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Abstract. This paper describes an evolutionary robotics experiment,
which aims at showing the possibility of learning by guidance in a dy-
namic cognition perspective. Our model relies on Continuous Time Re-
current Neural Networks and Hebbian plasticity. The agents have the
ability to be guided by stimuli and we study the influence of a guidance
on their external behavior and internal dynamic when faced with other
stimuli. The article develops the experiment and presents some results
on the dynamic of the systems.

1 Positioning

Works in cognitive science show that cognition comes from the interaction be-
tween brain, body and environment [14,12,1]. Then, a cognitive system can
be considered as an autonomous complex system disturbed by the environment,
whose representation lies in sensory-motor invariants. This leads to different the-
oretical proposals in robotics and in artificial life [8, 2, 4]. Following these perspec-
tives, some applications propose the use of dynamic systems [10,9, 7]. Through
interactions, these systems evolve between attractors and present plenty of dif-
ferent possible evolutions. These dynamic properties are the basis for adaptation,
decision, memorization and also creation processes [13]. Different works address
the sensory-motor invariants acquisition in such systems by pregiven adaptive
behavior using Continuous Time Recurrent Neural Networks (CTRNN) which
can approximate any dynamic system [5]. For example, [3] build photo-taxic
robots which can adapt to sensors inversion at an ontogenetic scale.

We address the problem of learning behavior for such a system thanks to a
specific interactive loop : a guidance signal. Indeed, learning by guidance is a
more complex kind of adaptation because it can lead to different final behaviors.
It is characterized by irreversibility which is a crucial property for ontogeny.
Consequently, our concern is to establish experiments which will enable us to
move from the status of self-adaptation to that of evolution induced by training,
while preserving the use of an artificial dynamic cognition approach. However,
evolutionary approaches are confronted with what [4] call the hard problem of the
enactive artificial intelligence because it is necessary to associate phylogenetic
mechanisms with the clarification of ontogenetic principles.



Before starting our explanation, we must mention that our work is similar
to [7] who studies associative learning in evolved CTRNN. However, it is differ-
ent because we use guidance to initiate the learning instead of discrete reward.
Indeed, guidance is an evolutive mean to interact with the agent and to shape
progressively its behavior. Here, we can use the metaphor of a child learning to
ride a bike while being guided by an adult. If the child keeps his equilibrium, the
adult stops to guide him progressively. Inversely, if the child loses his balance,
the adult holds him. Progressively, the child will learn a new ability.

The section 2.1 presents our base experiment of learning by guidance. Models
are then described in section 2.2 and section 2.3 presents the genetic algorithm
used to set the parameters. The results are presented in the section 2.4.

2 Experiment

2.1 Principle

Let us consider an entity equipped with sensors functionally comparable to
“eyes and ears”. Its “ear” detects signals that make it change its orientation
(right/left). Each “eye” detects the presence of one kind of light (A) or (B), but
it initially does not display any particular behavior in presence of these lights.
The signal sent to the ear will act as a guidance, so that an association between
the signal received by the eyes and the one received by the ears is carried out
dynamically in the interaction. In order to do so, we associate the presence of
a light with a guidance moderated according to the effective behavior (for ex-
ample: send signal turn to the right when light (A) is present and the entity is
not turning to the right). The goal is that this guidance can attenuate gradually
and that in the long term will no longer be necessary.

We study the behavioral enrichment at the individual level, i.e. at the onto-
genetic level. Our artificial agents are equipped with a CTRNN. They have an
effector to turn in both directions and three sensors that respectively detect a
signal which corresponds to our guidance, the A light and the B light. The net-
work is fully-connected. The agents must react to the guidance signal by turning
to the right if the signal is negative and to the left if it is positive. We asso-
ciate in an arbitrary way a light (A/B) with a side (left/right). The experiment
consists in alternatively presenting the lights while guiding the agents according
to the chosen association. The guidance signal is only present when the agent
does not turn to the side associated with the light presented. However, a delay is
introduced into the guidance mechanism to enable the dynamics of the system
to take into account changes of perception. Thus, the guidance signal is not only
delayed but also variable: it increases gradually if the agent behavior does not
change. This adaptability leads us to speak about interactive guidance.

We seek to highlight the acquisition of a new behavior. This implies that the
light presented does not condition a priori the behavior of the agents and thus
that guidance must be necessary at the beginning of the experiment. If a new
behavior conditioned by the light appears, then guidance became useless at the
end of the experiment.



2.2 Model

The sensors mentioned previously and engines are coupled to the CTRNN. From
then on, the term sensitive neuron will be used to designate a neuron which has
an input coming from a sensor and the term motor neuron will be used to
designate a neuron whose output is used by an effector. The cell potential y; is
governed by equation 1, where 7; is the decay constant (range [0.5,2.1]), w; ; is
the weight of synaptic connection from node ¢ to node j (range [-8,8]), and I;
is an input from a sensor for a sensitive neuron. The firing rate z; is calculated
by using the equation 2, where b; is the bias of the node ¢ (range [-1,1]). The
effector activation is computed by mapping the firing rate to the interval [-1,1]
and multiplying by a gain (range [0,40]). In the same way, the input of the
sensitive nodes is computed by multiplying the sensed value by a gain (range
[0,40]). The sensed values are 1 or 0 on the “eyes” sensors depending on the
presence of lights (A) and (B). For the “ear”, the sensed value is negative for
signal “turn to the left”, positive for signal “turn to the right” and 0 for no
signal.
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The network plasticity, inspired from [15], corresponds to an hebbian rule
(see equation 3), where 7, o, 3, v are parameters (all in range [-1,1]) for each
connection.

2.3 Parameters Setting

The parameters are: gains associated with the sensors and effector; for each neu-
ron ¢, the decay constant 7; and the bias b;; for each connection, the parameters
1, a, B and 7. They are determined by a genetic algorithm. The criteria to op-
timize by the algorithm is not a specific task but an ontogenetic development.
The fitness used by the genetic algorithm is computed in 3 independent phases
giving 3 scores : f1, fo and f3. In short, the three phases are:

1. Guidance reaction checking. During a trial, the entity is guided towards a
side. The score of an entity for a trial is the time it has turned to the signaled
side. This phase is made up of 20 trials alternating guidance towards the right
and towards the left. Score f; is computed using
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where val; is the score of the trial ¢ which starts at ts; and stops at te;.
Arpyrn 18 the fitness component corresponding to the correlation between
the guidance signal and the motor activity given by the equation

Aurn(t) = {1— 1210 =S = M50 >0

where M (t) is the activity of the motor neuron mapped to the range [-1,1] and
S(t) is the guidance signal. Agpergy is used to avoid oscillating behaviors.
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. Guidance according to an association. Lights (A/B) are arbitrarily associated
to sides (left/right). The duration of each light presentation is arbitrarily
chosen in the range [1.5,4.5]. During a presentation, only one light is in
the environment of the entity. After a time during which the behavior of the
entity can stabilize (10 lights presentations), the guidance starts according to
the association previously decided. This second phase is made up of 50 light
presentations. For each presentation, the type of light is randomly chosen.
Score f3 is computed using

fa= (min{Scorea, Scoreg})
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where C(t) stands for the association (C(¢) = 1 when the presented light at
time t is associated with side left and C'(t) = —1 else). Scores and Scorep
are defined with
Esx — E
Scorex = M,X € {4, B}
ESX

Scorex measures the progress of the agent in associating the previously
chosen side to light X. Esx and Eex are respectively the mean value of the
score at the beginning of the experiment and the mean value at the end.
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where X (t) is 1 when light X is present, 0 else, and Az n:™ (t) is

Aughtx(t)_{s(% : 2212M(t)>0 and X(t)=1,X € {A, B}

3. Guidance according to the inverse association. The association used in phase
2 is inverted, then the same process is used to get a score f3. By carrying
out this inversion, we want to make sure the score of the agent depends on
guidance associated with the light and not on a predisposition of the agent.

Between each phase, the neural network is reset. The final score of an agent is
given by equation 4. A “good” agent is an agent which one can immediately guide
and which is able to take into account a guidance to progressively associate a
light with a side. The algorithm preserves the best individuals, in the proportion
of a third. The second third is obtained by cloning the best individuals, each one
of these clones systematically undergoing a mutation. All the parameters have
the same mutation rate. The mutation consists in varying very slightly one of
the parameters selected in a random way. The population is supplemented with
a third of new individuals.

f=axfi+bxmin(fa, f3) (4)

2.4 Results

The results presented here were obtained by applying the genetic algorithm to
populations of 50 individuals, controlled by 6 neurons networks, during 30,000
generations. Each agent has 208 parameters which are directly encoded into
genes (real values). Figure 1 illustrates how the best agent found by the genetic
algorithm reacts to a guidance scenario when no light is in the environment. One
guidance pulse is always sufficient to change the motors direction, however it may
be necessary to repeat this guidance to stabilize the motor on the expected side.

Figure 2 illustrates the protocol we used to observe the performance of the
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Fig. 1. Motor activity according to a guidance scenario. The first graph plots the
motor activity and the second graph plots the guidance signal. Grey areas correspond
to guidance towards the right whereas white areas correspond to guidance towards the
left. The periods lasts are randomly chosen.
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Fig. 2. Protocol used to observe the agents.

evolved agents. The experimenter decides on an association light-side. Phase A
starts at time 10 in order to allow the network to reach a stationary mode. Lights
are presented alternatively and there is no guidance. It allows us to check the
non correlation between the motor activity and the lights before the training.
Phase B, starting at time 40, corresponds to the training according to the chosen
association. Lights are presented to the agent. The experimenter guides it if it
is necessary. If the agent progresses, the experimenter intervenes less and less.
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Fig. 3. Different time periods of one simulation show the ontogenetic evolution of the

motor activity according to lights presentation.

Figure 3 shows the activity of the best evolved agent interacting with a virtual
experimenter using the protocol described by figure 2. The association chosen is
light A /left - light B/right. From top to bottom, the first graph corresponds to
light presentations: 0 for light A, 1 for light B. A positive activity on the motor
neuron (second graph) means that the agent is turning to the left, a negative
activity that it is turning to the right. The third graph plots the guidance. At
the end of phase A (left part on Figure 3), changes of lights induce a change in
the motor activity. However, there is no direct correlation between the motor
and the lights even if the agent exhibits a tendency to turn to the right. At the
beginning of phase B (central part of Figure 3), the guidance causes the motor
to turn towards the desired side, but it is necessary to repeat the guidance. At
the end of phase B (right part of Figure 3), there is no need to guide the agent
anymore as the motor activity is correlated to the lights (Obviously, changing
side of the motor takes a little time, during which some little oscillations occur).

Figure 4 plots the motor activity compared to guidance during short time
periods taken on the whole episode (not all time periods for the sake of clarity),



Fig.4. Motor activity compared to Fig. 5. Activity of the internal neurons
guidance during some short time peri- (Y1 and Ys) compared to activity of the
ods. guidance sensitive neuron (Y3).

but only when light A is in the environment. Light A has to be associated to
side left, that means a positive motor activity. Set Al corresponds to a short
interval extracted from phase A, i.e. before the training. During this period,
the motor activity is distributed between negative and positive values. Set Bl
corresponds to the beginning of the training phase. At this time, motor activity
is more negative with a high need of guidance. Set B2 is extracted from the
end of the training. Motor activity is concentrated mostly on positive values.
Set C corresponds to the first presentation of light A after the training period.
During the considered time, motor activity is positive. Figure 5 illustrates how
neural dynamics is shaped by training. Dynamics of neural outputs ys, y4, y5 are
represented at stages of presentation of light A. Y3 is the output of neuron n3
which owns the guidance signal as input. It is surprising to observe that during
phase A, this output varies widely. During phase B (guidance), trajectory joins
a smaller space. Finally, this space is approximately kept during phase C (end
of learning). This dynamic can be interpreted as the fact that during phase A,
the system is very receptive to stimuli coming from guidance. Oscillations al-
low to explore a lot of states of the system. At the opposite, during guidance,
the system falls into another lesser extended attractor, corresponding to an as-
sociation side/light. However, this attraction depends on the guidance signal
which depends itself on an arbitrary choice of the association used during the
experiment. Similar curves are obtained for the presentation of light B.

3 Prospects

This work has focused on the evolution of the dynamics of a CTRNN during an
associative learning task involving guidance. We have shown how an external in-
fluence, i.e. the guidance, may impact the internal dynamics. From a dynamical
approach of artificial intelligence, it addresses the problem of sensory-motor ac-
quisition of a dynamic system at an ontogenetic scale. To follow an enactive-like
perspective, a long term goal is to reach co-evolutive mechanisms. This work is a



contribution in this direction, as it addresses the question of influencing the drift
of a dynamic system through a external signal. Obviously, the task presented
here is voluntarily very simple because we are more interested in the training
than in the learned behavior itself.

To treat more complex tasks, it will be necessary to increase the sensory-
motor capacities of the entity. For example, the design of an entity should require
consideration of the entity’s shape [11], the evolvability of the morphology of the
neural network [6] and the imagination of slight variations of the complexity of
the task. Moreover, the guidance strategy to adopt in order to learn a sensory-
motor dynamics to an artificial entity is far from trivial. To address this problem,
our perspective is to co-evolve guider and guided agents.
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