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Let H = -d 2 /dx 2 + V (x) of associated spectrum (E n , w n ) ≡ (E n , ψ n ), where w n (x) = -ψ ′ n (x)/ψ n (x). The Riccati-Schrödinger (RS) equation [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF] for the level E n is:

-w ′ n (x) + w 2 n (x) = V (x) -E n , (1) 
where we suppose E 0 = 0. Make a "spatial Wick rotation", that is, set x → ix, and define v n (x) = -iw n (ix) Eq(1) becomes:

v ′ n (x) + v 2 n (x) = V (n) (x), (2) 
where:

V (n) (x) = E n -V (ix). (3) 
V (n) (x) is supposed to be real and to have no movable (that is n dependent) singularity on the real line. Considering v n (x) as superpotential, V (n) can be viewed as the SUSY partner [START_REF] Cooper | Supersymmetry in Quantum Mechanics[END_REF] of V (n) defined as:

V (n) (x) = V (n) (x) -2v ′ n (x) = 2v 2 n (x) -V (n) (x), (4) 
that is:

V (n) (x) = V (ix) -E n + 2v 2 n (x). (5) 
The positive hamiltonians H (n) and H (n) , associated to V (n) (x) and V (n) (x) respectively, can be written:

H (n) = A (n)+ A (n) H (n) = A (n) A (n)+ , (6) 
where:

A (n) = d dx + v n (x). (7) 
If

ψ (n) 0 (x) ∼ exp -v n (x)dx is normalizable, it satisfies A (n) ψ (n) 0
= 0 and is then the zero-energy ground state of H (n) .

In this case the two hamiltonians are almost isospectral, that is:

E (n) 0 = 0 E (n) k = E (n) k+1 , k ≥ 0, (8) 
and their eigenstates are related by:

     ψ (n) k (x) = 1 E (n) k+1 A (n) ψ (n) k+1 (x) ψ (n) k (x) = 1 E (n) k A (n)+ ψ (n) k (x) . (9) 
If ψ (n) 0 (x) is not normalizable, the two hamiltonians are strictly isospectral, that is:

E (n) k = E (n) k , k ≥ 0, (10) 
and their eigenstates are related by:

     ψ (n) k (x) = 1 E (n) k A (n) ψ (n) k (x) ψ (n) k (x) = 1 E (n) k A (n)+ ψ (n) k (x) . ( 11 
)
Suppose that the potential considered satisfies the following identity (this is the case of the harmonic and isotonic potentials):

-V (ix) = V (x) + δ. ( 12 
)
We then have:

V (n) (x) = V (x) + δ + E n . ( 13 
)
The spectrum of H (n) is:

E (n) k = E k + E n + δ ψ (n) k (x) = ψ k (x) ∼ exp -w k (x)dx , k ≥ 0. ( 14 
)
As for the spectrum of H (n) , it is either:

E (n) k = E k + E n + δ ψ (n) k (x) = ψ k (x) , k ≥ 0, ( 15 
)
in the strictly isospectral case or:

E (n) 0 = 0 E (n) k+1 = E k + E n + δ , k ≥ 0, (16) 
with:

ψ (n) 0 (x) ∼ exp -v n (x)dx ψ (n) k+1 (x) = (E k + E n + δ) -1/2 A (n)+ ψ k (x) , k ≥ 0, ( 17 
)
in the almost isospectral case. We can illustrate this general scheme with two fundamental examples.

B. Harmonic oscillator

Consider the harmonic oscillator with zero ground-state energy:

V (x) = ω 2 4 x 2 - ω 2 . ( 18 
)
Its spectrum is well known:

E n = nω ψ n (x) ∼ H n (ωx/2) exp -ωx 2 /4 (19) 
and the corresponding RS functions w n (x) can be written as terminating continued fractions [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF]. We then obtain for its "spatially Wick rotated" image v n (x) = -iw n (ix):

v n (x) = ω 2 x + nω ωx+ ... (n -j + 1) ω ωx+ ... 1 x . (20) 
Clearly v n (x) does not present any singularity on the positive real half line. The recurrence between the RS functions [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF] gives:

v n (x) = v 0 (x) + E n v 0 (x) + v n-1 (x) (21)
and v n (x) has the same odd parity as v 0 (x). Then v n (x) is regular on all R. Therefore the normalizability of v n (x) is then ensured since the asymptotic behaviour at ∞ of v n (x) is that of v 0 (x).

We have also:

-V (ix) = V (x) + ω, (22) 
that is, δ = ω and:

V (n) (x) = V (x) + (n + 1) ω. ( 23 
)
The spectrum of H (n) is then:

E (n) k = (k + n + 1) ω ψ (n) k (x) = ψ k (x) , k ≥ 0. ( 24 
)
Its SUSY partner H (n) has the following associated potential:

V (n) (x) = 2v 2 n (x) - ω 2 4 x 2 -(n + 1) ω (25) 
and constitutes a regular rational extension of V (x) the spectrum of which is completely determined. We have:

E (n) 0 = 0 E (n) k+1 = (k + n + 1) ω , k ≥ 0 ( 26 
)
and:

ψ (n) 0 (x) ∼ exp -v n (x)dx ψ (n) k+1 (x) = ((n + k + 1) ω) -1/2 -d dx + v n (x) ψ k (x) . (27) 
C. Isotonic oscillator

The potential of the isotonic oscillator with zero ground-state energy is:

V (x) = ω 2 4 x 2 + l(l + 1) x 2 -ω l + 3 2 , x > 0. ( 28 
)
Its spectrum is given by:

E n = 2nω, ψ n (x) ∼ exp -w n (x) dx , (29) 
where the w n (x) are known [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF] and expressible as terminating continued fractions. This gives:

v n (x) = ω 2 x + l + 1 x + 2nω ωx + (2l + 3) /x+ ... 2 (n -j + 1) ω ωx + (2 (l + j) + 1) /x+ ... 2ω ωx + (2 (l + n) -1) /x . ( 30 
)
Clearly v n (x) does not present any singularity on the positive real half line. It has to be noticed that, since

v 0 (x) = ω 2 x + l + 1 x , (31) 
the term (l + 1) /x which then appears in every v n (x), induces a nonnormalizable singularity at the origin for expv n (x)dx . For instance:

exp -v 0 (x)dx = 1 x l+1 exp - ω 4 x 2 . ( 32 
)
We are consequently in the case of a strict isospectrality. We also have:

-V (ix) = V (x) + 2ω l + 3 2 , (33) 
that is, δ = 2ω l + 3 2 and:

V (n) (x) = ω 2 4 x 2 + l(l + 1) x 2 + 2 n + l + 3 2 ω. ( 34 
)
The spectrum of

H (n) = -d 2 /dx 2 + V (x) + 2 n + l + 3 2 ω is: E (n) k = 2 k + n + l + 3 2 ω ψ (n) k (x) = ψ k (x) ∼ exp -w k (x)dx , k ≥ 0. ( 35 
)
Its SUSY partner H (n) has the following associated potential:

V (n) (x) = 2v 2 n (x) - ω 2 4 x 2 - l(l + 1) x 2 -2 n + l + 3 2 ω ( 36 
)
and constitutes a regular rational extension of V (x) the spectrum of which is completely determined. We have:

E (n) k = 2 n + k + l + 3 2 ω, k ≥ 0 (37) 
and:

ψ (n) k (x) = 1 2 n + k + l + 3 2 ω - d dx + v n (x) ψ k (x) .

III. SECOND CATEGORY POTENTIALS

As shown in [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF], the translationally shape invariant potentials can be classified into two categories in which the potential can be brought into a harmonic or isotonic form respectively, using a change of variables which satisfy a constant coefficient Riccati equation. Consider the second category. If we except the isotonic case itself, which has been treated above, every potential of this category, with a zero ground-state energy E 0 = 0, is of the form [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF]:

V ± (y; a) = λ (λ ∓ α) y 2 + µ (µ -α) y 2 + λ 0± (a) (38) 
with a = (λ, µ), λ 0± (a) = -α (λ ± µ) -2λµ. The variable y is defined via:

dy(x) dx = α ± αy 2 (x), (39) 
that is, y(x) = tan (αx + ϕ 0 ) ,in the V + case (+ type) and y(x) = tanh (αx + ϕ 0 ) or y = coth (αx + ϕ 0 ) , in the V - case (-type).

The spectrum (E n± , w ±n ) of H ± = -d 2 /dx 2 + V ± (y; a) is known analytically [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF]. We have for the energies:

E n± (a) = ± (φ 2,± (a n ) -φ 2,± (a))
with φ 2,± (a) = (λ ± µ) 2 and a n = (λ n , µ n ) = (λ ± nα, µ + nα). As for the RS functions, they are given by:

w n,± (y, a) = λy - µ y ∓ φ 2,± (a n ) -φ 2,± (a) (λ + λ 1 ) y -(µ + µ 1 ) /y∓ ... (40) φ 2,± (a n ) -φ 2,± (a j-1 ) (λ j-1 + λ j ) y -(µ j-1 + µ j ) /y∓ ... φ 2,± (a n ) -φ 2,± (a n-1 ) (λ n-1 + λ n ) y -(µ n-1 + µ n ) /y
and in particular:

w 0,± (y; a) = λy - µ y . (41) 
The RS function w ±n (y; a) associated the level E ±n (a) satisfies:

-w ′ ±n (x; a) + w 2 ±n (x; a) = V ± (x; a) -E ±n (a) (42) 
or:

α 1 ± y 2 w ′ ±n (y; a) + w 2 ±n (y; a) = V ± (y, a) -E ±n (a).

(43)

If we set x → ix and y → iy, the change of variable Eq(39) is transformed into dy/dx = α ∓ αy 2 . Define v ∓n (y; a) = -iw ±n (iy; a) Eq(43) becomes:

α 1 ∓ y 2 v ′ ∓n (y; a) + v 2 ∓n (y; a) = V (n) ∓ (y; a), (44) 
where:

V (n) ∓ (y; a) = E n± (a) -V ± (iy; a) (45) = λ -1 (λ -1 ± α) y 2 + µ (µ -α) y 2 + E n± (a) -λ 0± (a) = V ∓ (y; a ∓ ) + E n± (a) -(λ 0± (a) + λ 0∓ (a))
with λ -1 = λ ∓ α and a = (λ -1 , µ). We recover, up to a constant, a second category potential but of the opposite of type and with a modified multiparameter. The energy spectrum of H

(n) ± = -d 2 /dx 2 + V (n) ± (y; a) is: E (n) k± = E n± (a) + E k∓ (a) -(λ 0± (a) + λ 0∓ (a)) ψ (n) k± (x) = ψ k∓ (x) , k ≥ 0. (46) 
Eq(44) can be written as:

v ′ ±n (x; a) + v 2 ±n (x; a) = V (n) ± (x; a) (47) 
and v ±n (x; a) is the superpotential associated with

V (n) ± . H (n)
± is therefore the SUSY partner of H

(n)

± given by:

H (n) ± = - d 2 dx 2 + V (n)
± (x; a),

IV. CONCLUSION

We have shown that every translationally shape invariant potential of second category admits an infinite family of solvable regular rational extensions. All the members of this family are strictly isospectral to the original potential and the associated eigenstates are easily related to the initial ones by application of first order differential operators. The adaptation of the above scheme of extension to the case of shape invariant potentials of the first category is in progress.

V. ACKNOWLEDGMENTS

We would like to thank Professor P.G.L. Leach for useful suggestions and a careful reading of the manuscript.

where:

that is:

The two hamiltonians H

(n)

± and H

(n)

± are factorizable as:

where

. Both are positive definite and isospectral. They are even strictly isospectral as in the case of the isotonic oscillator. Indeed we have:

that is, exp v ±0 (x; a)dx and exp v ±n (x; a)dx present a nonnormalizable singularity at the zero of y(x).

Consequently the energy spectrum of H

± is:

and the corresponding eigenstates are given by:

Then for every n the potential:

where:

constitutes a solvable regular rational extension of V ± (x; a).