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A generative model for rank data based on sortingalgorithmChristophe Biernaki a, Julien Jaques aAbstratRank data arise from a sorting mehanism whih is generally unobservable for the statisti-ian. Retaining the insertion sorting algorithm beause of its well known optimality propertiesand ombining it with a natural stohasti error in the pair omparison proess allows to pro-pose a parsimonious and meaningful parametri generative model for rank data. Its theoretialproperties are studied like unimodality, symmetry and identi�ability. In addition, maximumlikelihood priniple an be easily performed through an EM algorithm thanks to an unobservedlatent variables interpretation of the model. Finally, an illustration of adequay between theproposed model and rank data resulting from a general knowledge quiz suggests the relevaneof our proposal. RésuméLes données de rang sont le résultat d'un proessus de tri généralement non observablepar le statistiien. En retenant un algorithme de tri par insertion pour ses propriétés d'opti-malité et en introduisant une erreur stohastique dans le proessus de omparaison par paire,nous proposons un modèle génératif parimonieux pour les données de rang. Ses propriétésthéoriques omme l'unimodalité, la symétrie et l'identi�abilité sont étudiées. L'estimation desparamètres du modèle par maximum de vraisemblane utilisant l'algorithme EM est présen-tée. En�n, une illustration de l'adéquation du modèle proposé sur un jeu de données réellesrésultant d'un quiz de ulture générale met en évidene l'intérêt de notre proposition.Key words and phrases. EM algorithm, insertion algorithm, quiz data, rank data, sorting proess.
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1 IntrodutionRanking data are of great interest in human ativities involving preferenes, attitudes or hoieslike Web Page ranking, Sport, Politis, Eonomis, Eduational Testing, Biology, Psyhology, So-iology, Marketing, et. Ranks are so meaningful that it is not unusual they result from a trans-formation of other kinds of data.Rank data are multivariate but highly strutured data. So, beyond standard but general data ana-lysis methods (means, fator analysis, et.), some spei� desriptive methods whih respets thisstruture have been proposed, for instane the permutation polytope for plotting the rank vetorsin Eulidean spae [16, 17℄ or also suitable distanes for de�ning the entre and spread of a dataset[9, 13, 7℄.From an inferene point of view, distanes are useful for testing the distribution of these data (uni-formity, populations omparison [6, 14℄) or for modeling the distribution itself (for instane theMallows Φ model relies on the Kendall distane [9, 3℄). More generally, parametri probabilistimodels, if relevant and allowing easy parameter interpretation, are useful for summarizing andunderstanding suh quite omplex data and are a basis tool for density estimation, predition orlustering. Major rank data models date from the mid 20th entury and most of the urrent workson the topi uses these models. Pointing out that a rank data is the result of a sorting proess, wesuggest in this paper a generative model for rank data, based on a modeling of the sorting proesswhih aims to be optimal in a sense explained in the next setion.So, Setion 2 is devoted to the notation and the interpretation of usual rank data models as themodeling of partiular sorting algorithms. Setion 3 introdues the proposed model whih is basedon an insertion sorting algorithm, and its theoretial properties (unimodality, symmetry, identi-�ability) are detailed in Setion 4. Maximum likelihood estimation is onsidered in Setion 5 bythe mean of an EM algorithm sine a missing data interpretation of the proposed model an bepointed out, and numerial illustrations are presented in Setion 6 to evaluate the relevane of thenew model both from distributional visualization point of view and from adequay to some realdata sets. A disussion on the numerous perspetives onludes this work in Setion 7.2 Notation and usual rank data modelsThe rank datum, whih is the statistial unit of interest in this paper, results from a ranking of
m objets O1,O2, . . . ,Om by a judge (human or not). Two representations of these data are om-monly used : Ranking or ordering. The ranking representation x−1 = (x−1

1 , x−1
2 , . . . , x−1

m ) ontainsthe ranks given to the objets, and means that O1 is in the x−1
1 -th position, O2 is in the x−1

2 -thposition, an so forth. A ranking is then an element of Pm, the set of permutations of the m �rstintegers. The ordering representation x = (x1, x2, . . . , xm) is also an element of Pm and signi�esthat objet Ox1 is the �rst, objet Ox2 is the seond, et. Let onsider the following example toillustrate these two notations : A judge, whih has to rank by preferene order three holidaysdestinations (O1 = Campaign, O2 = Mountain and O3 = Sea), ranks �rst Sea, seond Campaign,and last Mountain. The ordering result of the judge is x = (3, 1, 2) whereas the ranking result is
x−1 = (2, 3, 1). In the following both ordering and ranking notations will be used for rank data.The two most popular lasses of models for rank data onsist in modeling diretly the hypothe-tial ranking proess followed by the judge. For a omplete review, refer to [14, Chap. 5 to 10℄. The�rst lass is derived from a paired omparison proess [10℄ : The judge onstruts a rank by �rstomparing eah pair of objets, and seond ensuring the onsisteny of these paired omparisons(if O1 is prefered to O2 and O2 to O3, O1 must be prefered to O3). It follows the Babington Smithmodel for a rank x : pr(x) ∝

∏

1≤i<j≤m

pij ,with pij the probability that Oi is prefered to Oj , and where the proportionality is due to the needof onsisteny of the paired omparisons. The number of parameters of this model being very large,espeially when m grows, some simpli�ations have been onsidered. [2℄ assoiate to eah objet
Oj a sore vj indiating an overall degree of preferene of this objet, and onnet these sores to1



pij by pij = vi/(vi + vj), whih de�nes the Bradley�Terry�Mallows model. [13℄ goes forward intothe simpli�ation by imposing that pij only depends on the sign of i− j, whih leads to the famousMallows Φ model. A property of this latter is that it an be linked to the Kendall distane betweentwo rankings [9, 3℄.The seond popular lass of rank data models is multistage models, whih onsiders the followingiterative ranking proess : The judge selets �rstly the best objet among the m ones, then thebest among the m − 1 remaining ones, and so forth. Noting vi the probability that Oi is ranked�rst among the m objets, the orresponding Plakett-Lue model [12, 15℄ de�nes the probabilityof a rank x as pr(x) =
m
∏

j=1

vxj

vxj
+ vxj+1 + . . . + vxm

.The term in the produt means the probability that Oxj
is ranked �rst among objets Oxj

to Oxm
.It ould be notied that this model orresponds to a Thurstonian model [18, 1℄ with a Gumbel den-sity. [7, 8℄ introdue an alternative multistage model by onsidering another form of the probabilityat eah step of the ranking proess. The model deriving from this parametrization is partiularlyinteresting beause it leads, for a speial value of its parameter, to the Mallows Φ model.The ranking proesses whih have motivated these two lasses of rank data models an beinterpreted as two di�erent sorting proesses, in whih stohasti errors are introdued to de�nea probability distribution on the whole rank data spae. The natural question involved by thisinterpretation is whether the sorting algorithms used are the most appropriate. E�etively, inpaired omparison models it seems not optimal to do so muh omparisons sine it leads to asorting algorithm with exessively high omputational omplexity. In pratie a human judge wouldprobably not exhaustively proeed to all paired omparisons. For multistage models, the rankingproess an be likened to a seletion sorting algorithm. Even if this sorting algorithm is one of themost simple, it is well known for its lak of optimality [11℄. Here, we propose a generative model forrank data based on the (straight) insertion sorting algorithm, whih is one of the most powerfulamong the usual sorts when m ≤ 10 [11, Chap. 5℄. In addition, our proposal is potentially ableto take into aount the presentation order of the di�erent objets to the judge, realisti situationwhih an have an impat on the resulting rank.3 A generative model for rank data based on an insertionsortingWe assume there exists an ordering µ = (µ1, . . . , µm) on the m objets, so that a judge whoperfetly sorts these objets returns this referene rank µ. Moreover, we assume that the judgeadopts one of the best sorting strategy for a small number of objets (m ≤ 10), whih is theinsertion sorting algorithm. We also introdue the possibility for the judge of making mistakesregarding to µ in his sorting, and suh mistakes will be modeled by a random event in pairedomparison. Merging both deterministi insertion algorithm and the random paired omparisonleads to a meaningful generative model for rank data that is now presented at length.Let the ordering σ = (σ1, . . . , σm) be the presentation order of the objets to the judge, thislatter using an insertion sorting algorithm to rank these objets. The urrent objet to be sortedis plaed on the left of the already sorted objets, and is ompared to the �rst objet on its right.If the relative position of both objets in this pair is orret (aording to µ), this pair order isunhanged and the next objet in σ is inserted far left. Otherwise, the pair order is reversed and anew pair omparison is performed with the next objet on the right (if it exists). And so forth. Theresult of this deterministi sorting algorithm would be µ if the judge was perfet. However, nonejudge is perfet and the mistakes he/she/it an do leads to a given rank x = (x1, x2, . . . , xm), whihould be di�erent from µ. Sine the sorting algorithm by insertion onsists solely of a sequene ofomparisons of pairs of objets, it is natural to model the reliability of the judge for the ranking bythe risk of wrongly order a pair of objets. Eah pair omparison an be interpreted as the resultof a Bernoulli experiment whose outome is a orret omparison (aording to µ) with probability2



p and an inorret omparison with probability 1 − p. Moreover, it is reasonable to assume thateah pair ranking operation is independent of the others. Based on this modeling of a stohastiinsertion sorting, the �rst natural question is to alulate the probability pr(x|σ; µ, p) to obtaina rank x from an initial presentation order σ and a referene rank µ. To do so, let introdue thefollowing notations, where j = 1, . . . , m denotes the step in the sorting algorithm onsisting ofranking the objet Oσj
. The notations and their use in the proposed sorting algorithm are bothillustrated in Table 1.� δii′(µ) = 1{µ−1

i < µ−1
i′ }, whih is equal to 1 if Oi is orretly ranked before Oi′ (aordingto µ), 0 otherwise (i, i′ = 1, . . . , m, i 6= i′).� j−(x, σ) = {i : x−1

σi
< x−1

σj
, 1 ≤ i < j} is the set of the indies of the presentation order σ forwhih the already sorted objets Oσ1 , . . . ,Oσj−1 are ranked in x before the urrent objet

Oσj
, and onsequently on its left. Its ardinal #j−(x, σ) is onsequently the number of allomparisons of the urrent objet with the objets already ranked (aording to x) on itsleft, if they exist.� j+(x, σ) = {i : i = argmin1≤i′<j{i

′ : x−1
σi′

> x−1
σj

}} is the index of the rank σ designatingthe objet sorted in x just after (so on the right of) Oσj
among the already sorted objets

Oσ1 , . . . ,Oσj−1 . This set has at most one element. Its ardinal #j+(x, σ) indiates that theurrent objet Oσj
has been ompared with the objet ranked (aording to x) just on itsright, if it exists.� η−

j (x, σ, µ) =
∑

i∈j−(x,σ) δσiσj
(µ) is the number of good omparisons (aording to µ) of theurrent objet Oσj

with the objets already ranked on its left, if they exist.� η+
j (x, σ, µ) =

∑

i∈j+(x,σ) δσjσi
(µ) is the indiator of good omparison (aording to µ) of theurrent objet Oσj

with the objet already ranked just on its right, if it exists.Tab. 1 � An example to illustrate both the notations and the insertion sorting proess with
µ = (1, 2, 3), σ = (1, 3, 2), and x = (3, 1, 2). The notation x(j), de�ned in Appendix 1, means theranking of the j �rst objets in σ in the order imposed by x.step j j−(x, σ) #j−(x, σ) j+(x, σ) #j+(x, σ) η

−

j
(x, σ, µ) η

+
j

(x, σ, µ) x(j)1 {} 0 {} 0 0 0 (1)2 {} 0 {1} 1 0 0 (3, 1)3 {3, 1} 2 {} 0 1 0 (3, 1, 2)With these notations, the probability to obtain a rank x from a initial presentation order σ is :
pr(x|σ; µ, p) =

m
∏

j=1

pη
−

j
(x,σ,µ)(1 − p)#j−(x,σ)−η

−

j
(x,σ,µ)

pη
+
j

(x,σ,µ)(1 − p)#j+(x,σ)−η
+
j

(x,σ,µ). (1)The proof of this formula is given in Appendix 1. The �rst term pη
−

j
(x,σ,µ)(1− p)#j−(x,σ)−η

−

j
(x,σ,µ)orresponds to the probability of shifting #j−(x, σ) times to the right the objet Oσj

oming at thestep j, and the seond term pη
+
j

(x,σ,µ)(1 − p)#j+(x,σ)−η
+
j

(x,σ,µ) is the probability for this objet ofbeing no longer shifted to the right. Finally, if the presentation order is unknown but of probability
pr(σ), the marginal distribution of x is given by :

pr(x; µ, p) =
∑

σ∈Pm

pr(x|σ; µ, p)pr(σ). (2)In this paper, we assume the presentation orders are uniformly distributed, and then pr(σ) = 1/m!for all σ ∈ Pm. In the following the rank data model de�ned by Distribution (2) will be named isrfor Insertion Sorting Rank data model. We will note shortly isr(µ, p) this model and its assoiatedparameters.4 Properties of the isr modelIn this setion the main properties of the isr model are stated : The possibility for the isr dis-tribution to be uniform for a speial value of p, the existene of modal and anti-modal ranks, the3



symmetry of the isr distribution, and �nally its identi�ability. The proofs relie on applying permu-tation properties on both ranking and ordering notations on Pm. In the following, the omposition
τ ◦ σ is noted shortly τσ and the set {σ1, . . . , σm!} desribes all possible ranks in Pm.4.1 Uniformity of the isr distribution for p = 1/2Proposition 1 proves the uniformity for p = 1/2, and requires Lemma 8 of Appendix 2.Proposition 1. If p = 1/2, for all x, µ ∈ Pm then pr(x; µ, 1/2) = 1/m!.Démonstration. Let σ1 be a given permutation of Pm, and for any permutation σs of Pm, let τsbe the only permutation suh that : σ1 = τsσs (s = 1, . . . , m!). The probability of x aording toisr(µ, 1/2) is :

pr(x; µ, 1/2) =
1

m!

m!
∑

s=1

pr(x|σs; µ, 1/2)

=
1

m!

m!
∑

s=1

pr(τsx|τsσs; µ, 1/2) (Lemma 8)
=

1

m!

m!
∑

s=1

pr(τsx|σ1; µ, 1/2).The proof is onluded by noting that ∑m!
s=1 pr(τsx|σ1; µ, 1/2) = 1 beause p(.|σ1; µ, 1/2) is aprobability distribution on Pm and {τsx : τs ∈ Pm} = Pm.4.2 Mode and anti-mode of the isr distributionWe prove in this setion one of the most important properties whih an be expeted from theisr distribution : The referene rank µ is the unique mode of the distribution if p > 1/2 (Proposition2). Let µ̄ be de�ned by µ̄ = µρ where ρ = (m, . . . , 1) is the permutation of total inversion. Thisrank µ̄ is the furthest from µ for the Kendall distane. We symetrially prove in this setion thatthe unique anti-mode (the rank of smallest probability) is µ̄ if p > 1/2 (Corollary 3). Proofs requireLemmas 6 and 7 of Appendix 1.Proposition 2. If p > 1/2, for all x, µ ∈ Pm, x 6= µ, we have pr(µ; µ, p) > pr(x; µ, p).Démonstration. Let τ be the only permutation suh that µ = τx. The probability of x aordingto isr(µ, p) is :

pr(x; µ, p) =
1

m!

m!
∑

s=1

p
P

m
j=1 η

−

j
(x,σs,µ)+η

+
j

(x,σs,µ)

(1 − p)
P

m
j=1 #j−(x,σs)+#j+(x,σs)−η

−

j
(x,σs,µ)−η

+
j

(x,σs,µ)

<
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(x,σs)+#j+(x,σs)(beause p > 1/2 ⇔ p > 1 − p and x 6= µ)

=
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(τx,τσs)+#j+(τx,τσs) (from Lemmas 6 et 7)

=
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(µ,σ′s)+#j+(µ,σ′s) (with σ′s = τσs)

= pr(µ; µ, p).The last line omes from the fat that σ′s and σs are in bijetion, #j−(µ, σs) = η−
j (µ, σs, µ) andalso #j+(µ, σs) = η+

j (µ, σs, µ).Corollary 3. If p > 1/2, for all x, µ ∈ Pm, x 6= µ̄, we have pr(µ̄; µ, p) < pr(x; µ, p).The proof, symmetrial to that of Proposition 2, is left to the reader.4



4.3 Symmetry of the isr distributionIn this setion the symmetry of the isr distribution is proved. The sense of this symmetry is thefollowing : If the judge sorts the objets aording to the isr distribution with parameters (µ, p),the same sorting will be obtain (in distribution) with parameters (µ̄, 1− p) (Proposition 4 below).This property will be espeially useful in order to exhibit the identi�ability onditions of the isrdistribution in the next setion. Proposition 4 requires Lemmas 9 and 10 in Appendix 2.Proposition 4. For all x, µ ∈ Pm, we have pr(x; µ̄, 1 − p) = pr(x; µ, p).Démonstration. The probability of x aording to isr(µ̄, 1 − p) is :
pr(x; µ̄, 1 − p) =

1

m!

m!
∑

s=1

(1 − p)
P

m
j=1 η

−

j
(x,σs,µ̄)+η

+
j

(x,σs,µ̄)

×p
P

m
j=1 #j−(x,σs)+#j+(x,σs)−η

−

j
(x,σs,µ̄)−η

+
j

(x,σs,µ̄)

=
1

m!

m!
∑

s=1

(1 − p)
P

m
j=1 #j−(x,σs)−η

−

j (x,σs,µ)+#j+(x,σs)−η
+
j (x,σs,µ̄)

×p
P

m
j=1 #j−(x,σs)+#j+(x,σs)

×p
Pm

j=1 −(#j−(x,σs)−η
−

j
(x,σs,µ))−(#j+(x,σs)−η

+
j

(x,σs,µ))

=
1

m!

m!
∑

s=1

(1 − p)
Pm

j=1 #j−(x,σs)−η
−

j
(x,σs,µ)+#j+(x,σs)−η

+
j

(x,σs,µ̄)

×p
Pm

j=1 η
−

j
(x,σs,µ)+η

+
j

(x,σs,µ)

= pr(x; µ, p).4.4 Identi�ability of the isr distributionA neessary identi�ability ondition is immediatly suggested by Propositions 1 and 4 : Theuniformity for p = 1/2 of the isr distribution and its symmetry lead to impose p > 1/2. Thesu�ieny of this ondition is proved in the next proposition. Its proof needs Lemma 11 of Appendix2.Proposition 5. The isr distribution is identi�able sine p > 1/2.Démonstration. As the isr model has two parameters, the probability p and the referene rank µ,the identi�ability problem an onern only one of these two parameters or both.� Firstly there exists none ouple (µ, µ′) ∈ P2
m with µ 6= µ′ suh that pr(x; µ, p) = pr(x; µ′, p)for any x ∈ Pm and any p > 1/2. Indeed, hoosing x = µ, from Lemma 11 we have

pr(µ; µ, p) 6= pr(µ; µ′, p).� Seondly, for a given µ ∈ Pm, assume there exists p 6= p′ suh that pr(x; µ, p) = pr(x; µ, p′)for any x ∈ Pm. In partiular, for x = µ, Equation (9) in the proof of Lemma 11 leads to
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(µ,σs)+#j+(µ,σs) =

1

m!

m!
∑

s=1

p′
Pm

j=1 #j−(µ,σs)+#j+(µ,σs)
. (3)The strit inreasing of the funtion p 7→ pn on the interval [ 12 , 1] for all n ∈ N
∗ ensures that

p = p′.� Assume �nally there exists (µ, µ′) ∈ P2
m with µ 6= µ′ and p < p′ suh that p(x; µ, p) =

p(x; µ′, p′) for any x ∈ Pm. From Equations (9) and (10) in the proof of Lemma 11 we havewith x 6= µ

pr(x|σ; µ, p) < p
Pm

j=1 #j−(x,σ)+#j+(x,σ)

< p′
P

m
j=1 #j−(x,σ)+#j+(x,σ)

= pr(x|σ; x, p′)5



and then by averaging over all σ in Pm

pr(x; µ, p) < pr(x; x, p′).Choosing x = µ′ ensures the identi�ability of the isr model.5 Estimation of the model parametersThe isr model for rank data has two parameters : The probability p, whih is a real in [1/2, 1]and the referene rank, or modal rank, µ, whih an take its values in Pm. Note that the ase
p = 1/2 is kept although this is a non-identi�ability situation beause it leads to the uniformity ofthe isr distribution, what an be of interest for pratial appliations. We present in this setionmaximum likelihood estimation.Let (x1, . . . , xn) be a sample of n ranks. The log-likelihood of the isr model is :

l(θ) =

n
∑

i=1

ln

(

1

m!

m!
∑

s=1

pr(xi|σs; µ, p)

)

, (4)with θ = (µ, p). As the presentation orders σ are unknown, we use the EM algorithm [4℄ to maximizethis oberved data log-likelihood. The ompleted log-likelihood is :
lc(θ) =

1

m!

n
∑

i=1

m!
∑

s=1

ζis ln
(

pr(xi|σs; µ, p)
)

, (5)where ζis is a random variable equal to 1 is the rank xi is the result of a sorting with σs aspresentation order, 0 otherwise. The EM algorithm is an iterative proedure omposed of twosteps, whih intends to maximize this ompleted log-likelihood. Let θ(q) = (µ(q), p(q)) be a urrentvalue of the parameters (q ∈ N), θ(0) being the starting parameter of EM.The E step onsists in omputing the onditional expetation of the ompleted log-likelihood :
Q(θ, θ(q)) = Eθ(q) [lc(θ)|x

1, . . . , xn] =
1

m!

n
∑

i=1

m!
∑

s=1

τ
(q)
is ln

(

pr(xi|σs; µ, p)
)where

τ
(q)
is = Eθ(q) [ζis|x

1, . . . , xn] =
pr(xi|σs; µ(q), p(q))

∑m!
r=1 pr(xi|σr; µ(q), p(q))is the onditional probability for the rank i to be the result of a sorting with σs as presentationorder.The M step of the EM algorithm onsists in hoosing the value θ(q+1) whih maximizes the ondi-tional expetation Q omputed at the E step :

θ(q+1) = argmax
θ∈Θ

Q(θ; θ(q))where Θ is the parameter spae Pm × [1/2, 1]. As the parameter spae Pm for µ is disrete, themaximization onsists simply, but potentially omputationally expensively, of browsing the entire
Pm. However in pratie, thanks to the symmetry of the isr distribution, it is enough to browsethe half of Pm. For the probability p, maximizing Q leads to the following maximum :

p(q+1) =

∑n

i=1

∑m!
s=1 τ

(q)
is

∑m

j=1 η−
j (xi, σs, µ(q)) + η+

j (xi, σs, µ(q))
∑n

i=1

∑m!
s=1 τ

(q)
is

∑m

j=1 #j−(xi, σs) + #j+(xi, σs)
.Note that this value of p(q+1) an be interpreted as the proportion of good manipulations (swithingto the right or stop) in the insertion sorting algorithm.6



6 Numerial illustration6.1 Visualising the isr distributionLikening a ranking x−1 = (x−1
1 , . . . , x−1

m ) to an element of R
m, the representation of all rankson a polytope lives only in a subspae of dimension m − 1, sine the knowledge of the m − 1 �rstomponents x−1

1 , . . . , x−1
m−1 imposes the last one x−1

m . A polytope representation of the distribution[16, 17℄ is then interesting when the number m of objets to rank is lower or equal to 4. Conventionalrepresentation of these polytopes links ranks of Kendall distane equal to 1 [14℄. Figure 1 shows twogeneri permutation polytopes for m = 4 and p = 0.6 or p = 0.9, where orderings are displayed oneah node. On these polytopes, the points surfaes are proportional to the isr rank probabilities.They illustrate in partiular that the derease of the rank probability is even stronger as p inreases.
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Fig. 1 � Polytope representation of the ranks (m = 4), with size of the points proportional to theisr probability : µ = (1, 2, 3, 4), p = 0.6 (left) and p = 0.9 (right).6.2 Estimation of the isr distribution on real data setsIn order to assess the adequay of the isr distribution to a real data set, we submitted thefollowing quiz to our students, onsisting of three items Q1, Q2 and Q3 of asending di�ulty :� Q1. Rank the following numbers in asending order :
O1 = π/3, O2 = log 1, O3 = exp 2, O4 = 1+

√
5

2 .� Q2. Rank the following Frenh writers in hronologial order of birth :
O1 = Vitor Hugo, O2 = Molière, O3 = Albert Camus, O4 = Jean-Jaques Rousseau.� Q3. Rank hronologially these Quentin Tarantino movies :

O1 = Inglourious Basterds, O2 = Pulp Fition, O3 = Reservoir Dogs, O4 = Jakie Brown.The orret answers are µ∗ = (2, 1, 4, 3) for Q1, µ∗ = (2, 4, 1, 3) for Q2 and µ∗ = (3, 2, 4, 1) for Q3.The answers of the 40 questioned students are in turn in Table 2.For eah item of the quiz, the isr distribution is estimated and a χ2 adequay test, where thedistribution under the null assumption is estimated by bootstrap [5℄ based on 1000 repliations, isperformed :� Q1. µ̂ = (2, 1, 4, 3), p̂ = 0.962 and p-value = 0.593,� Q2. µ̂ = (2, 4, 1, 3), p̂ = 0.815 and p-value = 0.342,� Q3. µ̂ = (4, 3, 2, 1), p̂ = 0.754 and p-value = 0.264.We an �rst note that the adequay of the isr distribution is aepted for these three questions.This adequay an be also found graphially on Figures 2, 3 and 4 displaying polytopes (orderingsare displayed on eah node) of both the empirial distribution and the isr estimated one. Weremark also the derease of the number of good answers when one move away from the modalrank.The growth of the questions di�ulty is re�eted by a derease in the probability p : For theeasy �rst question, 80% of the students gives the right answer and 15% makes one mistake byreversing O1 and O4. This leads to a high value of the probability p : p̂ = 0.962. For the seond7



Tab. 2 � Quiz answers of the 40 students.Quiz Q1 Quiz Q2 Quiz Q3ordering frequeny ordering frequeny ordering frequeny
(2, 1, 4, 3) 32 (2, 4, 1, 3) 15 (4, 3, 2, 1) 10
(2, 4, 1, 3) 6 (2, 4, 3, 1) 8 (4, 2, 3, 1) 9
(2, 1, 3, 4) 2 (2, 1, 4, 3) 4 (3, 2, 4, 1) 4other 0 (4, 2, 1, 3) 4 (3, 4, 2, 1) 3

(2, 3, 1, 4) 2 (1, 3, 2, 4) 2
(1, 2, 3, 4) 1 (1, 3, 4, 2) 2
(1, 3, 4, 2) 1 (2, 3, 1, 4) 2
(1, 4, 2, 3) 1 (3, 1, 4, 2) 2
(2, 1, 3, 4) 1 (1, 2, 3, 4) 1
(2, 3, 4, 1) 1 (2, 3, 4, 1) 1
(3, 1, 4, 2) 1 (2, 4, 3, 1) 1
(3, 2, 1, 4) 1 (3, 2, 1, 4) 1other 0 (4, 1, 2, 3) 1

(4, 3, 1, 2) 1other 0
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Fig. 2 � Empirial (left) and estimated (right) distributions for quiz Q1, related to numbers.
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Fig. 3 � Empirial (left) and estimated (right) distributions for quiz Q2, related to Frenh writers.question, only 37.5% of the students gives the right answer, and the number of wrong answersdereases gradually with the number of bad omparisons made in the ranking proess. Finally,the last question leads to more mixed answers with a smaller derease in the number of responsesgradually as the distane from the modal rank µ̂ = (4, 3, 2, 1), whih moreover is di�erent from theright rank µ∗ = (3, 2, 4, 1). 8
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Fig. 4 � Empirial (left) and estimated (right) distributions for quiz Q3, related to Quentin Ta-rantino movies.7 DisussionIn this paper we suggest a probability distribution for rank data, modeling a stohasti versionof the insertion sorting algorithm. The main fore of the isr distribution onsists in the naturalnessand the optimality of this sorting algorithm for a moderate number m of objets to rank. In thissense, we an expet in many ases a higher modeling power of the isr model than usual rankdata models whih an be interpreted as the modeling of poorly performing sorting algorithms.Obviously, this laim relies on the assumption that the judge is somewhat optimal. Moreover, theisr model allows to take into aount, if it is known, the presentation order of the objets to rank,what ould be partiulary interesting sine this last ould in�uene the ranking in suh situations.Two other bene�ts to onsider suh a generative model is that it allows an interpretation of theranking results via its parameters µ (the modal ranking) and p (the probability of good pairedomparison during the sorting), and leads to easy maximum likelihood estimation.Perspetives of this work are numerous. First ones onern omputational aspets : When m isreasonable (smaller than 10), the interest of the isr distribution has been previously underlined.For higher number of objets to rank, the insertion sorting algorithm is no more the most powerful,and other algorithms should be onsidered. However, as for usual rank data models, isr estimationneeds to browse all the possible referene ranks µ, what beomes omputationally infeasable when
m grows beyond 10. In addition, spei� rank data models an be also de�ned by modeling spei�sorting algorithm aording to the knowledge on the sorting proess employed by the judges.Seond perspetives onern the appliation aspets : In this paper the isr distribution is suess-fully used to model students answers to a quiz, but mixture of isr distributions ould also be ofgreat interest for modeling more omplex situations, typially multimodality. For instane, assumewe have put in our quiz a football question, then girls and boys responses will probably not followthe same distribution.A third axis of perspetive looks on the nature of the rank data : Here only full rank data for singlejudgment riterion have been onsidered. This approah needs to be extended to other types ofranks, frequently enountered in pratie, as partially ranked data, tied data or even ranks resultingfrom multiple preferene responses.Appendix 1Proof of isr distribution for a known presentation orderThe goal of this appendix is to prove that Formula (1) orresponds to the stohasti left insertionsorting algorithm with probability p of good paired omparison and independene between thepaired omparisons. The notation are those de�ned in Setion 3.Démonstration. Let x(j) = (xi : xi ∈ {σ1, . . . , σj}) be the ranking obtained at the step j (1 ≤ j ≤
m) : It is the ranking of the j �rst objets in σ in the order imposed by x (thus x(m) = x). Note9



that there exists the following relationship between x(j) and x(j−1) :
x(j) = (x

(j−1)
1 , . . . , x

(j−1)
#j−(x,σ), σj , x

(j−1)
#j−(x,σ)+1, . . . , x

(j−1)
j−1 ).Formula (1) will be proved by indution on j. It is true for j = 1 while there is only one objet σ1 tosort : pr(x(1)|σ) = 1. The result of the ranking x(j) from x(j−1) is the result of #j−(x, σ)+#j+(x, σ)independent Bernoulli experiments of parameter p. Conditionally to x(j−1), the probability of x(j)is then

pr(x(j)|x(j−1), σ; µ, p) = pη
−

j
(x,σ,µ)+η

+
j

(x,σ,µ)

(1 − p)#j−(x,σ)+#j+(x,σ)−η
−

j
(x,σ,µ)−η

+
j

(x,σ,µ).We onlude the proof by remarking that
pr(x(j)|σ; µ, p) = pr(x(j)|x(j−1), σ; µ, p)pr(x(j−1)|σ; µ, p),beause we have the following impliation relationship between events : x(j) ⇒ x(j−1).Appendix 2Lemma 6. For all permutations x, σ, τ ∈ Pm, we have #j−(x, σ) = #j−(τx, τσ).Démonstration. For any j = 1, . . . , m

#j−(τx, τσ) = #{i : (τx)−1
(τσ)i

< (τx)−1
(τσ)j

, 1 ≤ i < j}

= #{i : (τx)−1(τσ)i < (τx)−1(τσ)j , 1 ≤ i < j}

= #{i : (x−1τ−1τσ)i < (x−1τ−1τσ)j , 1 ≤ i < j}

= #{i : (x−1σ)i < (x−1σ)j , 1 ≤ i < j}

= #{i : x−1
σi

< x−1
σj

, 1 ≤ i < j}

= #j−(x, σ).Lemma 7. For all permutations x, σ, τ ∈ Pm, we have #j+(x, σ) = #j+(τx, τσ).Démonstration. It su�es to note that #j+(x, σ) = 1{#j−(x, σ) + 1 ≤ j − 1} and to use Lemma6 to onlude.Lemma 8. If p = 1/2 then for all permutations x, τ ∈ Pm, we have pr(x|σ; µ, 1/2) = pr(τx|τσ; µ, 1/2).Démonstration. When p = 1/2, we obtain by using Lemmas 6 and 7
pr(τx|τσ; µ, 1/2) =

(

1

2

)

Pm
j=1 #j−(τx,τσ)+#j+(τx,τσ)

=

(

1

2

)

P

m
j=1 #j−(x,σ)+#j+(x,σ)

= pr(x|σ; µ, 1/2).Lemma 9. For all x, σ, µ ∈ Pm we have η−
j (x, σ, µ̄) = #j−(x, σ) − η−

j (x, σ, µ).
10



Démonstration. Let ρ be the permutation of total inversion previously introdued in Setion 4.2and i, i′ = 1, . . . , m, i 6= i′. We have :
δii′ (µ̄) = 1{µ̄−1

i < µ̄−1
i′ }

= 1{(µρ)−1
i < (µρ)−1

i′ } (beause µ̄ = µρ)
= 1{ρ−1µ−1

i < ρ−1µ−1
i′ }

= 1{ρµ−1
i < ρµ−1

i′ } (sine ρ = ρ−1)
= 1{µ−1

i > µ−1
i′ } (sine i < i′ ⇔ ρi > ρi′)

= 1 − 1{µ−1
i < µ−1

i′ } (sine i 6= i′)
= 1 − δii′(µ).This proof is onluded by :

η−
j (x, σ, µ̄) =

∑

i∈j−(x,σ)

δσiσj
(µ̄)

=
∑

i∈j−(x,σ)

(1 − δσiσj
(µ))

= #j−(x, σ) −
∑

i∈j−(x,σ)

δσiσj
(µ)

= #j−(x, σ) − η−(x, σ, µ).Lemma 10. For all x, σ, µ ∈ Pm we have η+
j (x, σ, µ̄) = #j+(x, σ) − η+

j (x, σ, µ).The proof is similar to that of Lemma 9.Lemma 11. For all x, µ ∈ Pm, x 6= µ and p > 1/2, we have pr(x; µ, p) < pr(x; x, p).Démonstration. Remark �rst that
η−

j (x, σ, x) =
∑

i∈j−(x,σ)

δσiσj
(x) = #j−(x, σ) (6)

η+
j (x, σ, x) = #j+(x, σ) (7)beause all the already sorted objets at the step j are neessarily well sorted. In addition, for any

µ 6= x we have neessarily
m
∑

j=1

η−
j (x, σ, µ) + η+

j (x, σ, µ) <

m
∑

j=1

#j−(x, σ) + #j+(x, σ) (8)E�etively, the equality ours only if, at eah step j of the sorting proess, all the already sortedobjets are well sorted, what is possible only for µ = x. We have then
pr(x|σ; µ, p) = p

P

m
j=1 η

−

j
(x,σ,µ)+η

+
j

(x,σ,µ)

(1 − p)
Pm

j=1 #j−(x,σ)+#j+(x,σ)−η
−

j
(x,σ,µ)−η

+
j

(x,σ,µ)

< p
P

m
j=1 #j−(x,σ)+#j+(x,σ)sine p > 1/2 ⇔ 1 − p < p and the exponent of 1 − p is positive as just seen before in (8). FromEquations (6) and (7) we dedue

pr(x|σ; x, p) = p
P

m
j=1 #j−(x,σ)+#j+(x,σ) (9)and �nally

pr(x|σ; µ, p) < pr(x|σ; x, p). (10)The proof is onluded by averaging over all possible presentation orders σ in Pm.11
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