all x,y,7 € P, A(z,y) = A(Tz, TY).

Proof. First we prove that A; (z,y) = A (7@, 7y). For any j = 1,...,m, we have
(notice that ¢ is always such that 1 <i < j)

Af(Tx TY)
=#{i: (tz )(Ty < (12), = #i s (@7 ry) < (7))
=#{i: (@Y < e Ty)t = #i ! <ayl) = A7 (xy).

By noticing that A} (z,y) = 1{A; (z,y)+1 < j—1} we deduce also that A} (z,y) =
Af (tz,7y). Consequently, A;(x y) Aj(tz,Ty) and, so, A(z,y) = A(tz,7y). O

Lemma B.3. For all z,y,p, 7 € P, p(zly; i1, 3) = p(r|Ty; 1, 5).-
Proof. When 7 = %, we obtain by using Lemma B.2

)A(T%Ty) _ (l) A(z,y)
2

p(T:L”T%/%%) = (% :p(:zc]y;,u,%)-
Lemma B.4. For all x,y,p € P G(z,y, 1) = Az, y) — G(x,y, 1t).

Proof. Let € be the permutation of total inversion previously introduced in Sec-
tion 4.2 and 7,7 = 1,...,m,i # i'. We first prove that G (v,y,11) = A; (v,y) —
G5 (x,y,p). Using successively the fact that o = pe, e =e ', {i < & & > ey}
and i # i/, we have

O (f1)
=1{(pe);' < (ue);'} = 1{é 1< é_ll} =1e, 1 <e 71}
=Uu ' > p' =11y <uzf1}—1—5m(u)

we deduce then that:

Gi(zy.m) = > (1=0y, (1) = A5 (x,y) — G (z,y, p).
i€A (2,9)

In a similar way, we can prove that G} (x,y, 1) = A] (z,y) — G7 (x,y, ). The proof
follows immediately from these two results. O

Lemma B.5. For all z,;0 € P, x # pu and © > %, p(x; p,m) < pl;x, ).
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Proof. Remark first that G(z,y, 1) < A(z,y) for p # x. Since {7 > 3 & 1—7 < 7},
we deduce for j # x that p(z|y; p, m) < 74@¥). Notice also that G(z, y, z) = A(z, y),
thus p(z|y; z, 7) = 74@¥). Consequently, we have p(z|y; u, 7) < p(z|y; x, ) and the
proof is concluded by averaging over all possible presentation orders y in P. O

Lemma B.6. For all p,y € P, m—1 < A(p,y) <m(m—1)/2.

Proof. Left bound: There is no comparison when the first element arises and at least
one comparison for the m — 1 others. Right bound: There is still no comparison
when the first element arises and at most 7 — 1 comparisons at the jth step for each
new object to rank, so A(p,y) <370 (5 — 1) =m(m —1)/2. O

C Quiz data sets

Table 3: Quiz answers of the 40 students.

Cinema Football
ordering frequency ordering frequency
(4,3,2,1) 10 (1,2,4,3) 20
(4,2,3,1) 9 (1,4,2,3) 12
(3,2,4,1) 4 (2,4,1,3) 2
(3,4,2,1) 3 (3,1,4,2) 2
(1,3,2,4) 2 (3,4,2,1) 2
(1,3,4,2) 2 (3,2,1,4) 1
(2,3,1,4) 2 (4,2,1,3) 1
(3,1,4,2) 2 other 0
(1,2,3,4) 1
(2,3,4,1) 1
(2,4,3,1) 1
(3,2,1,4) 1
(4,1,2,3) 1
(4,3,1,2) 1
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