Solvable rational extension of translationally shape invariant potentials

Yves Grandati, Alain Berard

To cite this version:

Yves Grandati, Alain Berard. Solvable rational extension of translationally shape invariant potentials. 2009. hal-00441045v1

HAL Id: hal-00441045
 https://hal.science/hal-00441045v1

Preprint submitted on 14 Dec 2009 (v1), last revised 24 Jan 2010 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Solvable rational extension of translationally shape invariant potentials

Yves Grandati and Alain Bérard
Institut de Physique, Equipe BioPhyStat, ICPMB, IF CNRS 2843, Université Paul Verlaine-Metz, 1 Bd Arago, 57078 Metz, Cedex 3, France

Abstract

Combining recen南 results on rational solutions of the Riccati-Schrödinger equations for shape invariant potentialst to the scheme developed by Fellows and Smith in the case of the one dimensional harmonic oscillator, we show that it is possible to generate an infinite set of solvable rational extensions for every translationally shape invariant potential of the second category.

PACS numbers:

I. INTRODUCTION

In quantum mechanics, there exists only few families of potentials which are exactly solvable in closed-form. Most of them belong to the class of shape invariant potentials ${ }^{3} \mathrm{~A}^{2}$. A possible way to generate new solvable potentials is to start from the previous ones and to construct regular rational extensinns of them. If the procedure has a long history, in the last years important progress have been made in this directions. A nice example of such a rational extension is provided by the so-called CPRSpotentiale which is a rational extension of the one-dimensional harmonic oscillator. Very recently Fellows and Smith showed that this potential can be obtained as a supersymmetric partner of the harmonic oscillator. In the same way they show how to generate an infinite family of partner potentials which are regular rational extensions of the harmonic oscillator. This partnership is based on the use of excited states-BifcatiSchrödinger (RS) functions as superpotentials. This technique has been devised for the first time by Robnik 10.11 but the potentials obtained are singular. Fellows and Smith circumvent the problem by using a "spatial Wick rotation" which eliminates the singularities from the real axis. In a recent workl we propose a general scheme to obtain rational solutions to the Riccati-Schrödinger equations associated to the whole class of translationally shape invariant potentials. These lasts are shared into two categories which are related via simple changes of variables respectively to the harmonic oscillator and to the isotonic oscillator. In this letter, we show how, by combining these results with the Robnik-Fellows-Smith technique, we can generate an infinite set of regular rationally-extended solvable potentials from every second category shape invariant potential.

II. HARMONIC AND ISOTONIC OSCILLATORS

A. Basic scheme

Let $H=-d^{2} / d x^{2}+V(x)$ of associated_spectrum $\left(E_{n}, w_{n}\right) \equiv\left(E_{n}, \psi_{n}\right)$, where $w_{n}(x)=-\psi_{n}^{\prime}(x) / \psi_{n}(x)$.
The Riccati-Schrödinger (RS) equation $\sqrt{1}$ for the level E_{n} is:

$$
\begin{equation*}
-w_{n}^{\prime}(x)+w_{n}^{2}(x)=V(x)-E_{n} \tag{1}
\end{equation*}
$$

where we suppose $E_{0}=0$.
Make a "spatial Wick rotation", that is set $x \rightarrow i x$, and define $v_{n}(x)=-i w_{n}(i x), \operatorname{Eq}(\mathbb{1})$ becomes:

$$
\begin{equation*}
v_{n}^{\prime}(x)+v_{n}^{2}(x)=V^{(n)}(x) \tag{2}
\end{equation*}
$$

where:

$$
\begin{equation*}
V^{(n)}(x)=E_{n}-V(i x) \tag{3}
\end{equation*}
$$

$V^{(n)}(x)$ is supposed to be real and to have no movable (that is n dependent) singularity on the real line. Considering $v_{n}(x)$ as superpotential, $V^{(n)}$ can be viewed as the SUSY partner ${ }^{3}$ of $\widetilde{V}^{(n)}$ defined as:

$$
\begin{equation*}
\widetilde{V}^{(n)}(x)=V^{(n)}(x)-2 v_{n}^{\prime}(x)=2 v_{n}^{2}(x)-V^{(n)}(x), \tag{4}
\end{equation*}
$$

that is:

$$
\begin{equation*}
\widetilde{V}^{(n)}(x)=V(i x)-E_{n}+2 v_{n}^{2}(x) \tag{5}
\end{equation*}
$$

The positive hamiltonians $H^{(n)}$ and $\widetilde{H}^{(n)}$, associated to $V^{(n)}(x)$ and $\widetilde{V}^{(n)}(x)$ respectively, can be written:

$$
\left\{\begin{array}{l}
\widetilde{H}^{(n)}=A^{(n)+} A^{(n)} \tag{6}\\
H^{(n)}=A^{(n)} A^{(n)+}
\end{array}\right.
$$

where:

$$
\begin{equation*}
A^{(n)}=\frac{d}{d x}+v_{n}(x) \tag{7}
\end{equation*}
$$

* If $\widetilde{\psi}_{0}^{(n)}(x) \sim \exp \left(-\int v_{n}(x) d x\right)$ is normalizable, it satisfies $A^{(n)} \widetilde{\psi}_{0}^{(n)}=0$ and is then the zero energy ground state of $\widetilde{H}^{(n)}$.

In this case, the two hamiltonians are almost isospectral, that is:

$$
\left\{\begin{array}{c}
\widetilde{E}_{0}^{(n)}=0 \tag{8}\\
E_{k}^{(n)}=\widetilde{E}_{k+1}^{(n)}, k \geq 0
\end{array}\right.
$$

and their eigenstates are related by:

$$
\left\{\begin{align*}
\psi_{k}^{(n)}(x) & =\frac{1}{\sqrt{\widetilde{E}_{k+1}^{(n)}}} A^{(n)} \widetilde{\psi}_{k+1}^{(n)}(x) \tag{9}\\
\widetilde{\psi}_{k}^{(n)}(x) & =\frac{1}{\sqrt{E_{k}^{(n)}}} A^{(n)+} \psi_{k}^{(n)}(x)
\end{align*}\right.
$$

* If $\widetilde{\psi}_{0}^{(n)}(x)$ is not normalizable, the two hamiltonians are strictly isospectral, that is:

$$
\begin{equation*}
E_{k}^{(n)}=\widetilde{E}_{k}^{(n)}, k \geq 0 \tag{10}
\end{equation*}
$$

and their eigenstates are related by:

$$
\left\{\begin{array}{c}
\psi_{k}^{(n)}(x)=\frac{1}{\sqrt{E_{k}^{(n)}}} A^{(n)} \widetilde{\psi}_{k}^{(n)}(x) \tag{11}\\
\widetilde{\psi}_{k}^{(n)}(x)=\frac{1}{\sqrt{E_{k}^{(n)}}} A^{(n)+} \psi_{k}^{(n)}(x)
\end{array}\right.
$$

Suppose that the considered potential satisfies the following identity (this is the case of the harmonic and isotonic potentials):

$$
\begin{equation*}
-V(i x)=V(x)+\delta \tag{12}
\end{equation*}
$$

We then have:

$$
\begin{equation*}
V^{(n)}(x)=V(x)+\delta+E_{n} \tag{13}
\end{equation*}
$$

The spectrum of $H^{(n)}$ is then:

$$
\left\{\begin{array}{c}
E_{k}^{(n)}=E_{k}+E_{n}+\delta \tag{14}\\
\psi_{k}^{(n)}(x)=\psi_{k}(x) \sim \exp \left(-\int w_{k}(x) d x\right)
\end{array}, k \geq 0\right.
$$

As for spectrum $\widetilde{H}^{(n)}$, it is either:

$$
\left\{\begin{array}{c}
\widetilde{E}_{k}^{(n)}=E_{k}+E_{n}+\delta \tag{15}\\
\widetilde{\psi}_{k}^{(n)}(x)=\psi_{k}(x)
\end{array}, k \geq 0\right.
$$

in the strictly isospectral case, or:

$$
\left\{\begin{array}{c}
\widetilde{E}_{0}^{(n)}=0 \tag{16}\\
\widetilde{E}_{k+1}^{(n)}=E_{k}+E_{n}+\delta
\end{array}, k \geq 0,\right.
$$

with:

$$
\left\{\begin{array}{c}
\widetilde{\psi}_{0}^{(n)}(x) \sim \exp \left(-\int v_{n}(x) d x\right) \tag{17}\\
\widetilde{\psi}_{k+1}^{(n)}(x)=\frac{1}{\sqrt{E_{k}+E_{n}+\delta}} A^{(n)+} \psi_{k}(x)
\end{array}, k \geq 0,\right.
$$

in the almost isospectral case.
We can illustrate this general scheme with two fundamental examples.

B. Harmonic oscillator

Consider the harmonic oscillator with zero ground level:

$$
\begin{equation*}
V(x)=\frac{\omega^{2}}{4} x^{2}-\frac{\omega}{2} . \tag{18}
\end{equation*}
$$

Its spectrum is well known:

$$
\left\{\begin{array}{c}
E_{n}=n \omega \tag{19}\\
\psi_{n}(x) \sim H_{n}(\omega x / 2) \exp \left(-\omega x^{2} / 4\right)
\end{array}\right.
$$

and the corresponding RS functions $w_{n}(x)$ can be written as terminating continued fractionsl. We then obtain for its "spatially Wick rotated" image $v_{n}(x)=-i w_{n}(i x)$:

$$
\begin{equation*}
v_{n}(x)=\frac{\omega}{2} x+\frac{n \omega}{\omega x+} \upharpoonright \ldots \upharpoonright \frac{(n-j+1) \omega}{\omega x+} \upharpoonright \ldots \upharpoonright \frac{1}{x} . \tag{20}
\end{equation*}
$$

Clearly $v_{n}(x)$ does not present any singularity on the positive real half line. The recurrence between the RS functionsl gives:

$$
\begin{equation*}
v_{n}(x)=v_{0}(x)+\frac{E_{n}}{v_{0}(x)+v_{n-1}(x)} \tag{21}
\end{equation*}
$$

and $v_{n}(x)$ has the same odd parity as $v_{0}(x)$. Then $v_{n}(x)$ is regular on all \mathbb{R}. Therefore, the normalizability of $v_{n}(x)$ is then ensured, since the asymptotic behaviour at ∞ of $v_{n}(x)$ is those of $v_{0}(x)$.

We have also:

$$
\begin{equation*}
-V(i x)=V(x)+\omega \tag{22}
\end{equation*}
$$

that is, $\delta=\omega$ and:

$$
\begin{equation*}
V^{(n)}(x)=V(x)+(n+1) \omega . \tag{23}
\end{equation*}
$$

$H^{(n)}$ spectrum is then:

$$
\left\{\begin{array}{c}
E_{k}^{(n)}=(k+n+1) \omega \tag{24}\\
\psi_{k}^{(n)}(x)=\psi_{k}(x)
\end{array}, k \geq 0\right.
$$

Its SUSY partner $\widetilde{H}^{(n)}$ has the following associated potential:

$$
\begin{equation*}
\widetilde{V}^{(n)}(x)=2 v_{n}^{2}(x)-\frac{\omega^{2}}{4} x^{2}-(n+1) \omega \tag{25}
\end{equation*}
$$

and constitutes a regular rational extension of $V(x)$ whose spectrum is completely determined. We have:

$$
\left\{\begin{array}{c}
\widetilde{E}_{0}^{(n)}=0 \tag{26}\\
\widetilde{E}_{k+1}^{(n)}=(k+n+1) \omega
\end{array}, k \geq 0\right.
$$

and:

$$
\left\{\begin{array}{c}
\widetilde{\psi}_{0}^{(n)}(x) \sim \exp \left(-\int v_{n}(x) d x\right) \tag{27}\\
\widetilde{\psi}_{k+1}^{(n)}(x)=\frac{1}{\sqrt{(n+k+1) \omega}}\left(-\frac{d}{d x}+v_{n}(x)\right) \psi_{k}(x) .
\end{array}\right.
$$

C. Isotonic oscillator

The potential of the isotonic oscillator with zero ground level is:

$$
\begin{equation*}
V(x)=\frac{\omega^{2}}{4} x^{2}+\frac{l(l+1)}{x^{2}}-\omega\left(l+\frac{3}{2}\right), x>0 \tag{28}
\end{equation*}
$$

Its spectrum is given by:

$$
\begin{equation*}
E_{n}=2 n \omega, \psi_{n}(x) \sim \exp \left(-\int w_{n}(x) d x\right) \tag{29}
\end{equation*}
$$

where the $w_{n}(x)$ are known and expressible as terminating continued fractions. This gives:

$$
\begin{equation*}
v_{n}(x)=\frac{\omega}{2} x+\frac{l+1}{x}+\frac{2 n \omega}{\omega x+(2 l+3) / x+} \upharpoonright \ldots \upharpoonright \frac{2(n-j+1) \omega}{\omega x+(2(l+j)+1) / x+} \upharpoonright \ldots \upharpoonright \frac{2 \omega}{\omega x+(2(l+n)-1) / x} . \tag{30}
\end{equation*}
$$

Clearly $v_{n}(x)$ does not present any singularity on the positive real half line. It has to be noticed that, since:

$$
\begin{equation*}
v_{0}(x)=\frac{\omega}{2} x+\frac{l+1}{x}, \tag{31}
\end{equation*}
$$

the term $(l+1) / x$ which then appears in every $v_{n}(x)$, induces a non normalizable singularity at the origin for $\exp \left(-\int v_{n}(x) d x\right)$. For instance:

$$
\begin{equation*}
\exp \left(-\int v_{0}(x) d x\right)=\frac{1}{x^{l+1}} \exp \left(-\frac{\omega}{4} x^{2}\right) . \tag{32}
\end{equation*}
$$

We are consequently in the case of a strict isospectrality.
We have also:

$$
\begin{equation*}
-V(i x)=V(x)+2 \omega\left(l+\frac{3}{2}\right) \tag{33}
\end{equation*}
$$

that is, $\delta=2 \omega\left(l+\frac{3}{2}\right)$ and:

$$
\begin{equation*}
V^{(n)}(x)=\frac{\omega^{2}}{4} x^{2}+\frac{l(l+1)}{x^{2}}+2\left(n+l+\frac{3}{2}\right) \omega . \tag{34}
\end{equation*}
$$

The spectrum of $H^{(n)}=-d^{2} / d x^{2}+V(x)+2\left(n+l+\frac{3}{2}\right) \omega$ is:

$$
\left\{\begin{array}{c}
E_{k}^{(n)}=2\left(k+n+l+\frac{3}{2}\right) \omega \tag{35}\\
\psi_{k}^{(n)}(x)=\psi_{k}(x) \sim \exp \left(-\int w_{k}(x) d x\right)
\end{array}, k \geq 0\right.
$$

Its SUSY partner $\widetilde{H}^{(n)}$ has the following associated potential:

$$
\begin{equation*}
\widetilde{V}^{(n)}(x)=2 v_{n}^{2}(x)-\frac{\omega^{2}}{4} x^{2}-\frac{l(l+1)}{x^{2}}-2\left(n+l+\frac{3}{2}\right) \omega \tag{36}
\end{equation*}
$$

and constitutes a regular rational extension of $V(x)$ whose spectrum is completely determined. We have:

$$
\begin{equation*}
\widetilde{E}_{k}^{(n)}=2\left(n+k+l+\frac{3}{2}\right) \omega, k \geq 0 \tag{37}
\end{equation*}
$$

and:

$$
\widetilde{\psi}_{k}^{(n)}(x)=\frac{1}{\sqrt{2\left(n+k+l+\frac{3}{2}\right) \omega}}\left(-\frac{d}{d x}+v_{n}(x)\right) \psi_{k}(x) .
$$

III. SECOND CATEGORY POTENTIALS

As shown ind, the translationally shape invariant potentials can be classified in two categories in which the potential can be brought into a harmonic or isotonic form respectively, using a change of variable which satisfy a constant coefficient Riccati equation. Consider the second category. If we except the isotonic case itself, which has been treated above, every potential of this category, with a zero ground level $E_{0}=0$, is of the form:

$$
\begin{equation*}
V_{ \pm}(y ; a)=\lambda(\lambda \mp \alpha) y^{2}+\frac{\mu(\mu-\alpha)}{y^{2}}+\lambda_{0 \pm}(a) \tag{38}
\end{equation*}
$$

with $a=(\lambda, \mu), \lambda_{0 \pm}(a)=-\alpha(\lambda \pm \mu)-2 \lambda \mu$. The variable y is defined via:

$$
\begin{equation*}
\frac{d y(x)}{d x}=\alpha \pm \alpha y^{2}(x) \tag{39}
\end{equation*}
$$

that is, $y(x)=\tan \left(\alpha x+\varphi_{0}\right)$, in the V_{+}case (+type) and $y(x)=\tanh \left(\alpha x+\varphi_{0}\right)$ or $y=\operatorname{coth}\left(\alpha x+\varphi_{0}\right)$, in the V_{-} case (- type).
The spectrum $\left(E_{n \pm}, w_{ \pm n}\right)$ of $H_{ \pm}=-d^{2} / d x^{2}+V_{ \pm}(y ; a)$ is known analyticallyl . We have for the energies:

$$
E_{n \pm}(a)= \pm\left(\phi_{2, \pm}\left(a_{n}\right)-\phi_{2, \pm}(a)\right)
$$

with $\phi_{2, \pm}(a)=(\lambda \pm \mu)^{2}$ and $a_{n}=\left(\lambda_{n}, \mu_{n}\right)=(\lambda \pm n \alpha, \mu+n \alpha)$.
As for the RS functions, they are given by:

$$
\begin{align*}
w_{n, \pm}(y, a) & =\lambda y-\frac{\mu}{y} \mp \frac{\phi_{2, \pm}\left(a_{n}\right)-\phi_{2, \pm}(a)}{\left(\lambda+\lambda_{1}\right) y-\left(\mu+\mu_{1}\right) / y \mp} \upharpoonright \ldots \tag{40}\\
& \upharpoonright \frac{\phi_{2, \pm}\left(a_{n}\right)-\phi_{2, \pm}\left(a_{j-1}\right)}{\left(\lambda_{j-1}+\lambda_{j}\right) y-\left(\mu_{j-1}+\mu_{j}\right) / y \mp} \upharpoonright \ldots \\
& \upharpoonright \frac{\phi_{2, \pm}\left(a_{n}\right)-\phi_{2, \pm}\left(a_{n-1}\right)}{\left(\lambda_{n-1}+\lambda_{n}\right) y-\left(\mu_{n-1}+\mu_{n}\right) / y}
\end{align*}
$$

and in particular:

$$
\begin{equation*}
w_{0, \pm}(y ; a)=\lambda y-\frac{\mu}{y} . \tag{41}
\end{equation*}
$$

The RS function $w_{ \pm n}(y ; a)$ associated the level $E_{ \pm n}(a)$ satisfies:

$$
\begin{equation*}
-w_{ \pm n}^{\prime}(x ; a)+w_{ \pm n}^{2}(x ; a)=V_{ \pm}(x ; a)-E_{ \pm n}(a) \tag{42}
\end{equation*}
$$

or:

$$
\begin{equation*}
-\alpha\left(1 \pm y^{2}\right) w_{ \pm n}^{\prime}(y ; a)+w_{ \pm n}^{2}(y ; a)=V_{ \pm}(y, a)-E_{ \pm n}(a) \tag{43}
\end{equation*}
$$

If we set $x \rightarrow i x$ and $y \rightarrow i y$ the change of variable $\mathrm{Eq}(39)$ is transformed in $d y / d x=\alpha \mp \alpha y^{2}$.
Define $v_{\mp n}(y ; a)=-i w_{ \pm n}(i y ; a), \mathrm{Eq}(43)$ becomes:

$$
\begin{equation*}
\alpha\left(1 \mp y^{2}\right) v_{\mp n}^{\prime}(y ; a)+v_{\mp n}^{2}(y ; a)=V_{\mp}^{(n)}(y ; a), \tag{44}
\end{equation*}
$$

where:

$$
\begin{align*}
V_{\mp}^{(n)}(y ; a) & =E_{n \pm}(a)-V_{ \pm}(i y ; a) \tag{45}\\
& =\lambda_{-1}\left(\lambda_{-1} \pm \alpha\right) y^{2}+\frac{\mu(\mu-\alpha)}{y^{2}}+E_{n \pm}(a)-\lambda_{0 \pm}(a) \\
& =V_{\mp}\left(y ; \bar{a}_{\mp}\right)+E_{n \pm}(a)-\left(\lambda_{0 \pm}(a)+\lambda_{0 \mp}(\bar{a})\right)
\end{align*}
$$

with $\lambda_{-1}=\lambda \mp \alpha$ and $\bar{a}=\left(\lambda_{-1}, \mu\right)$. We recover, up to a constant, a second category potential but of the opposite of type and with a modified multiparameter.

The energy spectrum of $H_{ \pm}^{(n)}=-d^{2} / d x^{2}+V_{ \pm}^{(n)}(y ; a)$ is then:

$$
\left\{\begin{array}{c}
E_{k \pm}^{(n)}=E_{n \pm}(a)+E_{k \mp}(\bar{a})-\left(\lambda_{0 \pm}(a)+\lambda_{0 \mp}(\bar{a})\right) \tag{46}\\
\psi_{k \pm}^{(n)}(x)=\psi_{k \mp}(x)
\end{array}, k \geq 0\right.
$$

$\mathrm{Eq}(44)$ can be written as:

$$
\begin{equation*}
v_{ \pm n}^{\prime}(x ; a)+v_{ \pm n}^{2}(x ; a)=V_{ \pm}^{(n)}(x ; a) \tag{47}
\end{equation*}
$$

and $v_{ \pm n}(x ; a)$ is then superpotential associated with $V_{ \pm}^{(n)} . H_{ \pm}^{(n)}$ is therefore the SUSY partner of $\widetilde{H}_{ \pm}^{(n)}$ given by:

$$
\widetilde{H}_{ \pm}^{(n)}=-\frac{d^{2}}{d x^{2}}+\widetilde{V}_{ \pm}^{(n)}(x ; a),
$$

where:

$$
\begin{align*}
\widetilde{V}_{ \pm}^{(n)}(x ; a) & =V_{ \pm}^{(n)}(x ; a)-2 v_{ \pm n}^{\prime}(x ; a) \tag{48}\\
& =2 v_{ \pm n}^{2}(x ; a)-V_{ \pm}^{(n)}(x ; a),
\end{align*}
$$

that is:

$$
\begin{equation*}
\widetilde{V}_{ \pm}^{(n)}(x ; a)=2 v_{ \pm n}^{2}(x ; a)-V_{\mp}(y ; \bar{a})-E_{n \pm}(a)+\left(\lambda_{0 \pm}(a)+\lambda_{0 \mp}(\bar{a})\right) . \tag{49}
\end{equation*}
$$

The two hamiltonians $H_{ \pm}^{(n)}$ and $\widetilde{H}_{ \pm}^{(n)}$ are factorizable as:

$$
\left\{\begin{array}{l}
\widetilde{H}_{ \pm}^{(n)}=A_{ \pm}^{(n)+} A_{ \pm}^{(n)} \tag{50}\\
H_{ \pm}^{(n)}=A_{ \pm}^{(n)} A_{ \pm}^{(n)+}
\end{array}\right.
$$

where $A_{ \pm}^{(n)}=\frac{d}{d x}+v_{ \pm n}(x ; a)=\left(\alpha \mp \alpha y^{2}\right) \frac{d}{d y}+v_{ \pm n}(y ; a)$.
Both are positive definite and isospectral. They are even strictly isospectral as in the isotonic oscillator case. Indeed we have:

$$
\begin{equation*}
v_{ \pm 0}(y ; a)=\lambda y+\frac{\mu}{y} \tag{51}
\end{equation*}
$$

that is, $\exp \left(\int v_{ \pm 0}(x ; a) d x\right)$ and $\exp \left(\int v_{ \pm n}(x ; a) d x\right)$ present a non normalizable singularity in x_{0}.
Consequently the energy spectrum of $\widetilde{H}_{ \pm}^{(n)}$ is:

$$
\begin{equation*}
\widetilde{E}_{ \pm k}^{(n)}=E_{ \pm k}^{(n)}=E_{n \pm}(a)+E_{k \mp}(\bar{a})-\left(\lambda_{0 \pm}(a)+\lambda_{0 \mp}(\bar{a})\right), k \geq 0, \tag{52}
\end{equation*}
$$

and the corresponding eigenstates are given by:

$$
\begin{equation*}
\widetilde{\psi}_{ \pm k}^{(n)}(x)=\frac{1}{\sqrt{E_{ \pm k}^{(n)}}} A_{ \pm}^{(n)+} \psi_{k \pm}^{(n)}(x)=\frac{1}{\sqrt{E_{ \pm k}^{(n)}}} A_{ \pm}^{(n)+} \psi_{k \mp}(x) \tag{53}
\end{equation*}
$$

Then for every n, the potential:

$$
\begin{equation*}
\widetilde{V}_{ \pm}^{(n)}(x ; a)=2 v_{ \pm n}^{2}(x ; a)-V_{\mp}(x ; \bar{a})-E_{n \pm}(a)+\left(\lambda_{0 \pm}(a)+\lambda_{0 \mp}(\bar{a})\right), \tag{54}
\end{equation*}
$$

where:

$$
\begin{align*}
v_{n, \pm}(y, a) & =\lambda y+\frac{\mu}{y} \pm \frac{\phi_{2, \pm}\left(a_{n}\right)-\phi_{2, \pm}(a)}{\left(\lambda+\lambda_{1}\right) y+\left(\mu+\mu_{1}\right) / y \pm} \upharpoonright \ldots \tag{55}\\
& \upharpoonright \frac{\phi_{2, \pm}\left(a_{n}\right)-\phi_{2, \pm}\left(a_{j-1}\right)}{\left(\lambda_{j-1}+\lambda_{j}\right) y+\left(\mu_{j-1}+\mu_{j}\right) / y \pm} \upharpoonright \ldots \\
& \upharpoonright \frac{\phi_{2, \pm}\left(a_{n}\right)-\phi_{2, \pm}\left(a_{n-1}\right)}{\left(\lambda_{n-1}+\lambda_{n}\right) y+\left(\mu_{n-1}+\mu_{n}\right) / y}
\end{align*}
$$

constitutes a solvable regular rational extension of $V_{ \pm}(x ; a)$.

IV. CONCLUSION

We have shown that every translationally shape invariant potential of second category admits an infinite family of solvable regular rational extensions. All the members of this family are strictly isospectral to the original potential and the associated eigenstates are easily related to the initial ones by application of first order differential operators. The adaptation of the above scheme of extension to the case of shape invariant potentials of first category is in progress.
${ }^{1}$ Y. Grandati and A. Bérard, "Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials", preprint arXiv 0910.4810
${ }^{2}$ J. M. Fellows and R. A. Smith, "Factorization solution of a family of quantum nonlinear oscillators", J. Phys. A 42, 335303, 13 p (2009).
${ }^{3}$ F. Cooper, A. Khare and U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001).
${ }^{4}$ R. Dutt, A. Khare and U. P. Sukhatme, "Supersymmetry, shape invariance and exactly solvable potentials," Am. J. Phys. 56, 163-168 (1988).
${ }^{5}$ L. Gendenshtein, "Derivation of exact spectra of the Schrodinger equation by means of supersymmetry," JETP Lett. 38, 356-359 (1983).
${ }^{6}$ C. Quesne, "Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics", SIGMA., 5, 084, 24 p (2009).
${ }^{7}$ B. Bagchi, C. Quesne and R. Roychoudhury, "Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of $\mathcal{P} \mathcal{T}$ symmetry", Pramana J. Phys. 73 337-347 (2009).
${ }^{8}$ S. Odake and R. Sasaki, "Infinitely many shape invariant potentials and new orthogonal polynomials," Phys. Lett. B, 679, 414-417 (2009).
${ }^{9}$ J. F. Cariñena, A. M. Perelomov, M. F. Rañada and M. Santader, "A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator", J. Phys. A 41, 085301, 10 p (2008).
${ }^{10}$ M. Robnik, "Supersymmetric quantum mechanics based on higher excited states", J. Phys. A 30, 1287-1294 (1997).
${ }^{11}$ R. Klippert and H. C. Rosu, "Strictly isospectral potentials from excited quantum states", Int. J. Theor. Phys., 4, 331 -340 (2002).

