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Abstract 

Contraction and expansion flows of magnetorheological fluids occur in a variety of smart 

devices. It is important therefore to learn how these flows can be controlled by means of 

applied magnetic fields. This paper presents a first investigation into the axisymmetric flow 

of a magnetorheological fluid through an orifice (so-called abrupt contraction flow). The 

effect of an external magnetic field, longitudinal or transverse to the flow, is examined. In 

experiments, the pressure-flow rate curves were measured, and the excess pressure drop 

(associated with entrance and exit losses) was derived from experimental data through the 

Bagley correction procedure. The effect of the longitudinal magnetic field is manifested 

through a significant increase in the slope of the pressure-flow rate curves, while no 

discernible yield stress occurs. This behavior, observed at shear Mason numbers 

10 <Mnshear<100, is interpreted in terms of an enhanced extensional response of 

magnetorheological fluids accompanied by shrinkage of the entrance flow into a conical 

funnel. At the same range of Mason numbers, the transverse magnetic field appears not to 

influence the pressure drop. This can be explained by a total destruction of magnetic particle 
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aggregates by large hydrodynamic forces acting on them when they are perpendicular to the 

flow. To support these findings, we have developed a theoretical model connecting the 

microstructure of the magnetorheological fluid to its extensional rheological properties and 

predicting the pressure-flow rate relations through the solution of the flow equations. In the 

case of the longitudinal magnetic field, our model describes the experimental results 

reasonably well. 
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I. Introduction 

Magnetorheological (MR) fluid is a suspension of superparamagnetic micron-sized non-

Brownian particles dispersed in a liquid carrier. In the absence of an external magnetic field, 

these particles have a zero magnetic moment and the MR fluid behaves as a conventional 

particulate suspension and follows a Newtonian rheological law at small – to moderate 

concentrations. When an external magnetic field is applied, the MR fluid particles become 

magnetized and attract each other forming chain-like aggregates aligned preferably in the 

direction of the magnetic field. Spanning the gap of a flowing channel, these aggregates block 

the MR fluid motion, and a yield stress must be applied to set up the flow. This phenomenon, 

referred to as magnetorheological effect (Shulman and Kordosky1, Bossis et al.2) has recently 

found commercial applications in smart technologies such as active car suspension (Carlson 

et al.3) and magnetorheological finishing (Kordonski and Jacobs4). Besides providing a high 

engineering interest, the MR fluids are very attractive from a purely scientific point of view. 

The coupling between field-induced structuring and hydrodynamic interactions gives rise to 

rich phenomena in MR fluid flows. Shear-induced nematic-to-isotropic transitions (Volkova 

et al.5), the formation of honeycomb and foam structures in triaxial magnetic fields (Martin et 

al.6), the distortion of the axial symmetry of pipe flows (Kuzhir et al.7) are a few examples of 

these phenomena.  

If shear, squeeze and pipe flows of MR fluids have been thoroughly studied and are well 

documented in literature (reviews by Shulman and Kordosky1, Bossis et al.2 and Shulman8), 

there is no detailed and systematic study of the flows in converging geometries. Such flows 

occur in a variety of MR fluid smart devices such as active dampers, MR valves, MR 

finishing devices, active fluid bearings. In order to improve the performance of these devices, 

it is important to learn how these flows can be controlled by means of applied magnetic 
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fields. Besides the practical interest, contraction flow offers a good opportunity to test the 

extensional rheology of MR fluids, which is itself a completely new study. In a few known 

works on extensional flows of magnetic suspensions (Pérez-Castillo et al.9 and John et al.10), 

the rheological properties of the suspensions have not been analyzed. Thus, the objectives of 

the present paper can be summarized as follows: (1) an experimental and theoretical study of 

the magnetic field effect on the abrupt contraction flow of a MR fluid; (2) the analysis of the 

extensional rheological response of the MR fluid in contraction flow. 

The experiments consist of squeezing an MR fluid through a small orifice and measuring the 

pressure difference between the two extremities of the flow channel as function of the flow 

rate. The pressure losses in the upstream and downstream channels (so-called excess pressure 

drop) are then deduced from the total pressure difference by Bagley correction procedure. 

The main result of our study is the dependence of the excess pressure drop on the flow rate in 

the presence of a magnetic field. In the vicinity of the orifice, the fluid experiences a strong 

stretching deformation, so-called extensional flow, and the excess pressure drop is partially 

attributed to normal viscous stresses in extensional flow. To extract the extensional 

rheological properties of MR fluid from the experimental pressure-flow rate curves, we must 

know, at least, the velocity profile in contraction flow. Instead of doing so, we evaluate 

theoretically these extensional properties and, based on this, we calculate the excess pressure 

drop. Concretely, we first derive a theoretical relation between the normal stress and 

extensional rate assuming a chain-like structure of the MR fluid. The above rheological 

relation is then integrated into a momentum equation, which is solved for a contraction flow 

of MR fluid and, thus, the excess pressure drop is calculated and fitted to experimental 

results. The comparison of theoretical and experimental excess pressure drops allows us to 

conclude on the magnetic field effect on the extensional viscosity of the MR fluid. 
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We must notice that the contraction flow is widely used in extensional rheology of polymers 

(Boger11, White et al.12). Furthermore, this method, also called “entry flow method”, is 

considered as the most appropriate one for the extensional rheology of low-to-moderate 

viscosity fluids, as, for example, particulate suspensions (Macosco13).  

Because of the field-induced chain formation in MR fluids, their contraction flow is expected 

to possess some features of the contraction flow of fiber suspensions. Contraction flows of 

conventional fiber suspensions have been the subject of numerous papers. Mongruel and 

Cloitre14,15, Cloitre and Mongruel16 have performed simultaneous flow visualization and 

measurements of the pressure – flow rate relation for the fiber suspensions flowing through a 

small circular orifice introduced into a wide cylindrical channel. Upstream of the orifice, the 

flow is extensional, the fibers are oriented along the flow lines and generate large extensional 

stresses. A large corner vortex with recirculation flow is observed, the main entrance flow is 

therefore concentrated in a central funnel. With a growing fiber aspect ratio, the extensional 

viscosity of the fiber suspension increases, which enhances the corner vortex and shrinks the 

funnel of the main flow. Thus, the pressure loss in the upstream channel (entrance pressure 

drop) appears to be a growing function of the fiber length. The vortex enhancement and the 

increase in the pressure loss also take place downstream of the orifice, unless the fibers are 

oriented perpendicular to the flow. In their papers, Mongruel and Cloitre give a simple 

analytical model predicting the entrance and the exit pressure losses for fiber suspensions.  

By analogy with fiber suspensions, MR fluids could also develop some recirculation or dead 

corner zones. The main flow is expected to get narrower with the magnetic field growth 

because the fibrous aggregates get longer and generate higher extensional stresses. So, the 

excess pressure drop is expected to be a growing function of the magnetic field intensity.  
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The particularities of MR fluid contraction flows are analyzed in the present paper, which is 

organized as follows. First, we present the experimental procedure followed by the 

experimental results on the pressure – flow rate relation for an abrupt contraction flow of an 

MR fluid in the presence of a magnetic field parallel and transverse to the channel axis. In the 

final section, we develop a theoretical interpretation of the results for the axial magnetic field. 

The theoretical predictions are tested against experiments and discussed in the light of the 

further development of the MR fluid extensional rheology.  

 

II. Experimental procedure 

The experimental flow cell is shown in Fig. 1. It was composed of a plexiglass cylindrical 

tube, 50 mm in length and 5 mm in internal diameter, and two brass lids attached to both 

lateral faces of the plexiglass tube. The lower lid had a central tapered hole; a thin disk (made 

of titanium sheet, Goodfellow) with a coaxial cylindrical orifice was glued to the upper side 

of the lid. Disks of two different thicknesses were used: 0.1±0.01 mm and 0.5±0.01 mm and 

the orifice diameter was 0.32±0.01 mm. The MR fluid initially filled the whole flow cell. 

Under gravity, the fluid did not flow away through the orifice (at least during typical 

experimental time) because of its relatively high viscosity (3.4 Pa·s). The upper lid of the cell 

was connected to a compressed air cylinder through a precision control valve. The valve 

allowed us to impose the relative pressure in the range 0.25 – 5 bars with a precision of ±0.02 

bars. The applied pressure was measured by a piezoelectric pressure transducer (Parker 

Filtration UCC, ref. PTD.010821, accuracy ±0.02 bar) placed in the air circuit upstream of 

the flow cell. The cell was sealed by two polyvinyl rings placed on the contact surface 

between the plexiglass tube and the lids. 
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Fig. 1. Experimental flow cell. 1 – plexiglass tube; 2 – upper brass lid; 3 – lower brass lid; 4 – thin titanium disk 

with a coaxial orifice, 0.3 mm in diameter; 5 – MR fluid; 6 – hanging MR fluid drop; 7 – pressure transducer; 8 

– air reservoir, 1L; 9 – precision control valve. Helmholtz coils and electronic balance are not shown in the 

schema. 

 

Once the pressure was applied, the MR fluid flowed through the orifice and dripped onto a 

collector placed on the top of the electronic balance Denever Instrument MXX123 (accuracy 

±1 mg). The mass, M, of the collected fluid was measured during the time t, and the 

instantaneous value of the volumetric flow rate was calculated as Q(t)=∆M/(ρ∆t) with 

ρ=1.65g/cm3 being the MR fluid density. The level of the MR fluid in the flow cell decreased 

as the fluid flowed through the orifice and we stopped the mass measurements when the level 

became ¼ of the initial one. The air reservoir, 1L in volume, was introduced between the 

precision valve and the flow cell and allowed the air pressure to be kept constant during 

experiments. In every experimental case, we checked that the flow rate relaxed very quickly 

to a steady value after the application of pressure. So, the measurement of the pressure – flow 
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rate curve was organized as follows. The flow cell was completely filled with the MR fluid; a 

given pressure was applied and a corresponding flow rate was measured. Then the flow cell 

was cleaned from MR fluid and the orifice was washed with alcohol and acetone and blown 

out by compressed air. The flow cell was again filled with the MR fluid and the measurement 

was repeated with another value of applied pressure. Measurements for the same applied field 

and pressure were repeated in order to check reproducibility. 

The total applied pressure drop (the pressure difference between the upper and lower free 

surfaces of the MR fluid) is conventionally divided into two parts – the Poiseuille pressure 

drop due to the Poiseuille flow through the thin orifice and the excess pressure drop due to 

the flow contraction at the orifice entry and expansion at the orifice exit: ∆Ptot = ∆PPois + 

∆Pexcess. Each pressure loss component is shown in Fig. 7c where a pressure profile along the 

flow cell is illustrated schematically. In our experiments we are more interested in the excess 

pressure drop, also called Bagley correction, because it is directly connected to the 

extensional stresses in the MR fluid. In order to extract the excess pressure drop from 

experimental data, we apply the Bagley correction to the experimental data (Bagley17, 

Macosco13), i.e. we plot the total pressure drop versus the orifice length, ∆Ptot(L), for a given 

value of the flow rate (as show in Fig. 5) and define the excess pressure drop as a linear 

extrapolation of the ∆Ptot(L) curve onto zero orifice length: ∆Pexcess= ∆Ptot(0). Having found 

the Bagley correction for each value of the flow rate, we plot the dependencies of the excess 

pressure drop versus the flow rate, which is the principle experimental result of our study 

allowing us to analyze the extensional rheological properties of the MR fluid as well as the 

magnetic field effect on these properties. 

All the measurements discussed above were carried out in the absence and in the presence of 

an external uniform magnetic field, parallel or perpendicular to the flow cell axis. The 
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magnetic field was created by a pair of Helmholtz coils placed around the channel. These 

coils provided the magnetic field intensity in the range of 0 – 30.6 kA/m. The Helmholtz coils 

were sufficiently large compared to the flow cell. So, the non-uniformity of the created 

magnetic field was maximum 1% in the air space where the flow cell was introduced. Due to 

the demagnetizing effect, the uniformity of the magnetic field was distorted inside the MR 

fluid sample. We carried out numerical simulations by finite element method of the internal 

magnetic field in the case of the applied external axial field H0=30.6 kA/m. The magnetic 

field distribution along the flow cell axis in the downstream direction is shown in Fig. 2. The 

magnetic field strength appears to be uniform and close to the strength of the external field in 

the major part of the flow cell. But in the vicinity of the orifice, the magnetic field grows 

from H≈30 kA/m at a distance 5 mm from the orifice, to H=35.7 kA/m at the orifice entrance 

and reaches its maximum H=43 kA/m inside the orifice. The calculation of exact magnetic 

field distribution in the transverse field would require the solution of a 3D Maxwell equation 

problem. To avoid this difficulty, we estimate the internal transverse magnetic field as the 

field inside an infinitely long cylinder with the demagnetizing factor ½: 

0
1/ 1 ( 1)2H H µ = + −

 
. Here, µ≈1.55 is the MR fluid relative magnetic permeability. So, in 

the presence of the external magnetic field, transverse to the channel axis, of an intensity 

H0=25 kA/m, the internal magnetic field is H≈20 kA/m. 
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Fig. 2. Distribution of the magnetic field strength along the flow cell axis in the downstream direction. The 

orifice length is L=0.5mm. Two vertical lines indicate the orifice position 

 

The MR fluid used in our experiments was a suspension of carbonyl iron particles (BASF), 

ranging from 0.5 to 3 microns in diameter, dispersed in a homogeneous mixture of the silicon 

oil Rhodorsil® 47V500 (VWR Prolabo) and the Brookfield 60000 oil. This oil mixture 

appeared to be a Newtonian fluid with a viscosity η0=2.5 Pa·s. The volume fraction of 

particles in suspension, Φ, was fixed to 10%. In order to avoid the particle aggregation under 

colloidal forces, the MR fluid was stabilized by a surfactant - aluminum stearate (Sigma 

Aldrich, 6.15 g/L), following the method described in details in López-López et al.18. The 

shear rheological properties of the MR fluid were measured using a controlled-stress 

rheometer Haake 150 RS in a cone-plate geometry with diameter 35 mm and angle 2°. An 

external uniform magnetic field, of intensity 0 – 30.6 kA/m, was applied perpendicular to the 

measuring gap by a solenoid placed around the cone-plate geometry.  

The results of the MR fluid shear rheometry are shown in Fig.3. At shear rates, γ& >150 s-1, 

the MR fluid flow curves were almost linear and approximated by the Bingham rheological 
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law: γηττ &⋅+= D , with a dynamic yield stress, τD, defined by a linear interpolation of the 

flow rate curve onto zero shear rate (Fig. 3a). The dynamic yield stress was found to be a 

power law function of the applied magnetic field intensity, H0: 0 0
n

D D Hτ τ− ∝ , with 

n=1.31±0.13. Such field dependence of the yield stress is close to the 32-power law 

predicted by Ginder et al.19: 

1/ 2 3/ 2 1/ 2 3/ 2
0 0 0 0 03/ 2

6
6D D S D SM H M Hτ τ µ τ µ

µ
⋅Φ= + ⋅Φ ⋅ = + ⋅ ,   (1) 

where µ0=4π·10-7 H/m is the magnetic permeability of vacuum, MS=1.36·106 A/m is the 

saturation magnetization of carbonyl iron particles (de Vicente et al.20, Bossis et al.2), 

H=H0/µ is the magnetic field intensity inside the MR fluid sample and τD0≈45 Pa is the MR 

fluid dynamic yield stress at zero field. Such non-zero dynamic yield stress at zero field could 

come from colloidal interactions between particles and is introduced into the Ginder’s 

equation (1) as an additive constant. 

So, the experimental points are well fitted by the equation (1) (solid line in Fig.3b) with a 

numerical coefficient multiplying 1/ 2 3/ 2
0 0SM Hµ equal to 0.074±0.02 instead of 

3/ 26 / 0.127µ⋅Φ ≈ . The static yield stress was defined as a shear stress plateau at the 

inception of the flow curve plotted in logarithmic scale (cf. Barnes21, Malkin22). It was also 

found to be a growing function of the magnetic field but was a few times smaller than the 

dynamic one (Fig.3b). 
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Fig. 3. Shear rheometry of the MR fluid in the presence of the magnetic field normal to the flow: flow curves (a) 

at different magnetic field intensities; the yield stress versus the magnetic field intensity (b). In figure (a), the 

flow curves correspond to the magnetic field intensity, varying from the lower to the upper curve: H0= 0, 6.1, 

12.2, 18.3, 24.4 and 30.6kA/m. The solid line in figure (b) is a fit of the experimental dynamic yield stress by 

the equation (1). 

 

To inspect the inertia effects, the Reynolds number, ηρ /vXRe= , was estimated in the scale 

of the flow cell and in the particle scale: 0.01<Reorifice<0.1 and 0.0003<Repart<0.003, 

respectively. Here )/( 2
0RQv π= is the average MR fluid velocity at the orifice, η=3.4 Pa·s is 

the MR fluid viscosity at the shear rate γ& >100 s-1, X corresponds to either the orifice 

diameter (2R0=0.3 mm) or the particle diameter (2a≈1 µm). The Reynolds number was 
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calculated for the experimental range of the flow rates, 0.005<Q<0.05 cm3/s. Because of the 

low Reynolds numbers, the MR fluid flow is considered to be laminar both in the flow cell 

and around the particles. 

In order to check the validity of our measurements, we tested our experimental cell with two 

calibrated Newtonian oils with viscosities η=0.485 Pa·s (silicon oil Rhodorsil® 47V500; 

VWR Prolabo) and η=2.5 Pa·s (homogeneous mixture of the Rhodorsil® 47V500 oil with 

Brookfield 60000 oil). The measured total pressure drop was separated into the Poiseuille 

pressure drop and the excess pressure drop by applying the Bagley correction, and both 

experimental curves, ∆PPois(Q) and ∆Pexcess(Q), were compared with the corresponding 

theoretical dependencies:  

Q
R

L
PPois 4

0

8

π
η=∆ ,         (2) 

Q
R

Pexcess 3
0

3η=∆ ,         (3) 

where L = 0.1±0.01 or 0.5±0.01 mm is the orifice length. The formula (3) expresses the 

pressure drop for the creeping flow through an infinitely short circular orifice and is 

recommended for estimations of the entrance and exit pressure losses in the pipe flows at low 

Reynolds numbers (Happel and Brenner23, Weissberg24). Note that the pressure losses 

predicted by eq. (3) are symmetric about the orifice plane, i.e. the entrance and the exit 

pressure losses are the same and equal to a half of the excess pressure drop (3).  

We found that the experimental curves ∆PPois(Q) and ∆Pexcess(Q) for the calibrated oils were 

linear and their slopes were, at maximum, 7% larger than the slopes of the corresponding 
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theoretical curves (2) and (3): 4
0/ 8 /( )PoisP Q L Rη π∆ =  and 3

0/ 3 /excessP Q Rη∆ = . Such 

discrepancy could occur due to a small fluid inertia effects near the orifice edges.  

 

III. Experimental results 

The dependencies of the total pressure drop versus flow rate are shown in Figs. 4a, b for the 

orifice lengths, L=0.1 mm and 0.5 mm, as well as in the presence and in the absence of the 

magnetic field. In all experimental cases, the ∆Ptot(Q) – relation appears to be linear. The 

effect of the axial magnetic field is manifested through an increase in the pressure drop at the 

same flow rate (Figs. 4a, b). The total pressure drop is found to be directly proportional to the 

flow rate: ∆Ptot ∝Q, and, within the experimental error, we do not find any distinguishable 

yield pressure drop, even at the magnetic field as high as H0=30.6 kA/m. But, at the same 

field intensity, the slope of the ∆Ptot(Q) curve is 2.4 and 3 times higher than the slope at zero 

field for the orifice of the length 0.1 mm and 0.5 mm, respectively. This behavior could be 

identified with zero or very low yield stress and with enhanced MR fluid viscosity in 

contraction flows and is discussed in detail at the end of this section. 
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Fig.4. Total pressure drop versus the flow rate for the orifice length 0.1 mm (a) and 0.5 mm (b). Lines represent 

a linear fit to the experimental data. 

There is no distinguishable effect of the transverse magnetic field on the pressure – flow rate 

characteristics of the MR fluid. Experimental points for the intensity of the external magnetic 

field H0=4 kA/m and 25 kA/m (intensity of the internal field is H=3.1 kA/m and 20kA/m, 

respectively) gather, within experimental error, along the straight line corresponding to zero 

field (Figs. 4a,b). This result could be explained by the total destruction of MR aggregates 

and is discussed in more detail at the end of this section. Thus, in contraction flows, the axial 

magnetic field generates a rather strong growth in the slope of the ∆Ptot(Q) curve (hydraulic 

resistance) while the transverse field does not. Such an effect of the magnetic field orientation 
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is opposite to that found in shear flows or pipe flows (Shulman and Kordonsky1, Kuzhir et 

al.7, Takimoto et al.25), at least at high Masson numbers. Note finally that both in the 

transverse and zero magnetic field, the yield pressure drop is nonzero, even though it is small 

compared to the experimental pressure range: ∆PY=0.163±0.073 bar for the orifice length 0.1 

mm and ∆PY=0.283±0.035 bar for the orifice length 0.5 mm. Such apparent yield pressure 

drop is defined as an intercept of the ∆Ptot(Q)–curve interpolated linearly until zero flow rate 

and is associated to a shear thinning behavior of the MR fluid at small flow rates.  

In Fig. 5, we present an example of Bagley plot made for the axial magnetic field of an 

intensity, H0=30.6 kA/m. The similar plots were done for all experimental data and the excess 

pressure drop was determined as described in the previous section. By doing so, we supposed 

that, in the presence of a magnetic field, the entrance pressure drop could be decoupled from 

the Poiseuille pressure drop in the same way as at zero field. This assumption requires 

verification by numerical simulations of the abrupt contraction flow. 

 

Fig. 5. Bagley plot for the MR fluid contraction flow at various flow rates and in the presence of axial magnetic 

field of intensity, H0=30.6 kA/m. 
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Experimental dependence of the excess pressure drop versus the flow rate is shown in Fig. 6a 

for zero magnetic field as well as for the axial field of an intensity, H0=30.6 kA/m. Similar to, 

∆Ptot(Q) curves, the ∆Pexcess(Q) curves are linear and the slope is 2.3 times larger in the 

presence of the field than at zero field. The dashed line in Fig. 6a corresponds to the 

theoretical ∆Pexcess(Q) dependence for zero magnetic field calculated by the eq. (3). We see 

that the experimental dependence for zero field is well parallel to the theoretical one but 

slightly shifted upwards by 0.13 bars. This discrepancy might be due to a slight Bingham 

behavior of MR fluids in the absence of field, as discussed above. 

The solid line in Figs. 6a is a theoretical pressure – flow rate relation corresponding to the 

axial magnetic field, H0=30.6 kA/m, and derived in the next section. Qualitatively, the 

magnetic field effect on the contraction flow of MR fluids can be interpreted in the following 

manner. 
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Fig. 6. Dimensional (a) and dimensionless (b) dependencies of the excess pressure drop versus the flow rate in 
the absence and in the presence of a magnetic field axial to the channel axis, H0=30.6 kA/m.  

When an axial magnetic field is applied, it creates chain-like clusters composed of magnetic 

particles and aligned with the magnetic field lines. When the MR fluid flows through a 

contracted channel, these chains move together with the fluid and are subject to a complex 

velocity field. Upstream of the orifice, along the channel axis, the flow is extensional because 

the MR fluid accelerates when approaching the orifice. Both the extensional flow and the 

axial magnetic field orient the chains along the channel axis. These chains are subject to 

tensile hydrodynamic forces proportional to the extensional rate, which varies significantly 

from very low values, of the order, 11.0)/( 3 ÷∝∝ RQ πε&  s-1, far upstream of the orifice to 

high values, 43 1010 ÷∝ε&  s-1, at the orifice entrance. Thus, the chains may be destroyed in 
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the vicinity of the orifice but can sustain the tensile deformations at some distance away from 

the orifice. The chain length and the extensional viscosity are expected to be a growing 

function of the distance from the orifice in the upstream direction. A key assumption of the 

present work is that the main entrance flow is confined in a narrow conical funnel separated 

from the channel wall by a stagnant (recirculating or non-flowing) fluid, as shown in 

Fig.7a,b. One of the possible reasons for the funnel flow is a large extensional viscosity of the 

MR fluid in the presence of the longitudinal magnetic field. Being subject to a strong 

elongation, the entry flow shrinks into a funnel, and a large recirculation zone appears at the 

channel corners (Fig. 7a), in the same way as for the contraction flows of polymers or fiber 

suspensions (Boger11, Mongruel and Cloitre14). If the recirculation is not intense enough in 

the presence of the magnetic field, the fluid motion could stop within this zone and the corner 

vortex likely transforms to a solid plug as shown in Fig. 7b. The entrance pressure loss for the 

funnel flow appears to be much higher than that for a creeping Newtonian flow with a small 

corner vortex. This could explain why the pressure loss in the longitudinal magnetic field is 

larger than in the absence of field. 

Such behavior in the axial magnetic field can be better reflected by the dimensionless 

pressure-flow rate dependence, shown in Fig. 6b. The excess pressure drop is normalized by 

the one in the absence of magnetic field, 3
0

3
)0(

R

Q
Pexcess

η=∆ , and the flow rate is replaced by 

the shear Mason number2 – characteristic ratio of hydrodynamic – to – magnetic forces, 

2
0

2
0

08

H
Mnshear βµ

γη &
= , where )/(4 3

0RQ πγ =&  is the apparent wall shear rate at the orifice, 

β=(µp–1)/( µp+2)≈1 and  µp>>1 is the relative magnetic permeability of carbonyl iron 

particles. In experiments, the dimensionless pressure drop appears to be independent of 

Mason number, within the range, 30<Mnshear<200. This can be explained as follows. The 



20 

 

entrance pressure drop has two contributions: one related to the solvent shear stress and the 

second to the stresses generated by particle chains. The chains are aligned with the stream-

lines and, perhaps, give a moderate contribution to the pressure drop. The solvent 

contribution depends strongly on the apex angle of the funnel, and the apex angle appears to 

be independent of Mason number in the interval, 30<Mnshear<200. From the theoretical point 

of view, our model (solid line in Fig. 6b) predicts the dimensionless pressure drop to be 

inversely proportional to Mason number: 1( ) / (0)excess excess shearP H P A B Mn −∆ ∆ = + ⋅  (section 

IV.2). At Mason numbers, Mnshear>100, the second term vanishes and the dimensionless 

pressure drop becomes independent of Mason number, as in experiments. At lower Mason 

numbers, the theory predicts a non-negligible effect of the magnetic field on the extensional 

stress generated by chains, so the dimensionless pressure drop increases with decreasing 

Mason numbers (or increasing magnetic field). 

Fig. 7. Geometry of the abrupt contraction flow in the presence of a magnetic field axial to the channel axis. 
Either a large vortex (a) or a dead zone without any flow (b) are expected in the corner of the upstream channel. 
This dead zone could appear because of field-induced aggregation of the MR fluid. In both cases (a) and (b), the 
MR fluid flows through a narrow funnel with a small half-apex angle, θ0. Spherical coordinate system (r,θ,φ) is 
introduced together with an apex point O in figure (b). A schematic pressure profile along the channel axis is 
shown in figure (c) and each term contributing to the total pressure drop is represented. An extensionally 
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unyielded flow region is illustrated schematically in figure (d). The extensional rate vanishes within this zone 
while the shear rate is finite and non-homogeneous. 

In the transverse magnetic field, the structure of the MR fluid entrance flow should not be the 

same, as in the case of the longitudinal field. The transverse field forms the chains of 

magnetic particles in the direction perpendicular to the main flow. The chains rotate under the 

action of the hydrodynamic torque and can be easily destroyed by the tensile hydrodynamic 

forces. This is especially expected in our experimental case of high shear Mason numbers 

Mnshear≈10÷100. So, in the transverse magnetic field, the MR fluid behaves as a conventional 

suspension of individual particles. Since the MR fluid does not show an enhanced extensional 

response in the transverse field, the corner vortex, if it exists, should be as small as in the 

absence of the magnetic field. Otherwise, if a solid plug is formed instead of vortex, the 

stagnation zone is also expected to be small compared to that in the longitudinal field because 

the field-induced aggregation is more effective in the longitudinal field. So, in the transverse 

magnetic field at 10<Mnshear<100, the flow is not restricted to a funnel, and the entrance 

pressure drop is field-independent.  

Note as well that, if, in the transverse magnetic field, the particle aggregation seems to be 

impossible at Mason numbers as high as Mnshear≈10÷100, there is no such evidence for the 

longitudinal field. This is because the MR aggregates are aligned with the flow in the 

longitudinal field and are not subject to shear deformation but rather to extensional 

deformation. In this case, the existence of aggregates is defined rather by extensional Mason 

number, which is a characteristic ratio of the hydrodynamic stretching force in extensional 

flow to the magnetic force between particles: 2
0

2
0

08

H
Mnext βµ

εη &
= . We shall see in the Section 

IV.2 that the extensional rate, ε&  is an order of magnitude lower than the shear rate, γ& , so the 

extensional Mason number is of the order of Mnext≈1÷10. 



22 

 

Recall, finally, that the internal longitudinal magnetic field in the MR fluid inside the orifice 

is about two times higher than the internal transverse field at nearly the same external field. 

Such a demagnetizing effect should influence the pressure drop but is not strong enough to 

explain a 3-times increase in pressure drop in the longitudinal field and the absence of the 

MR effect in the transverse magnetic field. 

 

IV. Theory and discussion 

In this section we develop a theoretical model predicting the dependence of the entrance 

pressure drop versus the flow rate in the presence of the longitudinal magnetic field. This 

theoretical dependence is then fitted to experimental results and the free parameter – apex 

angle of the funnel is deduced from this fit. The model consists of the rheological part 

(section IV.1) and the fluid mechanics part (section IV.2). In the first part, a relation between 

the normal stress and extensional rate is derived using Bachelor’s slender body theory and 

assuming a chain-like structure of the MR fluid. This relation appears to be the first 

theoretical law in extensional rheology of MR fluids. In the second part, the above 

rheological relation is integrated into a Cauchy momentum equation, which is solved for a 

contraction flow of MR fluid and, thus, the excess pressure drop is calculated and fitted to 

experimental results. 

IV.1. Uniaxial extension 

In order to derive a relation between the normal viscous stresses and extensional rate, we 

shall consider a homogeneous extensional flow, which can be realized by stretching a fluid 

column with a speed increasing exponentially with time (Macosco13). Such flow is shown 
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schematically in Fig. 8 and is characterized by a linear velocity profile as follows: xvx 2

ε&−= ; 

yvy 2

ε&−=  and zvz ⋅+= ε& . The rate-of-strain tensor is diagonal and its components are 

2

εεε
&

−== yyxx  and εε &=zz . Here 
dz

dvz≡ε&  is the extensional rate; the Cartesian reference 

system, Oxyz, is chosen in such a way that the z-axis is parallel to the extension axis while x- 

and y-axes are transverse to the extension axis. Suppose that an external magnetic field, of 

intensity H0, is applied along the z-axis. The central stream-line (on the z-axis) is therefore 

parallel to the central field line while the periphery stream-lines (out of the z-axis) cross the 

field lines at some, generally small, angle.  

 

Fig. 8. Uniaxial extension of the MR fluid in the presence of a magnetic field parallel to the extension axis. The 

particle chains are approximately aligned with the stream-lines and subject to both the hydrodynamic tensile and 

the magnetic attractive forces. 
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In this subsection, we intend to find the extensional extra-stress generated by the magnetic 

particles in the extensional flow. First, we need to introduce the following hypotheses: 

1. The magnetic field induces MR fluid aggregation, and, at the first approximation, the 

aggregates are supposed to be single straight chains with no interaction between them.  

2. As already stated, the extensional flow tends to orient the chains along the stream-lines and 

the magnetic field tends to align them with the field lines. The chains therefore are oriented at 

a certain angle between the velocity lines and the field lines. Due to the flow geometry (Fig. 

8), this angle should be quite small in the major part of the flow, and, thus, it can be 

considered that all the particle chains are aligned with the flow lines. The field is also 

considered to be parallel to the chains. This assumption will significantly simplify 

calculations of the particle stress and will affect the results by a minor relative error, of the 

order of α2, with α – the angle between velocity lines and chains. 

3. Under hydrodynamic tensile forces, the chains break in their center and form two identical 

chains. In steady conditions, all the chains are assumed to have the same length defined by 

the balance between the hydrodynamic tensile force and magnetic attractive force between 

two central particles. 

4. The chains length, 2l, is much higher than the particle diameter, 2a, but much lower than 

the characteristic length, L, of the flow cell: 2a<<2l<<L. The left inequality suggests low 

Mason numbers, i.e. high magnetic fields and/or low extensional rates. 

5. The Batchelor’s26,27 slender-body theory is employed for the long chains in extensional 

flow. At first approximation, we consider dilute suspensions of chains which imposes the 

restriction on the concentration of the MR fluid: Φ<<(a/l)2. From Batchelor’s theory the 
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following formulas are derived for the tensile force exerted by the solvent per unit chain 

length (4), the extra stress tensor (5) and extensional stress components (6), (7): 

ξεπη
&

)/2ln(

2 0

al
fh =          (4) 

0

1
2

3ik ik ch i k l m ik l m lmn n n n n nτ η ε η δ ε = + − 
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
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 +−== chyyxx 3

1
0         (6) 

εηητ &






 += chzz 3

2
0          (7) 

In these formulae, η0 is the solvent viscosity, ξ is the distance along the chain axis from its 

center, n is the unit vector along the chain axis, ikε&  is the rate of strain tensor, δik is the 

Kronecker delta, ηch is the viscosity coefficient associated with viscous friction due to the 

presence of chains: 

)/2ln(

)/(

3

2 2

0 al

al
chch ηη Φ=         (8) 

with Φch≈Φ being the volume fraction of chains in MR fluid and Φ - the volume fraction of 

magnetic particles. 

The chains experience the maximal tensile force, Fh, in their center, and this force is obtained 

by integration of the force density (4) over the chain length: 

)/2ln(
d

2
0

0 al

l
fF

l

hh

επηξ
&

== ∫         (9) 
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The magnetic force between two touching central particles of the chain is proportional to the 

particle cross-section, πa2:  

2( )m mF f aπ= ⋅ ,         (10) 

where fm is the magnetic force per unit particle cross-section. This force depends on the 

magnetic field intensity and on the magnetic properties of particles. The equilibrium chain 

length, or rather chain aspect ratio, l/a, is obtained by equating the hydrodynamic force (9) to 

the magnetic force (10): 

 
2

0

( / )

ln(2 / )
mfl a

l a η ε
=

&
.         (11) 

Substituting the later expression into (8) and then into formulas (6), (7), we get the final 

expressions for the stress normal components, the first normal stress difference and the 

extensional viscosity of an MR fluid: 

 0 0

2 1

9 3xx yy m Dfτ τ η ε η ε τ= = − − Φ = − −& &       (12) 

 0 0

4 2
2 2

9 3zz m Dfτ η ε η ε τ= + Φ = +& &        (13) 

0 0

2
3 3

3zz xx m Dfτ τ η ε η ε τ− = + Φ = +& &        (14) 

0 0

2
3 3

3
zz xx m Dfτ τ τλ η η

ε ε ε
− Φ= = + = +
& & &

      (15) 

The first term of the equation (14), εη &03 , is the extensional extra stress generated by the 

Newtonian solvent with an extensional viscosity, 03η , being three times the shear viscosity. 

The second term represents the extra stress generated by chains and appears to be 
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independent of the extensional rate. This is simply because the chain stress is proportional to 

ε&  and to the square of the chain length, and the latter, l2, varies as 1−ε&  (see eq. 11). So, this 

term is associated with a “dynamic extensional yield stress”, τD, obtained by the linear 

interpolation of the flow curve )(εττ &fxxzz =−  on zero extensional rate:  

2

3D mfτ = Φ .          (16) 

In order to evaluate the yield stress (16), we shall use the Ginder’s expression for the 

magnetic forces, Fm and fm, between two touching particles, which gives reasonable results 

for the magnetic field range 0.005<H/MS<0.1 or 7<H<140 kA/m (Ginder et al.19, Bossis et 

al.2): 

2
02m SF M Haπµ=          (17) 

02
2m

m S

F
f M H

a
µ

π
= =          (18) 

Here MS is the saturation magnetization of magnetic particles and H is the mean magnetic 

field intensity in the MR fluid sample. If the MR fluid column (Fig. 8) is relatively long and 

thin than the internal field is roughly equal to the external applied field: H≈H0. Substituting 

the formula (18) into (16), we get the expression for the extensional yield stress as function of 

the magnetic field: 

HM SD 03

4 µτ Φ=          (19) 

We give now a numerical estimation of the dynamic yield stress in extension for a 

conventional MR fluid (like the one used in our experiments) with the particle saturation 

magnetization, MS=1.36·106 A/m and the particulate volume fraction, Φ=0.1. A value 
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τext≈4600Pa is obtained for a magnetic field intensity, H=20 kA/m. The dynamic yield stress 

measured in shear at the same intensity of the internal field, H≈20 kA/m (corresponding to 

the external applied field, H0=µH≈ 30.6 kA/m) is τshear≈580Pa and is a few times lower than 

the predicted extensional yield stress. The theoretical shear yield stress predicted by 

Ginder’s19 model is τshear≈1000Pa, i.e. larger than the experimental shear yield stress, but still 

much less than the extensional one, at least at moderate magnetic fields. 

It is interesting to inspect the difference between the shear and extensional yield stresses at 

high magnetic fields, when the magnetic moments of particles are completely saturated. In 

this case, the magnetic force between particles is proportional to the square of the particle 

saturation magnetization, 2 2
0

1

6m SF M aπµ= , 2
0

1

6m Sf Mµ=  and the extensional yield stress 

will be 2 2
0 0

2 1
0.11

3 9
S

ext m S Sf M Mτ µ µ= Φ = Φ ≈ ⋅Φ . The shear yield stress at saturation 

magnetization is given by Ginder et al.19: 2
00.086S

shear SMτ µ≈ ⋅Φ . So, in contrast to the case 

of intermediate fields, at high fields, the extensional yield stress is expected to be only 

slightly higher than the shear yield stress. 

To explain the difference between the extensional and shear yield stresses, it should be 

remembered that both are proportional to the magnetic interparticle force fm. According to the 

Ginder’s model of MR fluid shear deformation, the particles in chains are supposed to 

displace affinely under applied strain, being separated one from another by a small gap, 

increasing with the strain (Ginder et al.19, Bossis et al.2). The magnetic force between 

particles decreases drastically with the interparticle gap. So the force between non-touching 

particles in shear deformation is smaller than the force between touching particles in 

extensional deformation. This could explain the large difference between the shear and the 
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extensional yield stresses at low-to-intermediate fields. At high magnetic fields, the magnetic 

force becomes less sensitive to the gap between particles, and could be of the same order of 

magnitude in shear and in extension, interparticle gap being always small. This could be a 

reason for the small difference between both yield stresses at high fields. 

 

IV.2. Contraction flow 

We come back now to the contraction flow of MR fluid in the magnetic field parallel to the 

flow cell axis (Fig. 7). We search for the excess pressure drop as a function of the flow rate 

and the magnetic field intensity. In order to describe the hydrodynamics of this problem, we 

extend the model of Mongruel and Cloitre14 to the case of MR fluids and introduce the 

following assumptions: 

1. As supposed above, a large ring stagnation zone (plug or vortex) occurs at the corner of the 

upstream channel. The main flow is concentrated in a narrow conical funnel with an apex 

angle 2θ0<<π/2, as depicted in Fig. 7b. We introduce a spherical coordinate system (r,θ,φ) 

with the origin in the funnel apex and suppose that the velocity is radial within the funnel and 

vanishes at the funnel boundary: rrv iv ⋅= ),( θ , 0),( 0 =θrv  with ri  – the unit vector along 

the radial axis. Because of the symmetry reason, the velocity is considered to be independent 

of the polar coordinate, φ. The rate-of-strain tensor in the funnel flow takes the following 

form (Binding28): 
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with 
r

v

∂
∂≡ε&  and 

θ
γ

∂
∂⋅≡ v

r

1
&  being extensional and shear rates, respectively. 

2. Since the Reynolds numbers are very small (maximum 0.1, cf. section II), any inertia 

effects are neglected both in the particle scale and in the flow cell scale. The gravity forces 

and the surface tension of the MR fluid drop which forms at the orifice outlet are also 

neglected because the hydrostatic and capillary pressure drops are much less than the applied 

pressure drops, ∆Ptot~1bar. 

3. We adopt the same assumption for the chain length as in the case of the uniaxal extension: 

2a<<2l<<2R0, where 2R0=0.3 mm is the orifice diameter. The validity of this assumption will 

be discussed below. 

4. As was shown by numerical simulations (cf. Fig.2), the magnetic field intensity in the MR 

fluid is not completely homogeneous but is slightly higher at the orifice entrance (35.7 kA/m) 

than far upstream of the orifice (30.6 kA/m). At the first approximation, we neglect such 14% 

non-uniformity of the magnetic field and consider the field inside the MR fluid to be uniform 

with an intensity equal to the one of the external applied magnetic field: H≈H0=30.6 kA/m. 

5. Since the funnel’s apex angle is small, the misalignment between chains, flow lines and 

magnetic field lines is negligible. Both the magnetic field lines and the chains are assumed to 

be perfectly aligned with the stream-lines. Being parallel to the flow, the chains are not 

affected by the shear rate, γ&  but experience tensile forces coming from extensional rate, ε& . 

So, the chain length in contraction flow can be found in the same way as for the uniaxial 

extension, i.e. by the expression (11). Substituting this expression into the formula (8) and 

then into (5), the extra stress tensor in the upstream part of the flow will take a simple form, 

as follows: 
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with τD being the dynamic extensional yield stress defined by the formulas (16), (19). 

Inspecting the last expression, we note that, in contraction flow, MR fluid behaves as a 

Bingham fluid with respect to extensional deformation and as a Newtonian fluid with respect 

to shear deformation. This is explained by the perfect alignment of the chains with the flow: 

they resist to the extensional flow and do not show any resistance to the shear flow. 

Substituting the stress tensor (18) into the momentum equation, )()( τdivPgrad = , and taking 

into account of the MR fluid incompressibility, 0)( =vdiv , we arrive to the equations for the 

pressure and velocity fields, as follows: 
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θ

θθπ vrQ         (24) 

In the limit of the small angles, θ, we replace sinθ and tanθ in eqs. (22), (24) by θ and neglect 

any pressure variation along the θ-coordinate: 
r

PP

r ∂
∂<<

∂
∂
θ

1
. Associating the boundary 
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condition, 0),( 0 =θrv , the system (22)- (24) admits the solution for the velocity profile and 

the entrance pressure gradient, as follows: 
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The velocity profile (25) appears to be the same as for a Newtonian fluid (Happel and 

Brenner23). This is because no unyielded zones are expected in the main funnel flow, at least 

in the funnel domain extending from the orifice up to a few orifice radii upstream of the 

orifice. The pressure gradient (26) consists of a viscous term (first term) and a yield term 

(second term) coming from the dynamic extensional yield stress, τD. To get the entrance 

pressure drop, we integrate the pressure gradient (26) in the limits between the radial 

coordinate corresponding to the orifice position, r0=R0/θ0, and some large radius far upstream 

of the orifice, 0/θ∞∞ = Rr : 
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Here ∞R  is a “cutting” radius, which is the radius of the cone basis corresponding to a 

transition between the funnel flow in the vicinity of the orifice and the pipe flow far upstream 

of the orifice (Fig. 7b). In the formula (27), we have omitted the term on 3−
∞R  supposing 

1)/( 3
0 >>∞ RR . From the eq. (27), we see that our model predicts two different magnetic 

field effects on the entrance pressure drop. First, the half-apex angle, θ0 should decrease with 

an increasing field. Since the Newtonian part of the pressure drop varies as θ0
-1, the slope of 

the pressure – flow rate curve will be an increasing function of the magnetic field. Second, 
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the yield pressure drop, 
0

ln2
R

R
D

∞τ , appears in the presence of the field, as a manifestation of 

the extensional yield stress. At applied magnetic field, H0=30.6 kA/m, the yield stress is 

estimated to be  τD≈7000 Pa. Both unknowns, θ0 and ∞R , are free parameters of the model 

and their values are defined below by a fit of the experimental data with the eq. (29). We 

shall give now a qualitative description of these parameters. 

Concerning the half-apex angle, θ0, Cogswell29 and Mongruel and Cloitre14 have evolved two 

different approaches and found the same scaling law for this angle: 2/1
0 )/( ληθ ∝ , with η and 

λ being the shear and the extensional viscosity, respectively. Mongruel and Cloitre’s14 theory 

is valid for fiber suspensions with both viscosities independent of the strain rate. In our case, 

the extensional viscosity of the MR fluid, 
ε

τηλ
&

D+= 03  (cf. eq. 15), is a decreasing function 

of the extensional rate and a growing function of the magnetic field. So, the angle θ0 is 

expected to be a function of the extensional Mason number, 2
0

2
0

08

H
Mnext βµ

εη &
= , rather than of 

the magnetic field solely. Such dependence, θ0=f(Mnext) could render the first term of eq. (27) 

nonlinear on the flow rate. 

The second parameter, ∞R  – basis of the funnel cone – is expected to be smaller than the 

channel radius R=2.5 mm because the funnel has often a rounded shape (Boger11, Fig. 7a). 

Furthermore, the funnel can be bounded from above by an extensionally unyielded region, 

shown schematically in Fig. 7d. This region corresponds to a domain where the normal stress 

difference, θθττ −rr , is less than the extensional yield stress, τD and the extensional rate is 

zero. An unyielded region is specific for contraction flows of a conventional Bingham fluid 
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(Abdali and Mitsoulis30) and is situated at the distance of the order of the channel radius, R, 

from the orifice.  

The calculated entrance pressure drop (27) is not yet the desired quantity – the excess 

pressure drop. We must add an exit pressure drop developed downstream of the orifice. For 

the better understanding, we represented each pressure loss component in a schematic 

pressure profile in Fig. 7c. Downstream of the orifice, large MR fluid drops are periodically 

formed, grow, detach from the flow cell and fall down. In the downstream drop, magnetic 

particle chains experience a biaxial extension. It is well known from the theory (Brenner31) 

and experiments (Cloitre and Mongruel16) that, in biaxial extension, the rod-like particles are 

oriented transversely to the stream-lines. Once perpendicular to the magnetic field lines, the 

magnetic interactions between particles become repulsive and the chains break. So, the axial 

magnetic field is supposed to influence neither the MR fluid rheology in the downstream 

flow, nor the exit pressure drop. Since the pressure loss predicted by eq. (3) is symmetric 

about the orifice plane, the exit pressure drop can be found as half of the excess pressure drop 

(3):  

Q
R

Pexit 3
02

3η=∆ ,         (28) 

with η being the MR fluid viscosity at zero field. Note that, in the exit flow, all the pressure 

variation takes place in the vicinity of the orifice, such that the size and the shape of the MR 

fluid drop should not influence the exit pressure loss (28). 

Finally, the total excess pressure drop in the axial magnetic field is obtained by summing the 

expressions (27) and (28):  
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The best fit of the experimental data with the equation (29) is obtained for the angle θ0=7.50 

and the cutting radius 0.2R R∞ ≈ =0.5 mm (solid line in Fig. 6a). Note that the yield stress, 

τD≈7000Pa and the parameter R∞ =0.5 mm give us a yield pressure drop value of 0.17 bar, 

small enough, as compared to the experimental pressure range (0.5-2.5 bars). So, in 

experiments, this yield pressure loss was simply undistinguishable. The pressure-flow rate 

relation (29) can also be presented in dimensionless form by normalizing the excess pressure 

by the one in the absence of magnetic field, 3
0

3
)0(

R

Q
Pexcess

η=∆ . In this case, the dimensionless 

pressure drop appears to be inversely proportional to the dimensionless flow rate – shear 

Mason number: 1( ) / (0)excess excess shearP H P A B Mn −∆ ∆ = + ⋅ , with A and B – constants depending 

on physical properties of the MR fluid. Such theoretical dependence (solid line in Fig. 6b) is 

consistent with Bingham behavior of the MR fluid in extensional flow, predicted by the eq. 

(11). At low Mason numbers, Mnshear<30, the dimensionless pressure drop diverges and, at 

high Mason numbers, Mnshear>100, it varies only slightly tending to a Newtonian limit 

( ) / (0) 2.3excess excessP H P∆ ∆ ≈ . 

It should be noted that the present theory has been derived for the chains with a high aspect 

ratio, at least 10/ ≥al , and the stress tensor was calculated using the formulae valid for dilute 

suspensions of long fibrous aggregates. To check if the restriction on the chain length is 

satisfied, we estimate the chain aspect ratio using the formulas (11), (18) with the magnetic 

field strength H0=30.6 kA/m. In the worst case of the maximal extensional rate, 

3
0

0
0,/max

4
00 R

Q
Rr π

θεε θθ ==
==

&& ≈ 2500 s-1, the aspect ratio is about 7, but is well above 10 in the 
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major part of the funnel. So, the slender body approach is considered to be appropriate for the 

stress calculations. At the same time, at the orifice level, the chains remain relatively short 

(2l~20µm), compared to the orifice diameter (2R0=300 µm). Thus, the assumption 

2a<<2l<<2R0 holds as well. Concerning the non-diluteness of the MR fluid, the normal 

stresses (6), (7) could be corrected by replacing the expression (8) for the viscosity 

coefficient ηch by a more rigorous expression derived for concentrated aligned fiber 

suspensions (Shaqfeh and Fredrickson32): 

1585.0)/1ln(ln)/1ln(

)/(

3

4 2

0 +Φ+Φ
Φ=

chch
chch

alηη      (30) 

For a given chain aspect ratio, l/a=7, the corrected stress will be 1.6 times the stress 

calculated for the dilute regime. At the same time, in concentrated regime, the chains will be 

subject to higher tensile hydrodynamic forces, so, they must be shorter than at the dilute 

regime. Thus, the total concentration effect on the stress enhancement is expected to be 

weaker than the one predicted by eq. (30).  

In perspective, flow visualization with very dilute MR suspensions could be useful, in order 

to confirm the funnel flow hypothesis. To overcome the problem of MR fluid opacity, one 

could try to employ transparent magnetic particles (Ziolo33; Lahanas et al.34). The further 

development of the theory will touch, first of all, a field-dependence of the apex angle; the 

stress tensor in the upstream funnel will be calculated more rigorously taking into account a 

finite aspect ratio of the chains as well as a misalignment between the stream-lines and the 

chains. Finally, direct numerical simulations of MR fluid contraction flows could be useful 

for the analysis of both the velocity profile and the MR fluid structure in the upstream 

channel.  
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Conclusions 

In this paper, we have presented the first experimental study of the MR fluid contraction flow 

and we have focused on the extensional response of MR fluid in the presence of a magnetic 

field, axial or transverse relative to the channel axis. The total pressure drop has been 

measured as a function of the flow rate, and the excess pressure drop has been derived from 

experimental data using the Bagley correction procedure. Conclusions can be summarized as 

follows: 

1. In the axial magnetic field, the pressure-flow rate dependence remains linear as in the case 

of a Newtonian fluid. The magnetic field effect is manifested through a 2.3-times increase in 

the slope of the ∆Pexcess(Q)-curve at H0=30.6 kA/m. To explain this behavior, observed at 

shear Mason numbers, 10<Mnshear<100, an assumption of the funnel flow was introduced 

and the funnel apex angle was supposed to decrease with the magnetic field growth. The sink 

flow model was proposed with a free parameter – half-apex angle, θ0. The theory fits the 

experimental data reasonably well at θ0=7.50. 

2. At the same range of Mason numbers, 10<Mnshear<100, the transverse magnetic field has 

not shown any distinguishable effect on the pressure-flow rate characteristics. This is 

explained by a total destruction of the MR fluid aggregates by large hydrodynamic forces. 

The major difference between the two cases of axial and transverse magnetic fields is that, in 

the axial field, the chains exist, they generate a large extensional stress and induce a narrow 

funnel flow. On the other hand, in the transverse field, there are no chains, no large corner 

dead zones, and no funnel flow expected. 

3. In addition to the contraction flow, we made a theoretical study of an uniaxial extension 

flow of MR fluids in a magnetic field, parallel to the extension axis. This study allows us to 
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better understand the MR fluid behavior in entrance flows. The chain rheological model has 

been developed on the basis of the Batchelor’s slender body theory. A Bingham-like law has 

been predicted for the normal stress difference: Dxxzz τεηττ +=− &03 , with a dynamic 

extensional yield stress, τD, being a few times larger than the yield stress measured in the 

shear flow at intermediate magnetic fields. In high magnetic fields, only a slight difference is 

expected between extensional and shear yield stresses. 
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Figure captions 

Fig. 1. Experimental flow cell. 1 – plexiglass tube; 2 – upper brass lid; 3 – lower brass lid; 4 – 

thin titanium disk with a coaxial orifice, 0.3 mm in diameter; 5 – MR fluid; 6 – hanging MR 

fluid drop; 7 – pressure transducer; 8 – air reservoir, 1L; 9 – precision control valve. 

Helmholtz coils and electronic balance are not shown in the schema. 

Fig. 2. Distribution of the magnetic field strength along the flow cell axis in the downstream 

direction. The orifice length is L=0.5mm. Two vertical lines indicate the orifice position. 

Fig. 3. Shear rheometry of the MR fluid in the presence of the magnetic field normal to the 

flow: flow curves (a) at different magnetic field intensities; the yield stress versus the 

magnetic field intensity (b). In figure (a), the flow curves correspond to the magnetic field 

intensity, varying from the lower to the upper curve: H0= 0, 6.1, 12.2, 18.3, 24.4 and 

30.6kA/m. The solid line in figure (b) is a fit of the experimental dynamic yield stress by the 

equation (1). 

Fig.4. Total pressure drop versus the flow rate for the orifice length 0.1 mm (a) and 0.5 mm 

(b). Lines represent a linear fit to the experimental data. 

Fig. 5. Bagley plot for the MR fluid contraction flow at various flow rates and in the presence 

of axial magnetic field of intensity, H0=30.6 kA/m. 

Fig. 6. Dimensional (a) and dimensionless (b) dependencies of the excess pressure drop 

versus the flow rate in the absence and in the presence of a magnetic field axial to the channel 

axis, H0=30.6 kA/m.  
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Fig. 7. Geometry of the abrupt contraction flow in the presence of a magnetic field axial to 

the channel axis. Either a large vortex (a) or a dead zone without any flow (b) are expected in 

the corner of the upstream channel. This dead zone could appear because of field-induced 

aggregation of the MR fluid. In both cases (a) and (b), the MR fluid flows through a narrow 

funnel with a small half-apex angle, θ0. Spherical coordinate system (r,θ,φ) is introduced 

together with an apex point O in figure (b). A schematic pressure profile along the channel 

axis is shown in figure (c) and each term contributing to the total pressure drop is 

represented. An extensionally unyielded flow region is illustrated schematically in figure (d). 

The extensional rate vanishes within this zone while the shear rate is finite and non-

homogeneous. 

Fig. 8. Uniaxial extension of the MR fluid in the presence of a magnetic field parallel to the 

extension axis. The particle chains are approximately aligned with the stream-lines and 

subject to both the hydrodynamic tensile and the magnetic attractive forces. 


