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Abstract

The class of dual φ-divergence estimators (introduced in Broniatowski and Keziou
(2009) [6]) is explored with respect to robustness through the influence function
approach. For scale and location models, this class is investigated in terms of ro-
bustness and asymptotic relative efficiency. Some hypothesis tests based on dual
divergence criterions are proposed and their robustness properties are studied. The
empirical performances of these estimators and tests are illustrated by Monte Carlo
simulation for both noncontaminated and contaminated data.
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1 Introduction

Minimum divergence estimators and related methods have received consid-
erable attention in statistical inference because of their ability to reconcile
efficiency and robustness. Among others, Beran [3], Tamura and Boos [22],
Simpson [20,21] and Toma [23] proposed families of parametric estimators
minimizing the Hellinger distance between a nonparametric estimator of the
observations density and the model. They showed that those estimators are
both asymptotically efficient and robust. Generalizing earlier work based on
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the Hellinger distance, Lindsay [17], Basu and Lindsay [2], Morales et al. [18]
have investigated minimum divergence estimators, for both discrete and con-
tinuous models. Some families of estimators based on approximate divergence
criterions have also been considered; see Basu et al. [1].

Broniatowski and Keziou [6] have introduced a new minimum divergence es-
timation method based on a dual representation of the divergence between
probability measures. Their estimators are defined in an unified way for both
continuous and discrete models. They do not require any prior smoothing and
include the classical maximum likelihood estimators as a benchmark. A special
case for the Kullback-Leibler divergence is presented in Broniatowski [4]. The
present paper presents robustness studies for the classes of estimators gen-
erated by the minimum dual φ-divergence method, as well as for some tests
based on corresponding estimators of the divergence criterion.

We give general results that allow to identify robust estimators in the class
of dual φ-divergence estimators. We apply this study for the Cressie-Read di-
vergences and state explicit robustness results for scale models and location
models. Gain in robustness is often paid by some loss in efficiency. This is
discussed for some scale and location models. Our main remarks are as fol-
lows. All the relevant information pertaining to the model and the true value
of the parameter to be estimated should be used in order to define, when
possible, robust and nearly efficient procedures. Some models allow for such
procedures. The example provided by the scale normal model shows that the
choice of a good estimation criterion is heavily dependent on the acceptable
loss in efficiency in order to achieve a compromise with the robustness require-
ment. When sampling under the model is overspread (typically for Cauchy and
logistic models), non surprisingly the maximum likelihood estimator is both
efficient and robust and therefore should be prefered (see subsection 3.2).

On the other hand, these estimation results constitute the premises to con-
struct some robust tests. The purpose of robust testing is twofold. First, the
level of a test should be stable under small arbitrary departures from the
null hypothesis (i.e. robustness of validity). Second, the test should have a
good power under small arbitrary departures from specified alternatives (i.e.
robustness of efficiency). To control the test stability against outliers in the
aforementioned senses, we compute the asymptotic level of the test under a
sequence of contaminated null distributions, as well as the asymptotic power
of the test under a sequence of contaminated alternatives. These quantities are
seen to be controlled by the influence function of the test statistic. In this way,
the robustness of the test is a consequence of the robustness of the test statis-
tic based on a dual φ-divergence estimator. In many cases, this requirement
is met when the dual φ-divergence estimator itself is robust.

The paper is organized as follows: in Section 2 we present the classes of es-
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timators generated by the minimum dual φ-divergence method. In Section 3,
for these estimators, we compute the influence functions and give the Fisher
consistency. We particularize this study for the Cressie-Read divergences and
state robustness results for scale models and location models. Section 4 is
devoted to hypothesis testing. We give general convergence results for con-
taminated observations and use it to compute the asymptotic level and the
asymptotic power for the tests that we propose. In Section 5, the performances
of the estimators and tests are illustrated by Monte Carlo simulation studies.
In Section 6 we shortly presents a proposal for the adaptive choice of tuning
parameters.

2 Minimum divergence estimators

2.1 Minimum divergence estimators

Let ϕ be a non-negative convex function defined from (0,∞) onto [0,∞] and
satisfying ϕ(1) = 0. Also extend ϕ at 0 defining ϕ(0) = lim

x↓0
ϕ(x). Let (X ,B) be

a measurable space and P be a probability measure (p.m.) defined on (X ,B).
Following Rüschendorf [19], for any p.m. Q absolutely continuous (a.c.) w.r.t.
P , the φ-divergence between Q and P is defined by

φ(Q,P ) :=
∫
ϕ

(
dQ

dP

)
dP. (1)

When Q is not a.c. w.r.t. P, we set φ(Q,P ) = ∞. We refer to Liese and Vajda
[16] for an overview on the origin of the concept of divergence in Statistics.

A commonly used family of divergences is the so-called ”power divergences”,
introduced by Cressie and Read [9] and defined by the class of functions

x ∈ R∗
+ 7→ ϕγ(x) :=

xγ − γx+ γ − 1

γ(γ − 1)
(2)

for γ ∈ R \ {0, 1} and ϕ0(x) := − log x+ x− 1, ϕ1(x) := x log x− x+ 1 with
ϕγ(0) = lim

x↓0
ϕγ(x), ϕγ(∞) = lim

x→∞
ϕγ(x), for any γ ∈ R. The Kullback-Leibler

divergence (KL) is associated with ϕ1, the modified Kullback-Leibler (KLm)
to ϕ0, the χ2 divergence to ϕ2, the modified χ2 divergence (χ2

m) to ϕ−1 and
the Hellinger distance to ϕ1/2.

Let {Pθ : θ ∈ Θ} be some identifiable parametric model with Θ a subset
of Rd. Consider the problem of estimation of the unknown true value of the
parameter θ0 on the basis of an i.i.d. sample X1, . . . , Xn with p.m. Pθ0

.
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When all p.m. Pθ share the same finite support S which is independent upon
the parameter θ, the φ-divergence between Pθ and Pθ0

has the form

φ(Pθ, Pθ0
) =

∑

j∈S

ϕ

(
Pθ(j)

Pθ0
(j)

)
Pθ0

(j).

In this case, Liese and Vajda [15], Lindsay [17] and Morales et al. [18] investi-
gated the so-called ”minimum φ-divergence estimators” (minimum disparity
estimators in Lindsay [17]) of the parameter θ0 defined by

θ̂n := arg inf
θ∈Θ

φ(Pθ, Pn), (3)

where φ(Pθ, Pn) is the plug-in estimator of φ(Pθ, Pθ0
)

φ(Pθ, Pn) =
∑

j∈S

ϕ

(
Pθ(j)

Pn(j)

)
Pn(j),

Pn being the empirical measure associated to the sample. The interest on these
estimators is motivated by the fact that a suitable choice of the divergence
may leads to an estimator more robust than the maximum likelihood one (see
also Jiménez and Shao [14]). For continuous models, the estimators in (3) are
not defined. Basu and Lindsay [2], among others, proposed smoothed versions
of (3) in this case.

In the following, for notational clearness we write φ(α, θ) for φ(Pα, Pθ) for α
and θ in Θ. We assume that for any θ ∈ Θ, Pθ has density pθ with respect to
some dominating σ-finite measure λ.

The divergence φ(α, θ0) can be represented as resulting from an optimiza-
tion procedure. This result has been obtained independently by Liese and
Vajda [16] and Broniatowski and Keziou [5] who called it the dual form of a
divergence, due to its connection with convex analysis. Assuming the strict
convexity and the differentiability of the function ϕ, it holds

ϕ(t) ≥ ϕ(s) + ϕ′(s)(t− s) (4)

with equality only for s = t. Let α and θ0 be fixed and put t = pα(x)/pθ0
(x)

and s = pα(x)/pθ(x) in (4) and then integrate with respect to Pθ0
. This gives

φ(α, θ0) =
∫
ϕ

(
pα

pθ0

)
dPθ0

= sup
θ∈Θ

∫
m(θ, α)dPθ0

(5)

with m(θ, α) : x 7→ m(θ, α, x) and

m(θ, α, x) :=
∫
ϕ′
(
pα

pθ

)
dPα −

{
ϕ′
(
pα

pθ

(x)

)
pα

pθ

(x) − ϕ

(
pα

pθ

(x)

)}
. (6)
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The supremum in (5) is unique and is attained in θ = θ0, independently upon
the value of α. Naturally, a class of estimators of θ0, called ”dual φ-divergence
estimators” (DφE’s), is defined by

θ̂n(α) := arg sup
θ∈Θ

∫
m(θ, α)dPn, α ∈ Θ. (7)

Formula (7) defines a family of M-estimators indexed by some instrumental
value of the parameter α and by the function ϕ defining the divergence. The
choice of α appears as a major feature in the estimation procedure. Its value
is strongly dependent upon some a priori knowledge on the value of the pa-
rameter to be estimated. In some examples in subsection 3.2, it even appears
that a sharp a priori knowledge on the order of θ0 leads to nearly efficient and
robust estimates. This plays in favor of using the available information per-
taining to the model and the data. Section 6 shortly presents some proposal
for the adaptive choice of α.

For each α ∈ Θ, the divergence φ(Pα, Pθ0
) between Pα and Pθ0

is estimated by

φ̂n(α, θ0) :=
∫
m(θ̂n(α), α)dPn = sup

θ∈Θ

∫
m(θ, α)dPn. (8)

Further, since

inf
α∈Θ

φ(α, θ0) = φ(θ0, θ0) = 0,

and since the infimum in the above display is unique due to the strict con-
vexity of ϕ, a natural definition of estimators of θ0, called ”minimum dual
φ-divergence estimators” (MDφE’s), is provided by

α̂n := arg inf
α∈Θ

φ̂n(α, θ0) = arg inf
α∈Θ

sup
θ∈Θ

∫
m(θ, α)dPn. (9)

The DφE’s enjoy the same invariance property as the maximum likelihood
estimator does. Invariance with respect to a reparametrization (one to one
transformation of the parameter space) holds with direct substitution in (7).
Also, consider a one to one differentiable transformation of the observations,
say Y = T (X) and the Jacobian J(x) = d

dx
T (x). Let θ̂n(α) defined in (7),

based on the Xi’s. Let fθ(y) denote the density of the transformed variable Y
and θ̂∗n(α) be the DφE based on the Yi’s in the transformed model (with the
same parameter θ). Specifically,

θ̂∗n(α) = arg sup
θ∈Θ

{∫
ϕ

′

(
fα

fθ
(y)

)
fα(y)dy − 1

n

n∑

i=1

(
ϕ

′

(
fα

fθ
(Yi)

)
fα

fθ
(Yi) − ϕ

(
fα

fθ
(Yi)

))}
.

Since

fθ(y) = pθ(T
−1(y))|J(T−1(y))|−1
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for all θ ∈ Θ, it follows that θ̂∗n(α) = θ̂n(α), which is to say that the DφE’s
are invariant estimators under any regular transformation of the observation
space. The same invariance properties hold for MDφE’s.

Broniatowski and Keziou [6] have proved both the weak and the strong consis-
tency, as well as the asymptotic normality for the estimators θ̂n(α) and α̂n. In
the next sections, we study robustness properties for these classes of estimators
and robustness of some tests based on dual φ-divergence estimators.

2.2 Some comments on robustness

The special form of divergence based estimators to be studied in this paper
leads us to handle robustness characteristics through the influence function
approach. An alternative and appealing robustness analysis in the minimum
divergence methods is provided by the Residual Adjustment Function (RAF)
(introduced in Lindsay [17]), which explains the incidence of non typical Pear-
son residuals, corresponding to over or sub-sampling, in the stability of the
estimates. This method is quite natural for finitely supported models. In the
case when the densities in the model are continuous, the Pearson residuals are
estimated non parametrically which appears to cause quite a number of diffi-
culties when adapted to minimum dual divergence estimation. This motivates
the present choice in favor of the influence function approach.

Let α be fixed. For the Cressie-Read divergences, the equation whose solution
is θ̂n(α) defined by (7) is

−
∫ (

pα

pθ

)γ

ṗθdλ+
1

n

n∑

i=1

(
pα(Xi)

pθ(Xi)

)γ
ṗθ(Xi)

pθ(Xi)
= 0, (10)

where ṗθ is the derivative with respect to θ of pθ. Starting from the definition
given by (7), this equation is obtained by equalizing with zero the derivative
with respect to θ of

∫
m(θ, α)dPn.

Let x be some outlier. The role of x in (10) is handled in the term

(
pα(x)

pθ(x)

)γ
ṗθ(x)

pθ(x)
. (11)

The more stable this term, the more robust the estimate. In the classical
case of the maximum likelihood estimator (which corresponds to θ̂n(α) with

γ = 0 and independent on α), this term writes as ṗθ(x)
pθ(x)

which is the likelihood
score function associated to x. It is well known that, for most models, this
term is usually unbounded when x belongs to R, saying that the maximum
likelihood estimator is not robust. In this respect, (11) appears as a weighted
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likelihood score function. In our approach, for several models, such as the
normal scale, (11) is a bounded function of x, although ṗθ(x)

pθ(x)
itself is not.

Thus, in estimating equation (10), the score function is downweighted for
large observations. The robustness of θ̂n(α) comes as a downweight effect of

the quantity ṗθ(Xi)
pθ(Xi)

through the multiplicative term
(

pα(Xi)
pθ(Xi)

)γ
which depends

on the choice of the divergence. This choice is dictated by the form of pα(x)
pθ(x)

for large x and α fixed. For the models we’ll consider as examples, for large
x and α fixed, the quantity pα(x)

pθ(x)
can be large, close to zero, or close to one.

Then we appropriately choose γ to be negative, respectively positive in order
to obtain the downweight effect. In the next section we study in detail these
robustness properties by the means of the influence function.

Some alternative choice has been proposed in literature. Basu et al. [1] pro-
posed to alter the likelihood score factor by the multiplicative term pβ

θ (x),
where β > 0. This induces an estimating procedure which is connected to
the minimization of a density power divergence. Both their approach and the
present one are adaptive in the sense that the downweight likelihood score
factor is calibrated on the data.

Robustness as handled in the present paper is against the bias due to the
presence of very few outliers in the data set. Bias due to misspecification of
the model is not considered. It has been observed that DφE’s are biased un-
der misspecification even in simple situations (for example when estimating
the mean in a normal model with assumed variance 1, whereas the true vari-
ance is not 1); see Broniatowski and Vajda [8]; similar bias are unavoidable in
parametric inference and can only be reduced through adaptive specific pro-
cedures, not studied here. For alternative robust M-estimation methods using
divergences we refer to Toma [24].

3 Robustness of the estimators

3.1 Fisher consistency and influence functions

In order to measure the robustness of an estimator it is common to compute
the influence function of the corresponding functional.

A map T which sends an arbitrary probability measure into the parameter
space is a statistical functional corresponding to an estimator Tn of the pa-
rameter θ whenever T (Pn) = Tn.

This functional is called Fisher consistent for the parametric model {Pθ : θ ∈
Θ} if T (Pθ) = θ, for all θ ∈ Θ.
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The influence function of the functional T in P measures the effect on T of
adding a small mass at x and is defined as

IF(x;T, P ) = lim
ε→0

T (P̃εx) − T (P )

ε
(12)

where P̃εx = (1 − ε)P + εδx and δx is the Dirac measure putting all its mass
at x.

The gross error sensitivity measures approximately the maximum contribution
to the estimation error that can be produced by a single outlier and is defined
as

sup
x

‖IF(x;T, P )‖.
Whenever the gross error sensitivity is finite, the estimator associated with
the functional T is called B-robust.

Let X1, . . . , Xn be an i.i.d. sample with p.m. P .

Let α be fixed and consider the dual φ-divergence estimators θ̂n(α) defined in
(7). The functional associated to an estimator θ̂n(α) is

Tα(P ) := arg sup
θ∈Θ

∫
m(θ, α, y)dP (y). (13)

The functional Tα is Fisher consistent. Indeed, the function θ 7→ ∫
m(θ, α)dPθ0

has a unique maximizer θ = θ0. Therefore Tα(Pθ) = θ, for all θ ∈ Θ.

We denote m′(θ, α) = ∂
∂θ
m(θ, α) the d-dimensional column vector with entries

∂
∂θi
m(θ, α) and m′′(θ, α) the d× d matrix with entries ∂2

∂θi∂θj
m(θ, α).

In the rest of the paper, for each α, we suppose that the function θ 7→ m(θ, α)
is twice continuously differentiable and that the matrix

∫
m′′(θ0, α)dPθ0

exists
and is invertible. We also suppose that, for each α, all the partial derivatives of
order 1 and 2 of the function θ 7→ m(θ, α) are respectively dominated on some
neighborhoods of θ0 by Pθ0

-integrable functions. This justifies the subsequent
interchanges of derivation with respect to θ and integration.

Proposition 1 The influence function of the functional Tα corresponding to

an estimator θ̂n(α) is given by

IF(x;Tα, Pθ0
) =

[∫
m′′(θ0, α)dPθ0

]−1
{∫

ϕ′′
(
pα

pθ0

)
pα

p2
θ0

ṗθ0
dPα−

− ϕ′′
(
pα

pθ0

(x)

)
p2

α(x)

p3
θ0

(x)
ṗθ0

(x)

}
.
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Particularizing α = θ0 in Proposition 1 yields

IF(x;Tθ0
, Pθ0

) = −
[∫

m′′(θ0, θ0)dPθ0

]−1

ϕ′′(1)
ṗθ0

(x)

pθ0
(x)

and taking into account that

−
[∫

m′′(θ0, θ0)dPθ0

]−1

=
1

ϕ′′(1)
I−1
θ0

it holds

IF(x;Tθ0
, Pθ0

) = I−1
θ0

ṗθ0
(x)

pθ0
(x)

(14)

where Iθ0
is the information matrix Iθ0

=
∫ ṗθ0

ṗt
θ0

pθ0

dλ.

We now look at the corresponding estimators of the φ-divergence. For fixed
α, the divergence φ(Pα, P ) between the probability measures Pα and P is
estimated by (8). The statistical functional associated to φ̂n(Pα, Pθ0

) is

Uα(P ) :=
∫
m(Tα(P ), α, y)dP (y). (15)

The functional Uα has the property that Uα(Pθ) = φ(α, θ), for any θ ∈ Θ.
Indeed, using the fact that Tα is a Fisher consistent functional,

Uα(Pθ) =
∫
m (Tα(Pθ) , α, y)dPθ(y) =

∫
m(θ, α, y)dPθ(y) = φ(α, θ)

for all θ ∈ Θ.

Proposition 2 The influence function of the functional Uα corresponding to

the estimator φ̂n(Pα, P ) is given by

IF(x;Uα, Pθ0
) = −φ(α, θ0) +m(θ0, α, x). (16)

For a minimum dual φ-divergence estimator α̂n defined in (9), the correspond-
ing functional is

V (P ) := arg inf
α∈Θ

Uα(P ) = arg inf
α∈Θ

∫
m(Tα(P ), α, y)dP (y). (17)

The statistical functional V is Fisher consistent. Indeed,

V (Pθ) = arg inf
α∈Θ

Uα(Pθ) = arg inf
α∈Θ

φ(α, θ) = θ

for all θ ∈ Θ.
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In the following proposition, we suppose that the function m(θ, α) admits
partial derivatives of order 1 and 2 with respect to θ and α and also we suppose
that conditions permitting to derivate m(θ, α) under the integral sign hold.
The following result states that, unlike θ̂n(α), an estimator α̂n is generally
not robust. Indeed, it has the same robustness properties as the maximum
likelihood estimator, since it has its influence function which in most cases
is unbounded. Whatever the divergence, the estimators α̂n have the same
influence function.

Proposition 3 The influence function of the functional V corresponding to

an estimator α̂n is given by

IF(x;V, Pθ0
) = I−1

θ0

ṗθ0
(x)

pθ0
(x)

. (18)

3.2 Robustness of the estimators for scale models and location models

In this subsection, examining the expressions of the influence functions, we
give conditions for attaining the B-robustness of the dual φ-divergence es-
timators θ̂n(α), as well as of the corresponding divergence estimators. The
case of interest in our B-robustness study is α 6= θ0 since, as observed above,
the choice α = θ0 generally leads to unbounded influence functions. For the
Cressie-Read family of divergences (2) it holds

IF(x;Tα, Pθ0
) = [

∫
m′′(θ0, α)dPθ0

]−1

{∫ (
pα

pθ0

)γ

ṗθ0
dλ−

(
pα(x)

pθ0
(x)

)γ
ṗθ0

(x)

pθ0
(x)

}

(19)
and

IF(x;Uα, Pθ0
) =−φ(α, θ0) +m(θ0, α, x)

=−φ(α, θ0) +
1

γ − 1





∫ (
pα

pθ0

)γ−1

dPα − 1



− 1

γ

{(
pα(x)

pθ0
(x)

)γ

− 1

}
.

3.2.1 Scale models

For a given density p, it holds pθ(x) = 1
θ
p(x

θ
) and ṗθ(x) = − 1

θ2

[
p
(

x
θ

)
+ x

θ
ṗ
(

x
θ

)]
.

Consider the following conditions:

(A.1)
∫ |uṗ(u)|du <∞.

(A.2) supx
p(α−1x)

p(θ−1

0
x)
<∞.
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(A.3) supx
p(θ−1

0
x)

p(α−1x)
<∞.

(A.4) supx

∣∣∣∣ ∂
∂θ

[log p(θ−1
0 x)]

(
p(α−1x)

p(θ−1

0
x)

)γ∣∣∣∣ <∞.

Proposition 4 For scale models, if the conditions (A.2) (for the case γ > 0)
or (A.3) (for the case γ < 0) together with (A.1) and (A.4) are satisfied, then

θ̂n(α) is B-robust.

As a particular case, consider the problem of robust estimation of the pa-
rameter θ0 = σ of the univariate normal model, when the mean m is known,
intending to use an estimator θ̂n(σ) with σ 6= σ. We are interested on those
divergences from the Cressie-Read family and those possible values of σ for
which θ̂n(σ) is B-robust. We have

IF(x;Tσ, Pσ) = [
∫
m′′(σ, σ)dPσ]−1

{∫ (
pσ

pσ

)γ
ṗσ

pσ
dPσ −

(
pσ(x)

pσ(x)

)γ
ṗσ(x)

pσ(x)

}
.
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Fig. 1. Influence functions IF(x;Tσ , Pσ) for normal scale model, when m = 0, the
true scale parameter is σ = 1 and σ = 1.9.

It is easily seen that IF(x;Tσ, Pσ) is bounded whenever the function
(

pσ(x)
pσ(x)

)γ ṗσ(x)
pσ(x)

is bounded. Since
(
pσ(x)

pσ(x)

)γ
ṗσ(x)

pσ(x)
=
σγ−1

σγ

{(
x−m

σ

)2

− 1

}(
exp

(
−1

2

{(
x−m

σ

)2

−
(
x−m

σ

)2
}))γ

(20)
boundedness of IF(x;Tσ, Pσ) holds when γ > 0 and σ < σ or when γ < 0 and
σ > σ, cases in which the conditions of Proposition 4 are satisfied. A simple
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calculation shows that these choices of γ and σ assure that
∫
m′′(σ, σ)dPσ is

finite and non zero. However, when using the modified Kullback-Leibler diver-
gence (γ=0), none of the estimators θ̂n(σ) is B-robust, the function (20) being
unbounded. These aspects can also be observed in Figure 1, which presents
influence functions for different divergences when σ = 1 and σ = 1.9. The
negative values of the influence function in a neighborhood of 0 is explained
by the decrease of the variance estimate when oversampling close to the mean.

The asymptotic relative efficiency of an estimator is the ratio of the asymptotic
variance of the maximum likelihood estimator to that of the estimator in
question. For the scale normal model, the choice of σ close to σ assures a
good efficiency of θ̂n(σ) and also the B-robustness property. Then, the bigger
is the value of |γ|, the smaller is the gross error sensitivity of the estimator.
For example, for σ = 1 and σ = 0.99, the efficiency of θ̂n(σ) is 0.9803 when
γ = 0.5, 0.9615 when γ = 1, 0.9266 when γ = 2 and 0.8947 when γ = 3,
the most B-robust estimator corresponding to γ = 3. As can be inferred from
Figure 1, the curves IF2(x;Tσ, Pσ) are ordered decreasingly with respect to
|γ|. Therefore, large values of |γ| lead to small gross error sensitivities and low
efficiencies, since the asymptotic variance of θ̂n(σ) is [

∫
IF2(x;Tσ, Pσ)dPσ]

−1

(see also Hampel et al. [11] for this formula).

For scale models, conditions of Proposition 4 assure that θ̂n(α) and the corre-
sponding divergence estimator φ̂n(α, θ0) are B-robust.

3.2.2 Location models

It holds pθ(x) = p(x− θ).

Proposition 5 For location models, if the condition

sup
x

∣∣∣∣∣

(
p(x− α)

p(x− θ0)

)γ
∂

∂θ
log p(x− θ0)

∣∣∣∣∣ <∞ (21)

is satisfied, then θ̂n(α) is B-robust.

For the Cauchy density the maximum likelihood estimator exists, it is consis-
tent, efficient and B-robust and all the estimators θ̂n(α) exist and are B-robust.
Indeed, condition (21) writes

sup
x

2

∣∣∣∣∣

(
1 + (x− θ0)

2

1 + (x− α)2

)γ
x− θ0

1 + (x− θ0)2

∣∣∣∣∣ <∞

and is fulfilled for any γ and any α. Also, the integral
∫
m′′(θ0, α)dPθ0

exists
and is different to zero for any γ and any α. This is quite natural since sam-
pling of the Cauchy law makes equivalent outliers and large sample points due

12
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Fig. 2. Influence functions IF(x;Tα, Pθ0
) for the Cauchy location model, when the

true location parameter is θ0 = 0.5 and α = 0.8.

to heavy tails. However it is known that the likelihood equation for Cauchy
distribution has multiple roots. The number of solutions behaves asymptoti-
cally as two times a Poisson(1/π) variable plus 1 (see van der Vaart [25] p.
74). The possible selection rule for the estimate is to check the nearly com-
mon estimates for different α and φ-divergences. Figure 2 presents influence
functions IF(x;Tα, Pθ0

), when γ ∈ {−1, 0, 1, 2, 3, }, θ0 = 0.5 and α = 0.8. For
these choices of θ0 and α, the efficiency of θ̂n(α) is 0.9775 when γ = 1, 0.9208
when γ = 2, 0.8508 when γ = 3. Here, when γ increases, the decrease of the
efficiency is worsened by a loss in B-robustness. In this respect, the maxi-
mum likelihood estimator appears as a good choice in terms of robustness and
efficiency.

In the case of the logistic location model, a simple calculation shows that the
condition (21) is fulfilled for any γ and any α. Also, the integral

∫
m′′(θ0, α)dPθ0

exists and is different from zero for any γ and any α. These conditions entail
the fact that all the estimators θ̂n(α) are B-robust. Figure 4 presents influence
functions IF(x;Tα, Pθ0

), when γ ∈ {−1, 0, 0.5, 1, 2, 3, }, θ0 = 1 and α = 1.5.
As in the case of the Cauchy model, when γ increases, the decrease of the
efficiency is worsened by the increase of the gross error sensitivity, such that
the maximum likelihood estimator appears again as a good choice in terms of
robustness and efficiency.

On the other hand, for the mean of the normal law, none of the estimators
θ̂n(α) is B-robust, their influence functions being always unbounded.
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Fig. 3. Influence functions IF(x;Uα, Pθ0
) for the Cauchy location model, when the

true location parameter is θ0 = 0.5 and α = 0.8.
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Fig. 4. Influence functions IF(x;Tα, Pθ0
) for the logistic location model, when the

true location parameter is θ0 = 1 and α = 1.5.

In the case of the Cauchy model, as well as in the case of the logistic model,
IF(x;Uα, Pθ0

) is bounded for any γ and any α. In Figure 3, respectively in
Figure 5, we present such influence functions for different choices of γ. Thus,
for these two location models, all the estimators φ̂n(α, θ0) are B-robust.
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Fig. 5. Influence functions IF(x;Uα, Pθ0
) for the logistic location model, when the

true location parameter is θ0 = 1 and α = 1.5.

4 Robust tests based on divergence estimators

4.1 Asymptotic results for contaminated observations

This subsection presents some asymptotic results that are necessary in or-
der to analyze the robustness of some tests based on divergence estimators.
These asymptotic results are obtained for contaminated observations, namely
X1, . . . , Xn are i.i.d. with

P P
n,ε,x :=

(
1 − ε√

n

)
Pθn

+
ε√
n
δx (22)

where θn = θ0 + ∆√
n
, ∆ being an arbitrary vector from Rd.

For α fixed consider the following conditions:

(C.1) The function θ 7→ m(θ, α) is C3 for all x and all partial derivatives
of order 3 of θ 7→ m(θ, α) are dominated by some Pθn

-integrable function
x 7→ H(x) with the property

∫
H2dPθn

is finite, for any n and any ∆.

(C.2)
∫
m(θ0, α)dPθn

and
∫
m2(θ0, α)dPθn

are finite, for any n and any ∆.

(C.3)
∫
m′(θ0, α)dPθn

and
∫
m′(θ0, α)m′(θ0, α)tdPθn

exist, for any n and any
∆.
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(C.4)
∫
m′′(θ0, α)dPθn

and
∫
m′′(θ0, α)2dPθn

exist, for any n and any ∆.

The estimators θ̂n(α) have good properties with respect to contamination in
terms of consistency.

Proposition 6 If the conditions (C.1), (C.3) and (C.4) are satisfied, then

√
n(θ̂n(α) − Tα(P P

n,ε,x)) = OP (1).

Also, φ̂n(α, θ0) enjoys normal convergence under (22).

Proposition 7 If α 6= θ0 and the conditions (C.1) − (C.4) are satisfied, then

√
n(φ̂n(α, θ0) − Uα(P P

n,ε,x))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2

converges in distribution to a normal standard variable.

4.2 Robust tests based on divergence estimators

In this subsection we propose tests based on dual φ-divergence estimators and
study their robustness properties. We mention that the use of the dual form
of a divergence to derive robust tests was discussed in a different context by
Broniatowski and Leorato [7] in the case of the Neyman χ2 divergence.

For testing the hypothesis θ = θ0 against the alternative θ 6= θ0, consider the
test of level α0 defined by the test statistic φ̂n := φ̂n(α, θ0) with α 6= θ0 and
by the critical region

C :=

{∣∣∣∣∣

√
n(φ̂n − φ(α, θ0))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

∣∣∣∣∣ ≥ q1−α0

2

}

where q1−α0

2

is the (1 − α0

2
)-quantile of the standard normal distribution.

Due to the asymptotic normality of φ̂n, for n large, the level writes as

α0 ≃Pθ0

(∣∣∣∣∣

√
n(φ̂n − φ(α, θ0))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

∣∣∣∣∣ ≥ q1−α0

2

)
(23)

=Pθ0
(|φ̂n − φ(α, θ0)| ≥ (

√
n)−1[

∫
IF2(y;Uα, Pθ0

)dPθ0
(y)]1/2q1−α0

2

) (24)

= 2Pθ0
(φ̂n ≥ kn(α0)) (25)

where kn(α0) = (
√
n)−1[

∫
IF2(y;Uα, Pθ0

)dPθ0
(y)]1/2q1−α0

2

+ φ(α, θ0).
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We work with the form (25) of the level and consequently of the probability
to reject the null hypothesis, this being easier to handle in the proofs of the
results that follows.

Consider the sequence of contiguous alternatives θn = θ0 + ∆n−1/2, where ∆
is any vector from Rd. When θn tends to θ0, the contamination must converge
to 0 at the same rate, to avoid the overlapping between the neighborhood
of the hypothesis and that of the alternative (see Hampel et al. [11], p.198
and Heritier and Ronchetti [12]). Therefore we consider the contaminated
distributions

PL
n,ε,x =

(
1 − ε√

n

)
Pθ0

+
ε√
n
δx (26)

for the level and

P P
n,ε,x =

(
1 − ε√

n

)
Pθn

+
ε√
n
δx (27)

for the power.

The asymptotic level (the asymptotic power) under (26) (under (27)) will be
evaluated now.

Let β0 = limn→∞ 2Pθn
(φ̂n ≥ kn(α0)) be the asymptotic power of the test

under the family of alternatives Pθn
. The test is robust with respect to the

power if the limit of the powers under the contaminated alternatives stays
in a bounded neighborhood of β0, so that the role of the contamination is
somehow controlled. Also, the test is robust with respect to the level if the
limit of the level under the contaminated null distributions stays in a bounded
neighborhood of α0.

Let Pn,ε,x = 2P P
n,ε,x(φ̂n ≥ kn(α0)). In the same vein as in Dell’Aquilla and

Ronchetti [10] it holds:

Proposition 8 If the conditions (C.1) − (C.4) are fulfilled, then the asymp-

totic power of the test under P P
n,ε,x is given by

lim
n→∞

Pn,ε,x = 2 − 2Φ

(
Φ−1

(
1 − α0

2

)
− ∆

c

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2
−

− ε
IF(x;Uα, Pθ0

)

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

)
(28)

where c =
∫
m(θ0, α, y)

ṗθ0
(y)

pθ0
(y)
dPθ0

(y) and Φ is the cumulative distribution func-

tion of the standard normal.

A Taylor expansion with respect to ε yields

17



lim
n→∞

Pn,ε,x = 2 − 2Φ

(
Φ−1

(
1 − α0

2

)
− ∆

c

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

)
+

+2εf

(
Φ−1

(
1−α0

2

)
−∆

c

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

)
IF(x;Uα, Pθ0

)

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2
+o(ε)

= β0+2εf

(
Φ−1

(
1−α0

2

)
−∆

c

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

)
IF(x;Uα, Pθ0

)

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2
+

+o(ε)

where β0 is the asymptotic power for the non contaminated model and f is
the density of the standard normal distribution.

In order to limit the bias in the power of the test it is sufficient to bound the
influence function IF(x;Uα, Pθ0

). Bounding the influence function is therefore
enough to maintain the power in a pre-specified band around β0.

Let Ln,ε,x = 2PL
n,ε,x(φ̂n ≥ kn(α0)). Putting ∆ = 0 in (28) yields:

Proposition 9 If the conditions (C.1) − (C.4) are fulfilled, then the asymp-

totic level of the test under PL
n,ε,x is given by

lim
n→∞

Ln,ε,x = 2 − 2Φ

(
Φ−1

(
1 − α0

2

)
− ε

IF(x;Uα, Pθ0
)

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

)

=α0 + εf
(
Φ−1

(
1 − α0

2

))
IF(x;Uα, Pθ0

)

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2
+ o(ε).

Hence, when IF(x;Uα, Pθ0
) is bounded, Ln,ε,x remains between pre-specified

bounds of α0.

As the Proposition 8 and Proposition 9 show, both the asymptotic power
of the test under P P

n,ε,x and the asymptotic level of the test under PL
n,ε,x are

controlled by the influence function of the test statistic. Hence, the robustness
of the test statistic φ̂n, as discussed in the previous section, assures the stability
of the test under small arbitrary departures from the null hypothesis, as well
as a good power under small arbitrary departures from specified alternatives.
Figures 3 and 5 provide some specific values of γ and α inducing robust tests
for θ0 corresponding to those models.

5 Simulation results

Simulation were run in order to examine empirically the performances of the
robust dual φ-divergence estimators and tests. The considered parametric
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model was the scale normal model with known mean. We worked with data
generated from the model, as well as with contaminated data.

To make some comparisons, beside dual φ-divergence estimators, we consid-
ered minimum density power divergence estimators of Basu et al. [1] (MD-
PDE’s) and the maximum likelihood estimator (MLE). Recall that a MDPDE
of a parameter θ is obtained as solution of the equation

∫
ṗθ(z)p

β
θ (z)dz − 1

n

n∑

i=1

ṗθ(Xi)p
β−1
θ (Xi) = 0 (29)

with respect to θ, where β > 0 and X1, . . . , Xn is a sample from Pθ. In the
case of the scale normal model N (m, σ), equation (29) writes as

∫
1

σβ+2(
√

2π)β+1

(
e−

1

2
( z−m

σ )
2
)β+1

[
−1 +

(
z −m

σ

)2
]
dz −

−1

n

n∑

i=1

1

σβ+1(
√

2π)β

(
e−

1

2
(Xi−m

σ )
2
)β
[
−1 +

(
Xi −m

σ

)2
]

= 0

and the MDPDE of the parameter σ is robust for any β > 0.

In a first Monte Carlo experiment the data were generated from the scale
normal model N (0, 1) with mean m = 0 known, σ = 1 being the parameter of
interest. We considered different choices for the tuning parameter α and for the
Cressie-Read divergence to compute DφE’s, and different choices for the tuning
parameter β in order to compute MDPDE’s. For each set of configurations
considered, 5000 samples of size n = 100 were generated from the model, and
for each sample DφE’s, MDPDE’s and MLE were obtained.

In Table 1 we present the results of the simulations, showing simulation based
estimates of the bias and MSE given by

B̂ias =
1

ns

ns∑

i=1

(σ̂i − σ), M̂SE =
1

ns

ns∑

i=1

(σ̂i − σ)2,

where ns denotes the number of samples (5000 in our case) and σ̂i denotes an
estimate of σ for the ith sample. Examination of the table shows that DφE’s
give as good results as MDPDE’s or MLE.

In a second Monte Carlo experiment, we first generated samples with 100 ob-
servations, namely 98 coming from N (0, 1) and 2 outliers x = 10 and then
we generated samples with 100 observations, namely 96 from N (0, 1) and 4
outliers x = 10. The tuning parameters were the same as in the non contami-
nated case and also ns = 5000. The simulation results are given in Table 2. As
can be seen, the results for DφE’s and MDPDE’s are comparable, they being
better than the results for MLE in both cases.
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A close look at the results of the simulations show the DφE performs well
under the model, when no outliers are generated; indeed the best results are
obtained when γ = −0.1, whatever σ = 1.5 or σ = 1.9. The performance
of the estimator under the model is comparable to that of some MDPDE’s

in terms of empirical MSE (M̂SE): indeed the M̂SE for DφE with γ = −0.1
parallels MDPDE’s for small β. It is also slightly shorter than the one obtained
through the MLE. Under contamination, the DφE with γ = −0.5 yields clearly
the most robust estimate and the empirical MSE is very small, indicating a
strong stability of the estimate. It compares favorably with MDPE for all
β, whatever σ = 1.5 or σ = 1.9. The simulation with 4 outliers at x = 10
provide a clear evidence of the properties of the DφE with γ = −0.5. Also
small values of β give similar results as large negative values of γ, whatever σ,
under contamination. Although γ = −0.1 is a good alternative to MLE under
the model, γ = −0.5 behaves quite well in terms of bias while keeping short
empirical MSE under the model or under contamination. These results are in
full accordance with Figure 1; indeed the influence function is constant close
to 0 for large values of x.

Thus, the DφE is shown to be an attractive alternative to both the MLE and
MDPDE in these settings.

In order to test the hypothesis σ = 1 with respect to the alternative σ 6= 1,
we considered the test statistic

√
n(φ̂n − φ(α, θ0))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

(here θ0 = σ = 1). Under the null hypothesis, this test statistic is asymptoti-
cally N (0, 1). We worked with data generated from the model N (0, 1), as well
as with contaminated data. In each case, we simulated 5000 samples and we
computed the actual levels

P

(∣∣∣∣∣

√
n(φ̂n − φ(α, θ0))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

∣∣∣∣∣ ≥ q1−α0

2

)

corresponding to the nominal levels α0 = 0.01, 0.02, . . . , 0.1. We reported the
corresponding relative errors

(
P

(∣∣∣∣∣

√
n(φ̂n − φ(α, θ0))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

∣∣∣∣∣ ≥ q1−α0

2

)
− α0

)
/α0.

In Figure 6 we present relative errors for the robust tests applied to the scale
normal model N (0, 1), when the data are generated from the model. The
sample size is n = 100, the tuning parameter is σ = 1.9 and the Cressie-Read
divergences correspond to γ ∈ {−1.5,−1,−0.5,−0.1}. The approximation of
the level is good for all the considered divergences.
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In Figure 7 are represented relative errors of the robust tests applied to the
scale normal model N (0, 1), for samples with n = 100 data, namely 98 data
generated from N (0, 1) and 2 outliers x = 10. We considered σ = 1.9 and
γ ∈ {−2,−1.5}. Again, the approximation of the level of the test is good for
all the considered divergences.

In Figure 8 we present relative errors of the robust tests applied to the scale
normal model N (0, 1), for samples with n = 100 data, namely 96 data gen-
erated from N (0, 1) and 4 outliers x = 10. We considered σ = 1.9 and
γ ∈ {−2,−1.5}.

Observe that the tests give good results for values of γ close to zero when the
data are not contaminated, respectively for large negative values of γ when
the data are contaminated.

Thus, the numerical results show that dual φ-divergence estimates and corre-
sponding tests are stable in the presence of some outliers in the sample.
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Table 1.

Simulation results for DφE, MDPDE and MLE of
the parameter σ = 1 when the data are generated
from the model N (0, 1).

σ̂ B̂ias M̂SE

DφE

σ=1.5 γ = −2 0.99770 -0.00229 0.00917

σ=1.5 γ = −1.5 0.99735 -0.00264 0.00822

σ=1.5 γ = −1 0.99760 -0.00239 0.00698

σ=1.5 γ = −0.5 0.99833 -0.00166 0.00563

σ=1.5 γ = −0.1 0.99799 -0.00200 0.00492

σ=1.9 γ = −2 0.99892 -0.00107 0.01029

σ=1.9 γ = −1.5 0.99841 -0.00158 0.00924

σ=1.9 γ = −1 0.99824 -0.00175 0.00773

σ=1.9 γ = −0.5 0.99839 -0.00160 0.00588

σ=1.9 γ = −0.1 0.99768 -0.00231 0.00473

MDPDE

β = 0.1 0.99894 -0.00105 0.00514

β = 0.5 0.99986 -0.00013 0.00686

β = 1 1.00005 0.00005 0.00927

β = 1.5 1.00074 0.00074 0.01077

β = 2 1.00150 0.00150 0.01165

β = 2.5 1.00294 0.00294 0.01266

MLE 0.99743 -0.00256 0.00501
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Table 2.

Simulation results for DφE, MDPDE and MLE of the parameter σ = 1 when 98 data
are generated from the model N (0, 1) and 2 outliers x = 10 are added, respectively
when 96 data are generated from the model N (0, 1) and 4 outliers x = 10 are added.

2 outliers 4 outliers

σ̂ B̂ias M̂SE σ̂ B̂ias M̂SE

DφE

σ=1.5 γ = −2 1.01186 0.01186 0.00914 1.02540 0.02540 0.00946

σ=1.5 γ = −1.5 1.00850 0.00850 0.00816 1.01911 0.01911 0.00833

σ=1.5 γ = −1 1.00499 0.00499 0.00697 1.01210 0.01210 0.00707

σ=1.5 γ = −0.5 1.00171 0.00171 0.00572 1.00526 0.00526 0.00583

σ=1.5 γ = −0.1 1.09661 0.09661 0.01641 0.99766 -0.00233 0.00088

σ=1.9 γ = −2 1.01589 0.01589 0.01059 1.03547 0.03547 0.01182

σ=1.9 γ = −1.5 1.01236 0.01236 0.00942 1.02840 0.02840 0.01027

σ=1.9 γ = −1 1.00785 0.00785 0.00785 1.01912 0.01912 0.00838

σ=1.9 γ = −0.5 1.00274 0.00274 0.00598 1.00842 0.00842 0.00637

σ=1.9 γ = −0.1 1.06708 0.06708 0.02241 1.10531 0.10531 0.02083

MDPDE

β = 0.1 1.01117 0.01117 0.00646 1.02676 0.02676 0.00891

β = 0.5 1.00700 0.00700 0.00712 1.01417 0.01417 0.00743

β = 1 1.01406 0.01406 0.00975 1.02892 0.02892 0.01062

β = 1.5 1.01916 0.01916 0.01148 1.03876 0.03876 0.01297

β = 2 1.02233 0.02233 0.01254 1.04448 0.04447 0.01450

β = 2.5 1.02450 0.02450 0.01342 1.04771 0.04771 0.01556

MLE 1.72587 0.72587 0.52852 2.22720 1.22720 1.50701
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Fig. 6. Relative errors of the robust tests applied to the scale normal model N (0, 1),
when σ = 1.9 and 100 data are generated from model.
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Fig. 7. Relative errors of the robust tests applied to the scale normal model N (0, 1),
when σ = 1.9, 98 data are generated from model and 2 outliers x=10 are added.
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Fig. 8. Relative errors of the robust tests applied to the scale normal model N (0, 1),
when σ = 1.9, 96 data are generated from model and 4 outliers x=10 are added.

6 An adaptive choice of the tuning parameter

At the present stage we only present some heuristic and defer the formal
treatment of this proposal, which lays beyond the scope of the present work.

According to the model and the parameter to be estimated, the choice of
γ should be considered with respect to the expression (11) which has to be
bounded. We refer to the examples given in subsection 3.2 for some scale and
location model.

Given a set of observations X1, . . . , Xn an adaptive choice for α would aim
at reducing the estimated maximal bias caused by an extraneous data. De-
fine θ̂n(α, γ) the DφE of θ0 on the entire set of observation. For 1 ≤ i ≤ n, let
θ̂i

n−1(α, γ) be the DφE of θ0 built on the leave one out data setX1, X2, . . . , Xi−1,
Xi+1, . . . , Xn. Define

Bn(α, γ) := max
i

|θ̂n(α, γ) − θ̂i
n−1(α, γ)|

which measures the maximal bias caused by a single outlier and

α∗(γ) := arg inf
α
Bn(α, γ).

7 Proofs

Proof of Proposition 1

For fixed α, θ̂n(α) are M-estimators. In accordance with the theory regarding
the M-estimators (see for example van der Vaart [25]), the so called ψ-function
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corresponding to θ̂n(α) is

ψα(x, θ) = m′(θ, α, x)

and the influence function of Tα is

IF(x;Tα, Pθ0
) = [M(ψα, Pθ0

)]−1 ψα (x, Tα(Pθ0
)) (30)

where

M (ψα, Pθ0
) = −

∫
∂

∂θ
[ψα(y, θ)]θ0

dPθ0
(y) = −

∫
m′′(θ0, α, y)dPθ0

(y).

Using the Fisher consistency of the functional Tα,

ψα (x, Tα(Pθ0
))=ψα(x, θ0)

=−
∫
ϕ′′
(
pα

pθ0

)
pα

p2
θ0

ṗθ0
dPα + ϕ′′

(
pα

pθ0

(x)

)
p2

α(x)

p3
θ0

(x)
ṗθ0

(x)

which substituted in (30) leads to the announced result. �

Proof of Proposition 2

Let ε > 0 and P̃θ0εx = (1 − ε)Pθ0
+ εδx be the contaminated model. Then

Uα

(
P̃θ0εx

)
=
∫
m
(
Tα

(
P̃θ0εx

)
, α, y

)
dP̃θ0εx(y)

= (1 − ε)
∫
m
(
Tα

(
P̃θ0εx

)
, α, y

)
dPθ0

(y) + εm
(
Tα

(
P̃θ0εx

)
, α, x

)

and derivation yields

IF(x;Uα, Pθ0
) =

∂

∂ε

[
Uα

(
P̃θ0εx

)]
ε=0

=

=−
∫
m(θ0, α, y)dPθ0

(y) + IF(x;Tα, Pθ0
)t
∫
m′(θ0, α, y)dPθ0

(y) +m(θ0, α, x)

=−φ(α, θ0) +m(θ0, α, x).

�

Proof of Proposition 3

For notational clearness, define T : Θ ×M → Θ,

T (α, P ) := Tα(P ).
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For each α ∈ Θ, the definition of T (α, P ) leads to

∫
m′ (T (α, P ), α, y)dP (y) = 0.

By the very definition of V (P ) and T (V (P ), P ), they both obey





∫
m′ (T (V (P ), P ), V (P ), y)dP (y) = 0

∫ ∂
∂α

[m (T (α, P ), α, y)]V (P ) dP (y) = 0
. (31)

Denoting n(θ, α, y) = ∂
∂α
m(θ, α, y)

n(θ, α, y)=
∫
ϕ′′
(
pα

pθ

)
ṗα

pθ

dPα +
∫
ϕ′
(
pα

pθ

)
ṗα

pα

dPα −

−
{
ϕ′′
(
pα

pθ

(y)

)
pα

p2
θ

(y)ṗα(y) + ϕ′
(
pα

pθ

(y)

)
ṗα(y)

pθ(y)
− ϕ′

(
pα

pθ

(y)

)
ṗα(y)

pθ(y)

}

=
∫ {

ϕ′′
(
pα

pθ

)
1

pθ
+ ϕ′

(
pα

pθ

)
1

pα

}
ṗαdPα − ϕ′′

(
pα

pθ
(y)

)
pα

p2
θ

(y)ṗα(y).

From (31)





∫
m′ (T (V (P ), P ), V (P ), y)dP (y) = 0

∂
∂α

[T (α, P )]V (P )

∫
m′ (T (V (P ), P ), V (P ), y)dP (y)+

∫
n (T (V (P ), P ), V (P ), y)dP (y)=0

and consequently





∫
m′ (T (V (P ), P ), V (P ), y)dP (y) = 0

∫
n (T (V (P ), P ), V (P ), y)dP (y) = 0

.

For the contaminated model

∫
n
(
T
(
V
(
P̃θ0εx

)
, P̃θ0εx

)
, V

(
P̃θ0εx

)
, y
)
dP̃θ0εx(y) = 0

and so

(1 − ε)
∫
n
(
T
(
V
(
P̃θ0εx

)
, P̃θ0εx

)
, V

(
P̃θ0εx

)
, y
)
dPθ0

(y)+

+εn
(
T
(
V
(
P̃θ0εx

)
, P̃θ0εx

)
, V

(
P̃θ0εx

)
, x
)

= 0.
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Now derivation yields

− ∫ n(θ0, θ0, y)dPθ0
(y) +

∫ ∂
∂θ
n (T (θ0, Pθ0

), θ0, y) dPθ0
(y)

{
∂

∂α
T (θ0, Pθ0

)IF(x;V, Pθ0
)+

+IF(x;Tθ0
, Pθ0

)} +
∫ ∂

∂α
n(θ0, θ0, y)dPθ0

(y)IF(x;V, Pθ0
) + n(θ0, θ0, x) = 0.

(32)

Since

∂

∂θ
n(θ, α, y)=

∫ {
−2ϕ′′

(
pα

pθ

)
ṗθ

p2
θ

− ϕ′′′
(
pα

pθ

)
pα

p3
θ

ṗθ

}
ṗt

αdPα +

+

{
ϕ′′′

(
pα

pθ

(y)

)
+ 2ϕ′′

(
pα

pθ

(y)

)
pθ(y)

pα(y)

}
p2

α(y)

p4
θ(y)

ṗθ(y)ṗα(y)t

and particularly

∂

∂θ
n(θ0, θ0, y) = {2ϕ′′(1) + ϕ′′′(1)}

{
ṗθ0

(y)ṗθ0
(y)t

p2
θ0

(y)
−
∫ ṗθ0

ṗt
θ0

p2
θ0

dPθ0

}
,

deduce that ∫
∂

∂θ
n(θ0, θ0, y)dPθ0

(y) = 0. (33)

On the other hand

∂

∂α
n(θ, α, y)=

∫ {
ϕ′′′

(
pα

pθ

)
ṗα

p2
θ

− ϕ′
(
pα

pθ

)
ṗα

p2
α

+ ϕ′′
(
pα

pθ

)
ṗα

pαpθ

}
ṗt

αdPα +

+
∫ {

ϕ′′
(
pα

pθ

)
1

pθ

+ ϕ′
(
pα

pθ

)
1

pα

}(
p̈α +

ṗαṗ
t
α

pα

)
dPα −

−ϕ′′′
(
pα

pθ
(y)

)
pα(y)

p3
θ(y)

ṗα(y)ṗα(y)t −

−ϕ′′
(
pα

pθ
(y)

)
ṗα(y)ṗα(y)t

p2
θ(y)

− ϕ′′
(
pα

pθ
(y)

)
pα(y)

p2
θ(y)

p̈α(y)

and particularly

∂

∂α
n(θ0, θ0, y)=

∫
{ϕ′′′(1) + 2ϕ′′(1)} ṗθ0

ṗt
θ0

p2
θ0

dPθ0
+
∫
ϕ′′(1)

p̈θ0

pθ0

dPθ0

−{ϕ′′′(1) + ϕ′′(1)} ṗθ0
(y)ṗθ0

(y)t

p2
θ0

(y)
− ϕ′′(1)

p̈θ0
(y)

pθ0
(y)

.
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As a consequence

∫
∂

∂α
n(θ0, θ0, y)dPθ0

(y) = ϕ′′(1)
∫ ṗθ0

ṗt
θ0

p2
θ0

dPθ0
= ϕ′′(1)Iθ0

. (34)

Also

n(θ0, θ0, x) = −ϕ′′(1)
ṗθ0

(x)

pθ0
(x)

. (35)

Using the Fisher consistency of the functional Tα and substituting (33), (34)
and (35) in (32) it holds

IF(x;V, Pθ0
) = I−1

θ0

ṗθ0
(x)

pθ0
(x)

(36)

and this completes the proof. �

Proof of Proposition 4

By replacing ṗθ,

(
pα(x)

pθ0
(x)

)γ

ṗθ0
(x) =−θ

γ−2
0

αγ

{
p(α−1x)γ

p(θ−1
0 x)γ−1

+
x

θ0

(
p(α−1x)

p(θ−1
0 x)

)γ

ṗ(θ−1
0 x)

}

=−θ
γ−2
0

αγ

{
p(α−1x)γ

p(θ−1
0 x)γ−1

− θ0
p(α−1x)γ

p(θ−1
0 x)γ−1

∂

∂θ
log p(θ−1

0 x)

}
(37)

and similarly

(
pα(x)

pθ0
(x)

)γ
ṗθ0

(x)

pθ0
(x)

=−θ
γ−1
0

αγ

{(
p(α−1x)

p(θ−1
0 x)

)γ

+
x

θ0

(
p(α−1x)

p(θ−1
0 x)

)γ
ṗ(θ−1

0 x)

p(θ−1
0 x)

}

=−θ
γ−1
0

αγ

{(
p(α−1x)

p(θ−1
0 x)

)γ

− θ0

(
p(α−1x)

p(θ−1
0 x)

)γ
∂

∂θ
log p(θ−1

0 x)

}
.

The condition (A.1) together with one of the conditions (A.2) or (A.3) (de-
pending on the choice of γ) entails that the function (37) is integrable. On the
other hand (A.2) or (A.3) together with (A.4) assure that the function in the
above display is bounded. Then IF(x;Tα, Pθ0

) as it is expressed by (19) is a
bounded function. �

Proof of Proposition 5

It holds (
pα(x)

pθ0
(x)

)γ

ṗθ0
(x) =

p(x− α)γ

p(x− θ0)γ−1

∂

∂θ
log p(x− θ0)
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and (
pα(x)

pθ0
(x)

)γ
ṗθ0

(x)

pθ0
(x)

=

(
p(x− α)

p(x− θ0)

)γ
∂

∂θ
log p(x− θ0).

Then the condition (21) allows to conclude that IF(x;Tα, Pθ0
), as it is expressed

by (19), is bounded. �

Proof of Proposition 6

First prove that θ̂n(α) − Tα(P P
n,ε,x) = oP (1).

It holds
∫
m′(θ0, α)dPθ0

= 0 and

∫
m′′(θ0, α)dPθ0

= −
∫
ϕ′′
(
pα

pθ0

)
p2

α

p3
θ0

ṗθ0
ṗt

θ0
dλ = −S. (38)

The matrix S is symmetric and positive since ϕ′′ is positive by the convexity of
ϕ. Using (C.3) in connection with the Lindeberg-Feller theorem for triangular
arrays we have

√
n
∫
m′(θ0, α)dPn = OP (1). Using (C.4) in connection with

the Lindeberg-Feller theorem for triangular arrays yields
∫
m′′(θ0, α)dPn+S =

oP (1).

Now, for any θ = θ0+un
−1/3 with ‖u‖ ≤ 1, a Taylor expansion of

∫
m(θ, α)dPn

around θ0 under (C.1) yields

n
∫
m(θ, α)dPn − n

∫
m(θ0, α)dPn =

= n2/3ut
∫
m′(θ0, α)dPn + 2−1n1/3ut

∫
m′′(θ0, α)dPnu+OP (1)

uniformly on u with ‖u‖ ≤ 1. Hence

n
∫
m(θ, α)dPn − n

∫
m(θ0, α)dPn = OP (n1/6) − 2−1n1/3utSu+OP (1)

uniformly on u with ‖u‖ ≤ 1. Hence uniformly on u with ‖u‖ = 1,

n
∫
m(θ, α)dPn − n

∫
m(θ0, α)dPn ≤ OP (n1/6) − 2−1cn1/3 +OP (1) (39)

where c is the smallest eigenvalue of the matrix S. Note that c is positive since
S is positive definite. In view of (39), by the continuity of θ → ∫

m(θ, α)dPn,
it holds that as n → ∞, with probability one, θ → ∫

m(θ, α)dPn attains its
maximum at some point θ̂n(α) in the interior of the ball {θ : ‖θ−θ0‖ ≤ n−1/3},
and therefore

θ̂n(α) − θ0 = oP (1). (40)
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On the other hand,

Tα(P P
n,ε,x) = θ0 +

ε√
n

IF(x;Tα, Pθ0
) +

∆√
n
1 + ρ

(
ε√
n
,

∆√
n

) √
ε2 + ∆2

n

where 1 := (1, . . . , 1)t above coincides with ∂

∂∆̃
[Tα(P

θ0+∆̃
)]

∆̃=0
by the Fisher

consistency of the functional Tα and the function ρ satisfies limn→∞ ρ
(

ε√
n
, ∆√

n

)
=

0. Then Tα(P P
n,ε,x)− θ0 converges to zero in probability as n→ ∞. Combining

this with (40) we obtain that θ̂n(α)−Tα(P P
n,ε,x) converges to zero in probability.

In the following, we prove that
√
n(θ̂n(α) − Tα(P P

n,ε,x)) = OP (1).

By Taylor expansion, there exists θn inside the segment that links Tα(P P
n,ε,x)

and θ̂n(α) such that

0 =
∫
m′(θ̂n(α), α)dPn

=
∫
m′(Tα(P P

n,ε,x), α)dPn +
∫
m′′(Tα(P P

n,ε,x), α)dPn(θ̂n(α) − Tα(P P
n,ε,x)) +

+
1

2
(θ̂n(α) − Tα(P P

n,ε,x))
t
∫
m′′′(θn, α)dPn(θ̂n(α) − Tα(P P

n,ε,x)). (41)

By condition (C.1), using the sup-norm

‖
∫
m′′′(θn, α)dPn‖ = ‖ 1

n

n∑

k=1

m′′′(θn, α)(Xk)‖ ≤ 1

n

n∑

k=1

H(Xk).

Applying the Lindeberg-Feller theorem for triangular arrays yields
∫
m′′′(θn, α)dPn =

OP (1). Then the last term in (41) writes oP (1)(θ̂n(α) − Tα(P P
n,ε,x)).

Under (C.1) and (C.4), by applying a Taylor expansion and repeatedly the
Lindeberg-Feller theorem for triangular arrays,

∫
m′′(Tα(P P

n,ε,x), α)dPn =
1

n

n∑

k=1

m′′(Tα(P P
n,ε,x), α,Xk)

=
1

n

n∑

k=1

m′′(θ0, α,Xk) +
ε

n
√
n

n∑

k=1

m′′′(θ0, α,Xk)IF(x;Tα, Pθ0
) +

+
∆

n
√
n

n∑

k=1

m′′′(θ0, α,Xk)1 + ρ

(
ε√
n
,

∆√
n

) √
ε2 + ∆2

n

=Pθ0
m′′(θ0, α) + oP (1)

where 1 := (1, . . . , 1)t above coincides with ∂

∂∆̃
[Tα(P

θ0+∆̃
)]

∆̃=0
by the Fisher
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consistency of the functional Tα and the function ρ satisfies limn→∞ ρ
(

ε√
n
, ∆√

n

)
=

0.

Therefore (41) becomes

−
∫
m′(Tα(P P

n,ε,x), α)dPn = (
∫
m′′(θ0, α)dPθ0

+ oP (1))(θ̂n(α) − Tα(P P
n,ε,x)).

(42)

We prove that
√
n
∫
m′(Tα(P P

n,ε,x), α)dPn is OP (1). By Taylor expansion,

∫
m′(Tα(P P

n,ε,x), α)dPn =
1

n

n∑

k=1

m′(θ0, α,Xk)+
ε

n
√
n

n∑

k=1

m′′(θ0, α,Xk)IF(x;Tα, Pθ0
) +

+
∆

n
√
n

n∑

k=1

m′′(θ0, α,Xk)1 + ρ

(
ε√
n
,

∆√
n

) √
ε2 + ∆2

n

and therefore

√
n
∫
m′(Tα(P P

n,ε,x), α)dPn =
1√
n

n∑

k=1

m′(θ0, α,Xk) +

+
ε

n

n∑

k=1

m′′(θ0, α,Xk)IF(x;Tα, Pθ0
) +

∆

n

n∑

k=1

m′′(θ0, α,Xk)1 + ρ

(
ε√
n
,

∆√
n

)√
ε2 + ∆2

n
.

Under (C.3) and (C.4), by applying the Lindeberg-Feller theorem for triangu-
lar arrays it holds

√
n
∫
m′(Tα(P P

n,ε,x), α)dPn = OP (1). Then from (42)

√
n(θ̂n(α) − Tα(P P

n,ε,x)) = OP (1).

�

Proof of Proposition 7

By Taylor expansion, there exists θn inside the segment that links Tα(P P
n,ε,x)

and θ̂n(α) such that

φ̂n(α, θ0) =
∫
m(θ̂n(α), α)dPn

=
∫
m(Tα(P P

n,ε,x), α)dPn +
∫
m′(Tα(P P

n,ε,x), α)tdPn(θ̂n(α) − Tα(P P
n,ε,x)) +

+
1

2
(θ̂n(α) − Tα(P P

n,ε,x))
t
∫
m′′(Tα(P P

n,ε,x), α)dPn(θ̂n(α) − Tα(P P
n,ε,x)) +

+
1

3!

∑

1≤i,j,k≤d

(θ̂n(α)−Tα(P P
n,ε,x))i(θ̂n(α)−Tα(P P

n,ε,x))j(θ̂n(α)−Tα(P P
n,ε,x))k

∫
∂3m(θn, α)

∂θi∂θj∂θk

dPn.
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Then

√
n(φ̂n(α, θ0) − Uα(P P

n,ε,x))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
=

√
n(
∫
m(Tα(P P

n,ε,x), α)dPn − Uα(P P
n,ε,x))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
+

+
(
∫
m′(Tα(P P

n,ε,x), α)dPn)
t
√
n(θ̂n(α) − Tα(P P

n,ε,x))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
+

+

√
n(θ̂n(α) − Tα(P P

n,ε,x))
t
∫
m′′(Tα(P P

n,ε,x), α)dPn(θ̂n(α) − Tα(P P
n,ε,x))

2[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
+

√
n
∑

1≤i,j,k≤d(θ̂n(α)−Tα(P P
n,ε,x))i(θ̂n(α)−Tα(P P

n,ε,x))j(θ̂n(α)−Tα(P P
n,ε,x))k

∫ ∂3m(θn,α)
∂θi∂θj∂θk

dPn

3![
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
.

(43)

In the following we analyze each term in the above display. It holds

∫
m(Tα(P P

n,ε,x), α)dPn−Uα(P P
n,ε,x) =

1

n

n∑

k=1

{m(Tα(P P
n,ε,x), α,Xk)−P P

n,ε,xm(Tα(P P
n,ε,x), α)}.

Apply the Lindeberg-Feller theorem for the triangular array

Zn,k := m(Tα(P P
n,ε,x), α,Xk) − P P

n,ε,xm(Tα(P P
n,ε,x), α).

For this, compute first Var(Zn,k). Observe that

Var(Zn,k)=
∫
m2(Tα(P P

n,ε,x), α, y)dP
P
n,ε,x(y) −

(∫
m(Tα(P P

n,ε,x), α, y)dP
P
n,ε,x(y)

)2

=

=

(
1 − ε√

n

)∫
m2(Tα(P P

n,ε,x), α, y)dPθn
(y) +

ε√
n
m2(Tα(P P

n,ε,x), α, x) −

−
{(

1 − ε√
n

)∫
m(Tα(P P

n,ε,x), α, y)dPθn
(y) +

ε√
n
m(Tα(P P

n,ε,x), α, x)

}2

.

By Taylor expansions

m(Tα(P P
n,ε,x), α, y)=m(θ0, α, y) +

ε√
n
m′(θ0, α, y)

tIF(x;Tα, Pθ0
) +

+
∆√
n
m′(θ0, α, y)

t1 + ρ

(
ε√
n
,

∆√
n

) √
ε2 + ∆2

n

m2(Tα(P P
n,ε,x), α, y)=m2(θ0, α, y) + 2

ε√
n
m(θ0, α, y)m

′(θ0, α, y)
tIF(x;Tα, Pθ0

) +

2
∆√
n
m(θ0, α, y)m

′(θ0, α, y)
t1 + ρ

(
ε√
n
,

∆√
n

) √
ε2 + ∆2

n
.

Hence the conditions (C.2) and (C.3) assure that Var(Zn,k) is finite.
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We now prove the equality

Var(Zn,k) =
∫

IF2(y;Uα, P
P
n,ε,x)dP

P
n,ε,x(y). (44)

By definition,

IF(y;Uα, P
P
n,ε,x) =

∂

∂t
[Uα(P̃ P

n,ε,xty
)]t=0,

where P̃ P
n,ε,xty

= (1 − t)P P
n,ε,x + tδy. Also

Uα(P̃ P
n,ε,xty

) = (1 − t)
∫
m(Tα(P̃ P

n,ε,xty
), α, z)dP P

n,ε,x(z) + tm(Tα(P̃ P
n,ε,xty

), α, y)

whence

IF(y;Uα, P
P
n,ε,x) = −

∫
m(Tα(P P

n,ε,x), α, z)dP
P
n,ε,x(z)+

+
∫
m′(Tα(P P

n,ε,x), α, z)dP
P
n,ε,x(z)IF(y;Tα, P

P
n,ε,x) +m(Tα(P P

n,ε,x), α, y).

By the definition of Tα(P P
n,ε,x), it holds

∫
m′(Tα(P P

n,ε,x), α, z)dP
P
n,ε,x(z) = 0

and hence (44) holds. Here we observe that IF(y;Tα, P
P
n,ε,x) is finite for any y,

for any n and any ∆, since IF(y;Tα, Pθ0
) is.

Thus, by Lindeberg-Feller theorem for triangular arrays, the first term in the
expansion (43) converges in distribution to a variable N (0, 1).

We have
∫
m′(Tα(P P

n,ε,x), α)dPn = oP (1) since
√
n
∫
m′(Tα(P P

n,ε,x), α)dPn =
OP (1) (see the proof of Proposition 6). Also, it holds

∫
m′′(Tα(P P

n,ε,x), α)dPn =

OP (1) and
∫ ∂3m(θn,α)

∂θi∂θj∂θk
dPn = OP (1).

Consequently, using Proposition 6 we obtain the announced result. �

Proof of Proposition 8

The level α0 is given by

α0 = 2Pθ0
(φ̂n ≥ kn(α0))

= 2Pθ0

( √
n(φ̂n − Uα(Pθ0

))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2
≥

√
n(kn(α0) − Uα(Pθ0

))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

)
.

Using the asymptotic normality of φ̂n in the case of uncontaminated observa-
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tions (see Broniatowski and Keziou [6]),

√
n(kn(α0) − Uα(Pθ0

))

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2
= Φ−1

(
1 − α0

2

)
+ o(1).

Therefore

kn(α0) = Uα(Pθ0
)+

1√
n

Φ−1
(
1 − α0

2

)
[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2 +o

(
1√
n

)
.

(45)

Now we are interested in the value of the asymptotic power, when the under-
lying distribution deviates slightly from the model. Using (45)

Pn,ε,x = 2P P
n,ε,x(φ̂n ≥ kn(α0))

= 2P P
n,ε,x




√
n(φ̂n − Uα(P P

n,ε,x))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
≥

√
n(kn(α0) − Uα(P P

n,ε,x))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2




= 2P P
n,ε,x




√
n(φ̂n − Uα(P P

n,ε,x))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
≥ −

√
n(Uα(P P

n,ε,x) − Uα(Pθ0
))

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
+

+ Φ−1
(
1 − α0

2

)
[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

[
∫

IF2(y;Uα, P P
n,ε,x)dP

P
n,ε,x(y)]

1/2
+ o(1)

)
.

Expand Uα(P P
n,ε,x) around to Uα(Pθ0

) to obtain

√
n(Uα(P P

n,ε,x) − Uα(Pθ0
)) = εIF(x;Uα, Pθ0

) + ∆
∂

∂∆̃
[Uα(P

θ0+∆̃
)]

∆̃=0
+

+ρ

(
ε√
n
,

∆√
n

)√
ε2 + ∆2

n
.

Using the asymptotic normality of the test statistic when the observations are
i.i.d. with P P

n,ε,x and taking into account that

lim
n→∞

[
∫

IF2(y;Uα, P
P
n,ε,x)dP

P
n,ε,x(y)]

1/2 = [
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

it holds

lim
n→∞

Pn,ε,x = 2 − 2Φ


Φ−1

(
1 − α0

2

)
− ∆

∂

∂∆̃
[Uα(P

θ0+∆̃
)]

∆̃=0

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2
−

− ε
IF(x;Uα, Pθ0

)

[
∫

IF2(y;Uα, Pθ0
)dPθ0

(y)]1/2

)
. (46)
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A simple calculation shows that ∂

∂∆̃
[Uα(P

θ0+∆̃
)]

∆̃=0
=
∫
m(θ0, α, y)

ṗθ0
(y)

pθ0
(y)
dPθ0

(y).

Hence (28) holds. �
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