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A generative model for rank data based on sorting
algorithm

Christophe BIERNACKI? Julien JACQUES?

Abstract

Rank data arise from a sorting mechanism which is generally unobservable for the statisti-
cian. Retaining the insertion sorting algorithm because of its well known optimality properties
and combining it with a natural stochastic error in the pair comparison process allows to pro-
pose a parsimonious and meaningful parametric generative model for rank data. Its theoretical
properties are studied like unimodality, symmetry and identifiability. In addition, maximum
likelihood principle can be easily performed through an EM algorithm thanks to an unobserved
latent variables interpretation of the model. Finally, an illustration of adequacy between the
proposed model and rank data resulting from a general knowledge quiz suggests the relevance
of our proposal.

Résumé

Les données de rang sont le résultat d’un processus de tri généralement non observable
par le statisticien. En retenant un algorithme de tri par insertion pour ses propriétés d’opti-
malité et en introduisant une erreur stochastique dans le processus de comparaison par paire,
nous proposons un modéle génératif parcimonieux pour les données de rang. Ses propriétés
théoriques comme 'unimodalité, la symétrie et I'identifiabilité sont étudiées. L’estimation des
paramétres du modéle par maximum de vraisemblance utilisant l'algorithme EM est présen-
tée. Enfin, une illustration de ’adéquation du modéle proposé sur un jeu de données réelles
résultant d’un quiz de culture générale met en évidence l'intérét de notre proposition.
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1 Introduction

Ranking data are of great interest in human activities involving preferences, attitudes or choices
like Web Page ranking, Sport, Politics, Economics, Educational Testing, Biology, Psychology, So-
ciology, Marketing, etc. Ranks are so meaningful that it is not unusual they result from a trans-
formation of other kinds of data.

Rank data are multivariate but highly structured data. So, beyond standard but general data ana-
lysis methods (means, factor analysis, etc.), some specific descriptive methods which respects this
structure have been proposed, for instance the permutation polytope for plotting the rank vectors
in Euclidean space [16, 17] or also suitable distances for defining the centre and spread of a dataset
[9, 13, 7].

From an inference point of view, distances are useful for testing the distribution of these data (uni-
formity, populations comparison [6, 14]) or for modeling the distribution itself (for instance the
Mallows ® model relies on the Kendall distance [9, 3]). More generally, parametric probabilistic
models, if relevant and allowing easy parameter interpretation, are useful for summarizing and
understanding such quite complex data and are a basis tool for density estimation, prediction or
clustering. Major rank data models date from the mid 20th century and most of the current works
on the topic uses these models. Pointing out that a rank data is the result of a sorting process, we
suggest in this paper a generative model for rank data, based on a modeling of the sorting process
which aims to be optimal in a sense explained in the next section.

So, Section 2 is devoted to the notation and the interpretation of usual rank data models as the
modeling of particular sorting algorithms. Section 3 introduces the proposed model which is based
on an insertion sorting algorithm, and its theoretical properties (unimodality, symmetry, identi-
fiability) are detailed in Section 4. Maximum likelihood estimation is considered in Section 5 by
the mean of an EM algorithm since a missing data interpretation of the proposed model can be
pointed out, and numerical illustrations are presented in Section 6 to evaluate the relevance of the
new model both from distributional visualization point of view and from adequacy to some real
data sets. A discussion on the numerous perspectives concludes this work in Section 7.

2 Notation and usual rank data models

The rank datum, which is the statistical unit of interest in this paper, results from a ranking of
m objects O1,0q,...,O,, by a judge (human or not). Two representations of these data are com-
monly used : Ranking or ordering. The ranking representation z =1 = (xl_l, x;l, ..., x1) contains
the ranks given to the objects, and means that O is in the xfl—th position, Os is in the x;l—th
position, an so forth. A ranking is then an element of P,,, the set of permutations of the m first
integers. The ordering representation x = (1, %2,..., %) is also an element of P,, and signifies
that object O, is the first, object O,, is the second, etc. Let consider the following example to
illustrate these two notations : A judge, which has to rank by preference order three holidays
destinations (O; = Campaign, O2 = Mountain and O3 = Sea), ranks first Sea, second Campaign,
and last Mountain. The ordering result of the judge is = (3,1,2) whereas the ranking result is
x~! = (2,3,1). In the following both ordering and ranking notations will be used for rank data.

The two most popular classes of models for rank data consist in modeling directly the hypothe-
tical ranking process followed by the judge. For a complete review, refer to [14, Chap. 5 to 10]. The
first class is derived from a paired comparison process [10] : The judge constructs a rank by first
comparing each pair of objects, and second ensuring the consistency of these paired comparisons
(if Oy is prefered to Oy and Os to O3, O1 must be prefered to O3). It follows the Babington Smith
model for a rank x :

pr(z) oc H Dij,

1<i<j<m

with p;; the probability that O; is prefered to O, and where the proportionality is due to the need
of consistency of the paired comparisons. The number of parameters of this model being very large,
especially when m grows, some simplifications have been considered. [2] associate to each object
O; a score v; indicating an overall degree of preference of this object, and connect these scores to



pij by pij = vi/(v; + v;), which defines the Bradley—Terry-Mallows model. [13] goes forward into
the simplification by imposing that p;; only depends on the sign of i — j, which leads to the famous
Mallows ® model. A property of this latter is that it can be linked to the Kendall distance between
two rankings [9, 3].

The second popular class of rank data models is multistage models, which considers the following
iterative ranking process : The judge selects firstly the best object among the m ones, then the
best among the m — 1 remaining ones, and so forth. Noting v; the probability that O; is ranked
first among the m objects, the corresponding Plackett-Luce model [12, 15] defines the probability
of a rank z as

i v
i
pr(z) = H .
=1 Vg; + Vg + 00+ 0z,

The term in the product means the probability that O,; is ranked first among objects O, to Oy, .
It could be noticed that this model corresponds to a Thurstonian model [18, 1] with a Gumbel den-
sity. [7, 8] introduce an alternative multistage model by considering another form of the probability
at each step of the ranking process. The model deriving from this parametrization is particularly

interesting because it leads, for a special value of its parameter, to the Mallows & model.

The ranking processes which have motivated these two classes of rank data models can be
interpreted as two different sorting processes, in which stochastic errors are introduced to define
a probability distribution on the whole rank data space. The natural question involved by this
interpretation is whether the sorting algorithms used are the most appropriate. Effectively, in
paired comparison models it seems not optimal to do so much comparisons since it leads to a
sorting algorithm with excessively high computational complexity. In practice a human judge would
probably not exhaustively proceed to all paired comparisons. For multistage models, the ranking
process can be likened to a selection sorting algorithm. Even if this sorting algorithm is one of the
most simple, it is well known for its lack of optimality [11]. Here, we propose a generative model for
rank data based on the (straight) insertion sorting algorithm, which is one of the most powerful
among the usual sorts when m < 10 [11, Chap. 5]. In addition, our proposal is potentially able
to take into account the presentation order of the different objects to the judge, realistic situation
which can have an impact on the resulting rank.

3 A generative model for rank data based on an insertion
sorting

We assume there exists an ordering u = (p1, ..., tn) on the m objects, so that a judge who
perfectly sorts these objects returns this reference rank p. Moreover, we assume that the judge
adopts one of the best sorting strategy for a small number of objects (m < 10), which is the
insertion sorting algorithm. We also introduce the possibility for the judge of making mistakes
regarding to p in his sorting, and such mistakes will be modeled by a random event in paired
comparison. Merging both deterministic insertion algorithm and the random paired comparison
leads to a meaningful generative model for rank data that is now presented at length.

Let the ordering 0 = (01, ...,0.,) be the presentation order of the objects to the judge, this
latter using an insertion sorting algorithm to rank these objects. The current object to be sorted
is placed on the left of the already sorted objects, and is compared to the first objet on its right.
If the relative position of both objects in this pair is correct (according to u), this pair order is
unchanged and the next object in o is inserted far left. Otherwise, the pair order is reversed and a
new pair comparison is performed with the next object on the right (if it exists). And so forth. The
result of this deterministic sorting algorithm would be p if the judge was perfect. However, none
judge is perfect and the mistakes he/she/it can do leads to a given rank = = (21,22, ..., Zm), which
could be different from . Since the sorting algorithm by insertion consists solely of a sequence of
comparisons of pairs of objects, it is natural to model the reliability of the judge for the ranking by
the risk of wrongly order a pair of objects. Each pair comparison can be interpreted as the result
of a Bernoulli experiment whose outcome is a correct comparison (according to p) with probability



p and an incorrect comparison with probability 1 — p. Moreover, it is reasonable to assume that
each pair ranking operation is independent of the others. Based on this modeling of a stochastic
insertion sorting, the first natural question is to calculate the probability pr(z|o; u,p) to obtain
a rank z from an initial presentation order ¢ and a reference rank u. To do so, let introduce the
following notations, where j = 1,...,m denotes the step in the sorting algorithm consisting of
ranking the object O,;. The notations and their use in the proposed sorting algorithm are both
illustrated in Table 1.
~ 8 (1) = 1{p; " < '}, which is equal to 1 if O, is correctly ranked before O (according
to u), 0 otherwise (4,4’ = 1,...,m,i #¢').
— j(z,0) ={i:a;} <x;',1<i<j}is the set of the indices of the presentation order o for
which the already sorted objects O,,,...,Oy,_, are ranked in x before the current object
O,,, and consequently on its left. Its cardinal #;~ (x,0) is consequently the number of all
comparisons of the current object with the objects already ranked (according to ) on its
left, if they exist.
— jT(x,0) = {i : i = argminy<ir<;{i’ : ;) > 2, '}} is the index of the rank o designating

i/ ;
the object sorted in x just after (so on the right of) O,, among the already sorted objects
Os,,...,0,,_,. This set has at most one element. Its cardinal #; " (z, ) indicates that the

current object O, has been compared with the object ranked (according to x) just on its
right, if it exists.

=y (T, 0,1) = 3 i~ (4,0) 00i0,; (11) is the number of good comparisons (according to 1) of the
current object O, with the objects already ranked on its left, if they exist.

- nj(x, Oy 1) = X iej+ (x,0) 90,0, (12) is the indicator of good comparison (according to u1) of the
current object O,; with the object already ranked just on its right, if it exists.

TAB. 1 — An example to illustrate both the notations and the insertion sorting process with
p=(1,2,3), c = (1,3,2), and = = (3,1,2). The notation 2, defined in Appendix 1, means the
ranking of the j first objects in ¢ in the order imposed by =x.

step i j(x,0)  #iT(v,0) jT(x,0) #iT(x,0) n; (x,op) ) (z,0,p) 2@

1 { 0 { 0 0 0 (1)
2 {} 0 {1} 1 0 0 (3,1)
3 {3,1} 2 { 0 1 0 (3,1,2)

With these notations, the probability to obtain a rank x from a initial presentation order o is :

m

prialospp) = [[ p 7 (1 p) 7 (o) o)
j=1

pnf(m,wt)(l _ p)#ﬁ(m,v)—n,-*(m,a,u). (1)

The proof of this formula is given in Appendix 1. The first term p™ (I’”’“)(l —p)#j_(m’”)f”i_(w"”“)
corresponds to the probability of shifting #;~ (z, o) times to the right the object O, coming at the
step j, and the second term p";‘r(“”“)(l — p)#ﬁ(m’”)*"-?(w"”“) is the probability for this object of
being no longer shifted to the right. Finally, if the presentation order is unknown but of probability
pr(o), the marginal distribution of x is given by :

pr(z;p,p) = Y pr(zlo; u,p)pr(o). (2)
0EPm

In this paper, we assume the presentation orders are uniformly distributed, and then pr(c) = 1/m!
for all o € P,,. In the following the rank data model defined by Distribution (2) will be named ISR
for Insertion Sorting Rank data model. We will note shortly 1SR(u, p) this model and its associated
parameters.

4 Properties of the ISR model

In this section the main properties of the 1SR model are stated : The possibility for the ISR dis-
tribution to be uniform for a special value of p, the existence of modal and anti-modal ranks, the



symmetry of the ISR distribution, and finally its identifiability. The proofs relie on applying permu-
tation properties on both ranking and ordering notations on P,,. In the following, the composition
7o o is noted shortly 7o and the set {o',...,0™'} describes all possible ranks in P,,.

4.1 Uniformity of the ISR distribution for p = 1/2
Proposition 1 proves the uniformity for p = 1/2, and requires Lemma 8 of Appendix 2.
Proposition 1. If p=1/2, for all x,u € Py, then pr(z; u,1/2) = 1/ml.

Démonstration. Let o! be a given permutation of P,,, and for any permutation o* of P,,, let 7°
be the only permutation such that : 0! = 75¢° (s = 1,...,m!). The probability of z according to
ISR(p, 1/2) is :

m!
1 S
pr(z;p,1/2) = por Zpr(x|a i, 1/2)
Ts=1
1 m!
= — Zpr(rsarhsos;,u, 1/2) (Lemma 8)
m!
s=1

m!
1 S
= — D (ot 1/2).
Ts=1

The proof is concluded by noting that ZT:'l pr(réz|ot;u, 1/2) = 1 because p(.|ot;u,1/2) is a
probability distribution on Py, and {7°x : 7° € Pp,} = Pn. O

4.2 Mode and anti-mode of the 1SR distribution

We prove in this section one of the most important properties which can be expected from the
ISR distribution : The reference rank p is the unique mode of the distribution if p > 1/2 (Proposition
2). Let i be defined by i = up where p = (m,...,1) is the permutation of total inversion. This
rank [ is the furthest from p for the Kendall distance. We symetrically prove in this section that
the unique anti-mode (the rank of smallest probability) is fi if p > 1/2 (Corollary 3). Proofs require
Lemmas 6 and 7 of Appendix 1.

Proposition 2. If p > 1/2, for all x,u € Py, © # p, we have pr(p; u,p) > pr(x; 1, p).

Démonstration. Let T be the only permutation such that p = 7a. The probability of z according
to ISR(j, p) is :

m!
1 S pEia iy (@ (20”0

prizipp) = — 2
(1 — p)is #5705 (w0") =y (2.0 )= (o )
1 m!
il ST #I (@0t ) +# T (2,0°)
< m! ;p =
(because p > 1/2 < p>1—pand x # )
m!
- Ll > _pr #i7 (o) 4T (070" (from Lemmas 6 et 7)
m!
s=1
m!
= i' ZPZTZI #ji(lh”,s)'f‘#jJr(ltv‘T,s) (Wlth 0/5 — 7_0.5)
m!
s=1
= pr(p; u,p).
The last line comes from the fact that o* and o® are in bijection, #;j~ (u,0°) = n; (1,0%, 1) and
also #jt (u,0°) = nf (u, 0%, ). O

Corollary 3. Ifp > 1/2, for all x,u € Py, © # [i, we have pr(i; u,p) < pr(z; u,p).

The proof, symmetrical to that of Proposition 2, is left to the reader.



4.3 Symmetry of the ISR distribution

In this section the symmetry of the ISR distribution is proved. The sense of this symmetry is the
following : If the judge sorts the objects according to the 1SR distribution with parameters (u, p),
the same sorting will be obtain (in distribution) with parameters (fi, 1 — p) (Proposition 4 below).
This property will be especially useful in order to exhibit the identifiability conditions of the ISR
distribution in the next section. Proposition 4 requires Lemmas 9 and 10 in Appendix 2.

Proposition 4. For all x,u € Py, we have pr(z; i, 1 — p) = pr(z; u, p).
Démonstration. The probability of x according to 1SR(fi, 1 — p) is :

m!
pr(z; g, 1 —p) = L' Z(l _p)Z}"zl n; (z,0°,B)+n} (z,0° 1)
m!

s=1
W pEie #3020 =y (w0 )] (.07, )

m!
- L S (1 - p) T #97 @o) =] (@0 w4 0" 0] (00" )
m!
s=1

xpZi #i~ (@ o)+t (@.0%)

sz_;‘nzl 7(#]‘_ (30»05)*77_7_ (Ivgs»u))f(#.j-*— (30»05)*77_;7 (Ivgsvﬂ'))

m!
_ L' S (1 - p) T #97 @0) =] (w0 w4 0" 0] (00" )
m:
s=1

X pi=1 (0%, )+ (x,0°, 1)

= pr(x;u,p).

4.4 Identifiability of the 1SR distribution

A necessary identifiability condition is immediatly suggested by Propositions 1 and 4 : The
uniformity for p = 1/2 of the ISR distribution and its symmetry lead to impose p > 1/2. The
sufficiency of this condition is proved in the next proposition. Its proof needs Lemma, 11 of Appendix
2.

Proposition 5. The 1SR distribution is identifiable since p > 1/2.

Démonstration. As the 1SR model has two parameters, the probability p and the reference rank p,
the identifiability problem can concern only one of these two parameters or both.

— Firstly there exists none couple (u,u') € P2, with u # u’ such that pr(x; p, p) = pr(z; u',p)
for any © € P,, and any p > 1/2. Indeed, choosing z = p, from Lemma 11 we have
pr(u; pyp) # pr(ps; i, p).-

— Secondly, for a given p € P,,, assume there exists p # p’ such that pr(z;u,p) = pr(x; u, p)
for any x € P,,. In particular, for x = u, Equation (9) in the proof of Lemma 11 leads to

| |

1 &N om oim g sya s . 1 i (o it (0

_m| E pzj=1 #i~ (1,0 )+#J+(“’U ) B —m' E p/ j=1 #37 (1,0°)+#5T (n,0 ) (3)
Ts=1 Cs=1

The strict increasing of the function p — p™ on the interval [%, 1] for all n € N* ensures that
p=p.

— Assume finally there exists (u, ') € P2, with p # ¢/ and p < p’ such that p(z;u,p) =
p(x; ', p’) for any x € P,,. From Equations (9) and (10) in the proof of Lemma 11 we have
with x # p

pr(zlo; p,p) pZima #iT @)+ # T (2,0)

p/zg?;l #i~ (z,0)+#57 (z,0)

pr(zlo;z,p')



and then by averaging over all ¢ in P,

pr(z; p,p) < pr(z;z,p).

Choosing x = i’ ensures the identifiability of the ISR model.

5 Estimation of the model parameters

The 1SR model for rank data has two parameters : The probability p, which is a real in [1/2,1]
and the reference rank, or modal rank, u, which can take its values in P,,. Note that the case
p = 1/2 is kept although this is a non-identifiability situation because it leads to the uniformity of
the ISR distribution, what can be of interest for practical applications. We present in this section
maximum likelihood estimation.

Let (z!,...,2™) be a sample of n ranks. The log-likelihood of the 1SR model is :

Zln< Zpr Ia,up> (4)

with @ = (u, p). As the presentation orders o are unknown, we use the EM algorithm [4] to maximize
this oberved data log-likelihood. The completed log-likelihood is :

LO) = 3 G (pralos ) (5)

i=1 s=1

where (s is a random variable equal to 1 is the rank z is the result of a sorting with o° as
presentation order, 0 otherwise. The EM algorithm is an iterative procedure composed of two
steps, which intends to maximize this completed log-likelihood. Let 8(® = (u(9), p(@)) be a current
value of the parameters (¢ € N), 8(9) being the starting parameter of EM.

The E step consists in computing the conditional expectation of the completed log-likelihood :

Q(0,09)) = By [le(0) ", ..., 2" —m,zz 7 1n (pr(a'|o*; 1, p))

i=1 s=1

where

pr(a’|o®; pl@), p@))
S pr(@ifom; p@), p@)

is the conditional probability for the rank i to be the result of a sorting with o® as presentation
order.

The M step of the EM algorithm consists in choosing the value §(“t1) which maximizes the condi-
tional expectation @ computed at the E step :

(q) = Eyw [Gis |x Ll =

platl) — argmax Q(0; e(q))
0O

where © is the parameter space P,, x [1/2,1]. As the parameter space P,, for u is discrete, the
maximization consists simply, but potentially computationally expensively, of browsing the entire
Pm- However in practice, thanks to the symmetry of the ISR distribution, it is enough to browse
the half of P,,. For the probability p, maximizing O leads to the following maximum :

p(q-l—l) Z’L IZS 1 zs Z;ﬂ 1T]J_(xz o’ ,U(q)) +7’]+($7 o M(Q))
Z’L 125 1 zs Z] 1#-] (.237 0'9)—’—#.] (xz Ug)

Note that this value of p(4t1) can be interpreted as the proportion of good manipulations (switching
to the right or stop) in the insertion sorting algorithm.



6 Numerical illustration

6.1 Visualising the ISR distribution

Likening a ranking 7 = (xfl, ...,x;1) to an element of R™, the representation of all ranks

on a polytope lives only in a subspace of dimension m — 1, since the knowledge of the m — 1 first
components a:l_l, e ,x;nl_l imposes the last one z.'. A polytope representation of the distribution
[16, 17] is then interesting when the number m of objects to rank is lower or equal to 4. Conventional
representation of these polytopes links ranks of Kendall distance equal to 1 [14]. Figure 1 shows two
generic permutation polytopes for m = 4 and p = 0.6 or p = 0.9, where orderings are displayed on
each node. On these polytopes, the points surfaces are proportional to the ISR rank probabilities.
They illustrate in particular that the decrease of the rank probability is even stronger as p increases.

1

3124

F1a. 1 — Polytope representation of the ranks (m = 4), with size of the points proportional to the
ISR probability : p = (1,2,3,4), p = 0.6 (left) and p = 0.9 (right).

6.2 Estimation of the ISR distribution on real data sets

In order to assess the adequacy of the ISR distribution to a real data set, we submitted the
following quiz to our students, consisting of three items @)1, @2 and @3 of ascending difficulty :

— @1. Rank the following numbers in ascending order :

01 =7/3,0s =1logl, O3 =exp2, Oy = %g
— 2. Rank the following French writers in chronological order of birth :
01 = Victor Hugo, Oy = Moliére, O3 = Albert Camus, O, = Jean-Jacques Rousseau.
— 3. Rank chronologically these Quentin Tarantino movies :
01 = Inglourious Basterds, Oy = Pulp Fiction, O3 = Reservoir Dogs, 04 = Jackie Brown.

The correct answers are u* = (2,1,4,3) for @1, p* = (2,4, 1,3) for Q2 and p* = (3,2,4,1) for Qs.
The answers of the 40 questioned students are in turn in Table 2.
For each item of the quiz, the ISR distribution is estimated and a x? adequacy test, where the
distribution under the null assumption is estimated by bootstrap [5] based on 1000 replications, is
performed :

- Q1. 1=1(2,1,4,3), p = 0.962 and p-value = 0.593,

- Q2. 1 =1(2,4,1,3), p = 0.815 and p-value = 0.342,

- Q3. 1= (4,3,2,1), p=0.754 and p-value = 0.264.
We can first note that the adequacy of the ISR distribution is accepted for these three questions.
This adequacy can be also found graphically on Figures 2, 3 and 4 displaying polytopes (orderings
are displayed on each node) of both the empirical distribution and the ISR estimated one. We
remark also the decrease of the number of good answers when one move away from the modal
rank.
The growth of the questions difficulty is reflected by a decrease in the probability p : For the
eagy first question, 80% of the students gives the right answer and 15% makes one mistake by
reversing O and Q4. This leads to a high value of the probability p : p = 0.962. For the second



TAB. 2 — Quiz answers of the 40 students.

Quiz Q1 Quiz Q2 Quiz @3
ordering  frequency ordering frequency ordering frequency
(2,1,4,3) 32 (2,4,1,3) 15 (4,3,2,1) 10
(2,4,1,3) 6 (2,4,3,1) 8 (4,2,3,1) 9
(2,1,3,4) 2 (2,1,4,3) 4 (3,2,4,1) 4

other 0 (4,2,1,3) 4 (3,4,2,1) 3
(2,3,1,4) 2 (1,3,2,4) 2
(1,2,3,4) 1 (1,3,4,2) 2
(1,3,4,2) 1 (2,3,1,4) 2
(1,4,2,3) 1 (3,1,4,2) 2
(2,1,3,4) 1 (1,2,3,4) 1
(2,3,4,1) 1 (2,3,4,1) 1
(3,1,4,2) 1 (2,4,3,1) 1
(3,2,1,4) 1 (3,2,1,4) 1

other 0 (4,1,2,3) 1
(4,3,1,2) 1
other 0

3124

F1G. 2 — Empirical (left) and estimated (right) distributions for quiz @1, related to numbers.

F1a. 3 — Empirical (left) and estimated (right) distributions for quiz @2, related to French writers.

question, only 37.5% of the students gives the right answer, and the number of wrong answers
decreases gradually with the number of bad comparisons made in the ranking process. Finally,
the last question leads to more mixed answers with a smaller decrease in the number of responses
gradually as the distance from the modal rank i = (4, 3,2, 1), which moreover is different from the
right rank p* = (3,2,4,1).



F1G. 4 — Empirical (left) and estimated (right) distributions for quiz Qs, related to Quentin Ta-
rantino movies.

7 Discussion

In this paper we suggest a probability distribution for rank data, modeling a stochastic version
of the insertion sorting algorithm. The main force of the 1SR distribution consists in the naturalness
and the optimality of this sorting algorithm for a moderate number m of objects to rank. In this
sense, we can expect in many cases a higher modeling power of the ISR model than usual rank
data models which can be interpreted as the modeling of poorly performing sorting algorithms.
Obviously, this claim relies on the assumption that the judge is somewhat optimal. Moreover, the
1SR model allows to take into account, if it is known, the presentation order of the objects to rank,
what could be particulary interesting since this last could influence the ranking in such situations.
Two other benefits to consider such a generative model is that it allows an interpretation of the
ranking results via its parameters p (the modal ranking) and p (the probability of good paired
comparison during the sorting), and leads to easy maximum likelihood estimation.

Perspectives of this work are numerous. First ones concern computational aspects : When m is
reasonable (smaller than 10), the interest of the ISR distribution has been previously underlined.
For higher number of objects to rank, the insertion sorting algorithm is no more the most powerful,
and other algorithms should be considered. However, as for usual rank data models, ISR estimation
needs to browse all the possible reference ranks i, what becomes computationally infeasable when
m grows beyond 10. In addition, specific rank data models can be also defined by modeling specific
sorting algorithm according to the knowledge on the sorting process employed by the judges.
Second perspectives concern the application aspects : In this paper the ISR distribution is success-
fully used to model students answers to a quiz, but mixture of ISR distributions could also be of
great interest for modeling more complex situations, typically multimodality. For instance, assume
we have put in our quiz a football question, then girls and boys responses will probably not follow
the same distribution.

A third axis of perspective looks on the nature of the rank data : Here only full rank data for single
judgment criterion have been considered. This approach needs to be extended to other types of
ranks, frequently encountered in practice, as partially ranked data, tied data or even ranks resulting
from multiple preference responses.

Appendix 1

Proof of 1SR distribution for a known presentation order

The goal of this appendix is to prove that Formula (1) corresponds to the stochastic left insertion
sorting algorithm with probability p of good paired comparison and independence between the
paired comparisons. The notation are those defined in Section 3.

Démonstration. Let ) = (z; : x; € {01,...,0;}) be the ranking obtained at the step j (1 < j <
m) : It is the ranking of the j first objects in o in the order imposed by z (thus (™ = z). Note



that there exists the following relationship between () and z0U~1 :

() — (,.(0-1) (3-1) o .0=1) (3—1)
) = (af s i (00 O3 i (moy 10 Ty ).

Formula (1) will be proved by induction on j. It is true for j = 1 while there is only one object o7 to
sort : pr(z(|o) = 1. The result of the ranking 27) from (/=1 is the result of #j~ (x, 0)+#;j* (x, 0)
independent Bernoulli experiments of parameter p. Conditionally to /=), the probability of z(/)
is then

pr(z@ (20D o, p) = pn;(ﬂ%mu)-I—nf(%mN)
(1-p)# @ o)+ #5 " (w,0) =0 (z,0,0) =0 (@,0.u)

We conclude the proof by remarking that

pr(@P|o; u, p) = pr(zP |29 o3 4, p)pr(z = |o; p, p),

because we have the following implication relationship between events : z() = £(U~1), O

Appendix 2

Lemma 6. For all permutations x,0,T € Py, we have #j~ (z,0) = #j~ (12, 70).

Démonstration. For any j =1,...,m

#j (tz,70) = FH{i: (Tx) (ro); < (rx )( 0); 1 <i<j}
= #{i:(r2)” ( 0)i < (t2)"(10);,1 <i < j}
= #{i:(z7 7 7r0); < (aflT*lTJ)j,l <i<j}
= #{i:(x7to); < (x_l )j.1<i<j}
= #irat <2l 1<i<y)

= #ji(x’ U)'

Lemma 7. For all permutations x,0,7 € Py, we have #jV(x,0) = #j*(r2,70).

Démonstration. Tt suffices to note that #; (z,0) = 1{#j (z,0) + 1 < j — 1} and to use Lemma
6 to conclude. O

Lemma 8. Ifp = 1/2 then for all permutations x, T € Pp,, we have pr(z|o; p, 1/2) = pr(rz|ro; p, 1/2).

Démonstration. When p = 1/2, we obtain by using Lemmas 6 and 7

pr(tz|ro; u,1/2)

2
< 1 ) 271:1 #i- (I,U)+#j+ (w»o')

(1) S #9” (raro) g (re,0)

2
pr(zlo; p, 1/2).

Lemma 9. For all x,0,p1 € Py, we have 1; (x,o,0) = #j (x,0) — n; (x,0,u)-
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Démonstration. Let p be the permutation of total inversion previously introduced in Section 4.2
and 4,9 =1,...,m,i # i'. We have :

S (B) = Wit <t}

()7t < (np)i'}  (because i = pp)
W™t <p7luy'y

= Upu; ' <ppz'}y (since p=p)
Wp, b > py'} (since i <i' < p; > pi)
1—1{u; ' < p;'t (since i # i)

= 1= 3dir(p)-

This proof is concluded by :

77; (.23, g, ﬂ) = Z 507;0_7 (ﬂ)

i€j= (z,0)
= Z (1 - 50103' (/1‘))
€57 (z,0)
= #]_ (Z‘, U) - Z 5(7“7_7‘ (,U)

i€j (x,0)

= #j_(l‘,O') - 77_(3:70-7 :u)'

Lemma 10. For all x,0, 1 € Py, we have r];-r(x, o, i) =#jT(z,0) — n;r(x, o, ).
The proof is similar to that of Lemma 9.

Lemma 11. For all x,pu € Py, © # p and p > 1/2, we have pr(z; p, p) < pr(z;z,p).

Démonstration. Remark first that

77;(33707 .23) = Z 507’,0_7‘ (Z‘) = #j_(x,a) (6)

i€j~ (z,0)
0 (w,00) = #j7(x,0) (7)

because all the already sorted objects at the step j are necessarily well sorted. In addition, for any
1 # x we have necessarily

> oy (@, o pm) +nf (w0,0) <Y #i(x,0) + #57 (2,0) 8)

j=1 j=1

Effectively, the equality occurs only if, at each step j of the sorting process, all the already sorted
objects are well sorted, what is possible only for i = z. We have then

pr(zlo;pp) = p=i-ili (,0,1)+n] (2,0,11)
(1= p)Sims #9~ @o) 7 (.0)=n; (@) = (2.
< pz;rz:l #jf(m7a)+#j+(r1:7a)

since p > 1/2 < 1 —p < p and the exponent of 1 — p is positive as just seen before in (8). From
Equations (6) and (7) we deduce

pr(zlo;z,p) = paim #i7 (z,0)+#i T (z,0) (9)

and finally
pr(zlo; p,p) < pr(zlo;z, p). (10)
The proof is concluded by averaging over all possible presentation orders o in P,,. O
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