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Existence of the stationary regime of a

Non-Markovian Stochastic Differential Equation

Serge Cohen∗, Fabien Panloup†

December 15, 2009

Abstract

In this paper, we obtain some existence results of stationary solutions to a class
of SDEs driven by continuous Gaussian processes with stationary increments. We
propose a constructive approach based on the study of some sequences of empirical
measures of Euler schemes of these SDEs. In our main result, we obtain the functional
convergence of this sequence to a stationary solution to the SDE. We also obtain some
specific properties of the stationary solution. In particular, we show that, in contrast
to Markovian SDEs, the initial random value of a stationary solution and the driving
Gaussian process are always dependent. This emphasizes the fact that the concept of
invariant distribution is definitely different to the Markovian case.

Keywords: stochastic differential equation; Gaussian process; stationary process; Euler
scheme.

AMS classification (2000): 60G10, 60G15, 60H35.

1 Introduction

The study of steady state of dynamical systems is very important for many experimental
sciences like Physics, Chemistry, or Biology, since very often measure can only be obtained
in that regime. In the Markovian setting the study of long time behavior and stationary
solutions of dynamical systems is a classical domain of both Mathematic and Probability.
Nevertheless in many situations the driving noise of the dynamical system has long range
dependence properties and the solution is not Markovian. In ([5, 6]) a precise definition of
a stationary solution to a stochastic differential equation is given when the driving noise
is a fractional Brownian motion.

In this paper, we deal with an R
d-valued process (Xt)t≥0 solution to the following SDE

of the following form:
dXt = b(Xt)dt + σdZt (1)

where (Zt)t≥0 is a continuous centered Gaussian process with ergodic stationary incre-
ments. For this class of SDEs, our principal aim is to build some stationary solutions
under some mean-reverting assumptions on b and weak assumptions on (Zt)t≥0 including
ergodicity of the discrete increments that will be made precise in the next section. At this
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stage, we already remark the main restriction : the matrix σ is constant. It allows us on
one hand to avoid technicalities related to stochastic integration and on the other hand to
generalize some results of [5], when the driving noise is not a fractional Brownian motion.
Please note that, when b(x) = −x, the solution of (1) is an Orstein-Uhlenbeck type pro-
cess, where the driving process may be more general that a fractional Brownian motion
(see [2] for a study of fractional Ornstein-Uhlenbeck processes). We obtain bounds for a
discrete version of this generalized Ornstein-Uhlenbeck process, which are an important
tool in our proofs and which may have interest of their own (see Lemma 2).
In this work, our approach is quite different to that of [5]. Actually, we choose to first
build stationary solutions of an ergodic discrete model associated with (1). Then, sta-
tionary solutions of the SDE are exhibited as limits of these stationary solutions. More
precisely, in a first step, we study a sequence of functional empirical occupation measures
of an Euler scheme (X̄nγ) with step γ > 0 associated with (1) and show under some
mean-reverting assumptions on b, that, when n → +∞, this sequence has almost surely
(a.s. later on) some weak convergence properties to the distribution of a stationary Euler
scheme with step γ of the SDE. This first result shows in particular existence of stationary
solutions to the discrete model. Denoting these stationary solutions by Y (∞,γ), we show
in a second step, that (Y (∞,γ))γ is tight for the uniform convergence on compact sets and
that its weak limits (when γ → 0) are stationary solutions to (1).
For a Markovian SDE, this type of approach is used as a way of numerical approximation
of the invariant distribution and more generally of the distribution of the Markov process
when stationary (see [17], [9], [10], [12], [16], [15]). Here, even if the discrete model can be
simulated, we essentially use it as a natural way of construction of stationary solutions of
the continuous model and the computation problems are out of the scope of this paper.
In Section 2, we make the mathematical framework precise and we state our main results of
convergence to the stationary regime of SDE (1). Then, the sequel of the paper is devoted
to the proof of the main results. In Sections 3 and 4, we study the long time behavior of
the sequence (X̄nγ)n≥1 (when γ is fixed) and the convergence properties (when n→ +∞)
of the sequence of functional empirical occupation measures of the continuous-time Euler
scheme. We show that this sequence is a.s. tight for the topology of uniform convergence
on compact sets and that its weak limits are stationary solutions to the “discretized” SDE.
Then, in Section 5, we focus on the behavior of these weak limits when γ → 0. Section 6
is an Appendix where we obtain some control of the moment of the supremum of a Gaus-
sian process and where we prove that the initial random value and the driving process
of the stationary solution are dependent as soon as the Gaussian process has dependent
increments.

2 Framework and main results

Before outlining the sequel of the paper, we list some notations. Throughout this paper,
R+ = [0,∞). We denote by C(R+,R

d) (resp. D(R+,R
d)) the space of continuous (resp.

càdlàg functions) endowed with the uniform convergence on compact sets (resp. Skorokhod
(see e.g. [1])) topology, and by Ck(R+,R

d), the set of kth differentiable functions. The
Euclidean norm is denoted by | . |. For a measure µ and a µ-measurable function f, we
set µ(f) =

∫

fdµ. Finally, we will denote by C every non explicit positive constant. In
particular, it can change from line to line.
Let us first consider assumptions for the driving noise (Zt)t≥0 = (Z1

t , . . . , Z
ℓ
t )t≥0 : we

assume that (Zt)t≥0 is a centered Gaussian process with independent coordinates satisfying
Z0 = 0 and, for every i ∈ {1, . . . , ℓ}, we denote by ci : R → R+, the following function of
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(Zi
t)t≥0: for every positive s, t,

E[(Zi
t − Zi

s)
2] = ci(t− s).

Note that ci(0) = 0. For every integer n ≥ 0, let us denote by ∆n = Znγ − Z(n−1)γ when
γ > 0 is fixed. Setting φi

γ(n) := E[∆i
1∆

i
n+1] for i = 1, . . . , l, we have:

φi
γ(n) =

1

2
[ci((n + 1)γ) − 2ci(nγ) + ci((n − 1)γ)] . (2)

We denote by (Z̄t)t≥0 the “discretized” Gaussian process defined by Z̄nγ := Znγ for every
n ≥ 0 and,

Z̄t = Z̄nγ ∀t ∈ [nγ, (n+ 1)γ).

We introduce assumption (H1) on the functions ci, i ∈ {1, . . . , ℓ}. More precisely, we
impose some conditions on the second derivative of ci near 0 and +∞ which correspond
respectively to some conditions on the local behavior and on the memory of the process.

(H1) For every i ∈ {1, . . . , ℓ}, ci is continuous on R+ and C2 on (0,+∞). Moreover, there
exist ai ∈ (0, 2) and bi > 0 such that:

|c′′i (t)| ≤
{

Ct−ai ∀t ∈ (0, 1)

Ct−bi ∀t ≥ 1.
(3)

Let us recall that for a fractional Brownian motion with Hurst index H, these assumptions
are satisfied with ai = bi = 2 − 2H. One can also check that (3) implies that in a
neighborhood of 0,

ci(t) ≤ C











t if ai ∈ (0, 1),

t ln t if ai = 1,

t2−ai if ai ∈ (1, 2).

(4)

In particular, the sample paths of (Zt)t≥0 are almost surely continuous. Futhermore, we
derive from assumption (H1) that for every i ∈ {1, . . . , ℓ}, E[∆i

1∆
i
n] → 0 as n → +∞.

Then, it follows from [3] that (∆i
n)n≥1 is an ergodic sequence for every i ∈ {1, . . . , ℓ}.

REMARK 1. Since (∆i
n)n≥1 is Gaussian, (∆i

n)n≥1 is in fact strong mixing (see [14]) for
every i ∈ {1, . . . , ℓ}. It follows from the independence between (∆1

n)n≥1, . . ., (∆ℓ
n)n≥1 that

the sequence (∆n)n≥1 is also ergodic.

Let us now introduce some stability assumptions (H2) and (H3) concerning the stochastic
differential equation

dXt = b(Xt)dt+ σdZt, (5)

where b : R
d → R

d, and σ is a matrix with d rows and ℓ columns.
(H2):

(i) There exists C > 0 such that |b(x)| ≤ C(1 + |x|) ∀x ∈ R
d.

(ii) There exist β ∈ R and α > 0 such that

〈x, b(x)〉 ≤ β − α|x|2.

(H3): b is a Lipschitz continuous function and there exist α > 0 and β ≥ 0, such that
∀x, y ∈ R

d,
〈b(x) − b(y), x− y〉 ≤ β − α|x− y|2.
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REMARK 2. The reader can check that (H3) implies (H2), but some results are true
under the weaker assumption (H2), so we consider both. When (H3) holds for β = 0, we
will denote it by (H3,0).

When b is a Lipschitz continuous function, it is obvious using Picard iteration arguments
that for any initial random variable ξ a.s. finite there exists a unique solution (Xt)t≥0

to (5) such that X0 = ξ which is adapted to the filtration σ(ξ, Zs, 0 ≤ s ≤ t). Then,

Xt = ξ +

∫ t

0
b(Xs)ds + σZt, ∀t > 0. (6)

Please note that the integral in (6) is always defined since the sample paths of (Xt)t≥0

and (Zt)t≥0 are continuous.

Let us now define a stationary solution to (5).

DEFINITION 1. Let (Zt)t≥0 be a Gaussian process with continuous paths and b : R
d → R

d

be a continuous function. We say that (Xt)t≥0 is a stationary solution to (5) if, P − a.s.,

Xt = X0 +

∫ t

0
b(Xs)ds+ σZt, ∀t ≥ 0, (7)

and if for every n ∈ N, for every 0 ≤ t1 < t2 < . . . < tn,

(Xt+t1 , . . . ,Xt+tn)
L
= (Xt1 , . . . ,Xtn) ∀t ≥ 0,

where
L
= denotes the equality in distribution.

When (Zt)t≥0 is a Markovian process, for instance a Brownian motion, it is classical to
have X0 independent of Z, but in general we cannot have such independence as stated
later in Proposition 2.

DEFINITION 2. Let ν denote a probability on R
d. We say that ν is an invariant distri-

bution for (1) if there exists a stationary solution (Xt)t≥0 to (1) such that ν = L(X0).

REMARK 3. The fact that X0 and (Zt)t≥0 may be dependent involves that uniqueness of
the invariant distribution does not imply uniqueness of stationary solutions to (7).

Let γ be a positive number. We will now discretize equation (5) as follows:

{

Y(n+1)γ − Ynγ = γb(Ynγ) + σ∆n+1 ∀n ≥ 0.

Yt = Ynγ ∀t ∈ [nγ, (n + 1)γ).
(Eγ)

We will say that (Yt)t≥0 is a discretely stationary solution to (Eγ) is solution of (Eγ)
satisfying:

(Yt1+kγ , . . . , Ytn+kγ)
L
= (Yt1 , . . . , Ytn) ∀ 0 < t1 < . . . < tn,∀n, k ∈ N.

We denote (X̄nγ) the Euler scheme defined by: X̄0 = x ∈ R
d and for every n ≥ 0

X̄(n+1)γ = X̄nγ + γb(X̄nγ) + σ∆n+1. (8)

Then, we denote by (X̄t)t≥0 the stepwise constant continuous-time Euler scheme defined
by:

X̄t = X̄nγ ∀t ∈ [nγ, (n + 1)γ).
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The process (X̄t)t≥0 is a solution to (Eγ) such that X̄0 = x. For every k ≥ 0, we define by

(X̄
(γk)
t )t≥0 the (γk)-shifted process: X̄

(γk)
t = X̄γk+t.

Then, a sequence of random probability measures (P(n)(ω, dα))n≥1 is defined on the Sko-
rokhod space D(R+,R

d) by

P(n,γ)(ω, dα) =
1

n

n
∑

k=1

δX̄(γ(k−1))(ω), (dα)

where δ denotes the Dirac measure. For t ≥ 0, the sequence (P(n)
t (ω, dy))n≥1 of “marginal”

empirical measures at time t on R
d is defined by

P(n,γ)
t (ω, dy) =

1

n

n
∑

k=1

δ
X̄

(γ(k−1))
t (ω)

(dy) =
1

n

n
∑

k=1

δX̄γ(k−1)+t(ω)(dy).

A weak limit of a set P ⊂ D(R+,R
d) is a limit of any subsequence of P in D(R+,R

d). Let
us now state the main results.

THEOREM 1. 1. Assume (H1) and (H2). Then, there exists γ0 > 0 such that for every
γ ∈ (0, γ0), (P(n,γ)(ω, dα))n≥1 is a.s. tight on D(R+,R

d). Furthermore, every weak limit
is a discretely stationary solution to (Eγ).
2. Assume (H1) and (H3) and set

U∞,γ(ω) := {weak limits of (P(n,γ)(ω, dα))}.

Then, there exists γ1 ∈ (0, γ0) such that (U∞,γ(ω))γ≤γ1 is a.s. relatively compact for
the uniform convergence topology on compact sets and any weak limit when γ → 0 of
(U∞,γ(ω))γ≤γ1 is a stationary solution to (5).

The previous theorem states existence of stationary solutions of (5), but one can won-
der about uniqueness of the solutions. We will only consider the special case when (H3,0)
is enforced which is called in the Markovian setting asymptotic confluence (By asymptotic
confluence, we mean that the distance in probability between two solutions starting from
two different points x and y tends to 0 when t→ +∞).

PROPOSITION 1. Assume (H1) and (H3,0). Then, there exists a unique stationary solu-
tion to (5) and to equation (Eγ), when γ is small enough.

The next corollary, whose proof is obvious is nevertheless useful.

COROLLARY 1. Assume (H1) and (H3,0). Denote by µ ∈ P(C(R+,R
d)), the distribution

of the unique stationary solution to (1). Then,

dD(R+,Rd)(P(∞,γ)(ω, dα), µ)
γ→0−−−→ 0 a.s. (9)

where dD(R+,Rd) denotes a distance on P(D(R+,R
d)) (endowed with the weak topology),

the set of probabilities on R
d. In particular,

dRd(P(∞,γ)(ω, dα), ν)
γ→0−−−→ 0 a.s. (10)

where ν is the unique invariant distribution of (5) and, dRd is a distance on P(Rd).

We will not study the rate of convergence relative to (10) in this paper.
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REMARK 4. We chose in this paper to work with the stepwise constant Euler scheme
because this continuous-time scheme is in a sense the simplest to manage. The default is
that the previous convergence result is stated for the Skorokhod topology. Replacing the
stepwise constant Euler scheme by a continuous-time Euler scheme built by interpolations
would lead to a convergence result for the topology of uniform convergence on compact
sets.

Last, the following Proposition shows that the random initial value of a stationary solution
can only be independent of a Markovian noise.

PROPOSITION 2. Assume that ℓ = d and that σ is invertible. Let X0 and (Zt)t≥0 denote
the random initial value and the driving process of a stationary solution to (5). Then, if
X0 is independent of (Zt)t≥0, then (Zt)t≥0 has independent increments. As a consequence,
Z = QW where W is a standard d-dimensional Brownian Motion and Q is a deterministic
matrix.

Let us start a brief comparison of our results with those of [5] if (Zt)t≥0 is fractional
Brownian motion. First, our assumption (H3) is a stability assumption a little weaker
than (A1) in [5]. Likewise (H2) (i) and b Lipschitz continuous are similar to (A2) for
N = 1 with Hairer’s notation. In [5] Stochastic Dynamical System (SDS Definition 2.7)
and a Feller semigroup Qt ((2.4) in [5]) are defined on R

d ×C(R+,R
d). The first marginal

of a stationary measure µ on R
d×C(R+,R

d) defined in section 2.3 of [5] is what we call an
invariant measure in Definition 2. Hence, we consider our results as a generalization of the
existence results of [5] to SDEs driven by Gaussian continuous processes with stationary
increments. Moreover P(n,γ) for large n and small γ are natural approximations of the
stationary measures of [5].

3 Tightness of (P (n,γ)(ω, dα))n≥1

The main result of this section is Proposition 3 where we show the first part of Theorem 1,
i.e. we obtain that (P(n,γ)(ω, dα))n≥1 is a.s. tight for the Skorokhod topology on D(R+,R

d)
when γ is sufficiently small. A fundamental step for this proposition is to obtain the a.s.

tightness for the sequence of initial distributions (P(n,γ)
0 (ω, dα))n≥1. This property is

established in the following lemma.

LEMMA 1. Assume (H1) and (H2). Then, there exists γ0 > 0 such that for every γ ≤ γ0,

sup
n≥1

1

n

n
∑

k=1

|X̄γ(k−1)|2 < +∞ a.s. (11)

Proof. We have :

|X̄(n+1)γ |2 = |X̄nγ |2 + 2γ〈X̄nγ , b(X̄nγ)〉 + 2〈X̄nγ , σ∆n+1〉
+
(

γ2|b(X̄nγ)|2 + 2γ〈b(X̄nγ), σ∆n+1〉 + |σ∆n+1|2
)

.

Let ε > 0. Using assumption (H2)(i) and the elementary inequality |〈u, v〉| ≤ 1
2(|εu|2 +

|v/ǫ|2) (for every u, v ∈ R
d), we have:

|〈X̄nγ , σ∆n+1〉| ≤
1

2

(

ε|X̄nγ |2 +
1

ε
|σ∆n+1|2

)

and

|〈b(X̄nγ), σ∆n+1〉| ≤
1

2

(

εC(1 + |X̄nγ |2) +
1

ε
|σ∆n+1|2

)

.
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It follows from assumption (H2)(ii) that for every ε > 0,

|X̄(n+1)γ |2 ≤ |X̄nγ |2 + 2γ(β − α|X̄nγ |2) + p(γ, ε)(1 + |X̄nγ |2) + C(ε, γ)|∆n+1|2

where C(γ, ε) is a positive constant depending on γ and ε and p(γ, ε) ≤ C(ε + γε + γ2).
Then, set ε = γ2 (for instance). For γ sufficiently small, p(γ, ε) ≤ αγ/2. Hence, we obtain
that there exist β̃ ∈ R and α̃ > 0 such that ∀n ≥ 0

|X̄(n+1)γ |2 ≤ |X̄nγ |2 + γ(β̃ − α̃|X̄nγ |2) + C|∆n+1|2

≤ (1 − γα̃)|X̄nγ |2 + C(γ + |∆n+1|2). (12)

Finally, by induction, one obtains for every n ≥ 1:

|X̄nγ |2 ≤ (1 − γα̃)n|x|2 + C
n
∑

k=1

(1 − γα̃)n−k(γ + |∆k|2).

Hence, in order to prove (11), it is enough to show that for γ sufficiently small,

sup
n≥1

1

n

n−1
∑

k=1

k
∑

l=1

(1 − α̃γ)k−l|∆l|2 < +∞ a.s. (13)

But checking that

n
∑

k=1

k
∑

l=1

(1 − α̃γ)k−l|∆l|2 =

n
∑

k=1

|∆k|2
n−k
∑

u=0

(1 − α̃γ)u ≤ C

n
∑

k=1

|∆k|2 ≤ C

ℓ
∑

i=1

n
∑

k=1

(∆i
k)

2,

we obtain that it is in fact enough to show that

sup
n≥1

1

n

n
∑

k=1

(∆i
k)

2 < +∞ a.s. ∀i ∈ {1, . . . , ℓ}. (14)

Now, by Remark 1, for every i ∈ {1, . . . , ℓ}, the sequence (∆i
k)k≥1 is ergodic. As a

consequence,

1

n

n
∑

k=1

(∆i
k)

2 n→+∞−−−−−→ E[(∆i
1)

2],

and (14) is satisfied. This completes the proof.

PROPOSITION 3. Assume assumption (H1) and (H2). Then, there exists γ0 > 0 such
that for every γ ≤ γ0, (P(n,γ)(ω, dα))n≥1 is a.s. tight on D(R+,R

d).

Proof. We have to prove the two following points (see e.g. [1], Theorem 15.2):

• 1. ∀T > 0, (µ
(n)
T (ω, dy)) defined by

µ
(n)
T (ω, dy) =

n
∑

k=1

δ
{supt∈[0,T ] |X̄

(k−1)
t |}

(dy),

is an a.s. tight sequence.
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• 2. For every η > 0,

lim sup
δ→0

lim sup
n→+∞

1

n

n
∑

k=1

δ{ω′
T

(X̄(k−1) ,δ)≥η} = 0 a.s.

with
w′

T (x, δ) = inf
{ti}

{max
i≤r

sup
s,t∈[ti,ti+1)

|xt − xs|}

where the infimum extends over finite sets {ti} satisfying:

0 = t0 < t1 < . . . < tr = T and inf
i≤r

(ti − ti−1) ≥ δ.

In fact, since the process has only jumps at times nγ with n ∈ N, ω′
T (X̄(k), δ) = 0 when

δ < γ. It follows that the second point is obvious. Then, let us prove the first point. By
induction, one gets from (12) that, for every k ≥ n,

|X̄kγ |2 ≤ |X̄nγ |2(1 − γα̃)k−n + C

k
∑

l=n+1

(1 − γα̃)k−l(γ + |∆l|2).

This implies that

sup
t∈[0,T ]

|X̄(k−1)
t |2 = sup

k∈{n,...,n+[T/γ]}
|X̄kγ |2 ≤ |X̄nγ |2 + C(1 +

n+[T/γ]
∑

l=n+1

|∆l|2).

Thus, if V (x) = |x|2, one can deduce:

µ(n)(ω, V ) ≤ 1

n

n
∑

k=1

V (X̄(k−1)γ) + C
(

1 +
1

n

n
∑

k=1

k+[T/γ]
∑

l=k+1

|∆l|2
)

≤ sup
n≥1

P(n,γ)
0 (ω, V ) + C

(

1 +
1

n

[

T

γ

]

sup
n≥1

1

n

n+[T/γ]
∑

k=1

|∆k|2
)

< +∞ a.s.

thanks to Lemma 1 and (14). Therefore, supn≥1 µ
(n)
T (ω, V ) < +∞ a.s which implies that

(µ
(n)
T (ω, dy)) is a.s. tight on R

d (see e.g.. [4], Proposition 2.1.6).

4 Identification of the weak limits of (P (n,γ)(ω, dα))n≥1

In the following proposition, we show that every weak limit of (P(n,γ)(ω, dα))n≥1 is a.s a
stationary Euler scheme with step γ of SDE (5).

PROPOSITION 4. Assume (H1) and let P(∞,γ)(ω, dα) denote a weak limit of (P(n,γ)(ω, dα))n≥1.
Then, a.s., P(∞,γ)(ω, dα) is the distribution of a càdlàg process denoted by Y (∞,γ) such
that, a.s. in ω,

(a) (Y
(∞,γ)
lγ+t )t≥0

D(R+,Rd)
= (Y

(∞,γ)
t )t≥0 for every l ∈ N where

D(R+,Rd)
= denotes the equality

in distribution on D(R+,R
d).
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(b) N (∞,γ) defined by

N
(∞,γ)
t = Y

(∞,γ)
t − Y

(∞,γ)
0 −

∫ tγ

0
b(Y (∞,γ)

s )ds

is equal in law to σZ̄γ with tγ = γ[t/γ].

REMARK 5. It follows from the previous proposition that (Y
(∞,γ)
t )t≥0 is a discretely

stationary solution to (Eγ).

Proof. (a) Let T denote a countable dense subset of R+ and SK
r , a countable dense subset

of the space of continuous functions f : R
r → R with compact support. It suffices to prove

that a.s., ∀r ≥ 0, for every f ∈ SK
r , for every t1, . . . , tr ∈ T ,∀l ∈ N,

∫

f(αt1 , . . . , αtr )P(∞,γ)(ω, dα) =

∫

f(αt1+lγ , . . . , αtr+lγ)P(∞,γ)(ω, dα).

Since T and SK
r are countable, we only have to prove that ∀r ≥ 0, for every f ∈ SK

r , for
every t1, . . . , tr ∈ T , ∀l ∈ N,

∫

f(αt1 , . . . , αtr)P(∞,γ)(ω, dα) =

∫

f(αt1+lγ , . . . , αtr+lγ)P(∞,γ)(ω, dα) a.s. (15)

Let now f ∈ SK
r , l ∈ N and t1, . . . , tr ∈ T . On the one hand,

1

n

n
∑

k=1

(

f(X̄
(k−1)
t1 , . . . , X̄

(k−1)
tr ) − f(X̄

(k−1)
t1+lγ , . . . , X̄

(k−1)
tr+lγ )

)

=
1

n

n
∑

k=1

f(X̄(k−1)γ+t1 , . . . , X̄(k−1)γ+tr ) −
1

n

n
∑

k=1

f(X̄(k−1+l)γ+t1 , . . . , X̄(k−1+l)γ+tr )

=
1

n

(

l−1
∑

k=1

f(X̄(k−1)γ+t1 , . . . , X̄(k−1)γ+tr ) −
n+l
∑

k=n+1

f(X̄(k−1)γ+t1 , . . . , X̄(k−1)γ+tr )

)

,

and this last term converges to 0 when n → +∞ a.s. since f is bounded. On the other
hand, since P(∞,γ)(ω, dα) denotes a weak limit of (P(n,γ)(ω, dα))n≥1, there exists a subse-
quence (nk(ω))k≥1 such that (P(nk(ω),γ)(ω, dα))k≥1 converges weakly to P(∞,γ)(ω, dα) (for
the Skorokhod topology). This convergence implies in particular the finite-dimensional
convergence. Therefore,

1

n

n
∑

k=1

f(X̄
(k−1)
t1 , . . . , X̄

(k−1)
tr )

n→+∞−−−−−→
∫

f(αt1 , . . . , αtr )P(∞,γ)(ω, dα) a.s.

and,
1

n

n
∑

k=1

f(X̄
(k−1)
t1+lγ , . . . , X̄

(k−1)
tr+lγ )

n→+∞−−−−−→
∫

f(αt1+lγ , . . . , αtr+lγ)P(∞,γ)(ω, dα) a.s.

Therefore, (15) follows.

(b) Let Φγ : D(R+,R
d) → D(R+,R

d) be defined by:

(Φγ(α))t = αt − α0 −
∫ tγ

0
b(αs)ds. (16)
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Then, N (∞,γ) = Φγ(Y (∞,γ)). Let F : D(R+,R
d) → R be a bounded continuous functional:

E[F (N (∞,γ))] =

∫

F (Φγ(α))P(∞,γ)(ω, dα) = lim
k→+∞

∫

F (Φγ(α))P(nk(ω),γ)(ω, dα). (17)

For every t ≥ 0,

Φγ(X̄(k))t = σ(Z̄γ
γk+t − Z̄γ

kγ) =

k+[t/γ]
∑

l=k+1

σ∆l,

with the convention
∑

∅

= 0. Thus, we derive from (17) that

E[F (N (∞,γ))] = lim
k→+∞

1

nk

nk
∑

m=1

F ◦G((∆l)l≥m)

where G : (Rd)N → D(R+,R
d) is defined by

G((un)n≥1)t =

[ t
γ
]

∑

l=1

σul ∀t ≥ 0.

Now, by Remark 1, (∆n)n≥1 is an ergodic sequence. As a consequence, a.s.,

1

nk

nk
∑

i=1

F ◦G((∆l)l≥i)
k→+∞−−−−→ E[F ◦G((∆l)l≥1)] = E[F (σZ̄γ)].

The result follows.

5 Convergence of (P (∞,γ)(ω, dα)) when γ → 0

The aim of this section is to show that, a.s., (P(∞,γ)(ω, dα))γ is a.s. tight for the weak
topology induced by the topology of uniform convergence on D(R+,R

d) and that its weak
limits when γ → 0 are stationary solutions to (5). The main difficulty for this second part
of the proof of Theorem 2 is to show that (P(∞,γ)(ω, dα))γ is a.s. tight on R

d. For this
step, we focus in Lemma 2 on the particular case b(x) = −x (when (Xt)t≥0 is an Ornstein-
Uhlenbeck process) where some explicit computations lead to a control of (P(∞,γ)(ω, dα))γ .
Then, in Lemma 3, we show that this control can be extended to SDE’s whose drift term
satisfies (H3). Finally, we establish the main result of this section in Proposition 5.

Let γ > 0. We denote by (Σnγ) the Euler scheme in the particular case b(x) = −x. We
have Σ0 = x and:

Σ(n+1)γ = (1 − γ)Σnγ + σ∆n+1 ∀n ≥ 0.

LEMMA 2. Assume (H1) and let γ ∈ (0, 1). Then, (E[|Σnγ |2])n≥0 is a convergent sequence.
Denote by v(γ) its limit. For every γ0 ∈ (0, 1),

sup
γ∈(0,γ0]

v(γ) < +∞.

10



Proof. First, by induction,

Σnγ = (1 − γ)nx+ σ

n−1
∑

k=0

(1 − γ)k∆n−k.

Using that the coordinates are independent, it follows that

E[|Σnγ |2] = (1 − γ)2n|x|2 +

ℓ
∑

i=1

(σ∗σ)i,iE
[(

n−1
∑

k=0

(1 − γ)k∆i
n−k

)2]

.

For every i ∈ {1, . . . , ℓ},

E

[(

n−1
∑

k=0

(1 − γ)k∆i
n−k

)2]

=

n−1
∑

k=0

n−1
∑

l=0

(1 − γ)k+lφi
γ(l − k),

where φi
γ is defined by (2). Setting u = k + l and v = l − k, we deduce that

E

[(

n−1
∑

k=0

(1 − γ)k∆i
n−k

)2]

=

2n−2
∑

u=0

(1 − γ)u
(2n−2−u)∧u
∑

v=(u−(2n−2))∨(−u)

φi
γ(v), (18)

with x ∧ y = min(x, y) and x ∨ y = max(x, y). Then, with the definition of φ, one can
check that

(2n−2−u)∧u
∑

v=(u−(2n−2))∨(−u)

φi
γ(v) =

{

ci(γ) if u = 0 or u = 2n− 2,

fγ
i ((2n − 2 − u) ∧ u) otherwise,

with fγ
i (x) = ci(γ(x+ 1)) − ci(γx). It follows from (18) that,

E

[(

n−1
∑

k=0

(1 − γ)k∆i
n−k

)2]

= ci(γ) +

n−1
∑

u=1

(1 − γ)ufγ
i (u) +Rn(γ),

with

Rn(γ) =

2n−1
∑

u=n

(1 − γ)ufγ
i (2n− 2 − u) + (1 − γ)2n−2ci(γ),

=
n−2
∑

u=−1

(1 − γ)2n−2−ufγ
i (u) + (1 − γ)2n−2ci(γ).

Since ci is locally bounded and c′′i is bounded on [1,+∞[, ci is a subquadratic function,
i.e.

|ci(u)| ≤ C(1 + |u|2) ∀u ≥ 0.

It follows that fγ
i is also a subquadratic function. Then, using that for every u ∈

{−1, . . . , n−2}, (1−γ)2n−2−u ≤ (1−γ)n, we obtain that for every γ ∈ (0, 1), Rn(γ) −→ 0
as n→ +∞.
Using again that fγ

i is a subquadratic function, we deduce that for every γ ∈ (0, 1), for
every i ∈ {1, . . . , d},

E

[(

n−1
∑

k=0

(1 − γ)k∆i
n−k

)2] n→+∞−−−−−→ wi(γ) := ci(γ) +

+∞
∑

u=1

(1 − γ)uf i
γ(u)

11



and that wi(γ) is finite. By a second order Taylor development, we have for every u ≥ 1:

fγ
i (u) = γc′i(γu) + γ2r(γ, u) with r(γ, u) = c′′i (γ(u+ θu)), θu ∈ [0, 1].

Hence, using assumption (H1), it follows that

wi(γ) = ci(γ) +

+∞
∑

u=1

γ(1 − γ)u
[

c′i(γu) + γr(γ, u)
]

with |r(γ, u)| ≤ Cgi,1(γu),

and, gi,1(t) = t−ai1{t∈(0,1)} + t−bi1{t≥1}.

Let us now control the behavior of wi(γ) when γ → 0. First, for every γ ∈ (0, 1), for every
u ≥ 1, (1 − γ)u ≤ exp(−γu). Then, since t 7→ exp(−t), t 7→ gi,1(t) are non-increasing on
R
∗
+, one deduces that for every u ≥ 2,

γ(1 − γ)ugi,1(γu) ≤
∫ γu

γ(u−1)
exp(−t)gi,1(t)dt.

Then,

|
+∞
∑

u=1

γ2(1 − γ)ur(γ, u)| ≤ ci(γ)(1 − γ) + Cγ

∫ +∞

γ
exp(−t)gi,1(t)dt.

Using that ai < 2, we easily check that the right-hand side is bounded and tends to 0
when γ → 0. We now focus on the first term of wi(γ). First, by assumption (H1), for
every t > 0,

|c′i(t)| ≤ C(1 + gi,2(t)) where gi,2(t) = t1−ai−δ11{t∈(0,1)} + t1−bi+δ21{t≥1}, (19)

with δ1 ∈ (0, 1) (resp. δ2 ∈ (0, 1)) if ai = 1 (resp. bi = 1) and δ1 = 0 (resp. δ2 = 0)
otherwise. Second, using that (1 − γ)u ≤ C(1 − γ)−1 exp(−t) for every t ∈ [γu, γ(u + 1)],
one deduces that

γ(1 − γ)u(γu)ρ ≤ C

{

∫ γu
γ(u−1) exp(−t)tρdt if ρ < 0
1

1−γ

∫ γ(u+1)
γu exp(−t)tρdt if ρ ≥ 0

(20)

It follows from (19) and (20) that

lim sup
γ→0

∣

∣

∣

∣

∣

+∞
∑

u=1

γ(1 − γ)uc′i(γu)

∣

∣

∣

∣

∣

≤ C

∫ +∞

0
exp(−t) (1 + gi,2(t)) dt.

The right-hand member is finite. This completes the proof.

LEMMA 3. Assume (H1) and (H3) and denote by P(∞,γ)(ω, dα) a weak limit of (P(n,γ)(ω, dα)).
Then:
(i) With the notations of Proposition 4, there exists γ0 > 0 such that,

sup
0<γ≤γ0

Eω[|Y (∞,γ)
0 |2] < +∞ a.s. (21)

(ii) Assume (H1) and (H3,0). Then, uniqueness holds for the distribution of stationary
solutions to (7). Similarly, there exists γ0 > 0 such that for every γ ≤ γ0, uniqueness
holds for the distribution of discretely stationary solutions to (Eγ).
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Proof. (i)
Step 1: Let (X̄nγ) and (Σnγ) be defined by:

X̄0 = x, X̄(n+1)γ = X̄nγ + γb(X̄nγ) + σ∆n+1 and, (22)

Σ0 = x, Σ(n+1)γ = Σnγ − γΣnγ + σ∆n+1.

with ∆n = Znγ − Z(n−1)γ . Then,

|X̄(n+1)γ−Σ(n+1)γ |2 = |X̄nγ − Σnγ |2 + 2γ〈b(X̄nγ) + Σnγ , X̄nγ − Σnγ〉 + γ2|b(X̄nγ) + Σnγ |2

≤ |X̄nγ − Σnγ|2 + 2γ〈b(X̄nγ) − b(Σnγ), X̄nγ − Σnγ〉 + 2γ2|b(X̄nγ − b(Σnγ)|2

+ 2γ〈b(Σnγ) + Σnγ , X̄nγ − Σnγ〉 + 2γ2|b(Σnγ) + Σnγ |2.

On the one hand, using that b is Lipschitz continuous and assumption (H3), one obtains:

γ〈b(X̄nγ)−b(Σnγ), X̄nγ−Σnγ〉+2γ2|b(X̄nγ)−b(Σnγ)|2 ≤ γ
(

β + |X̄nγ − Σnγ |2(−α+ Cγ)
)

.
(23)

On the other hand, using that b is a sublinear function and the elementary inequality
〈u, v〉 ≤ 1/2(ε−1|u|2 + ε|v|2) (with u = b(Σnγ) + Σnγ, v = X̄nγ − Σnγ and ε = α/2), one
also has:

γ〈b(Σnγ)+Σnγ , X̄nγ−Σnγ〉+2γ2|b(Σnγ)+Σnγ|2 ≤ γ
α

2
|X̄nγ−Σnγ|2+Cγ(1+|Σnγ|2). (24)

Therefore, the combination of (23) and (24) yields for sufficiently small γ:

|X̄(n+1)γ − Σ(n+1)γ |2 ≤ (1 − α̃γ)|X̄nγ − Σnγ |2 +Cγ(1 + |Σnγ |2)

where α̃ is a positive number. Then, it follows from Lemma 2,

E[|X̄(n+1)γ − Σ(n+1)γ |2] ≤ (1 − α̃γ)E[|X̄nγ − Σnγ |2] + β̃γ

where β̃ does not depend on γ. By induction, we obtain:

sup
n≥1

E[|X̄nγ − Σnγ|2] ≤ β̃γ

+∞
∑

k=0

(1 − α̃γ)k =
β̃

α̃
< +∞.

Finally, since
E[|X̄nγ |2] ≤ 2

(

E[|X̄nγ − Σnγ|2] + E[|Σnγ |2]
)

,

it follows from Lemma 2 that there exists γ0 > 0 such that

sup
0<γ≤γ0

sup
n≥1

E[|X̄nγ |2] < +∞. (25)

Step 2: First, since supn≥1
1
n

∑n
k=1 |X̄(k−1)γ |2 = supn≥1 P

(n,γ)
0 (ω, |x|2) < +∞ a.s. (by

Lemma 1), the fact that P(∞,γ)(ω, dα) is a.s. a weak limit of P(n,γ)(ω, dα) implies that

Eω[|Y (∞,γ)
0 |2] < +∞ a.s.

By Proposition 4(b), there exists a.s. a Gaussian process Zω with the same distribution
as the driving process of the SDE such that

Y
(∞,γ)
(n+1)γ = Y (∞,γ)

nγ + γb(Y (∞,γ)
nγ ) + σ∆n+1. (26)
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with ∆n := Zω
nγ − Zω

(n−1)γ . Moreover, by Remark 5, Eω[|Y (∞,γ)
nγ |2] does not depend on n

since the sequence (Y
(∞,γ)
nγ ) is stationary. Let now (X̄x

nγ) be constructed as in (22) with
sequence (∆n) of (26). By (25), the lemma will be true if we are able to show that for
sufficiently small γ,

lim sup
n→+∞

Eω[|X̄x
nγ − Y (∞,γ)

nγ |2] < C (27)

where C does not depend on γ. The process of the proof of (28) is quite similar to Step
1. First, using assumption (H3), one checks that:

|X̄(n+1)γ − Y
(∞,γ)
(n+1)γ |

2 ≤ |X̄nγ − Y (∞,γ)
nγ |2(1 − αγ + Cγ2) + βγ a.s.

For sufficiently small γ, αγ−Cγ2 ≥ γα/2. Setting α̃ = α/2, one derives from an induction
that:

Eω[|X̄(n+1)γ − Y
(∞,γ)
(n+1)γ |

2] ≤ (1 − α̂γ)nEω[|X̄x
0 − Y

(∞,γ)
0 |2] + βγ

n−1
∑

k=0

(1 − α̂γ)k → β

α̂
. (28)

This concludes the proof of (i).

(ii) First, we prove uniqueness for the distribution of a stationary solution to SDE (5):
let (Yt,1)t≥0 and (Yt,2)t≥0 be some stationary solutions to (5) built on (Ω1,F1, (F1

t ),P1)
and (Ω2,F2, (F2

t ),P2) respectively and denote by Z1 and Z2 the corresponding driving
processes. We want to show that for every T > 0, for every bounded Lipschitz1 continuous
functional F : C([0, T ],Rd) → R,

E[F (Yt,1, 0 ≤ t ≤ T )] = E[F (Yt,2), 0 ≤ t ≤ T )]. (29)

Let (Xx
t,1) and (Xx

t,2) be some solutions to (5) starting from x and built with the previous

driving processes Z1 and Z2 respectively. First, since b is Lipschitz continuous, a classical
argument shows that weak uniqueness holds for solutions to (5) starting from any deter-
ministic x ∈ R

d. As a consequence, Xx
.,1 and Xx

.,2 have the same distribution on C(R+,R
d).

Thus, using that Y.,1 and Y.,2 are stationary, we obtain that for every s ≥ 0:

E[F (Y.,1)] − E[F (Y.,2)] = E[F (Yt+s,1, 0 ≤ t ≤ T )] − E[F (Xx
t+s,1, 0 ≤ t ≤ T )]

+ E[F (Xx
t+s,2, 0 ≤ t ≤ T )] − E[F (Yt+s,2, 0 ≤ t ≤ T )].

Since F is a bounded Lipschitz continuous functional, it follows that for every s ≥ 0,

|E[F (Y.,1)] − E[F (Y.,2)]| ≤ C

2
∑

i=1

E[ sup
t∈[s,s+T ]

|Yt,i −Xx
t,i| ∧ 1].

In order to obtain (29), it is now enough to prove that

sup
t≥s

|Yt,i −Xx
t,i|

s→+∞−−−−→ 0 a.s., i = 1, 2.

Set V i
t = |Yt,i −Xx

t,i|2. We have:

dV i
t = 2〈b(Yt,i) − b(Xx

t,i), Yt,i −Xx
t,i〉.

1for the standard distance δ defined for every α, β ∈ C([0, T ], Rd) by δ(α, β) = supt∈[0,T ] |αt − βt|.
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Thus, it follows from (H3) with β = 0 and from the Gronwall lemma that,

|Yt,i −Xx
t,i|2 ≤ (Y0 − x)2 exp(−2αt).

Therefore,

sup
t≥s

|Yt,i −Xx
t,i|2 ≤ (Y0 − x)2 exp(−2αs)

s→+∞−−−−→ 0 a.s., i = 1, 2.

This concludes the proof of the uniqueness for the distribution of a stationary solution
to (5). For Equation (Eγ), the proof is a straightforward adaptation of the previous one.
Details are left to the reader.

PROPOSITION 5. Assume (H1) and (H3). Then, there exists γ0 > 0 such that a.s.
(P(∞,γ)(ω, dα))γ∈(0,γ0) is relatively compact for the topology of uniform convergence on

compact sets. Furthermore, any weak limit of (P(∞,γ)(ω, dα))γ∈(0,γ0) (when γ → 0) is the
distribution of a stationary solution to SDE (5).

Proof. Step 1: A.s. tightness of (P(∞,γ)(ω, dα)): For ω ∈ Ω, we recall that Y (∞,γ) is a
càdlàg process with distribution P(∞,γ)(ω, dα). According to Theorem VI.3.26 of [7], we
have to show the two following points:

• For every T > 0, there exists γ0 > 0 such that

lim sup
K→+∞

sup
γ∈(0,γ0]

P( sup
t∈[0,T ]

|Y (∞,γ)
t | > K) = 0. (30)

• For every positive T , ε and η, there exist δ > 0 and γ0 > 0 such that for every
γ ≤ γ0,

P( sup
|t−s|≤δ,0≤s≤t≤T

|Y (∞,γ)
t − Y (∞,γ)

s | ≥ ε) ≤ η. (31)

First, we focus on (30). Let K > 0. By Proposition 4, we have:

P( sup
t∈[0,T ]

|Y (∞,γ)
t | > K) ≤ P

(

|Y (∞,γ)
0 | +

∫ T

0
|b(Y (∞,γ)

s )|ds + sup
t∈[0,T ]

|σZ̄γ
t | > K

)

.

Using the Markov inequality, it follows that

P( sup
t∈[0,T ]

|Y (∞,γ)
t | > K) ≤ 1

K

(

E[|Y (∞,γ)
0 |] + CT sup

n∈{0,...,[T/γ]}
E[|Y (∞,γ)

nγ |] + ‖σ‖E[ sup
t∈[0,T ]

|Zt|]
)

where ‖σ‖ = sup{|σx|/|x|, x ∈ R
d}. Now, since (Ynγ) is a stationary sequence and

supt∈[0,T ] |Zt| is integrable (see Proposition 6), one obtains:

P( sup
t∈[0,T ]

|Y (∞,γ)
t | > K) ≤ C

K

(

1 + E[|Y (∞,γ)
0 |]

)

,

where C does not depend on γ. Finally, the first point follows from Lemma 3.

Let us now prove (31). In fact, using for instance proof of Theorem 8.3 of [1], it is enough
to show that for every positive ε, η and T , there exist δ > 0 and γ0 > 0 such that for every
γ ≤ γ0:

1

δ
P( sup

t≤s≤t+δ
|Y (∞,γ)

t − Y (∞,γ)
s | ≥ ε) ≤ η ∀γ ≤ γ0 and 0 ≤ t ≤ T. (32)

15



By the Markov inequality, we have for every p ≥ 1:

P

(

sup
t≤s≤t+δ

|Y (∞,γ)
t − Y (∞,γ)

s | ≥ ε

)

≤
(

2‖σ‖
ε

)2

E





(

∫ t+δ
γ

tγ

|b(Y (∞,γ)
s )|ds

)2


 (33)

+

(

2‖σ‖
ε

)p

E

[

sup
s∈[t,t+δ]

|Z̄γ
s − Z̄γ

t |p
]

On the one hand,

E

[

(
∫ t+δ

t
|b(Y (∞,γ)

s )|ds
)2
]

≤ E









[(t+δ)/γ]
∑

k=[t/γ]

√
γ(
√
γ|b(Y (∞,γ)

nγ )|)





2



≤ E









[(t+δ)/γ]
∑

k=[t/γ]

γ









[(t+δ)/γ]
∑

k=[t/γ]

γ|b(Y (∞,γ)
nγ )|2









thanks to the Cauchy-Schwarz inequality. Now, when γ is sufficiently small

[(t+δ)/γ]
∑

k=[t/γ]

γ ≤ 2δ.

Therefore, using also the fact that b has sublinear growth yields:

E

[

(∫ t+δ

t
|b(Y (∞,γ)

s )|ds
)2
]

≤ Cδ2(1+ sup
k∈{[ t

γ
],...,[

(t+δ)
γ

]}

E[|Y (∞,γ)
kγ |2]) ≤ Cδ2(1+E[|Y (∞,γ)

0 |2])

(34)

thanks to the stationarity of (Y
(∞,γ)
nγ )n≥0.

On the other hand, we deduce from the stationarity of the increments of (Zt)t≥0 that

E

[

sup
s∈[t,t+δ]

|Z̄γ
s − Z̄γ

t |p
]

≤ E

[

sup
s∈[t,t+δ]

|Zs − Zt|p
]

≤ E[ sup
s∈[0,δ]

|Zs|p].

Thus, by Proposition 6 (see Appendix), for sufficiently large p,

E

[

sup
s∈[t,t+δ]

|Z̄γ
s − Z̄γ

t |p
]

≤ Cδ1+ρ (35)

where ρ is a positive number.
Then, the combination of (33), (34) and (35) yields for sufficiently small γ:

P

(

sup
t≤s≤t+δ

|Y (∞,γ)
t − Y (∞,γ)

s | ≥ ε

)

≤ Cδ2∧(1+ρ)

and (31) follows from Lemma 3.

Step 2: We want to show that, a.s, any weak limit P(ω, dα) of (P(∞,γ)(ω, dα))γ when
γ → 0 (for the uniform convergence topology) is the distribution of a stationary process.
Let f : R

r → R be a bounded continuous function and let t > 0 and t1, . . . , tr such that
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0 ≤ t1 < . . . < tr. Denoting by (Yt)t≥0 a process with distribution P(ω, dα), we have to
show that:

E[f(Yt1+t, . . . , Ytr+t)] = E[f(Yt1 , . . . , Ytr )]. (36)

First, since P(ω, dα) is a weak limit of (P(∞,γ)(ω, dα))γ , there exist some sequences (γn)n≥0

and (Y (∞,γn))n≥0 such that L(Y (∞,γn)) = P(∞,γn)(ω, dα) and (Y
(∞,γn)
t ) converges weakly

to (Yt) for the weak topology induced by the uniform convergence topology on compact
sets on D(R+,R

d). In particular,

E[f(Y
(∞,γn)
t1 , . . . , Y

(∞,γn)
tr )]

n→+∞−−−−−→ E[f(Yt1 , . . . , Ytr)] and, (37)

E[f(Y
(∞,γn)
t1+tγn

, . . . , Y
(∞,γn)
tr+tγn

)]
n→+∞−−−−−→ E[f(Yt1+t, . . . , Ytr+t)]. (38)

since tγn
:= γn[t/γn] → t when n→ +∞. Now, by Proposition 4,

E[f(Y
(∞,γn)
t1 , . . . , Y

(∞,γn)
tr )] = E[f(Y

(∞,γn)
t1+tγn

, . . . , Y
(∞,γn)
tr+tγn

)] ∀n ≥ 1.

(36) follows.

Step 3: Let Φ : D(R+,R
d) → D(R+,R

d) be defined by

(Φ(α))t = αt − α0 −
∫ t

0
b(αs)ds.

With the notations of Step 2, we want to show that Y := (Yt)t≥0 is a solution to (5), i.e.
that Φ(Y ) is equal in law to σZ := (σZt)t≥0. Let (γn) and (Y (∞,γn))n≥0 be defined as
in Step 2. Then, since Φ is continuous for the uniform convergence topology on compact
sets,

Φ(Y (∞,γn))
n→+∞
=⇒ Φ(Y ), (39)

for the weak topology induced by the uniform convergence topology on compact sets.
Therefore, we have to prove that

Φ(Y (∞,γn))
n→+∞
=⇒ σZ, (40)

for this topology. With the notations of Proposition 4,

Φ(Y (∞,γn)) = N (∞,γn) +Rγn where Rγn

t = −
∫ t

tγn

b(Y (∞,γn)
s )ds. (41)

First, since b is sublinear and t− tγn
≤ γn, we have for every T > 0:

|Rγn

t | ≤ Cγn(1 + sup
t∈[0,T ]

|Y (∞,γn)
t |) ∀t ∈ [0, T ].

Now, in Step 1, we showed that (supt∈[0,T ] |Y
(∞,γ)
t |)γ∈(0,γ0) is tight on R. It follows easily

that
sup

t∈[0,T ]
|Rγn

t | n→+∞−−−−−→ 0 in probability ∀T > 0.

Therefore, one derives from (39) and (41),

N (∞,γn) n→+∞
=⇒ Φ(Y ).

Then, it follows from Proposition 4 that N (∞,γn) is a convergent sequence of Gaussian

processes such that N (∞,γn) L
= σZ̄γn . This implies the finite-dimensional convergence to

(Zt)t≥0 and concludes the proof.
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6 Appendix

PROPOSITION 6. Assume that (Zt)t≥0 satisfies (H1). Then, for every T > 0, for every
r > 0, E[supt∈[0,T ] |Zt|r] < +∞. Moreover, there exist p ≥ 1 and T0 > 0 such that for
every T ≤ T0,

E[ sup
t∈[0,T ]

|Zt|p] ≤ CT 1+ρ with ρ > 0.

Proof. First, note that it is enough to prove the result for every coordinate Zj with
j ∈ {1, . . . , ℓ}. Therefore, it is in fact enough to prove that the results are true for
any one-dimensional centered Gaussian process with stationary increments and variance
function (c(t))t≥0 satisfying (H1). Then, for every t > 0 and ε > 0, c(t) = E[Z2

t ] and
denote by D(T, ε) the Dudley integral defined by

D(T, ε) =

∫ ε

0
(log(N(T, u))1/2du,

where, for u > 0,

N(T, u) = inf{n ≥ 1,∃ s1, . . . , sn such that ∀t ∈ [0, T ], ∃i ∈ {1, . . . , n} with
√

c(t− si) ≤ u}.

By the Dudley Theorem (see e.g. Theorem 1 of [13] p 179), for every T > 0,

E[ sup
t∈[0,T ]

|Zt|] ≤ 2E[ sup
t∈[0,T ]

Zt] ≤ CD(T,
√

c̄(T )) with c̄(T ) = sup
t∈[0,T ]

c(t). (42)

Let us control the right-hand member. By assumption (H1) and (4), for every δ ∈ (0, 1),

c̄(δ) ≤ Cδµ where C does not depend on δ and

µ ∈ (0, 1] (depending on the value of a1). It follows that, for u > 0,

N(T, u) ≤ CTu2/µ,

where C does not depend on T . For ε > 0 small enough,

D(T, ε) ≤
∫ ε

0
| log(CT ) +

2

µ
log(u)|1/2du ≤ Cε| log(ε)|1/2.

It follows from (42) that there exists T0 > 0 such that for T ≤ T0

E[ sup
t∈[0,T ]

|Zt|] ≤ C(c̄(T ))1/2| log(c̄(T ))|1/2

≤ CT µ/2| log(T )|1/2.

Then by Corollary 3.2 in [11] E[supt∈[0,T ] |Zt|r] < +∞ for every T > 0 and every r > 0
and

E[ sup
t∈[0,T ]

|Zt|p] ≤ CT µp/2| log(T )|p/2,

for T ≤ T0. One can choose p big enough to prove the second inequality in the Proposition.
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Proof of Proposition 2.

Let X := (Xt)t≥0 be a stationary solution to (5) and assume that X0 is independent of
Z := (Zt)t≥0. The matrix σ is assumed to be invertible. We denote by σ−1 its inverse.
First, note that for every t ≥ 0, Zt+ · −Zt = ψ(Xt+ ·) where ψ : C(R+,R

d) → C(R+,R
d) is

defined for every α ∈ C(R+,R
d) by

ψ(α)t = σ−1(αt − α0 −
∫ t

0
b(αs)ds) ∀t ≥ 0,

is continuous. Then, since (Xt) is stationary, it follows that for every bounded continuous
functional F (for the topology of uniform convergence on compact sets), for every s ≥ 0,
for every t ≥ 0, and every bounded continuous function f : R

d → R,

E[(f(X0) − E[f(X0)])F (Zs+u − Zs, u ≥ 0)] = E[(f(Xt) − E[f(Xt)])F (ψ(Xt+s+ ·))]

= E[(f(Xt) − E[f(Xt)])F (Zt+s+u − Zt+s, u ≥ 0)].

Since X0 is independent of Z,

E[(f(X0) − E[f(X0)])F (Zs+u − Zs, u ≥ 0)] = 0.

This implies that

E[f(Xt)F (Zt+s+u − Zt, u ≥ 0)] = E[f(Xt)]E[F (Zt+s+u − Zt+s, u ≥ 0)].

One deduces that for every s, t ≥ 0, such that 0 ≤ s ≤ t, Xs is independent of (Zt+u −
Zt)u≥0. As a consequence, for every positive u, t, for every i, j ∈ {1, . . . , d},

E[Zi
t(Z

j
t+u−Zj

t )]

=

ℓ
∑

m=1

σ−1
i,m

(

E[Xi
t(Zt+u − Zt)] −

∫ t

0
E[bi(Xv)(Z

j
t+u − Zj

t )]dv − E[Xi
0(Z

j
t+u − Zj

t )]

)

,

=

ℓ
∑

m=1

σ−1
i,m

(

E[Xi
t ]E[Zj

t+u − Zj
t ] −

∫ t

0
E[bi(Xv)]E[Zj

t+u − Zj
t ]dv − E[Xi

0]E[Zi
t+u − Zi

t ]

)

,

= 0.

Since Z is a centered Gaussian process, it clearly implies that Z has independent incre-
ments.

References

[1] Billingsley, P. (1968) Convergence of Probability Measures, Wiley. 02333096

[2] Cheridito, P., Kawaguchi, H., Maejima M. (2003). Fractional Ornstein-Uhlenbeck
processes. Electron. J. Probab., 8(3), 14 pp.

[3] Cornfeld, I. P., Fomin, S. V., Sinai, Ya. G. (1982) Ergodic theory. Springer-Verlag,
New York. 0832433

[4] Duflo M. (1997), Random Iterative Models, Springer Verlag, Berlin. 1485774

[5] Hairer M. (2005). Ergodicity of stochastic differential equations driven by fractional
Brownian motion. Ann. Probab., 33(2), 703–758. 2123208

19



[6] Hairer M., Ohashi A. (2007) Ergodic theory for SDEs with extrinsic memory. Ann.
Probab., 35(5), 1950–1977. 2349580

[7] Jacod, J., Shiryaev, A. N. (1987), Limit Theorems for Stochastic Processes, Springer.
1943877

[8] Gladyshev E.G. (1961). A New Limit Theorem for Stochastic Processes with Gaussian
Increments Theory Probab. Appl., 6(1), 52–61.

[9] Lamberton, D. and Pagès, G. (2002). Recursive computation of the invariant distri-
bution of a diffusion. Bernoulli 8 367–405. 1913112

[10] Lamberton, D. and Pagès, G. (2003). Recursive computation of the invariant distri-
bution of a diffusion: The case of a weakly mean reverting drift. Stoch. Dynamics 4

435–451. 2030742

[11] Ledoux M., Talagrand M. (1991), Probability in Banach spaces. Isoperimetry and
processes. Springer-Verlag, Berlin. 1102015

[12] Lemaire, V. (2007). An adaptive scheme for the approximation of dissipative systems.
Stochastic Process. Appl. 117 1491–1518. 2353037

[13] Lifshits M.A. (1995), Gaussian Random Functions. Kluwer Academic Publishers, Dor-
drecht. 1472736

[14] Maruyama G. (1949).The harmonic analysis of stationary stochastic processes. Mem.
Fac. Sci. KyusyuUniv., A. 4, 45–106. 0032127

[15] Pagès G., Panloup F. (2009). Approximation of the distribution of a stationary
Markov process with application to option pricing. Bernoulli, 15(1), 146–177. 2546802

[16] Panloup, F. (2008). Recursive computation of the invariant measure of a SDE driven
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