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A generative model for rank data based on sortingalgorithmChristophe Bierna
ki a, Julien Ja
ques aAbstra
tRank data arise from a sorting me
hanism whi
h is generally unobservable for the statisti-
ian. Retaining the insertion sorting algorithm be
ause of its well known optimality propertiesand 
ombining it with a natural sto
hasti
 error in the pair 
omparison pro
ess allows to pro-pose a parsimonious and meaningful parametri
 generative model for rank data. Its theoreti
alproperties are studied like unimodality, symmetry and identi�ability. In addition, maximumlikelihood prin
iple 
an be easily performed through an EM algorithm thanks to an unobservedlatent variables interpretation of the model. Finally, an illustration of adequa
y between theproposed model and rank data resulting from a general knowledge quiz suggests the relevan
eof our proposal. RésuméLes données de rang sont le résultat d'un pro
essus de tri généralement non observablepar le statisti
ien. En retenant un algorithme de tri par insertion pour ses propriétés d'opti-malité et en introduisant une erreur sto
hastique dans le pro
essus de 
omparaison par paire,nous proposons un modèle génératif par
imonieux pour les données de rang. Ses propriétésthéoriques 
omme l'unimodalité, la symétrie et l'identi�abilité sont étudiées. L'estimation desparamètres du modèle par maximum de vraisemblan
e utilisant l'algorithme EM est présen-tée. En�n, une illustration de l'adéquation du modèle proposé sur un jeu de données réellesrésultant d'un quiz de 
ulture générale met en éviden
e l'intérêt de notre proposition.Key words and phrases. EM algorithm, insertion algorithm, quiz data, rank data, sorting pro
ess.
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1 Introdu
tionRanking data are of great interest in human a
tivities involving preferen
es, attitudes or 
hoi
eslike Web Page ranking, Sport, Politi
s, E
onomi
s, Edu
ational Testing, Biology, Psy
hology, So-
iology, Marketing, et
. Ranks are so meaningful that it is not unusual they result from a trans-formation of other kinds of data.Rank data are multivariate but highly stru
tured data. So, beyond standard but general data ana-lysis methods (means, fa
tor analysis, et
.), some spe
i�
 des
riptive methods whi
h respe
ts thisstru
ture have been proposed, for instan
e the permutation polytope for plotting the rank ve
torsin Eu
lidean spa
e [16, 17℄ or also suitable distan
es for de�ning the 
entre and spread of a dataset[9, 13, 7℄.From an inferen
e point of view, distan
es are useful for testing the distribution of these data (uni-formity, populations 
omparison [6, 14℄) or for modeling the distribution itself (for instan
e theMallows Φ model relies on the Kendall distan
e [9, 3℄). More generally, parametri
 probabilisti
models, if relevant and allowing easy parameter interpretation, are useful for summarizing andunderstanding su
h quite 
omplex data and are a basis tool for density estimation, predi
tion or
lustering. Major rank data models date from the mid 20th 
entury and most of the 
urrent workson the topi
 uses these models. Pointing out that a rank data is the result of a sorting pro
ess, wesuggest in this paper a generative model for rank data, based on a modeling of the sorting pro
esswhi
h aims to be optimal in a sense explained in the next se
tion.So, Se
tion 2 is devoted to the notation and the interpretation of usual rank data models as themodeling of parti
ular sorting algorithms. Se
tion 3 introdu
es the proposed model whi
h is basedon an insertion sorting algorithm, and its theoreti
al properties (unimodality, symmetry, identi-�ability) are detailed in Se
tion 4. Maximum likelihood estimation is 
onsidered in Se
tion 5 bythe mean of an EM algorithm sin
e a missing data interpretation of the proposed model 
an bepointed out, and numeri
al illustrations are presented in Se
tion 6 to evaluate the relevan
e of thenew model both from distributional visualization point of view and from adequa
y to some realdata sets. A dis
ussion on the numerous perspe
tives 
on
ludes this work in Se
tion 7.2 Notation and usual rank data modelsThe rank datum, whi
h is the statisti
al unit of interest in this paper, results from a ranking of
m obje
ts O1,O2, . . . ,Om by a judge (human or not). Two representations of these data are 
om-monly used : Ranking or ordering. The ranking representation x−1 = (x−1

1 , x−1
2 , . . . , x−1

m ) 
ontainsthe ranks given to the obje
ts, and means that O1 is in the x−1
1 -th position, O2 is in the x−1

2 -thposition, an so forth. A ranking is then an element of Pm, the set of permutations of the m �rstintegers. The ordering representation x = (x1, x2, . . . , xm) is also an element of Pm and signi�esthat obje
t Ox1 is the �rst, obje
t Ox2 is the se
ond, et
. Let 
onsider the following example toillustrate these two notations : A judge, whi
h has to rank by preferen
e order three holidaysdestinations (O1 = Campaign, O2 = Mountain and O3 = Sea), ranks �rst Sea, se
ond Campaign,and last Mountain. The ordering result of the judge is x = (3, 1, 2) whereas the ranking result is
x−1 = (2, 3, 1). In the following both ordering and ranking notations will be used for rank data.The two most popular 
lasses of models for rank data 
onsist in modeling dire
tly the hypothe-ti
al ranking pro
ess followed by the judge. For a 
omplete review, refer to [14, Chap. 5 to 10℄. The�rst 
lass is derived from a paired 
omparison pro
ess [10℄ : The judge 
onstru
ts a rank by �rst
omparing ea
h pair of obje
ts, and se
ond ensuring the 
onsisten
y of these paired 
omparisons(if O1 is prefered to O2 and O2 to O3, O1 must be prefered to O3). It follows the Babington Smithmodel for a rank x : pr(x) ∝

∏

1≤i<j≤m

pij ,with pij the probability that Oi is prefered to Oj , and where the proportionality is due to the needof 
onsisten
y of the paired 
omparisons. The number of parameters of this model being very large,espe
ially when m grows, some simpli�
ations have been 
onsidered. [2℄ asso
iate to ea
h obje
t
Oj a s
ore vj indi
ating an overall degree of preferen
e of this obje
t, and 
onne
t these s
ores to1



pij by pij = vi/(vi + vj), whi
h de�nes the Bradley�Terry�Mallows model. [13℄ goes forward intothe simpli�
ation by imposing that pij only depends on the sign of i− j, whi
h leads to the famousMallows Φ model. A property of this latter is that it 
an be linked to the Kendall distan
e betweentwo rankings [9, 3℄.The se
ond popular 
lass of rank data models is multistage models, whi
h 
onsiders the followingiterative ranking pro
ess : The judge sele
ts �rstly the best obje
t among the m ones, then thebest among the m − 1 remaining ones, and so forth. Noting vi the probability that Oi is ranked�rst among the m obje
ts, the 
orresponding Pla
kett-Lu
e model [12, 15℄ de�nes the probabilityof a rank x as pr(x) =
m
∏

j=1

vxj

vxj
+ vxj+1 + . . . + vxm

.The term in the produ
t means the probability that Oxj
is ranked �rst among obje
ts Oxj

to Oxm
.It 
ould be noti
ed that this model 
orresponds to a Thurstonian model [18, 1℄ with a Gumbel den-sity. [7, 8℄ introdu
e an alternative multistage model by 
onsidering another form of the probabilityat ea
h step of the ranking pro
ess. The model deriving from this parametrization is parti
ularlyinteresting be
ause it leads, for a spe
ial value of its parameter, to the Mallows Φ model.The ranking pro
esses whi
h have motivated these two 
lasses of rank data models 
an beinterpreted as two di�erent sorting pro
esses, in whi
h sto
hasti
 errors are introdu
ed to de�nea probability distribution on the whole rank data spa
e. The natural question involved by thisinterpretation is whether the sorting algorithms used are the most appropriate. E�e
tively, inpaired 
omparison models it seems not optimal to do so mu
h 
omparisons sin
e it leads to asorting algorithm with ex
essively high 
omputational 
omplexity. In pra
ti
e a human judge wouldprobably not exhaustively pro
eed to all paired 
omparisons. For multistage models, the rankingpro
ess 
an be likened to a sele
tion sorting algorithm. Even if this sorting algorithm is one of themost simple, it is well known for its la
k of optimality [11℄. Here, we propose a generative model forrank data based on the (straight) insertion sorting algorithm, whi
h is one of the most powerfulamong the usual sorts when m ≤ 10 [11, Chap. 5℄. In addition, our proposal is potentially ableto take into a

ount the presentation order of the di�erent obje
ts to the judge, realisti
 situationwhi
h 
an have an impa
t on the resulting rank.3 A generative model for rank data based on an insertionsortingWe assume there exists an ordering µ = (µ1, . . . , µm) on the m obje
ts, so that a judge whoperfe
tly sorts these obje
ts returns this referen
e rank µ. Moreover, we assume that the judgeadopts one of the best sorting strategy for a small number of obje
ts (m ≤ 10), whi
h is theinsertion sorting algorithm. We also introdu
e the possibility for the judge of making mistakesregarding to µ in his sorting, and su
h mistakes will be modeled by a random event in paired
omparison. Merging both deterministi
 insertion algorithm and the random paired 
omparisonleads to a meaningful generative model for rank data that is now presented at length.Let the ordering σ = (σ1, . . . , σm) be the presentation order of the obje
ts to the judge, thislatter using an insertion sorting algorithm to rank these obje
ts. The 
urrent obje
t to be sortedis pla
ed on the left of the already sorted obje
ts, and is 
ompared to the �rst objet on its right.If the relative position of both obje
ts in this pair is 
orre
t (a

ording to µ), this pair order isun
hanged and the next obje
t in σ is inserted far left. Otherwise, the pair order is reversed and anew pair 
omparison is performed with the next obje
t on the right (if it exists). And so forth. Theresult of this deterministi
 sorting algorithm would be µ if the judge was perfe
t. However, nonejudge is perfe
t and the mistakes he/she/it 
an do leads to a given rank x = (x1, x2, . . . , xm), whi
h
ould be di�erent from µ. Sin
e the sorting algorithm by insertion 
onsists solely of a sequen
e of
omparisons of pairs of obje
ts, it is natural to model the reliability of the judge for the ranking bythe risk of wrongly order a pair of obje
ts. Ea
h pair 
omparison 
an be interpreted as the resultof a Bernoulli experiment whose out
ome is a 
orre
t 
omparison (a

ording to µ) with probability2



p and an in
orre
t 
omparison with probability 1 − p. Moreover, it is reasonable to assume thatea
h pair ranking operation is independent of the others. Based on this modeling of a sto
hasti
insertion sorting, the �rst natural question is to 
al
ulate the probability pr(x|σ; µ, p) to obtaina rank x from an initial presentation order σ and a referen
e rank µ. To do so, let introdu
e thefollowing notations, where j = 1, . . . , m denotes the step in the sorting algorithm 
onsisting ofranking the obje
t Oσj
. The notations and their use in the proposed sorting algorithm are bothillustrated in Table 1.� δii′(µ) = 1{µ−1

i < µ−1
i′ }, whi
h is equal to 1 if Oi is 
orre
tly ranked before Oi′ (a

ordingto µ), 0 otherwise (i, i′ = 1, . . . , m, i 6= i′).� j−(x, σ) = {i : x−1

σi
< x−1

σj
, 1 ≤ i < j} is the set of the indi
es of the presentation order σ forwhi
h the already sorted obje
ts Oσ1 , . . . ,Oσj−1 are ranked in x before the 
urrent obje
t

Oσj
, and 
onsequently on its left. Its 
ardinal #j−(x, σ) is 
onsequently the number of all
omparisons of the 
urrent obje
t with the obje
ts already ranked (a

ording to x) on itsleft, if they exist.� j+(x, σ) = {i : i = argmin1≤i′<j{i

′ : x−1
σi′

> x−1
σj

}} is the index of the rank σ designatingthe obje
t sorted in x just after (so on the right of) Oσj
among the already sorted obje
ts

Oσ1 , . . . ,Oσj−1 . This set has at most one element. Its 
ardinal #j+(x, σ) indi
ates that the
urrent obje
t Oσj
has been 
ompared with the obje
t ranked (a

ording to x) just on itsright, if it exists.� η−

j (x, σ, µ) =
∑

i∈j−(x,σ) δσiσj
(µ) is the number of good 
omparisons (a

ording to µ) of the
urrent obje
t Oσj

with the obje
ts already ranked on its left, if they exist.� η+
j (x, σ, µ) =

∑

i∈j+(x,σ) δσjσi
(µ) is the indi
ator of good 
omparison (a

ording to µ) of the
urrent obje
t Oσj

with the obje
t already ranked just on its right, if it exists.Tab. 1 � An example to illustrate both the notations and the insertion sorting pro
ess with
µ = (1, 2, 3), σ = (1, 3, 2), and x = (3, 1, 2). The notation x(j), de�ned in Appendix 1, means theranking of the j �rst obje
ts in σ in the order imposed by x.step j j−(x, σ) #j−(x, σ) j+(x, σ) #j+(x, σ) η

−

j
(x, σ, µ) η

+
j

(x, σ, µ) x(j)1 {} 0 {} 0 0 0 (1)2 {} 0 {1} 1 0 0 (3, 1)3 {3, 1} 2 {} 0 1 0 (3, 1, 2)With these notations, the probability to obtain a rank x from a initial presentation order σ is :
pr(x|σ; µ, p) =

m
∏

j=1

pη
−

j
(x,σ,µ)(1 − p)#j−(x,σ)−η

−

j
(x,σ,µ)

pη
+
j

(x,σ,µ)(1 − p)#j+(x,σ)−η
+
j

(x,σ,µ). (1)The proof of this formula is given in Appendix 1. The �rst term pη
−

j
(x,σ,µ)(1− p)#j−(x,σ)−η

−

j
(x,σ,µ)
orresponds to the probability of shifting #j−(x, σ) times to the right the obje
t Oσj


oming at thestep j, and the se
ond term pη
+
j

(x,σ,µ)(1 − p)#j+(x,σ)−η
+
j

(x,σ,µ) is the probability for this obje
t ofbeing no longer shifted to the right. Finally, if the presentation order is unknown but of probability
pr(σ), the marginal distribution of x is given by :

pr(x; µ, p) =
∑

σ∈Pm

pr(x|σ; µ, p)pr(σ). (2)In this paper, we assume the presentation orders are uniformly distributed, and then pr(σ) = 1/m!for all σ ∈ Pm. In the following the rank data model de�ned by Distribution (2) will be named isrfor Insertion Sorting Rank data model. We will note shortly isr(µ, p) this model and its asso
iatedparameters.4 Properties of the isr modelIn this se
tion the main properties of the isr model are stated : The possibility for the isr dis-tribution to be uniform for a spe
ial value of p, the existen
e of modal and anti-modal ranks, the3



symmetry of the isr distribution, and �nally its identi�ability. The proofs relie on applying permu-tation properties on both ranking and ordering notations on Pm. In the following, the 
omposition
τ ◦ σ is noted shortly τσ and the set {σ1, . . . , σm!} des
ribes all possible ranks in Pm.4.1 Uniformity of the isr distribution for p = 1/2Proposition 1 proves the uniformity for p = 1/2, and requires Lemma 8 of Appendix 2.Proposition 1. If p = 1/2, for all x, µ ∈ Pm then pr(x; µ, 1/2) = 1/m!.Démonstration. Let σ1 be a given permutation of Pm, and for any permutation σs of Pm, let τsbe the only permutation su
h that : σ1 = τsσs (s = 1, . . . , m!). The probability of x a

ording toisr(µ, 1/2) is :

pr(x; µ, 1/2) =
1

m!

m!
∑

s=1

pr(x|σs; µ, 1/2)

=
1

m!

m!
∑

s=1

pr(τsx|τsσs; µ, 1/2) (Lemma 8)
=

1

m!

m!
∑

s=1

pr(τsx|σ1; µ, 1/2).The proof is 
on
luded by noting that ∑m!
s=1 pr(τsx|σ1; µ, 1/2) = 1 be
ause p(.|σ1; µ, 1/2) is aprobability distribution on Pm and {τsx : τs ∈ Pm} = Pm.4.2 Mode and anti-mode of the isr distributionWe prove in this se
tion one of the most important properties whi
h 
an be expe
ted from theisr distribution : The referen
e rank µ is the unique mode of the distribution if p > 1/2 (Proposition2). Let µ̄ be de�ned by µ̄ = µρ where ρ = (m, . . . , 1) is the permutation of total inversion. Thisrank µ̄ is the furthest from µ for the Kendall distan
e. We symetri
ally prove in this se
tion thatthe unique anti-mode (the rank of smallest probability) is µ̄ if p > 1/2 (Corollary 3). Proofs requireLemmas 6 and 7 of Appendix 1.Proposition 2. If p > 1/2, for all x, µ ∈ Pm, x 6= µ, we have pr(µ; µ, p) > pr(x; µ, p).Démonstration. Let τ be the only permutation su
h that µ = τx. The probability of x a

ordingto isr(µ, p) is :

pr(x; µ, p) =
1

m!

m!
∑

s=1

p
P

m
j=1 η

−

j
(x,σs,µ)+η

+
j

(x,σs,µ)

(1 − p)
P

m
j=1 #j−(x,σs)+#j+(x,σs)−η

−

j
(x,σs,µ)−η

+
j

(x,σs,µ)

<
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(x,σs)+#j+(x,σs)(be
ause p > 1/2 ⇔ p > 1 − p and x 6= µ)

=
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(τx,τσs)+#j+(τx,τσs) (from Lemmas 6 et 7)

=
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(µ,σ′s)+#j+(µ,σ′s) (with σ′s = τσs)

= pr(µ; µ, p).The last line 
omes from the fa
t that σ′s and σs are in bije
tion, #j−(µ, σs) = η−
j (µ, σs, µ) andalso #j+(µ, σs) = η+

j (µ, σs, µ).Corollary 3. If p > 1/2, for all x, µ ∈ Pm, x 6= µ̄, we have pr(µ̄; µ, p) < pr(x; µ, p).The proof, symmetri
al to that of Proposition 2, is left to the reader.4



4.3 Symmetry of the isr distributionIn this se
tion the symmetry of the isr distribution is proved. The sense of this symmetry is thefollowing : If the judge sorts the obje
ts a

ording to the isr distribution with parameters (µ, p),the same sorting will be obtain (in distribution) with parameters (µ̄, 1− p) (Proposition 4 below).This property will be espe
ially useful in order to exhibit the identi�ability 
onditions of the isrdistribution in the next se
tion. Proposition 4 requires Lemmas 9 and 10 in Appendix 2.Proposition 4. For all x, µ ∈ Pm, we have pr(x; µ̄, 1 − p) = pr(x; µ, p).Démonstration. The probability of x a

ording to isr(µ̄, 1 − p) is :
pr(x; µ̄, 1 − p) =

1

m!

m!
∑

s=1

(1 − p)
P

m
j=1 η

−

j
(x,σs,µ̄)+η

+
j

(x,σs,µ̄)

×p
P

m
j=1 #j−(x,σs)+#j+(x,σs)−η

−

j
(x,σs,µ̄)−η

+
j

(x,σs,µ̄)

=
1

m!

m!
∑

s=1

(1 − p)
P

m
j=1 #j−(x,σs)−η

−

j (x,σs,µ)+#j+(x,σs)−η
+
j (x,σs,µ̄)

×p
P

m
j=1 #j−(x,σs)+#j+(x,σs)

×p
Pm

j=1 −(#j−(x,σs)−η
−

j
(x,σs,µ))−(#j+(x,σs)−η

+
j

(x,σs,µ))

=
1

m!

m!
∑

s=1

(1 − p)
Pm

j=1 #j−(x,σs)−η
−

j
(x,σs,µ)+#j+(x,σs)−η

+
j

(x,σs,µ̄)

×p
Pm

j=1 η
−

j
(x,σs,µ)+η

+
j

(x,σs,µ)

= pr(x; µ, p).4.4 Identi�ability of the isr distributionA ne
essary identi�ability 
ondition is immediatly suggested by Propositions 1 and 4 : Theuniformity for p = 1/2 of the isr distribution and its symmetry lead to impose p > 1/2. Thesu�
ien
y of this 
ondition is proved in the next proposition. Its proof needs Lemma 11 of Appendix2.Proposition 5. The isr distribution is identi�able sin
e p > 1/2.Démonstration. As the isr model has two parameters, the probability p and the referen
e rank µ,the identi�ability problem 
an 
on
ern only one of these two parameters or both.� Firstly there exists none 
ouple (µ, µ′) ∈ P2
m with µ 6= µ′ su
h that pr(x; µ, p) = pr(x; µ′, p)for any x ∈ Pm and any p > 1/2. Indeed, 
hoosing x = µ, from Lemma 11 we have

pr(µ; µ, p) 6= pr(µ; µ′, p).� Se
ondly, for a given µ ∈ Pm, assume there exists p 6= p′ su
h that pr(x; µ, p) = pr(x; µ, p′)for any x ∈ Pm. In parti
ular, for x = µ, Equation (9) in the proof of Lemma 11 leads to
1

m!

m!
∑

s=1

p
P

m
j=1 #j−(µ,σs)+#j+(µ,σs) =

1

m!

m!
∑

s=1

p′
Pm

j=1 #j−(µ,σs)+#j+(µ,σs)
. (3)The stri
t in
reasing of the fun
tion p 7→ pn on the interval [ 12 , 1] for all n ∈ N
∗ ensures that

p = p′.� Assume �nally there exists (µ, µ′) ∈ P2
m with µ 6= µ′ and p < p′ su
h that p(x; µ, p) =

p(x; µ′, p′) for any x ∈ Pm. From Equations (9) and (10) in the proof of Lemma 11 we havewith x 6= µ

pr(x|σ; µ, p) < p
Pm

j=1 #j−(x,σ)+#j+(x,σ)

< p′
P

m
j=1 #j−(x,σ)+#j+(x,σ)

= pr(x|σ; x, p′)5



and then by averaging over all σ in Pm

pr(x; µ, p) < pr(x; x, p′).Choosing x = µ′ ensures the identi�ability of the isr model.5 Estimation of the model parametersThe isr model for rank data has two parameters : The probability p, whi
h is a real in [1/2, 1]and the referen
e rank, or modal rank, µ, whi
h 
an take its values in Pm. Note that the 
ase
p = 1/2 is kept although this is a non-identi�ability situation be
ause it leads to the uniformity ofthe isr distribution, what 
an be of interest for pra
ti
al appli
ations. We present in this se
tionmaximum likelihood estimation.Let (x1, . . . , xn) be a sample of n ranks. The log-likelihood of the isr model is :

l(θ) =

n
∑

i=1

ln

(

1

m!

m!
∑

s=1

pr(xi|σs; µ, p)

)

, (4)with θ = (µ, p). As the presentation orders σ are unknown, we use the EM algorithm [4℄ to maximizethis oberved data log-likelihood. The 
ompleted log-likelihood is :
lc(θ) =

1

m!

n
∑

i=1

m!
∑

s=1

ζis ln
(

pr(xi|σs; µ, p)
)

, (5)where ζis is a random variable equal to 1 is the rank xi is the result of a sorting with σs aspresentation order, 0 otherwise. The EM algorithm is an iterative pro
edure 
omposed of twosteps, whi
h intends to maximize this 
ompleted log-likelihood. Let θ(q) = (µ(q), p(q)) be a 
urrentvalue of the parameters (q ∈ N), θ(0) being the starting parameter of EM.The E step 
onsists in 
omputing the 
onditional expe
tation of the 
ompleted log-likelihood :
Q(θ, θ(q)) = Eθ(q) [lc(θ)|x

1, . . . , xn] =
1

m!

n
∑

i=1

m!
∑

s=1

τ
(q)
is ln

(

pr(xi|σs; µ, p)
)where

τ
(q)
is = Eθ(q) [ζis|x

1, . . . , xn] =
pr(xi|σs; µ(q), p(q))

∑m!
r=1 pr(xi|σr; µ(q), p(q))is the 
onditional probability for the rank i to be the result of a sorting with σs as presentationorder.The M step of the EM algorithm 
onsists in 
hoosing the value θ(q+1) whi
h maximizes the 
ondi-tional expe
tation Q 
omputed at the E step :

θ(q+1) = argmax
θ∈Θ

Q(θ; θ(q))where Θ is the parameter spa
e Pm × [1/2, 1]. As the parameter spa
e Pm for µ is dis
rete, themaximization 
onsists simply, but potentially 
omputationally expensively, of browsing the entire
Pm. However in pra
ti
e, thanks to the symmetry of the isr distribution, it is enough to browsethe half of Pm. For the probability p, maximizing Q leads to the following maximum :

p(q+1) =

∑n

i=1

∑m!
s=1 τ

(q)
is

∑m

j=1 η−
j (xi, σs, µ(q)) + η+

j (xi, σs, µ(q))
∑n

i=1

∑m!
s=1 τ

(q)
is

∑m

j=1 #j−(xi, σs) + #j+(xi, σs)
.Note that this value of p(q+1) 
an be interpreted as the proportion of good manipulations (swit
hingto the right or stop) in the insertion sorting algorithm.6



6 Numeri
al illustration6.1 Visualising the isr distributionLikening a ranking x−1 = (x−1
1 , . . . , x−1

m ) to an element of R
m, the representation of all rankson a polytope lives only in a subspa
e of dimension m − 1, sin
e the knowledge of the m − 1 �rst
omponents x−1

1 , . . . , x−1
m−1 imposes the last one x−1

m . A polytope representation of the distribution[16, 17℄ is then interesting when the number m of obje
ts to rank is lower or equal to 4. Conventionalrepresentation of these polytopes links ranks of Kendall distan
e equal to 1 [14℄. Figure 1 shows twogeneri
 permutation polytopes for m = 4 and p = 0.6 or p = 0.9, where orderings are displayed onea
h node. On these polytopes, the points surfa
es are proportional to the isr rank probabilities.They illustrate in parti
ular that the de
rease of the rank probability is even stronger as p in
reases.
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Fig. 1 � Polytope representation of the ranks (m = 4), with size of the points proportional to theisr probability : µ = (1, 2, 3, 4), p = 0.6 (left) and p = 0.9 (right).6.2 Estimation of the isr distribution on real data setsIn order to assess the adequa
y of the isr distribution to a real data set, we submitted thefollowing quiz to our students, 
onsisting of three items Q1, Q2 and Q3 of as
ending di�
ulty :� Q1. Rank the following numbers in as
ending order :
O1 = π/3, O2 = log 1, O3 = exp 2, O4 = 1+

√
5

2 .� Q2. Rank the following Fren
h writers in 
hronologi
al order of birth :
O1 = Vi
tor Hugo, O2 = Molière, O3 = Albert Camus, O4 = Jean-Ja
ques Rousseau.� Q3. Rank 
hronologi
ally these Quentin Tarantino movies :

O1 = Inglourious Basterds, O2 = Pulp Fi
tion, O3 = Reservoir Dogs, O4 = Ja
kie Brown.The 
orre
t answers are µ∗ = (2, 1, 4, 3) for Q1, µ∗ = (2, 4, 1, 3) for Q2 and µ∗ = (3, 2, 4, 1) for Q3.The answers of the 40 questioned students are in turn in Table 2.For ea
h item of the quiz, the isr distribution is estimated and a χ2 adequa
y test, where thedistribution under the null assumption is estimated by bootstrap [5℄ based on 1000 repli
ations, isperformed :� Q1. µ̂ = (2, 1, 4, 3), p̂ = 0.962 and p-value = 0.593,� Q2. µ̂ = (2, 4, 1, 3), p̂ = 0.815 and p-value = 0.342,� Q3. µ̂ = (4, 3, 2, 1), p̂ = 0.754 and p-value = 0.264.We 
an �rst note that the adequa
y of the isr distribution is a

epted for these three questions.This adequa
y 
an be also found graphi
ally on Figures 2, 3 and 4 displaying polytopes (orderingsare displayed on ea
h node) of both the empiri
al distribution and the isr estimated one. Weremark also the de
rease of the number of good answers when one move away from the modalrank.The growth of the questions di�
ulty is re�e
ted by a de
rease in the probability p : For theeasy �rst question, 80% of the students gives the right answer and 15% makes one mistake byreversing O1 and O4. This leads to a high value of the probability p : p̂ = 0.962. For the se
ond7



Tab. 2 � Quiz answers of the 40 students.Quiz Q1 Quiz Q2 Quiz Q3ordering frequen
y ordering frequen
y ordering frequen
y
(2, 1, 4, 3) 32 (2, 4, 1, 3) 15 (4, 3, 2, 1) 10
(2, 4, 1, 3) 6 (2, 4, 3, 1) 8 (4, 2, 3, 1) 9
(2, 1, 3, 4) 2 (2, 1, 4, 3) 4 (3, 2, 4, 1) 4other 0 (4, 2, 1, 3) 4 (3, 4, 2, 1) 3

(2, 3, 1, 4) 2 (1, 3, 2, 4) 2
(1, 2, 3, 4) 1 (1, 3, 4, 2) 2
(1, 3, 4, 2) 1 (2, 3, 1, 4) 2
(1, 4, 2, 3) 1 (3, 1, 4, 2) 2
(2, 1, 3, 4) 1 (1, 2, 3, 4) 1
(2, 3, 4, 1) 1 (2, 3, 4, 1) 1
(3, 1, 4, 2) 1 (2, 4, 3, 1) 1
(3, 2, 1, 4) 1 (3, 2, 1, 4) 1other 0 (4, 1, 2, 3) 1

(4, 3, 1, 2) 1other 0
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Fig. 2 � Empiri
al (left) and estimated (right) distributions for quiz Q1, related to numbers.
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Fig. 3 � Empiri
al (left) and estimated (right) distributions for quiz Q2, related to Fren
h writers.question, only 37.5% of the students gives the right answer, and the number of wrong answersde
reases gradually with the number of bad 
omparisons made in the ranking pro
ess. Finally,the last question leads to more mixed answers with a smaller de
rease in the number of responsesgradually as the distan
e from the modal rank µ̂ = (4, 3, 2, 1), whi
h moreover is di�erent from theright rank µ∗ = (3, 2, 4, 1). 8



1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1 4 3 22 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

2 4 3 1

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

4 1 2 3

4 1 3 2

4 2 1 3

4 2 3 1

4 3 1 2

4 3 2 1

1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1 4 3 22 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

2 4 3 1

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

4 1 2 3

4 1 3 2

4 2 1 3

4 2 3 1

4 3 1 2

4 3 2 1

Fig. 4 � Empiri
al (left) and estimated (right) distributions for quiz Q3, related to Quentin Ta-rantino movies.7 Dis
ussionIn this paper we suggest a probability distribution for rank data, modeling a sto
hasti
 versionof the insertion sorting algorithm. The main for
e of the isr distribution 
onsists in the naturalnessand the optimality of this sorting algorithm for a moderate number m of obje
ts to rank. In thissense, we 
an expe
t in many 
ases a higher modeling power of the isr model than usual rankdata models whi
h 
an be interpreted as the modeling of poorly performing sorting algorithms.Obviously, this 
laim relies on the assumption that the judge is somewhat optimal. Moreover, theisr model allows to take into a

ount, if it is known, the presentation order of the obje
ts to rank,what 
ould be parti
ulary interesting sin
e this last 
ould in�uen
e the ranking in su
h situations.Two other bene�ts to 
onsider su
h a generative model is that it allows an interpretation of theranking results via its parameters µ (the modal ranking) and p (the probability of good paired
omparison during the sorting), and leads to easy maximum likelihood estimation.Perspe
tives of this work are numerous. First ones 
on
ern 
omputational aspe
ts : When m isreasonable (smaller than 10), the interest of the isr distribution has been previously underlined.For higher number of obje
ts to rank, the insertion sorting algorithm is no more the most powerful,and other algorithms should be 
onsidered. However, as for usual rank data models, isr estimationneeds to browse all the possible referen
e ranks µ, what be
omes 
omputationally infeasable when
m grows beyond 10. In addition, spe
i�
 rank data models 
an be also de�ned by modeling spe
i�
sorting algorithm a

ording to the knowledge on the sorting pro
ess employed by the judges.Se
ond perspe
tives 
on
ern the appli
ation aspe
ts : In this paper the isr distribution is su

ess-fully used to model students answers to a quiz, but mixture of isr distributions 
ould also be ofgreat interest for modeling more 
omplex situations, typi
ally multimodality. For instan
e, assumewe have put in our quiz a football question, then girls and boys responses will probably not followthe same distribution.A third axis of perspe
tive looks on the nature of the rank data : Here only full rank data for singlejudgment 
riterion have been 
onsidered. This approa
h needs to be extended to other types ofranks, frequently en
ountered in pra
ti
e, as partially ranked data, tied data or even ranks resultingfrom multiple preferen
e responses.Appendix 1Proof of isr distribution for a known presentation orderThe goal of this appendix is to prove that Formula (1) 
orresponds to the sto
hasti
 left insertionsorting algorithm with probability p of good paired 
omparison and independen
e between thepaired 
omparisons. The notation are those de�ned in Se
tion 3.Démonstration. Let x(j) = (xi : xi ∈ {σ1, . . . , σj}) be the ranking obtained at the step j (1 ≤ j ≤
m) : It is the ranking of the j �rst obje
ts in σ in the order imposed by x (thus x(m) = x). Note9



that there exists the following relationship between x(j) and x(j−1) :
x(j) = (x

(j−1)
1 , . . . , x

(j−1)
#j−(x,σ), σj , x

(j−1)
#j−(x,σ)+1, . . . , x

(j−1)
j−1 ).Formula (1) will be proved by indu
tion on j. It is true for j = 1 while there is only one obje
t σ1 tosort : pr(x(1)|σ) = 1. The result of the ranking x(j) from x(j−1) is the result of #j−(x, σ)+#j+(x, σ)independent Bernoulli experiments of parameter p. Conditionally to x(j−1), the probability of x(j)is then

pr(x(j)|x(j−1), σ; µ, p) = pη
−

j
(x,σ,µ)+η

+
j

(x,σ,µ)

(1 − p)#j−(x,σ)+#j+(x,σ)−η
−

j
(x,σ,µ)−η

+
j

(x,σ,µ).We 
on
lude the proof by remarking that
pr(x(j)|σ; µ, p) = pr(x(j)|x(j−1), σ; µ, p)pr(x(j−1)|σ; µ, p),be
ause we have the following impli
ation relationship between events : x(j) ⇒ x(j−1).Appendix 2Lemma 6. For all permutations x, σ, τ ∈ Pm, we have #j−(x, σ) = #j−(τx, τσ).Démonstration. For any j = 1, . . . , m

#j−(τx, τσ) = #{i : (τx)−1
(τσ)i

< (τx)−1
(τσ)j

, 1 ≤ i < j}

= #{i : (τx)−1(τσ)i < (τx)−1(τσ)j , 1 ≤ i < j}

= #{i : (x−1τ−1τσ)i < (x−1τ−1τσ)j , 1 ≤ i < j}

= #{i : (x−1σ)i < (x−1σ)j , 1 ≤ i < j}

= #{i : x−1
σi

< x−1
σj

, 1 ≤ i < j}

= #j−(x, σ).Lemma 7. For all permutations x, σ, τ ∈ Pm, we have #j+(x, σ) = #j+(τx, τσ).Démonstration. It su�
es to note that #j+(x, σ) = 1{#j−(x, σ) + 1 ≤ j − 1} and to use Lemma6 to 
on
lude.Lemma 8. If p = 1/2 then for all permutations x, τ ∈ Pm, we have pr(x|σ; µ, 1/2) = pr(τx|τσ; µ, 1/2).Démonstration. When p = 1/2, we obtain by using Lemmas 6 and 7
pr(τx|τσ; µ, 1/2) =

(

1

2

)

Pm
j=1 #j−(τx,τσ)+#j+(τx,τσ)

=

(

1

2

)

P

m
j=1 #j−(x,σ)+#j+(x,σ)

= pr(x|σ; µ, 1/2).Lemma 9. For all x, σ, µ ∈ Pm we have η−
j (x, σ, µ̄) = #j−(x, σ) − η−

j (x, σ, µ).
10



Démonstration. Let ρ be the permutation of total inversion previously introdu
ed in Se
tion 4.2and i, i′ = 1, . . . , m, i 6= i′. We have :
δii′ (µ̄) = 1{µ̄−1

i < µ̄−1
i′ }

= 1{(µρ)−1
i < (µρ)−1

i′ } (be
ause µ̄ = µρ)
= 1{ρ−1µ−1

i < ρ−1µ−1
i′ }

= 1{ρµ−1
i < ρµ−1

i′ } (sin
e ρ = ρ−1)
= 1{µ−1

i > µ−1
i′ } (sin
e i < i′ ⇔ ρi > ρi′)

= 1 − 1{µ−1
i < µ−1

i′ } (sin
e i 6= i′)
= 1 − δii′(µ).This proof is 
on
luded by :

η−
j (x, σ, µ̄) =

∑

i∈j−(x,σ)

δσiσj
(µ̄)

=
∑

i∈j−(x,σ)

(1 − δσiσj
(µ))

= #j−(x, σ) −
∑

i∈j−(x,σ)

δσiσj
(µ)

= #j−(x, σ) − η−(x, σ, µ).Lemma 10. For all x, σ, µ ∈ Pm we have η+
j (x, σ, µ̄) = #j+(x, σ) − η+

j (x, σ, µ).The proof is similar to that of Lemma 9.Lemma 11. For all x, µ ∈ Pm, x 6= µ and p > 1/2, we have pr(x; µ, p) < pr(x; x, p).Démonstration. Remark �rst that
η−

j (x, σ, x) =
∑

i∈j−(x,σ)

δσiσj
(x) = #j−(x, σ) (6)

η+
j (x, σ, x) = #j+(x, σ) (7)be
ause all the already sorted obje
ts at the step j are ne
essarily well sorted. In addition, for any

µ 6= x we have ne
essarily
m
∑

j=1

η−
j (x, σ, µ) + η+

j (x, σ, µ) <

m
∑

j=1

#j−(x, σ) + #j+(x, σ) (8)E�e
tively, the equality o

urs only if, at ea
h step j of the sorting pro
ess, all the already sortedobje
ts are well sorted, what is possible only for µ = x. We have then
pr(x|σ; µ, p) = p

P

m
j=1 η

−

j
(x,σ,µ)+η

+
j

(x,σ,µ)

(1 − p)
Pm

j=1 #j−(x,σ)+#j+(x,σ)−η
−

j
(x,σ,µ)−η

+
j

(x,σ,µ)

< p
P

m
j=1 #j−(x,σ)+#j+(x,σ)sin
e p > 1/2 ⇔ 1 − p < p and the exponent of 1 − p is positive as just seen before in (8). FromEquations (6) and (7) we dedu
e

pr(x|σ; x, p) = p
P

m
j=1 #j−(x,σ)+#j+(x,σ) (9)and �nally

pr(x|σ; µ, p) < pr(x|σ; x, p). (10)The proof is 
on
luded by averaging over all possible presentation orders σ in Pm.11
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