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A generative model for rank data based on aninsertion sorting algorithmChristophe Bierna
ki a, Julien Ja
ques a
Abstra
tRank data arise from a sorting me
hanism whi
h is generally unobservablefor the statisti
ian. Assuming that this pro
ess relies on paired 
omparisons,the insertion sorting algorithm is known as being the best 
andidate for min-imizing the number of potential paired mis
lassi�
ations. Combining this op-timality argument with a Bernoulli event at the paired 
omparison step, anoriginal and very meaningful probabilisti
 generative model for rank data isobtained: This model is the �rst whi
h takes into a

ount the initial presen-tation order. Its theoreti
al properties are studied among whi
h unimodality,symmetry and identi�ability. In addition, maximum likelihood prin
iple 
anbe easily performed through an EM algorithm thanks to an unobserved latentvariables interpretation. Finally, the pra
ti
al relevan
e of the proposal is il-lustrated by both its adequa
y with several real datasets and a 
omparisonwith a usual rank data model. In parti
ular, its spe
i�
 ability for reveal-ing some fundamental hidden stru
ture in the data me
hanism generation isunderlined.Key words and phrases. EM algorithm, insertion algorithm, quiz data, rank data,sorting pro
ess.1 Introdu
tionRanking data are of great interest in human a
tivities involving preferen
es, atti-tudes or 
hoi
es like Web Page ranking, Sport, Politi
s, E
onomi
s, Edu
ationalTesting, Biology, Psy
hology, So
iology, Marketing, et
. Ranks are so meaningfulthat it is not unusual they result from a transformation of other kinds of data.Rank data are multivariate but highly stru
tured data. So, beyond standard butgeneral data analysis methods (means, fa
tor analysis, et
.), some spe
i�
 des
riptivemethods whi
h respe
t this stru
ture have been proposed, for instan
e the permu-tation polytope for plotting the rank ve
tors in Eu
lidean spa
e ([Tho93a, Tho93b℄and an example on Figure 1) or also suitable distan
es for de�ning the 
entre andaLaboratoire P. Painlevé, UMR 8524 CNRS Université Lille I, Bât M2, Cité S
ienti�que, F-59655 Villeneuve d'As
q Cedex, Fran
e. 0



spread of a dataset [Ken38, Mal57, FV86℄.From an inferen
e point of view, distan
es are useful for testing the distribution ofthese data (uniformity, populations 
omparison [FA86, Mar95℄) or for modeling thedistribution itself (for instan
e the Mallows Φ model relies on the Kendall distan
e[Ken38, Cri85℄). More generally, parametri
 probabilisti
 models, if relevant andallowing easy parameter interpretation, are useful for summarizing and understand-ing su
h quite 
omplex data and are a basi
 tool for density estimation, predi
tionor 
lustering. Major rank data models date from the mid 20th 
entury and most ofthe 
urrent works on the topi
 uses these models.Pointing out that a rank is the result of a sorting pro
ess, we make the natu-ral assumption that it relies on su

essive obje
t paired 
omparisons. In this 
ase,potential errors in the �nal ranking (a

ording to a referen
e rank) are only a 
on-sequen
e of some erroneous 
omparisons and, so, an optimal sorting strategy shouldminimize its total number of paired 
omparisons. Adopting the insertion sortingalgorithm for this reason, we obtain a new kind of generative model whi
h enjoysgood theoreti
al properties and whose originality is to involve the initial presentationorder of the obje
ts.The paper is organized as follows. Se
tion 2 is devoted to the notation and theinterpretation of usual rank data models as the modeling of parti
ular sorting algo-rithms. Se
tion 3 introdu
es and builds the proposed model whi
h is based on aninsertion sorting algorithm, and its theoreti
al properties (unimodality, symmetry,identi�ability) are detailed in Se
tion 4. Maximum likelihood estimation is 
onsid-ered in Se
tion 5 by the mean of an EM algorithm sin
e a missing data interpretationof the proposed model 
an be pointed out. Numeri
al illustrations are presented inSe
tion 6 to evaluate the relevan
e of the proposed model on real data sets both froma distributional adequa
y point of view and from a 
omparison with the usual Mal-lows Φ model. Sin
e this work sheds a new light on rank data modeling, numerousrelated perspe
tives are dis
ussed in the last se
tion (Se
tion 7).2 Notation and usual rank data modelsThe rank datum, whi
h is the statisti
al unit of interest in this paper, results froma ranking of m obje
ts O1, . . . ,Om by a judge (human or not). Two representationsof these data are 
ommonly used: Ranking or ordering. The ranking represen-tation x−1 = (x−1
1 , . . . , x−1

m ) 
ontains the ranks given to the obje
ts, and meansthat Oi is in the x−1
i th position (i = 1, . . . , m). A ranking is then an element of

P, the set of permutations of the m �rst integers. The ordering representation
x = (x1, . . . , xm) is also an element of P and signi�es that Obje
t Oxi

is the ith(i = 1, . . . , m). Let 
onsider the following example to illustrate these two notations:A judge, whi
h has to rank by preferen
e order three holidays destinations (O1 =Campaign, O2 = Mountain and O3 = Sea), ranks �rst Sea, se
ond Campaign, andlast Mountain. The ordering result of the judge is x = (3, 1, 2) whereas the rankingresult is x−1 = (2, 3, 1). In the following both ordering and ranking notations willbe used for rank data. 1



The two most popular 
lasses of models for rank data 
onsist in modeling dire
tlythe hypotheti
al ranking pro
ess followed by the judge. For a 
omplete review, referto [Mar95, Chap. 5 to 10℄. The �rst 
lass is derived from a paired 
omparisonpro
ess [KS40℄: The judge 
onstru
ts a rank by �rst 
omparing ea
h pair of obje
ts,and se
ond ensuring the 
onsisten
y of these paired 
omparisons (if O1 is preferedto O2 and O2 to O3, O1 must be prefered to O3). It follows the Babington Smithmodel for a rank x: p(x) ∝
∏

1≤i<j≤m

pij ,with pij the probability that Oxi
is prefered to Oxj

, and where the proportionality isdue to the need of 
onsisten
y of the paired 
omparisons. The number of parametersof this model being very large, espe
ially when m grows, some simpli�
ations havebeen 
onsidered. [BT52℄ asso
iate to ea
h obje
t Oj a s
ore uj indi
ating an overalldegree of preferen
e of this obje
t, and 
onne
t these s
ores to pij by pij = ui/(ui +
uj), whi
h de�nes the Bradley�Terry�Mallows model. [Mal57℄ goes forward into thesimpli�
ation by imposing that pij = π if and only if µ−1

xi
< µ−1

xj
(pij only depends onthe sign of µ−1

xi
−µ−1

xj
), where µ is a �referen
e� rank. It leads after reparameterizationto the famous Mallows Φ model :p(x; µ, λ) = C(λ)−1 exp−λK(x,µ),where K is the Kendall distan
e between two ranks [Ken38, Cri85℄, λ = −1

2
ln π

1−πis a pre
ision parameter (λ ∈ R) and
C(λ) =

m−1
∏

j=1

1 − exp(−(m − j + 1)λ)

1 − exp(−λ)is a normalization 
onstant [FV86℄. For instan
e, a high λ value leads to strongunimodality around µ.The se
ond popular 
lass of rank data models is multistage models, whi
h 
onsid-ers the following iterative ranking pro
ess: The judge sele
ts �rstly the best obje
tamong the m ones, then the best among the m − 1 remaining ones, and so forth.Noting vi the probability that Oxi
is ranked �rst among the m obje
ts, the 
or-responding Pla
kett-Lu
e model [Lu
59, Pla75℄ de�nes the probability of a rank xas p(x) =

m−1
∏

j=1

vj

vj + vj+1 + . . . + vm
.The term in the produ
t means the probability thatOxj
is ranked �rst among obje
ts

Oxj
to Oxm

. It 
ould be noti
ed that this model 
orresponds to a Thurstonian model[Thu27, Bö
93℄ with a Gumbel density. [FV86, FV88℄ introdu
e an alternativemultistage model by 
onsidering another form of the probability at ea
h step of the2



ranking pro
ess. Let Vj = α if at the stage j the (α + 1)th best of the remainingobje
ts is sele
ted (α = 0, . . . , m − j), so Vj = 0 indi
ates a 
orre
t 
hoi
e at stage
j. The probability of a rank x a

ording to the Fligner and Verdu

i's stronglyunimodal model is: p(x) =

m−1
∏

j=1

p(Vj , j)where p(α, β) is a probability parameterized by α and β (0 ≤ α ≤ m − β and
1 ≤ β ≤ m − 1) satisfying ∑m−β

α=0 p(α, β) = 1, the probability p(., β) being nonin-
reasing for all 1 ≤ β ≤ m−1 and where p(0, β) > p(1, β). Assuming spe
i�
 formsfor the probability p(α, β) 
ould lead to the Mallows Φ model or to a generalizationof this latter named Φ 
omponent-model.The ranking pro
esses whi
h have motivated these two 
lasses of rank data mod-els 
an be interpreted as two di�erent sorting pro
esses, in whi
h sto
hasti
 errorsare introdu
ed to de�ne a probability distribution on the whole rank data spa
e.The natural question involved by this interpretation is whether the used sortingalgorithms are the most appropriate. E�e
tively, in paired 
omparison models itseems not optimal to do so mu
h 
omparisons sin
e it leads to a sorting algorithmwith ex
essively high 
omputational 
omplexity. In pra
ti
e a human judge wouldprobably not exhaustively pro
eed to all paired 
omparisons. For multistage models,the asso
iated ranking pro
ess 
an be likened to a sele
tion sorting algorithm. It isreasonnable to assume that it relies also on underlying paired 
omparisons even if itis not expli
itly modeled in this way. Under this assumption, the sele
tion sortingalgorithm is one of the most simple but it is well known for its la
k of optimalityfrom the number of paired 
omparisons point of view [Knu73℄. Here, we propose agenerative model for rank data based on the (straight) insertion sorting algorithm,whi
h is one of the most powerful among the usual sorts when m ≤ 10 [Knu73,Chap. 5℄.3 A generative model for rank data based on aninsertion sorting3.1 Motivation for an insertion sorting algorithmWe assume there exists an ordering µ = (µ1, . . . , µm) on the m obje
ts, so thata judge who perfe
tly sorts these obje
ts returns this referen
e rank µ. Makingalso the natural assumption that a rank x = (x1, . . . , xm) is the result of a sortingpro
ess relying on su

essive obje
t paired 
omparisons, any di�eren
e between the�nal rank x and µ is ne
essarily attributed to some in
orre
t paired 
omparisons.As a 
onsequen
e, redu
ing the gap between x and µ is strongly 
orrelated to mini-mizing the number of paired 
omparisons involved in the sorting pro
ess. Thus, an�optimal judge� should adopt the insertion sorting algorithm whi
h is optimal for3



a �reasonable� number of obje
ts (m ≤ 10) [Knu73, Chap. 5℄. Sin
e it is naturalto model the reliability of the judge for the ranking by the risk of wrongly order apair of obje
ts, ea
h paired 
omparison 
an be usefully interpreted as the result of aBernoulli experiment whose out
ome is a 
orre
t 
omparison (a

ording to µ) withprobability π and an in
orre
t 
omparison with probability 1 − π. We assume alsothat ea
h pair ranking operation is independent of the others and that the prob-ability π is 
onstant throughout the sorting pro
ess. Merging both deterministi
insertion algorithm and random paired 
omparison leads to a meaningful generativemodel for rank data that is now presented at length.Let the ordering y = (y1, . . . , ym) be the presentation order of the obje
ts tothe judge, this latter using the following insertion sorting algorithm to rank theseobje
ts. First, the 
urrent obje
t to be sorted is pla
ed on the left of the alreadysorted obje
ts, and is 
ompared to the �rst obje
t on its right. If the relative positionof both obje
ts in this pair is 
orre
t (a

ording to µ), this pair order is un
hangedand the next obje
t in y is inserted far left. Otherwise, the pair order is reversed anda new pair 
omparison is performed with the next obje
t on the right (if it exists).And so forth.3.2 Modeling of the resulting distributionBased on this modeling of a sto
hasti
 insertion sorting, the question is now to
al
ulate the probability p(x|y; µ, π) to obtain a rank x from an initial presentationorder y and a referen
e rank µ. To do so, let introdu
e the following notations,where j = 1, . . . , m denotes the step in the sorting algorithm 
onsisting in rankingthe obje
t Oyj
. The notations and their use in the proposed sorting algorithm areboth illustrated by an example in Table 1.

• δii′(µ) = 1{µ−1
i < µ−1

i′ } is equal to 1 if Oi is 
orre
tly ranked before Oi′(a

ording to µ), 0 otherwise (i, i′ = 1, . . . , m, i 6= i′).
• A−

j (x, y) = {i : x−1
yi

< x−1
yj

, 1 ≤ i < j} is the set of the indi
es of the presen-tation order y for whi
h the already sorted obje
ts Oy1 , . . . ,Oyj−1
are rankedin x before the 
urrent obje
t Oyj

, and 
onsequently on its left. Its 
ardinal
A−

j (x, y) is 
onsequently the number of all 
omparisons of the 
urrent obje
twith the obje
ts already ranked (a

ording to x) on its left, if they exist.
• A+

j (x, y) = {i : i = arg min1≤i′<j{i
′ : x−1

yi′
> x−1

yj
}} is the index of the rank ydesignating the obje
t sorted in x just after (so on the right of) Oyj

amongthe already sorted obje
ts Oy1 , . . . ,Oyj−1
, if it exists. This set has at most oneelement. Its 
ardinal A+

j (x, y) indi
ates if the 
urrent obje
t Oyj
is 
ompared,at the j step of the sorting, with the obje
t ranked in x just on its right.

• G−
j (x, y, µ) =

∑

i∈A−

j
(x,y) δyiyj

(µ) is the number of good 
omparisons (a

ordingto µ) of the 
urrent obje
t Oyj
with the obje
ts already ranked on its left, ifthey exist. 4



• G+
j (x, y, µ) =

∑

i∈A+
j

(x,y) δyjyi
(µ) is the indi
ator of good 
omparison (a

ordingto µ) of the 
urrent obje
t Oyj
with the obje
t already ranked just on its right,if it exists.We will use also intensively the following shorter and meaningful notations:

• Aj(x, y) = A−
j (x, y) + A+

j (x, y) and A(x, y) =
∑m

j=1 Aj(x, y) are the totalnumber of all paired 
omparisons respe
tively for the step j and for the wholepro
ess.
• Gj(x, y, µ) = G−

j (x, y, µ) + G+
j (x, y, µ) and G(x, y, µ) =

∑m
j=1 Gj(x, y, µ) arethe total number of good paired 
omparisons respe
tively for the step j andfor the whole pro
ess.Table 1: An example to illustrate both the notations and the insertion sortingpro
ess with µ = (1, 2, 3), y = (1, 3, 2), and x = (3, 1, 2). The notation x(j), de�nedin Appendix A, means the ranking of the j �rst obje
ts in y in the order imposedby x.step j A−

j A+
j A−

j A+
j Aj G−

j G+
j Gj x(j)1 {} {} 0 0 0 0 0 0 (1)2 {} {1} 0 1 1 0 0 0 (3, 1)3 {3, 1} {} 2 0 2 1 0 1 (3, 1, 2)

A = 3 G = 1With these notations, the probability to obtain a rank x from an initial presen-tation order y is given by:p(x|y; µ, π) = πG(x,y,µ)(1 − π)A(x,y)−G(x,y,µ). (3.1)The proof of this formula is given in Appendix A. The �rst term 
orresponds tothe probability of performing G(x, y, µ) good paired 
omparisons and the se
ondterm is the probability of performing A(x, y)−G(x, y, µ) wrong paired 
omparisons.Finally, if the presentation order is unknown but of probability p(y), the marginaldistribution of x is given by:p(x; µ, π) =
∑

y∈P

p(x|y; µ, π)p(y). (3.2)In this paper, we assume the presentation orders are uniformly distributed, andthen p(y) = m!−1 for all y ∈ P. In the following the rank data model de�ned byDistribution (3.2) will be named isr for Insertion Sorting Rank data model. Wewill note shortly isr(µ, p) this model and its asso
iated parameters.5



Remark The 
onditional probability (3.1) is invariant to an inversion of the �rsttwo elements of the presentation order (Lemma B.1 of Appendix B). Consequently,the number m! of presentation orders y to be 
onsidered in the 
al
ulus of theprobability (3.2) may be redu
ed by half, what will be 
omputationally helpful forthe model parameters estimation.4 Properties of the isr modelIn this se
tion the main properties of the isr model are stated: The possibility forthe isr distribution to be uniform for a spe
ial value of π, the existen
e of modaland anti-modal ranks, the symmetry of the isr distribution, and its identi�ability.The proofs rely on applying permutation properties on both ranking and orderingnotations on P. Composition τ ◦ x is noted shortly τx for any τ and x in P.4.1 Uniformity for π = 1
2Proposition 4.1 proves the uniformity for π = 1

2
, and requires Lemma B.3 of Ap-pendix B.Proposition 4.1. For all x, µ ∈ P, p(x; µ, 1

2
) = m!−1.Proof. Let e be the identity permutation of P. Using �rstly Lemma B.3 of Ap-pendix B and then using the fa
t that p(.|e; µ, 1

2
) is a probability distribution on P,we havep(x; µ, 1

2
) ∝

∑

y∈P

p(x|y; µ, 1
2
) =

∑

y∈P

p(y−1x|y−1y; µ, 1
2
) =

∑

y∈P

p(y−1x|e; µ, 1
2
) = 1.

4.2 Mode and anti-modeWe prove in this se
tion one of the most important properties whi
h 
an be expe
tedfrom the isr distribution: The referen
e rank µ is the unique mode of the distributionif π > 1
2
(Proposition 4.2). Let µ̄ be de�ned by µ̄ = µē where ē = (m, . . . , 1) is thepermutation of total inversion. This rank µ̄ is the furthest from µ for the Kendalldistan
e. We symmetri
ally prove in this se
tion that the unique anti-mode (therank of smallest probability) is µ̄ if π > 1

2
(Corollary 4.1). Finally, Proposition 4.3establishes that the mode is uniformly more pronoun
ed when π grows. Proofsrequire Lemmas B.2 and B.6 of Appendix B.Proposition 4.2. For all x 6= µ ∈ P and π > 1

2
, p(µ; µ, π) > p(x; µ, π).Proof. Using su

essively the fa
t that {π > 1

2
⇔ π > 1 − π}, x 6= µ and thenLemma B.2, we obtain:

m! p(x; µ, π) <
∑

y∈P

πA(x,y) =
∑

y∈P

πA((µx−1)x,(µx−1)y) =
∑

y′∈P

πA(µ,y′) = m! p(µ; µ, π).The last equality 
omes from the fa
t that A(µ, y′) = G(µ, y′, µ).6



Corollary 4.1. For all x 6= µ̄ ∈ P and π > 1
2
, p(µ̄; µ, π) < p(x; µ, π).The proof, symmetri
al to that of Proposition 4.2, is left to the reader.Proposition 4.3. For all x, µ ∈ P, p(µ; µ, π)− p(x; µ, π) is an in
reasing fun
tionof π ≥ 1

2
.Proof. Noting ∆(π) = p(µ; µ, π) − p(x; µ, π), ∂∆(π)/∂π 
an be written

∂∆(π)

∂π
=

1

m!

∑

y∈P

{

A(µ, y)πA(µ,y)−1 − G(x, y, µ)πG(x,y,µ)−1(1 − π)A(x,y)−G(x,y,µ)
}

+ cwhere c is a non-negative term. Sin
e π ≥ 1
2
, we dedu
e that

G(x, y, µ)πG(x,y,µ)−1(1 − π)A(x,y)−G(x,y,µ) ≤ G(x, y, µ)πA(x,y)−1.Using the fa
t that A(µ, y) ≥ G(x, y, µ), we dedu
e that ∂∆(π)/∂π ≥ 0.4.3 SymmetryIn this se
tion a symmetry of the isr distribution is proved with the following sense:Distributions isr(µ, π) and isr(µ̄, 1−π) are equivalent (Proposition 4.4 below). Thisproperty will be espe
ially useful to exhibit the identi�ability 
onditions of the isrdistribution in the next se
tion. Proposition 4.4 requires Lemma B.4 in Appendix B.Proposition 4.4. For all x, µ ∈ P and all π ∈ [0, 1], p(x; µ̄, 1 − π) = p(x; µ, π).Proof. Using Lemma B.4, we 
an write:p(x; µ̄, 1 − π) ∝
∑

y∈P

πA(x,y)−(A(x,y)−G(x,y,µ))(1 − π)A(x,y)−G(x,y,µ) ∝ p(x; µ, π).

4.4 Identi�abilityA ne
essary identi�ability 
ondition is immediately suggested by Propositions 4.1and 4.4: The uniformity for π = 1
2
of the isr distribution and its symmetry lead toimpose π > 1

2
. The su�
ien
y of this 
ondition is proved in the next proposition.Its proof needs Lemma B.5 of Appendix B.Proposition 4.5. The isr distribution is identi�able sin
e π > 1

2
.Proof. The identi�ability problem 
an 
on
ern parameters π and/or µ.

• First, there exists none 
ouple (µ, µ′) ∈ P2 with µ 6= µ′ su
h that p(x; µ, π) =p(x; µ′, π) for any x ∈ P and any π > 1
2
. Indeed, 
hoosing x = µ, from LemmaB.5 we have p(µ; µ, π) 6= p(µ; µ′, π).7



• Se
ond, for a given µ ∈ P, assume there exists π 6= π′ su
h that p(x; µ, π) =p(x; µ, π′) for any x ∈ P. In parti
ular, for x = µ, in the proof of Lemma B.5 itis obtained that G(x, y, x) = A(x, y), thus ∑y∈P πA(µ,y) =
∑

y∈P π′A(µ,y). Thestri
t in
reasing of the fun
tion p 7→ πn on the interval [1
2
, 1] for all n ∈ N∗ensures that π = π′.

• Assume �nally there exists (µ, µ′) ∈ P2 with µ 6= µ′ and π < π′ su
h thatp(x; µ, π) = p(x; µ′, π′) for any x ∈ P. In the proof of Lemma B.5, it isobtained also that G(x, y, µ) < A(x, y) when x 6= µ, thusp(x|y; µ, π) < πA(x,y) < π′A(x,y)
= p(x|y; x, π′)and then by averaging over all y in P gives p(x; µ, π) < p(x; x, π′). Choosing

x = µ′ ensures the identi�ability of the isr model.
5 Estimation of the model parametersThe isr model for rank data has two parameters: The probability π, whi
h is areal in [1

2
, 1] and the referen
e rank, or modal rank, µ, whi
h 
an take its values in

P. Note that the 
ase π = 1
2
is kept although this is a non-identi�ability situationbe
ause it leads to the uniformity of the isr distribution, what 
an be of interestfor pra
ti
al appli
ations. Considering (x1, . . . , xn) as an independent sample of nranks from isr(µ, π), we present in this se
tion estimation of (µ, π) by maximizingthe log-likelihood of the isr model whi
h is given by

l(µ, π) =

n
∑

i=1

ln

(

1

m!

∑

y∈P

p(xi|y; µ, π)

)

.5.1 Using an EM algorithmAs the presentation orders (y1, . . . , yn) are unknown (latent variables), we use anEM algorithm [DLR77℄ to maximize this observed data log-likelihood. Denotingby (µ, π){0} the starting parameter of EM and by (µ, π){q} the 
urrent value ofthe parameters at the step q (q ∈ N), the two steps (E and M) of this algorithmare des
ribed as follows. We have assumed that pairs (xi, yi) arise independently(i = 1, . . . , n).The E step The 
omplete-data log-likelihood is given by
lc(µ, π) =

n
∑

i=1

∑

y∈P

1{y = yi} ln

(

1

m!
p(xi|y; µ, π)

)

.

8



The E step 
onsists in 
omputing the 
onditional expe
tation Q of lc expressed by:
Q((µ, π), (µ, π){q}) =

n
∑

i=1

∑

y∈P

t
{q}
iy ln

(

1

m!
p(xi|y; µ, π)

)where the 
onditional probability that yi = y is noted
t
{q}
iy =

p(xi|y; (µ, π){q})
∑

τ∈P p(xi|τ ; (µ, π){q})
.The M step The M step 
onsists in 
hoosing the value (µ, p){q+1} whi
h maximizesthe 
onditional expe
tation Q 
omputed at the E step:

(µ, π){q+1} = argmax
(µ,π)∈P×[

1
2

,1]

Q((µ, p), (µ, π){q}).As the parameter spa
e P for µ is dis
rete, the maximization simply 
onsists, butpotentially 
omputationally expensively, of browsing the entire P (we give a more
ute strategy in Se
tion 5.2). For the probability π, maximizing Q leads to thefollowing maximum:
π{q+1} =

∑n
i=1

∑

y∈P t
{q}
iy G(xi, y, µ{q})

∑n
i=1

∑

y∈P t
{q}
iy A(xi, y)

.Note that this value of π{q+1} 
an be interpreted as the proportion of good manip-ulations (swit
hing to the right or stop) in the insertion sorting algorithm.5.2 Initializing EM and redu
ing its 
omputational 
ostWe propose �rst an immediate asymptoti
 bound on π and then a strategy to redu
e,often drasti
ally, the number of possible values for µ. Both results are useful forinitializing EM and also for redu
ing highly the 
omputational 
ost of the M step.They rely on the following two propositions.Proposition 5.1. Denoting by f0 the empiri
al modal relative frequen
y, the interval
[π̂−, π̂+] asymptoti
ally 
ontains π where

π̂− = f
1

m−1

0 and π̂+ = f
2

m(m−1)

0 . (5.1)Proof. Using Lemma B.6 and also the fa
t that, for any µ and y, p(µ|y; µ, π) =
πA(µ,y) (see the proof in Lemma B.5), it leads to the following bounds for the prob-ability of µ:

πm(m−1)/2 ≤ p(µ; µ, π) ≤ πm−1.Sin
e f0 is a 
onsistent estimator of p(µ; µ, π), it ends the proof.9



As soon as π̂− and π̂+ are greater than 1
2
, this result is useful for initializing πin EM by 
hoosing uniformly at random π{0} in the interval given by (5.1). If only

π̂+ ≥ 1
2
, the interval be
omes [1

2
, π̂+]. If both bounds are lower than 1

2
, then theinterval [1

2
, 1] must be used. In Table 2 of Se
tion 6, bounds asso
iated to all datasets are greater than 1

2
and the retained intervals are quite narrow in 
omparison to

[1
2
, 1], so the strategy makes the job. The next proposition is now fo
used on µ butrequires the result of Proposition 5.1.Proposition 5.2. Let Nx be the number of individuals equal to x ∈ P among a nrandom sample from isr(µ, π). Denoting by

hα(π) = #{x : p(Nx ≥ Nµ; µ, π) ≥ α}the number of ranks for whi
h the empiri
al frequen
y 
an be greater or equal (withprobability at least α ∈ [0, 1]) than the empiri
al frequen
y asso
iated to the theoret-i
al modal rank µ, then the following inequality asymptoti
ally holds for any µ ∈ Pand π ∈ [1
2
, 1]:

hα(π) ≤ hα

(

π̂−
)

.Proof. We know from Proposition 5.1 that asymptoti
ally π̂− ≤ π. For 
on
ludingthe proof, it is su�
ient to use Proposition 4.3.The following strategy 
an be only used if π̂− ≥ 1
2
. Firstly, hα (π̂−) is estimatedwith a parametri
 bootstrap [ET93℄ ofM repli
ations from isr(µ, π̂−). The key pointis that it is independent on µ, so any µ ∈ P 
an be used. Then the hα (π̂−) distin
tmost frequent distin
t ranks in the sample (x1, . . . , xn) are retained as possible µvalues among the potential m!/2 possibilities and are used both as potential initialvalues µ{0} and also as values to browse at the M step. In other words, the idea isto browse the empriri
al modal rank in asso
iation with some other ranks havingquite high empiri
al relative frequen
y.The proposed strategy is aimed to signi�
antly redu
e the number of 
andidatesfor µ. It de
reases when the size of the observed sample n grows sin
e hα (π̂−)

p
→ 1when n → ∞. So, the browsed ranks are asymptoti
ally redu
ed to the empiri
almodal rank whi
h is known to be a 
onsistent estimate of µ. Note that the sele
-tion of the possible ranks should be 
arried out only on
e before to start the EMalgorithm.Table 2 (Column �#µ�) of Se
tion 6 illustrates through numeri
al examples thatthis pro
edure e�e
tively redu
es the number of possible ranks for µ in 
omparisonto the m!/2 possible values.6 Numeri
al illustration6.1 Presentation of the �ve real data setsThe isr distribution is now 
ompared to the Mallows Φ model on �ve real datasets: Two general knowledge quizzes (the answers of the 40 questioned students are10



in Appendix C), four nations rugby league rankings, Fligner and Verdu

i's wordsasso
iations rankings [FV86℄ and Louis Roussos's sports rankings [Mar95℄.
• Football quiz. This �rst quiz 
onsists in ranking four national football teamsa

ording to in
reasing number of vi
tories in the football World Cup: O1 =Fran
e, O2 = Germany, O3 = Brasil, O4 = Italy. The 
orre
t answer is

µ∗ = (1, 2, 4, 3).
• Cinema quiz. This quiz 
onsists in ranking 
hronologi
ally the followingQuentin Tarantino movies: O1 = Inglourious Basterds, O2 = Pulp Fi
tion,
O3 = Reservoir Dogs, O4 = Ja
kie Brown. The 
orre
t answer is µ∗ =
(3, 2, 4, 1).

• Rugby. This data set is the result of the four nations rugby league, from 1883to 1909 (ex
ept years 1888 and 1889 be
ause only three nations were in thetournament, and ex
ept years 1886, 1890, 1897, 1898 and 1906 due to tie),whi
h opposed O1 = England, O2 = S
otland, O3 = Ireland and O4 = Walles.
• Words. [FV86℄ examined the data 
olle
ted under the auspi
es of the GraduateRe
ord Examination Board. A sample of 98 
ollege students were asked to rank�ve words a

ording to strength of asso
iation (least to most asso
iated) withthe target word �Idea�: O1 = Thought, O2 = Play, O3 = Theory, O4 = Dreamand O5 = Attention.
• Sports. This last data set is due to Louis Roussos [Mar95℄ who asked 130students at the University of Illinois to rank seven sports a

ording to theirpreferen
e in parti
ipating: O1 = Baseball, O2 = Football, O3 = Basketball,
O4 = Tennis, O5 = Cy
ling, O6 = Swimming, O7 = Jogging.Empiri
al distribution of the �rst three data sets (for whi
h the number of obje
tsto rank is 4) is graphi
ally displayed on the left 
olumn of Figure 1 in the rankingspa
e (orderings are displayed on ea
h node).6.2 Estimation resultsFor ea
h dataset, the isr distribution and the Mallows Φ model are estimated. Forisr the 
onvergen
e threshold for the growth of the log-likelihood in the EM algo-rithm was �xed to 1e−6 and only one initialization of π in [π̂−, π̂+] has been used (no
hange on the results have been observed with several initializations). For Mallows

Φ model, the numeri
al optimization has been 
arried out by the optim fun
tionof r (programmed in 
) with a quasi-Newton method and the same 
onvergen
ethreshold than for isr (1e − 6).The isr distribution of the �rst three data sets is graphi
ally displayed on theright 
olumn of Figure 1 for a visual 
omparison with the empiri
al distribution.In addition, a χ2 adequa
y test, where the distribution under the null assump-tion is estimated by bootstrap [ET93℄ based on 1000 repli
ations, is performed for11
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Figure 1: Empiri
al (left) and estimate isr (right) distributions for Football andCinema quizzes and four nations rugby league (from top to bottom).
12



both models and for all data sets and the results are displayed in Table 2 (Col-umn �p̂-value�). We noti
e that both models 
an be suitable for some data sets butnot all of them and not ne
essarily the same ones. This fa
t is 
orroborated when
omparing maximum log-likelihood values (Column �l�; The highest likelihoods arein bold). Consequently, isr 
ould be a natural 
ompetitor to be 
onsidered besideother 
lassi
al models in any rank data analysis. Additional arguments for using israppear also when analysing further Table 2.Table 2: isr and Mallows Φ models estimation results: Estimate parameters µ̂,
π̂ (isr) and λ̂ (Mallows), maximum log-likelihood l, estimated p-value of the χ2adequa
y test, number of possible µ explored (#µ; For isr it 
orresponds to ĥα(π̂−)with α = 0.05 and M = 100 repli
ations), lower and upper bounds π̂− and π̂+ for π(isr only) and times of exe
ution (in se
onds).data set model µ̂ π̂ or λ̂ l p̂-value #µ π̂− π̂+ timesFootball isr (1, 2, 4, 3) 0.834 -88.53 0.001 1 0.794 0.891 2Mallows (1, 2, 4, 3) 1.106 -89.17 0.001 1 - - 1Cinema isr (4, 3, 2, 1) 0.723 -111.97 0.042 14 0.630 0.794 4Mallows (4, 3, 2, 1) 0.628 -112.12 0.029 2 - - 1Rugby isr (2, 4, 1, 3) 0.681 -58.68 0.538 12 0.585 0.765 3Mallows (2, 4, 1, 3) 0.528 -58.33 0.395 2 - - 2Words isr (2, 5, 4, 3, 1) 0.879 -275.43 0.001 1 0.762 0.897 6Mallows (2, 5, 4, 3, 1) 1.431 -251.27 0.019 1 - - 2Sports isr (1, 3, 2, 4, 5, 7, 6) 0.564 -1102.12 0.999 1 0.534 0.836 1069Mallows (1, 3, 4, 2, 5, 6, 7) 0.083 -1102.84 0.045 11 - - 187Firstly, we note that the isr model estimation 
an be a
hieved in a reasonabletime (
olumn �times�, obtained with a Bi Xeon pro
essor running at 3.0GHz and32GB of RAM) with a program1 in r, although greater than Mallows Φ modelestimation (in 
): Only few se
onds until �ve obje
ts to rank, less than 20 minutesfor 7 obje
ts. This estimation time is allo
ated as follows: About 1% for the strategyleading to redu
e the number of possible referen
e ranks (Se
tion 5.2), 98% for a pre-pro
essing step 
onsisting of the 
omputation of the terms G(x, y, µ) and A(x, y) forall observed ranks x, all retained referen
e ranks µ and all presentation orders y, and�nally only 1% for the EM algorithm. Sin
e the pre-pro
essing step is done by threenested loops (on x, y and µ), we 
an expe
t that a 
 program 
an drasti
ally redu
ethe 
orresponding 
omputing time su
h that we 
an deal with 9, perhaps 10, obje
tsin few minutes (re
all that m = 10 is the �optimality limit� for isr). Contributing tothe redu
tion of the 
omputing time, the strategy sele
ting the number of possiblereferen
e ranks to explore (Se
tion 5.2) is very e�e
tive. Indeed, only one 
andidatefor µ has been sele
ted by this strategy for the three data sets Football, Words andSports (Column �#µ�). Con
erning the Mallows Φ model, the estimation of µ is1Software available on the authors website: http://math.univ-lille1.fr/∼ja
ques/soft.html13




arried out by a quite empiri
al iterative lo
al resear
h (in the sense of the Kendalldistan
e) around the modal rank [FV88℄ whi
h appears to be e�e
tive yet.We dis
uss now the meaningful interpretation of isr parameters. For ea
h ofthe Football and Cinema quizzes, the estimation of the referen
e rank µ 
oin
ideswith the real rank. This underlines that the right answers are, on the whole, knownby this population of students, and the a

ura
y level of students knowledge inthese areas is re�e
ted by the probability π of well paired 
omparison: 0.834 forthe Football quiz and 0.723 for the Cinema one. Thus, these students have betterknowledge in Football than in Cinema. The isr model estimation on the Rugbydata set enhan
es a natural ranking between these four nations: During this timeS
otland were the best, then Walles, England and �nally Ireland. But the low valueof the probability π (0.681) means that this ranking was not very �agrant. On theopposite, the high value of π (0.879) for the Fligner and Verdu

i's Word data setshows that the questionned students overall had the same thinking for the asso
iationwith the word Idea: Play is the least asso
iated then Attention, Dream, Theory and�nally Thought is the most asso
iated. The last dataset is also very interesting. Thereferen
e rank (1, 3, 2, 4, 5, 7, 6) estimated for the isr model re�e
ts a preferen
e ofthe students at the University of Illinois for 
olle
tive sports: Baseball, Basketballand Football are at the top three pla
es while individual sports are at the end of theranking: Cy
ling, Jogging and Swimming. Tennis, whi
h is intermediate betweena 
olle
tive sport and an individual sport, is rationally ranked between these twogroups.From the Mallows Φ parameters point of view, most results are highly 
onsistentwith isr: Main modal ranks are identi
al and the dispersion parameter λ is also well
orrelated with π, though λ is more abstra
t and 
ould be less easy to understandby a pra
titioner. Only the modal rank of the last data set (Sports data set) di�ers:The Mallows Φ model 
lassi�es Tennis inside the 
olle
tive sports 
olle
tion insteadof being put at the borderline of 
olle
tive and individual sports, as isr does.6.3 Spe
i�
ity and 
oheren
e of isrHere, we propose to exploit a spe
i�
ity of the isrmodel: It is possible to retrieve in-formation on the order with whi
h the obje
ts to rank have been presented. For thispurpose, we propose to 
ompute for ea
h possible y ∈ P its probability 
onditionallyto the observed sample (x1, . . . , xn) and to the fa
t that all ranks of this sample havebeen generated with the same presentation order: p(y|x1, . . . , xn, y1 = . . . = yn).Thus, if there exists a 
ommon presentation order, we 
an expe
t to retrieve onerank with a high probability 
ompared to the others, and in the 
ontrary 
ase, theprobabilities must be more equidistributed. Figure 2 displays these probabilities forea
h possible presentation order y. In fa
t only the half of P is taken into 
onsider-ation sin
e the relative presentation order of the �rst two obje
ts has no importan
e(last remark in Se
tion 3). On this �gure the probabilities are ranked by de
reasingorder of importan
e, and only the twenty largest are presented for the dataset with
m > 4.As expe
ted, for the two Football and Cinema quizzes, where we know that14
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i's Words asso
iation data set, and LouisRoussos's Sport ranking.
15



the obje
ts have been presented in the same order for all the students (re
all it is aquizz the authors have built), we retrieve the fa
t that one presentation order is moreprobable than the other. Clearly, the same result is also obtained for the Flignerand Verdu

i's Words and the Louis Roussos's Sports data sets, whi
h suggests thatexa
tly the same quizz has been also presented to all students. Finally, for theRugby dataset, where no presentation order exists with as mu
h eviden
e (re
allit is not a quizz), the probabilities of the presentation orders are more balan
ed.These experiments highlight the high 
oheren
e of isr sin
e it is able to retrievesome important but hidden information in the data.Remark However, we have noti
ed that isr fails in retrieving the true initialordering y for the �rst two quizzes (we know y for both). This observation will leadto interesting 
omments for future resear
h dire
tions in the dis
ussion of the lastse
tion below.7 Dis
ussionIn this paper we suggest to 
onsider rank data as the result of a paired 
ompar-isons sorting algorithm, where the possibility of wrong 
omparisons exists and 
anbe randomly modelized. It opens a new way for proposing many distributions onrankings, all of them bene�ting from very meaningful parameters (the referen
e rank
µ and the probability π of good paired 
omparison) and also allowing to retrievethe latent initial rank y at the beginning of the pro
ess. Considering the 
ase of
m ≤ 10 obje
ts to rank and aiming to minimize the number of paired 
omparisonsfor avoiding as mu
h as possible the potential wrong 
omparisons, the insertion sort-ing algorithm has been retained in this paper for its optimality in this 
ontext. Theresulting distribution, the so-
alled isr, has been established and many desirableproperties have been pointed out. In addition, the latent variable interpretation ofthe model allows to derive a spe
i�
 EM algorithm whi
h 
an be easily a

eleratedby drasti
ally redu
ing the number of potential referen
e ranks µ to 
onsider.Thus, the insertion sorting algorithm 
an be view as a �rst step in this new 
lassof models, 
hoi
e guided by optimality arguments. However, a sele
tion sorting pro-
edure 
an be for instan
e 
loser to the pro
ess followed by human judges and a�rst perspe
tive of this work should be to establish the distribution and the 
orre-sponding properties in this 
ase. This intuition is 
orroborated by the fa
t that theMallows Φ model, whi
h is somewhat based on a sele
tion sorting algorithm, appearsto be a hard 
ompetitor for the isr model in our previous experiments. Moreover,this 
ould be the reason for whi
h we fail in retrieving exa
tly whi
h presentationorder has been used for the data sets studied in Se
tion 6. For many obje
ts tosort (m ≥ 10), we 
an alternatively 
onsider other pro
edures as the qui
k sort, andso on. Note that, for �high� m values, a parti
ular attention should be paid to the
omputation 
ost involved in our models.Another interesting prospe
t initialized by the present work is the possibility toin
lude some information about the initial ranking y in the model and its 
orre-16



sponding estimation. Indeed, in questionnaires this initial order is often known andit is a useful information whi
h 
an be naturally used by our 
lass of models. Itis also possible to 
onsider some more di�use information about y, for instan
e toignore the exa
t y value but to know that all y are the same for all questionnaires (re-alisti
 situation for many ranks 
oming from quiz studies), or other realisti
 variants[BJ10℄.Although the isr is unimodal (as many other distributions for ranks), multi-modality 
an be easily taking into a

ount through mixture of isr distributionsand a spe
i�
 identi�ability study. For instan
e, we 
an think that in our footballquiz, girls and boys responses will probably not follow the same distribution, as itis suggested by the quite low estimated p-value [JB10℄.At last, there is also a need to adapt our models to other situations than fullrank data. This approa
h needs to be extended to other types of ranks, frequentlyen
ountered in pra
ti
e, as partially ranked data, tied data or even ranks resultingfrom multiple preferen
e responses.A Building the isr distributionThe goal of this appendix is to prove that Formula (3.1) 
orresponds to the sto
hasti
left insertion sorting algorithm with probability π of good paired 
omparison andindependen
e between the paired 
omparisons. The notations are those de�ned inSe
tion 3.Proof. Let x(j) be the ordering of the j (1 ≤ j ≤ m) �rst obje
ts in y in the orderimposed by x (so x(m) = x). An example of this notation is in Table 1. Thus, thereexists the following relationship between x(j) and x(j−1):
x(j) = (x

(j−1)
1 , . . . , x

(j−1)

A−

j
(x,y)

, yj, x
(j−1)

A−

j
(x,y)+1

, . . . , x
(j−1)
j−1 ).Formula (3.1) is now proved by indu
tion on j. It is true for j = 1 while there isonly one obje
t y1 to sort: p(x(1)|y; µ, π) = 1. Sin
e the result of the ranking x(j)from x(j−1) is the result of Aj(x, y) independent Bernoulli experiments of parameter

π, then, 
onditionally to x(j−1), the probability of x(j) isp(x(j)|x(j−1), y; µ, π) = πGj(x,y,µ)(1 − π)Aj(x,y)−Gj(x,y,µ).We 
on
lude the proof by noti
ing thatp(x(j)|y; µ, π) = p(x(j)|x(j−1), y; µ, π)p(x(j−1)|y; µ, π),from the following impli
ation relationship between events: x(j) ⇒ x(j−1).B LemmasLemma B.1. Let ẽ = (2, 1, 3, . . . , m) be the permutation inverting the �rst twoelements. For all x, y, µ ∈ P and π ∈ [0, 1], p(x|y; µ, π) = p(x|yẽ; µ, π).17



Proof. We use notations x(j) already introdu
ed in Appendix A. The key point of theproof is to noti
e that the �rst two obje
ts in y lead to the same paired 
omparison atthe se
ond step of the sorting pro
ess whatever is their order in y, so p(x(2)|yẽ, π) =p(x(2)|y, π). Combining this result with the fa
t that p(x|x(2), yẽ, π) = p(x|x(2), y, π),sin
e ẽ only a�e
ts the �rst two obje
ts, 
on
ludes the proof.Lemma B.2. For all x, y, τ ∈ P, A(x, y) = A(τx, τy).Proof. First we prove that A−
j (x, y) = A−

j (τx, τy). For any j = 1, . . . , m, we have(noti
e that i is always su
h that 1 ≤ i < j)
A−

j (τx, τy)

= #{i : (τx)−1
(τy)i

< (τx)−1
(τy)j

} = #{i : (x−1τ−1τy)i < (x−1τ−1τy)j}

= #{i : (x−1y)i < (x−1y)j} = #{i : x−1
yi

< x−1
yj
} = A−

j (x, y).By noti
ing that A+
j (x, y) = 1{A−

j (x, y)+1 ≤ j−1} we dedu
e also that A+
j (x, y) =

A+
j (τx, τy). Consequently, Aj(x, y) = Aj(τx, τy) and, so, A(x, y) = A(τx, τy).Lemma B.3. For all x, y, µ, τ ∈ P, p(x|y; µ, 1

2
) = p(τx|τy; µ, 1

2
).Proof. When π = 1

2
, we obtain by using Lemma B.2p(τx|τy; µ, 1

2
) =

(

1
2

)A(τx,τy)
=
(

1
2

)A(x,y)
= p(x|y; µ, 1

2
).Lemma B.4. For all x, y, µ ∈ P G(x, y, µ̄) = A(x, y) − G(x, y, µ).Proof. Let ē be the permutation of total inversion previously introdu
ed in Se
-tion 4.2 and i, i′ = 1, . . . , m, i 6= i′. We �rst prove that G−

j (x, y, µ̄) = A−
j (x, y) −

G−
j (x, y, µ). Using su

essively the fa
t that µ̄ = µē, ē = ē−1, {i < i′ ⇔ ēi > ēi′}and i 6= i′, we have

δii′(µ̄)

= 1{(µē)−1
i < (µē)−1

i′ } = 1{ē−1

µ−1
i

< ē−1

µ−1
i′

} = 1{ēµ−1
i

< ēµ−1
i′
}

= 1{µ−1
i > µ−1

i′ } = 1 − 1{µ−1
i < µ−1

i′ } = 1 − δii′(µ),we dedu
e then that:
G−

j (x, y, µ̄) =
∑

i∈A−

j
(x,y)

(1 − δyiyj
(µ)) = A−

j (x, y) − G−(x, y, µ).In a similar way, we 
an prove that G+
j (x, y, µ̄) = A+

j (x, y)−G+
j (x, y, µ). The prooffollows immediately from these two results.Lemma B.5. For all x, µ ∈ P, x 6= µ and π > 1

2
, p(x; µ, π) < p(x; x, π).18



Proof. Remark �rst that G(x, y, µ) < A(x, y) for µ 6= x. Sin
e {π > 1
2
⇔ 1−π < π},we dedu
e for µ 6= x that p(x|y; µ, π) < πA(x,y). Noti
e also that G(x, y, x) = A(x, y),thus p(x|y; x, π) = πA(x,y). Consequently, we have p(x|y; µ, π) < p(x|y; x, π) and theproof is 
on
luded by averaging over all possible presentation orders y in P.Lemma B.6. For all µ, y ∈ P, m − 1 ≤ A(µ, y) ≤ m(m − 1)/2.Proof. Left bound: There is no 
omparison when the �rst element arises and at leastone 
omparison for the m − 1 others. Right bound: There is still no 
omparisonwhen the �rst element arises and at most j − 1 
omparisons at the jth step for ea
hnew obje
t to rank, so A(µ, y) ≤

∑m
j=1(j − 1) = m(m − 1)/2.C Quiz data setsTable 3: Quiz answers of the 40 students.Cinema Footballordering frequen
y ordering frequen
y

(4, 3, 2, 1) 10 (1, 2, 4, 3) 20
(4, 2, 3, 1) 9 (1, 4, 2, 3) 12
(3, 2, 4, 1) 4 (2, 4, 1, 3) 2
(3, 4, 2, 1) 3 (3, 1, 4, 2) 2
(1, 3, 2, 4) 2 (3, 4, 2, 1) 2
(1, 3, 4, 2) 2 (3, 2, 1, 4) 1
(2, 3, 1, 4) 2 (4, 2, 1, 3) 1
(3, 1, 4, 2) 2 other 0
(1, 2, 3, 4) 1
(2, 3, 4, 1) 1
(2, 4, 3, 1) 1
(3, 2, 1, 4) 1
(4, 1, 2, 3) 1
(4, 3, 1, 2) 1other 0
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