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Abstract

Contraction and expansion flows of magnetorheokdgiluids occur in a variety of smart
devices. It is important therefore to learn howsthélows can be controlled by means of
applied magnetic fields. This paper presents & ifimgestigation into the axisymmetric flow
of a magnetorheological fluid through an orifice@-(alled abrupt contraction flow). The
effect of an external magnetic field, longitudirmal transverse to the flow, is examined. In
experiments, the pressure-flow rate curves weresured, and the excess pressure drop
(associated with entrance and exit losses) waveatefrom experimental data through the
Bagley correction procedure. The effect of the ltudinal magnetic field is manifested
through a significant increase in the slope of ghvessure-flow rate curves, while no
discernible vyield stress occurs. This behavior, eoled at shear Mason numbers
10 <Mngpea<100, is interpreted in terms of an enhanced exteasi response of
magnetorheological fluids accompanied by shrinkafighe entrance flow into a conical
funnel. At the same range of Mason numbers, thesterse magnetic field appears not to

influence the pressure drop. This can be explalnyed total destruction of magnetic particle



aggregates by large hydrodynamic forces actinghemtwhen they are perpendicular to the
flow. To support these findings, we have developetheoretical model connecting the
microstructure of the magnetorheological fluid t® éxtensional rheological properties and
predicting the pressure-flow rate relations throtigg solution of the flow equations. In the
case of the longitudinal magnetic field, our modfgscribes the experimental results

reasonably well.



|. Introduction

Magnetorheological (MR) fluid is a suspension opewparamagnetic micron-sized non-
Brownian particles dispersed in a liquid carrierthe absence of an external magnetic field,
these particles have a zero magnetic moment andiihdluid behaves as a conventional
particulate suspension and follows a Newtonian Idgical law at small — to moderate
concentrations. When an external magnetic fieldpplied, the MR fluid particles become
magnetized and attract each other forming cham-tggregates aligned preferably in the
direction of the magnetic field. Spanning the ghp lowing channel, these aggregates block
the MR fluid motion, and a yield stress must beliggpo set up the flow. This phenomenon,
referred to as magnetorheological effect (Shulmahkordosky, Bossiset al?) has recently
found commercial applications in smart technologiesh as active car suspension (Carlson
et al®) and magnetorheological finishing (Kordonski amagab$). Besides providing a high
engineering interest, the MR fluids are very attv@cfrom a purely scientific point of view.
The coupling between field-induced structuring &ydrodynamic interactions gives rise to
rich phenomena in MR fluid flows. Shear-induced agmto-isotropic transitions (Volkova
et al?), the formation of honeycomb and foam structunesiaxial magnetic fields (Martiet
al.?), the distortion of the axial symmetry of pipevit® (Kuzhiret al) are a few examples of

these phenomena.

If shear, squeeze and pipe flows of MR fluids haeen thoroughly studied and are well
documented in literature (reviews by Shulman anddiisky, Bossiset al? and Shulmaf),
there is no detailed and systematic study of thedlin converging geometries. Such flows
occur in a variety of MR fluid smart devices such active dampers, MR valves, MR
finishing devices, active fluid bearings. In ordeimprove the performance of these devices,

it is important to learn how these flows can betadled by means of applied magnetic



fields. Besides the practical interest, contracfiiow offers a good opportunity to test the
extensional rheology of MR fluids, which is itselfcompletely new study. In a few known
works on extensional flows of magnetic suspensi{®ésez-Castilleet al® and Johret al'©),

the rheological properties of the suspensions matdeen analyzed. Thus, the objectives of
the present paper can be summarized as followsin(Experimental and theoretical study of
the magnetic field effect on the abrupt contracfiow of a MR fluid; (2) the analysis of the

extensional rheological response of the MR fluidamtraction flow.

The experiments consist of squeezing an MR flurdugh a small orifice and measuring the
pressure difference between the two extremitiethefflow channel as function of the flow
rate. The pressure losses in the upstream and tf@anschannels (so-called excess pressure
drop) are then deduced from the total pressureréifice by Bagley correction procedure.
The main result of our study is the dependenceé@gekcess pressure drop on the flow rate in
the presence of a magnetic field. In the vicinitythee orifice, the fluid experiences a strong
stretching deformation, so-called extensional flawd the excess pressure drop is partially
attributed to normal viscous stresses in extensidloav. To extract the extensional
rheological properties of MR fluid from the expeéntal pressure-flow rate curves, we must
know, at least, the velocity profile in contractifiow. Instead of doing so, we evaluate
theoretically these extensional properties andedas this, we calculate the excess pressure
drop. Concretely, we first derive a theoreticalatein between the normal stress and
extensional rate assuming a chain-like structuréhef MR fluid. The above rheological
relation is then integrated into a momentum equatichich is solved for a contraction flow
of MR fluid and, thus, the excess pressure dropaisulated and fitted to experimental
results. The comparison of theoretical and experiaieexcess pressure drops allows us to

conclude on the magnetic field effect on the exterad viscosity of the MR fluid.



We must notice that the contraction flow is widaged in extensional rheology of polymers
(Boger!, White et al’®. Furthermore, this method, also called “entrywflonethod”; is
considered as the most appropriate one for thensixteal rheology of low-to-moderate

viscosity fluids, as, for example, particulate ®rsgions (Macoscd).

Because of the field-induced chain formation in BMRds, their contraction flow is expected
to possess some features of the contraction flofibef suspensions. Contraction flows of
conventional fiber suspensions have been the subjenumerous papers. Mongruel and
Cloitre***> Cloitre and Mongruéf have performed simultaneous flow visualization and
measurements of the pressure — flow rate relatothe fiber suspensions flowing through a
small circular orifice introduced into a wide cyimcal channel. Upstream of the orifice, the
flow is extensional, the fibers are oriented altimg flow lines and generate large extensional
stresses. A large corner vortex with recirculafiomw is observed, the main entrance flow is
therefore concentrated in a central funnel. Witdr@aving fiber aspect ratio, the extensional
viscosity of the fiber suspension increases, wkichances the corner vortex and shrinks the
funnel of the main flow. Thus, the pressure losshm upstream channel (entrance pressure
drop) appears to be a growing function of the fileegth. The vortex enhancement and the
increase in the pressure loss also take place dmans of the orifice, unless the fibers are
oriented perpendicular to the flow. In their papdwongruel and Cloitre give a simple

analytical model predicting the entrance and theprssure losses for fiber suspensions.

By analogy with fiber suspensions, MR fluids coaldo develop some recirculation or dead
corner zones. The main flow is expected to getowaer with the magnetic field growth
because the fibrous aggregates get longer and ajeneigher extensional stresses. So, the

excess pressure drop is expected to be a grownagidm of the magnetic field intensity.



The patrticularities of MR fluid contraction flowseaanalyzed in the present paper, which is
organized as follows. First, we present the expemtal procedure followed by the
experimental results on the pressure — flow rdtgiom for an abrupt contraction flow of an
MR fluid in the presence of a magnetic field paaiadind transverse to the channel axis. In the
final section, we develop a theoretical interpietabf the results for the axial magnetic field.
The theoretical predictions are tested against raxpats and discussed in the light of the

further development of the MR fluid extensionalatogy.

II. Experimental procedure

The experimental flow cell is shown in Fig. 1. lasvcomposed of a plexiglass cylindrical
tube, 50 mm in length and 5 mm in internal diamed®d two brass lids attached to both
lateral faces of the plexiglass tube. The lowenhbd a central tapered hole; a thin disk (made
of titanium sheet, Goodfellow) with a coaxial cyglincal orifice was glued to the upper side
of the lid. Disks of two different thicknesses weised: 0.1+0.01 mm and 0.5+0.01 mm and
the orifice diameter was 0.32+0.01 mm. The MR flindially filled the whole flow cell.
Under gravity, the fluid did not flow away throughe orifice (at least during typical
experimental time) because of its relatively higécosity (3.4 P&). The upper lid of the cell
was connected to a compressed air cylinder thrauginecision control valve. The valve
allowed us to impose the relative pressure in éimge 0.25 — 5 bars with a precision of +0.02
bars. The applied pressure was measured by a fBewoe pressure transducer (Parker
Filtration UCC, ref. PTD.010821, accuracy +0.02)hgalaced in the air circuit upstream of
the flow cell. The cell was sealed by two polyvinyhgs placed on the contact surface

between the plexiglass tube and the lids.



to the air
cylinder

Fig. 1. Experimental flow cell. 1 — plexiglass tu@e- upper brass lid; 3 — lower brass lid; 4  titanium disk
with a coaxial orifice, 0.3 mm in diameter; 5 — MRid; 6 — hanging MR fluid drop; 7 — pressure sduncer; 8
— air reservoir, 1L; 9 — precision control valveeliholtz coils and electronic balance are not shawthe

schema.

Once the pressure was applied, the MR fluid flowedugh the orifice and dripped onto a
collector placed on the top of the electronic beéaDenever Instrument MXX123 (accuracy
+1 mg). The massM, of the collected fluid was measured during theetit, and the
instantaneous value of the volumetric flow rate veadculated asQ(t)=AM/(oAt) with
0=1.65g/cni being the MR fluid density. The level of the MRifl in the flow cell decreased
as the fluid flowed through the orifice and we gteg the mass measurements when the level
became % of the initial one. The air reservoir,idlvolume, was introduced between the
precision valve and the flow cell and allowed thie pessure to be kept constant during
experiments. In every experimental case, we chetikatdthe flow rate relaxed very quickly

to a steady value after the application of pressboe the measurement of the pressure — flow



rate curve was organized as follows. The flow &l completely filled with the MR fluid; a

given pressure was applied and a corresponding rfiét&was measured. Then the flow cell
was cleaned from MR fluid and the orifice was wattdth alcohol and acetone and blown
out by compressed air. The flow cell was agaiedillvith the MR fluid and the measurement
was repeated with another value of applied presdleasurements for the same applied field

and pressure were repeated in order to check repitmlity.

The total applied pressure drop (the pressurerdiifee between the upper and lower free
surfaces of the MR fluid) is conventionally dividedo two parts — the Poiseuille pressure
drop due to the Poiseuille flow through the thirfioe and the excess pressure drop due to
the flow contraction at the orifice entry and exgian at the orifice exitAPy; = APpois +
APeycess Each pressure loss component is shown in Figeh&re a pressure profile along the
flow cell is illustrated schematically. In our expeents we are more interested in the excess
pressure drop, also called Bagley correction, lbexam is directly connected to the
extensional stresses in the MR fluid. In order utraet the excess pressure drop from
experimental data, we apply the Bagley correctiontite experimental data (Bagltéy
Macoscd®), i.e. we plot the total pressure drop versusattifice length,AP(L), for a given
value of the flow rate (as show in Fig. 5) and wnefthe excess pressure drop as a linear
extrapolation of thé\P,(L) curve onto zero orifice lengtiPeycess APo(0). Having found

the Bagley correction for each value of the flowerave plot the dependencies of the excess
pressure drop versus the flow rate, which is thecpple experimental result of our study
allowing us to analyze the extensional rheologpraperties of the MR fluid as well as the

magnetic field effect on these properties.

All the measurements discussed above were cardethahe absence and in the presence of

an external uniform magnetic field, parallel or gmdicular to the flow cell axis. The



magnetic field was created by a pair of Helmholt#scplaced around the channel. These
coils provided the magnetic field intensity in tlamge of 0 — 30.6 kA/m. The Helmholtz coils
were sufficiently large compared to the flow cedo, the non-uniformity of the created
magnetic field was maximum 1% in the air space wliee flow cell was introduced. Due to
the demagnetizing effect, the uniformity of the meiic field was distorted inside the MR
fluid sample. We carried out numerical simulatidaysfinite element method of the internal
magnetic field in the case of the applied extemadl field H)=30.6 kA/m. The magnetic
field distribution along the flow cell axis in tli®wnstream direction is shown in Fig. 2. The
magnetic field strength appears to be uniform dasecto the strength of the external field in
the major part of the flow cell. But in the viciypibf the orifice, the magnetic field grows
from H=30 kA/m at a distance 5 mm from the orificeH835.7 kA/m at the orifice entrance
and reaches its maximuki=43 kA/m inside the orifice. The calculation of ekanagnetic
field distribution in the transverse field wouldjtere the solution of a 3D Maxwell equation
problem. To avoid this difficulty, we estimate thgernal transverse magnetic field as the

field inside an infinitely long cylinder with the edhagnetizing factor Y::

H= H0/[1+%(;1—1)] Here,1~1.55 is the MR fluid relative magnetic permeabilp, in

the presence of the external magnetic field, trars®/to the channel axis, of an intensity

Ho=25 kA/m, the internal magnetic field k=20 kA/m.
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Fig. 2. Distribution of the magnetic field strengilong the flow cell axis in the downstream direati The

orifice length isL.=0.5mm. Two vertical lines indicate the orifice ftios

The MR fluid used in our experiments was a suspensf carbonyl iron particles (BASF),
ranging from 0.5 to 3 microns in diameter, dispénsea homogeneous mixture of the silicon
oil Rhodorsif 47Vv500 (VWR Prolabo) and the Brookfield 60000 dfhis oil mixture
appeared to be a Newtonian fluid with a viscosf2.5 Pas. The volume fraction of
particles in suspensiom®, was fixed to 10%. In order to avoid the partiatgyregation under
colloidal forces, the MR fluid was stabilized bysarfactant - aluminum stearate (Sigma
Aldrich, 6.15 g/L), following the method describ&d details in Lopez-Lépert al'®. The
shear rheological properties of the MR fluid wereasured using a controlled-stress
rheometer Haake 150 RS in a cone-plate geometty dvemeter 35 mm and angle 2°. An
external uniform magnetic field, of intensity 0 6.8 kA/m, was applied perpendicular to the

measuring gap by a solenoid placed around the plate-geometry.

The results of the MR fluid shear rheometry arewshin Fig.3. At shear rateg;>150 &,

the MR fluid flow curves were almost linear and agpmated by the Bingham rheological
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law: 7 =1, +n 0y, with a dynamic yield stressp, defined by a linear interpolation of the
flow rate curve onto zero shear rate (Fig. 3a). dijxeamic yield stress was found to be a

power law function of the applied magnetic fieldteimsity, Ho: 7, —7,, O H,", with
n=1.31+0.13. Such field dependence of the yieldsstres close to the%-power law

predicted by Gindeet al**:

/ / \/—ED / /2
12H32 12H03c’

Ip =Tpet \/6 [ glo Tpot ’u3/2 glo (1)

where po=41t10° H/m is the magnetic permeability of vacuuMg=1.3610° A/m is the
saturation magnetization of carbonyl iron particlele Vicenteet al®’, Bossiset al?),
H=H¢/ 1 is the magnetic field intensity inside the MR @uwample andp=45 Pa is the MR
fluid dynamic yield stress at zero field. Such reeme dynamic yield stress at zero field could
come from colloidal interactions between particksd is introduced into the Ginder’'s

equation (1) as an additive constant.

So, the experimental points are well fitted by #giation (1) (solid line in Fig.3b) with a

numerical coefficient multiplying ¢M¢"°H *?equal to 0.074+0.02 instead of

J6® /422 = 0.127. The static yield stress was defined as a sheasssplateau at the
inception of the flow curve plotted in logarithmscale (cf. Barnés, Malkin®). It was also
found to be a growing function of the magneticdi®lut was a few times smaller than the

dynamic one (Fig.3b).
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Fig. 3. Shear rheometry of the MR fluid in the mese of the magnetic field normal to the flow: flourves (a)
at different magnetic field intensities; the yiedttess versus the magnetic field intensity (b)fidare (a), the
flow curves correspond to the magnetic field inignvarying from the lower to the upper curid;= 0, 6.1,
12.2, 18.3, 24.4 and 30.6kA/m. The solid line gufie (b) is a fit of the experimental dynamic yistdess by

the equation (1).

To inspect the inertia effects, the Reynolds numBea= povX /157, was estimated in the scale
of the flow cell and in the particle scale: O0.BEsiice<0.1 and 0.0003R§,<0.003,
respectively. Here/:Q/(rROZ) is the average MR fluid velocity at the orifiogs3.4 Pas is
the MR fluid viscosity at the shear rae>100 $', X corresponds to either the orifice

diameter (R,=0.3 mm) or the particle diameteragZl pum). The Reynolds number was
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calculated for the experimental range of the flates, 0.0050<0.05 cni/s. Because of the
low Reynolds numbers, the MR fluid flow is consiglgérto be laminar both in the flow cell

and around the particles.

In order to check the validity of our measuremewnts,tested our experimental cell with two
calibrated Newtonian oils with viscositieg=0.485 P& (silicon oil Rhodorsfl 47V500:;
VWR Prolabo) andj=2.5 Pas (homogeneous mixture of the Rhod&rshi7V500 oil with
Brookfield 60000 oil). The measured total presstmegp was separated into the Poiseuille
pressure drop and the excess pressure drop byirapglye Bagley correction, and both
experimental curvesAPpqidQ) and APeycesQ), were compared with the corresponding

theoretical dependencies:

AR, = &L

ois —4Q ’ (2)
R,
¥

AF::excess: 3 Q, (3)
Ry

whereL = 0.1+0.01 or 0.5+0.01 mm is the orifice lengttheTformula (3) expresses the
pressure drop for the creeping flow through annitély short circular orifice and is

recommended for estimations of the entrance artdpeassure losses in the pipe flows at low
Reynolds numbers (Happel and BrerifetVeissbertf). Note that the pressure losses
predicted by eq. (3) are symmetric about the a@ifdane, i.e. the entrance and the exit

pressure losses are the same and equal to a hlaé ekcess pressure drop (3).

We found that the experimental cundBp,iQ) andAPeyxces(Q) for the calibrated oils were

linear and their slopes were, at maximum, 7% latgan the slopes of the corresponding
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theoretical curves (2) and (3)AP.../Q=87L/(7R*) and AP, JQ=37/R’. Such

discrepancy could occur due to a small fluid irzeetifects near the orifice edges.

[11. Experimental results

The dependencies of the total pressure drop véieusate are shown in Figs. 4a, b for the
orifice lengths,L.=0.1 mm and 0.5 mm, as well as in the presencearatite absence of the
magnetic field. In all experimental cases, tkia.(Q) — relation appears to be linear. The
effect of the axial magnetic field is manifestedotigh an increase in the pressure drop at the
same flow rate (Figs. 4a, b). The total pressuop @ found to be directly proportional to the
flow rate: APy Q, and, within the experimental error, we do nodfany distinguishable
yield pressure drop, even at the magnetic fieldhigh asH,=30.6 kA/m. But, at the same
field intensity, the slope of th&P(Q) curve is 2.4 and 3 times higher than the slopeeed
field for the orifice of the length 0.1 mm and Orbn, respectively. This behavior could be
identified with zero or very low yield stress andthwenhanced MR fluid viscosity in

contraction flows and is discussed in detail atethé of this section.
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Fig.4. Total pressure drop versus the flow ratetfierorifice length 0.1 mm (a) and 0.5 mm (b). lsimepresent

a linear fit to the experimental data.

There is no distinguishable effect of the transyemagnetic field on the pressure — flow rate
characteristics of the MR fluid. Experimental psifior the intensity of the external magnetic
field Ho=4 kA/m and 25 kA/m (intensity of the internal fieis H=3.1 kA/m and 20kA/m,

respectively) gather, within experimental errogrg the straight line corresponding to zero
field (Figs. 4a,b). This result could be explairn®dthe total destruction of MR aggregates
and is discussed in more detail at the end ofsision. Thus, in contraction flows, the axial
magnetic field generates a rather strong growtthénslope of thé\P(Q) curve (hydraulic

resistance) while the transverse field does nathSun effect of the magnetic field orientation
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is opposite to that found in shear flows or pipevé (Shulman and KordonskyKuzhir et
al.”, Takimoto et al®®, at least at high Masson numbers. Note finallgt thoth in the
transverse and zero magnetic field, the yield pmesdrop is nonzero, even though it is small
compared to the experimental pressure raAge=0.163+0.073 bar for the orifice length 0.1
mm andAPy=0.283x0.035 bar for the orifice length 0.5 mm. Is@pparent yield pressure
drop is defined as an intercept of thi,(Q)—curve interpolated linearly until zero flow rate

and is associated to a shear thinning behavidreoMR fluid at small flow rates.

In Fig. 5, we present an example of Bagley plot enéat the axial magnetic field of an
intensity,Hy,=30.6 kA/m. The similar plots were done for all ekmental data and the excess
pressure drop was determined as described in #éwiopis section. By doing so, we supposed
that, in the presence of a magnetic field, theasue pressure drop could be decoupled from
the Poiseuille pressure drop in the same way azewt field. This assumption requires

verification by numerical simulations of the abrgpntraction flow.

3.0+

= 0.0042 cm/s
o 0.0084 cm’/s

2.5 s
A 0.0164cm’/s

2.0+

05 -/
00 e ———.
0.0 0.1 02 03 0.4 05 06

Total pressure drop, bar

Orifice length, mm

Fig. 5. Bagley plot for the MR fluid contractiorof at various flow rates and in the presence ddlaragnetic

field of intensity,H,=30.6 kA/m.
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Experimental dependence of the excess pressurevdreps the flow rate is shown in Fig. 6a
for zero magnetic field as well as for the axieldiof an intensityHy=30.6 kA/m. Similar to,
AP(Q) curves, theAPeyceslQ) curves are linear and the slope is 2.3 timeselang the
presence of the field than at zero field. The ddskm®e in Fig. 6a corresponds to the
theoreticalAPqyces(Q) dependence for zero magnetic field calculatedhieyeq. (3). We see
that the experimental dependence for zero fieldvedl parallel to the theoretical one but
slightly shifted upwards by 0.13 bars. This disarggy might be due to a slight Bingham

behavior of MR fluids in the absence of field, é&scdssed above.

The solid line in Figs. 6a is a theoretical pressdrflow rate relation corresponding to the
axial magnetic field,H,=30.6 kA/m, and derived in the next section. Qa#irely, the
magnetic field effect on the contraction flow of MIRids can be interpreted in the following

manner.
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When an axial magnetic field is applied, it creatkain-like clusters composed of magnetic
particles and aligned with the magnetic field lin#¢hen the MR fluid flows through a
contracted channel, these chains move togetherthétluid and are subject to a complex
velocity field. Upstream of the orifice, along tbleannel axis, the flow is extensional because
the MR fluid accelerates when approaching the a@ifiBoth the extensional flow and the
axial magnetic field orient the chains along tharctel axis. These chains are subject to

tensile hydrodynamic forces proportional to theeastonal rate, which varies significantly

from very low values, of the ordeg 0 Q/(7R°) 0 01+ <, far upstream of the orifice to

high values,¢ 010°+10* s*, at the orifice entrance. Thus, the chains mayé=stroyed in
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the vicinity of the orifice but can sustain thedé® deformations at some distance away from
the orifice. The chain length and the extensioriatosity are expected to be a growing
function of the distance from the orifice in thestrpam direction. A key assumption of the
present work is that the main entrance flow is @t in a narrow conical funnel separated
from the channel wall by a stagnant (recirculatimg non-flowing) fluid, as shown in
Fig.7a,b. One of the possible reasons for the fuilme is a large extensional viscosity of the
MR fluid in the presence of the longitudinal magndield. Being subject to a strong
elongation, the entry flow shrinks into a funneidaa large recirculation zone appears at the
channel corners (Fig. 7a), in the same way ash®rcontraction flows of polymers or fiber
suspensions (Bogér Mongruel and Cloitré). If the recirculation is not intense enough in
the presence of the magnetic field, the fluid motould stop within this zone and the corner
vortex likely transforms to a solid plug as showrfig. 7b. The entrance pressure loss for the
funnel flow appears to be much higher than thatforeeping Newtonian flow with a small
corner vortex. This could explain why the presdoss in the longitudinal magnetic field is

larger than in the absence of field.

Such behavior in the axial magnetic field can bétebereflected by the dimensionless

pressure-flow rate dependence, shown in Fig. 6b.&Xtess pressure drop is hormalized by

37Q

the one in the absence of magnetic fieMp,, .. (0) :¥, and the flow rate is replaced by

the shear Mason numbBer characteristic ratio of hydrodynamic — to — metgn forces,

__ 8y
Mnshear - 21 2
0 0

where y:4Q/(rR03) is the apparent wall shear rate at the orifice,

B~(po—1)/(tp+t2)=1 and 4>>1 is the relative magnetic permeability of carfoiron
particles. In experiments, the dimensionless pressiiop appears to be independent of

Mason number, within the range, 30rs,.5,<200. This can be explained as follows. The
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entrance pressure drop has two contributions: elaed to the solvent shear stress and the
second to the stresses generated by particle chEweschains are aligned with the stream-
lines and, perhaps, give a moderate contributionth® pressure drop. The solvent
contribution depends strongly on the apex anglheffunnel, and the apex angle appears to
be independent of Mason number in the interval M@s.2<200. From the theoretical point

of view, our model (solid line in Fig. 6b) predidise dimensionless pressure drop to be

-1
shear

inversely proportional to Mason numbefP, . (H)/AP,, (0)= A+ BOMn (section

IV.2). At Mason numbersMnghe4>100, the second term vanishes and the dimensgnles
pressure drop becomes independent of Mason nuraben experiments. At lower Mason
numbers, the theory predicts a non-negligible ¢fteédhe magnetic field on the extensional
stress generated by chains, so the dimensionlessye drop increases with decreasing

Mason numbers (or increasing magnetic field).

b
i

b

Fig. 7. Geometry of the abrupt contraction flowtle presence of a magnetic field axial to the chhanis.
Either a large vortex (a) or a dead zone withoytflow (b) are expected in the corner of the ugstiechannel.
This dead zone could appear because of field-irtlaggregation of the MR fluid. In both cases (aj &), the
MR fluid flows through a narrow funnel with a smablf-apex angle&. Spherical coordinate systemd ¢ is
introduced together with an apex point O in figog A schematic pressure profile along the chalamé is
shown in figure (c) and each term contributing e total pressure drop is represented. An exteallyon
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unyielded flow region is illustrated schematicaltyfigure (d). The extensional rate vanishes witthis zone
while the shear rate is finite and non-homogeneous.

In the transverse magnetic field, the structurthefMR fluid entrance flow should not be the
same, as in the case of the longitudinal field. Titasverse field forms the chains of
magnetic particles in the direction perpendicutathie main flow. The chains rotate under the
action of the hydrodynamic torque and can be eashBtroyed by the tensile hydrodynamic
forces. This is especially expected in our expenit@ecase of high shear Mason numbers
Mnshea®10+100. So, in the transverse magnetic field, the fMid behaves as a conventional
suspension of individual particles. Since the MiRdfldoes not show an enhanced extensional
response in the transverse field, the corner vpitex exists, should be as small as in the
absence of the magnetic field. Otherwise, if adspliug is formed instead of vortex, the
stagnation zone is also expected to be small cadgarthat in the longitudinal field because
the field-induced aggregation is more effectiveha longitudinal field. So, in the transverse

magnetic field at 1@Mnghea<<100, the flow is not restricted to a funnel, and #ntrance

pressure drop is field-independent.

Note as well that, if, in the transverse magnegtdf the particle aggregation seems to be
impossible at Mason numbers as highMagne,~10+100, there is no such evidence for the
longitudinal field. This is because the MR aggregaare aligned with the flow in the
longitudinal field and are not subject to shearodeftion but rather to extensional
deformation. In this case, the existence of agdesga defined rather by extensional Mason

number, which is a characteristic ratio of the logiynamic stretching force in extensional

874¢

,— - We shall see in the Section

flow to the magnetic force between particléén,, , =
HoBH,

IV.2 that the extensional raté, is an order of magnitude lower than the shear jateso the

extensional Mason number is of the ordeMog,~=1+10.
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Recall, finally, that the internal longitudinal nregdic field in the MR fluid inside the orifice

is about two times higher than the internal trarswdield at nearly the same external field.
Such a demagnetizing effect should influence tlessarre drop but is not strong enough to
explain a 3-times increase in pressure drop inldhgitudinal field and the absence of the

MR effect in the transverse magnetic field.

V. Theory and discussion

In this section we develop a theoretical model jotedy the dependence of the entrance
pressure drop versus the flow rate in the presefdbe longitudinal magnetic field. This
theoretical dependence is then fitted to experialem@sults and the free parameter — apex
angle of the funnel is deduced from this fit. Thedal consists of the rheological part
(section IV.1) and the fluid mechanics part (sectd.2). In the first part, a relation between
the normal stress and extensional rate is deriwdaguBachelor’'s slender body theory and
assuming a chain-like structure of the MR fluid.isThelation appears to be the first
theoretical law in extensional rheology of MR flsidin the second part, the above
rheological relation is integrated into a Cauchynmeatum equation, which is solved for a
contraction flow of MR fluid and, thus, the excesgssure drop is calculated and fitted to

experimental results.
IV.1. Uniaxial extension

In order to derive a relation between the normateils stresses and extensional rate, we
shall consider a homogeneous extensional flow, kvban be realized by stretching a fluid

column with a speed increasing exponentially withet (Macoscd®). Such flow is shown
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schematically in Fig. 8 and is characterized biyear velocity profile as followsv, = —gx;

& i : . .
v,=-—y and v, =+£[z. The rate-of-strain tensor is diagonal and its jgonents are
2

&

& : ._dv, . . .
w =&y =—— and g, =£&. Here é = dz is the extensional rate; the Cartesian reference
z

system, Oxyz, is chosen in such a way that thezisyparallel to the extension axis while x-
and y-axes are transverse to the extension axgpdSe that an external magnetic field, of
intensity Ho, is applied along the z-axis. The central strei@®-{on the z-axis) is therefore

parallel to the central field line while the pergria stream-lines (out of the z-axis) cross the

field lines at some, generally small, angle.

Traction
4 4

Stream-lines
v(xy.2)

Fig. 8. Uniaxial extension of the MR fluid in theegence of a magnetic field parallel to the extamsixis. The
particle chains are approximately aligned with stream-lines and subject to both the hydrodynaemisite and

the magnetic attractive forces.
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In this subsection, we intend to find the extenalaextra-stress generated by the magnetic

particles in the extensional flow. First, we needtroduce the following hypotheses:

1. The magnetic field induces MR fluid aggregatiand, at the first approximation, the

aggregates are supposed to be single straightschatim no interaction between them.

2. As already stated, the extensional flow tendsrient the chains along the stream-lines and
the magnetic field tends to align them with thédfienes. The chains therefore are oriented at
a certain angle between the velocity lines andfitié lines. Due to the flow geometry (Fig.
8), this angle should be quite small in the majart pf the flow, and, thus, it can be
considered that all the particle chains are aligngtth the flow lines. The field is also
considered to be parallel to the chains. This apsiom will significantly simplify
calculations of the particle stress and will afféet results by a minor relative error, of the

order ofd?, with a — the angle between velocity lines and chains.

3. Under hydrodynamic tensile forces, the chairsmkiin their center and form two identical
chains. In steady conditions, all the chains aseimed to have the same length defined by
the balance between the hydrodynamic tensile farmk magnetic attractive force between

two central particles.

4. The chains length|.2is much higher than the particle diametex, [2ut much lower than
the characteristic length,, of the flow cell: 2<<2l<<L. The left inequality suggests low

Mason numbers, i.e. high magnetic fields and/or ésensional rates.

5. The Batchelor®?’ slender-body theory is employed for the long chaim extensional
flow. At first approximation, we consider dilute spensions of chains which imposes the

restriction on the concentration of the MR flui@¥<<(a/l)>. From Batchelor's theory the
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following formulas are derived for the tensile ferexerted by the solvent per unit chain

length (4), the extra stress tensor (5) and exteasstress components (6), (7):

_ 2m, .
= 4
" In(21/a) & @)
) 1 )
Ty = 256 +’7ch(ninknr}n_§5iknnnjglm (5)
1 )
Tw= Tyy = _(,70 +§’7chjg (6)
2 )
Tzz = [,70 +§’7chj£ (7)

In these formulaes), is the solvent viscosity is the distance along the chain axis from its

center,n is the unit vector along the chain axi, is the rate of strain tensody is the

Kronecker deltas is the viscosity coefficient associated with visedriction due to the

presence of chains:

2 | /a)?
Och:_q) ( )

3 @) ®

with ®=® being the volume fraction of chains in MR fluiddag® - the volume fraction of

magnetic particles.

The chains experience the maximal tensile fofgein their center, and this force is obtained

by integration of the force density (4) over thaichength:

_ _ mé?
B "i s = In(2! / ) ©
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The magnetic force between two touching centraiigas of the chain is proportional to the

particle cross-sectiomg®
F, = f,0m%), (10)

where f, is the magnetic force per unit particle crossisactThis force depends on the
magnetic field intensity and on the magnetic propsrof particles. The equilibrium chain
length, or rather chain aspect rafi@, is obtained by equating the hydrodynamic forget¢9
the magnetic force (10):

(/a° _f,
In(2l /a) né°

(11)

Substituting the later expression into (8) and then formulas (6), (7), we get the final
expressions for the stress normal components, itee rformal stress difference and the

extensional viscosity of an MR fluid:

[ =T, = Mo~ 2 Of =g =T, (12)
9 3
. 4 . 2
Tzz:2,70£+_¢fm:2,70£+_TD (13)
9 3
.2 .
Tzz_rxx=370£+§q)fm=3,70£+rtl (14)
r,,—T 20f T
)=z XX — + m— +-D 15
p 37 % 3, p (15)

The first term of the equation (14¥7,¢, is the extensional extra stress generated by the
Newtonian solvent with an extensional viscosiy,, being three times the shear viscosity.

The second term represents the extra stress gedelst chains and appears to be
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independent of the extensional rate. This is sinpglgause the chain stress is proportional to
¢ and to the square of the chain length, and ther|at, varies as¢™ (see eq. 11). So, this
term is associated with a “dynamic extensional dyistress”, 7o, obtained by the linear
interpolation of the flow curve,,—7,, = f (£ dn zero extensional rate:

2
Zof . 16
3 P (16)

Iy =
In order to evaluate the yield stress (16), welsks® the Ginder’'s expression for the

magnetic forcesk, andf;, between two touching particles, which gives reabte results

for the magnetic field range.005<H/Ms<0.1 or &H<140 kA/m (Ginder et al'®, Bossiset

al.?):
F, =2m,M Ha? (17)
_ R
f = e 244,M H (18)

Here Ms is the saturation magnetization of magnetic plati@andH is the mean magnetic
field intensity in the MR fluid sample. If the MRufd column (Fig. 8) is relatively long and
thin than the internal field is roughly equal te texternal applied fieldd=H,. Substituting
the formula (18) into (16), we get the expressiamthie extensional yield stress as function of

the magnetic field:
Ty :ng/JOMSH (19)

We give now a numerical estimation of the dynamieldy stress in extension for a
conventional MR fluid (like the one used in our edments) with the particle saturation

magnetization,Ms=1.3610° A/m and the particulate volume fractio®=0.1. A value
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Iex=4600Pa is obtained for a magnetic field intengity20 kA/m. The dynamic yield stress
measured in shear at the same intensity of thenaltdield, H=20 kA/m (corresponding to
the external applied fieldjo=tH= 30.6 KA/m) isTshea580Pa and is a few times lower than
the predicted extensional yield stress. The th@aletshear yield stress predicted by
Ginder's® model is7nea®1000Pa, i.e. larger than the experimental she#t gteess, but still

much less than the extensional one, at least aératmlmagnetic fields.

It is interesting to inspect the difference betwdem shear and extensional yield stresses at
high magnetic fields, when the magnetic momentpasficles are completely saturated. In

this case, the magnetic force between particlggaportional to the square of the particle

, o 1 1 . ,
saturation magnetizatiorf;,, =E7ZU0M Jas, f. =gﬂoM ¢ and the extensional yield stress

will be rexf':%bf =—;(D,u0|\/| 2=0.1UyuM 2. The shear yield stress at saturation

m

19. S
I' . Tshear

magnetization is given by Gindet a =0.0860@,M Z. So, in contrast to the case

of intermediate fields, at high fields, the extemsil yield stress is expected to be only

slightly higher than the shear yield stress.

To explain the difference between the extensiomal shear yield stresses, it should be
remembered that both are proportional to the magimgerparticle forcd,,. According to the
Ginder's model of MR fluid shear deformation, thartcles in chains are supposed to
displace affinely under applied strain, being sefgt one from another by a small gap,
increasing with the strain (Gindest al’®, Bossiset al®). The magnetic force between
particles decreases drastically with the interplrtgap. So the force between non-touching
particles in shear deformation is smaller than tbece between touching particles in

extensional deformation. This could explain thgéadifference between the shear and the
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extensional yield stresses at low-to-intermediggiel$. At high magnetic fields, the magnetic
force becomes less sensitive to the gap betweditlpar and could be of the same order of
magnitude in shear and in extension, interpariyelp being always small. This could be a

reason for the small difference between both ys#lesses at high fields.

[V.2. Contraction flow

We come back now to the contraction flow of MR dlun the magnetic field parallel to the

flow cell axis (Fig. 7). We search for the excessspure drop as a function of the flow rate
and the magnetic field intensity. In order to désethe hydrodynamics of this problem, we
extend the model of Mongruel and Clotfréo the case of MR fluids and introduce the

following assumptions:

1. As supposed above, a large ring stagnation @mung or vortex) occurs at the corner of the
upstream channel. The main flow is concentrated marrow conical funnel with an apex
angle 2h<<172, as depicted in Fig. 7b. We introduce a sphkdoardinate systenr,@,¢
with the origin in the funnel apex and suppose thatvelocity is radial within the funnel and
vanishes at the funnel boundary=v(r,8),, v(r,8,) =0 with i, — the unit vector along
the radial axis. Because of the symmetry reas@yéfocity is considered to be independent
of the polar coordinatep The rate-of-strain tensor in the funnel flow takbe following

form (Binding®):

ov 1 ov 1
— — 0 & = 0
or 2r 06 251
s L Y olelly iz 0 (20)
2r 06 r 2 2
0 o Y| lo 0o -l
r 2
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with & E? and ysig(‘% being extensional and shear rates, respectively.
r r

2. Since the Reynolds numbers are very small (maxin®.1, cf. section Il), any inertia
effects are neglected both in the particle scateiarthe flow cell scale. The gravity forces
and the surface tension of the MR fluid drop whfohms at the orifice outlet are also
neglected because the hydrostatic and capillaigspre drops are much less than the applied

pressure drop®&P~1bar.

3. We adopt the same assumption for the chainHeagjin the case of the uniaxal extension:
2a<<2<<2R,y, where Ry=0.3 mm is the orifice diameter. The validity ofstassumption will

be discussed below.

4. As was shown by numerical simulations (cf. FigtBe magnetic field intensity in the MR
fluid is not completely homogeneous but is sliglitigher at the orifice entrance (35.7 kA/m)
than far upstream of the orifice (30.6 kA/m). Aetfirst approximation, we neglect such 14%
non-uniformity of the magnetic field and considee field inside the MR fluid to be uniform

with an intensity equal to the one of the exteapdlied magnetic fieldd4=Hy=30.6 KA/m.

5. Since the funnel’'s apex angle is small, the hgisment between chains, flow lines and
magnetic field lines is negligible. Both the magndild lines and the chains are assumed to
be perfectly aligned with the stream-lines. Beiragaiel to the flow, the chains are not

affected by the shear ratg, but experience tensile forces coming from exteradioate, ¢ .

So, the chain length in contraction flow can benfibun the same way as for the uniaxial
extension, i.e. by the expression (11). Substigutiis expression into the formula (8) and
then into (5), the extra stress tensor in the epstrpart of the flow will take a simple form,

as follows:
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2 . .
[2’70 +§”chj£ 4 0 2/70£+§r,3 N4 0
. 1 . . .1
T= /4 _[’70 +§”chj£ 0 =l Y _’70‘9_5 o 0
1), _p-1
0 0 _(’70 +§’7chj‘9 0 0 To® 3 To
(21)

with 7p being the dynamic extensional yield stress defibgdthe formulas (16), (19).

Inspecting the last expression, we note that, intrection flow, MR fluid behaves as a
Bingham fluid with respect to extensional deformatand as a Newtonian fluid with respect
to shear deformation. This is explained by thegmrélignment of the chains with the flow:

they resist to the extensional flow and do not shawresistance to the shear flow.

Substituting the stress tensor (18) into the moomargquation,grad(P) = div(t), and taking
into account of the MR fluid incompressibilitdiv(v) = , e arrive to the equations for the

pressure and velocity fields, as follows:

(22)

2
a_P:”_g a_\;+_1 Bal +2TD
or r-\o0g° tan@ 06 r

2
0P OV 2V (23)
060 or r 06

X
Q=—2n2jv13in6b|9 (24)
0

In the limit of the small angle®) we replace siland ta@in egs. (22), (24) by and neglect

any pressure variation along th#coordinate: EG_P«G_P. Associating the boundary

r og or
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condition, v(r,8,) = O, the system (22)- (24) admits the solution for ¥ecity profile and

the entrance pressure gradient, as follows:

- 2Q 2 _ 2
Ve [r8)2-(ro)?] (25)
G_P =—8'70Q4 +ﬂ (26)
or 7(rg,) r

The velocity profile (25) appears to be the sameoasa Newtonian fluid (Happel and
Brennef?). This is because no unyielded zones are expéttée main funnel flow, at least
in the funnel domain extending from the orifice tgpa few orifice radii upstream of the
orifice. The pressure gradient (26) consists ofisgous term (first term) and a yield term
(second term) coming from the dynamic extensionaldystress,ip. To get the entrance
pressure drop, we integrate the pressure grad@8jt i6 the limits between the radial

coordinate corresponding to the orifice positigrRy/ &, and some large radius far upstream

of the orifice,r, =R, /6;:

AP,

entry

=P(r,) - P(r,) =—387;7£% + 21, In% (27)

0

Here R, is a “cutting” radius, which is the radius of tkhene basis corresponding to a
transition between the funnel flow in the vicindf/the orifice and the pipe flow far upstream
of the orifice (Fig. 7b). In the formula (27), wente omitted the term oiR,™ supposing
(R,/R)®>>1. From the eq. (27), we see that our model predigts different magnetic
field effects on the entrance pressure drop. Rinsthalf-apex angleg should decrease with

an increasing field. Since the Newtonian part ef phessure drop varies 8", the slope of

the pressure — flow rate curve will be an increggumction of the magnetic field. Second,
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R,

the yield pressure droj2r, Inﬁ, appears in the presence of the field, as a nsdatfen of

the extensional yield stress. At applied magneattdf Hp=30.6 kA/m, the yield stress is
estimated to berp=7000 Pa. Both unknowng, and R, are free parameters of the model

and their values are defined below by a fit of éxperimental data with the eq. (29). We

shall give now a qualitative description of theaegmeters.

Concerning the half-apex ang®, Cogswelf® and Mongruel and Cloittéhave evolved two

1/2

different approaches and found the same scalingdathis angle:g, U (r7/ A)™ <, with 7 and

A being the shear and the extensional viscositpe@srely. Mongruel and Cloitre"$theory

is valid for fiber suspensions with both viscositiadependent of the strain rate. In our case,

the extensional viscosity of the MR fluid, = 37, +T—‘D (cf. eg. 15), is a decreasing function
&

of the extensional rate and a growing function te¢ tagnetic field. So, the angt is

&7o¢

expected to be a function of the extensional Masanber,Mn,, = > rather than of
B H,
the magnetic field solely. Such dependerésef(Mney) could render the first term of eq. (27)

nonlinear on the flow rate.

The second parameteR, — basis of the funnel cone — is expected to bdlsnthan the
channel radiu®k=2.5 mm because the funnel has often a roundecestBamet’, Fig. 7a).
Furthermore, the funnel can be bounded from abgvarbextensionally unyielded region,
shown schematically in Fig. 7d. This region coroeg}s to a domain where the normal stress

difference, r,, —7,,, is less than the extensional yield stregsand the extensional rate is

1 hrr

zero. An unyielded region is specific for contrantiflows of a conventional Bingham fluid
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(Abdali and Mitsouli&®) and is situated at the distance of the ordehefchannel radiug,

from the orifice.

The calculated entrance pressure drop (27) is mbtthe desired quantity — the excess
pressure drop. We must add an exit pressure dreglapeed downstream of the orifice. For
the better understanding, we represented eachupee$sss component in a schematic
pressure profile in Fig. 7c. Downstream of theiceif large MR fluid drops are periodically
formed, grow, detach from the flow cell and fallndo In the downstream drop, magnetic
particle chains experience a biaxial extensioiis vell known from the theory (Brenrféx
and experiments (Cloitre and Mongrifgkhat, in biaxial extension, the rod-like partlere
oriented transversely to the stream-lines. Oncpgreticular to the magnetic field lines, the
magnetic interactions between particles becomelsieuand the chains break. So, the axial
magnetic field is supposed to influence neither MR fluid rheology in the downstream
flow, nor the exit pressure drop. Since the pressoss predicted by eq. (3) is symmetric

about the orifice plane, the exit pressure droplmfound as half of the excess pressure drop

3):

ap, = q, (28)

2R}

with 77 being the MR fluid viscosity at zero field. Notgat, in the exit flow, all the pressure
variation takes place in the vicinity of the ordicsuch that the size and the shape of the MR

fluid drop should not influence the exit pressurssl (28).

Finally, the total excess pressure drop in thelaragnetic field is obtained by summing the

expressions (27) and (28):
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AP, .= AP

excess entry

+APR,,, = 8, ,31 %+2rDln& (29)
3mg, 2 R
The best fit of the experimental data with the ¢igua(29) is obtained for the angi#=7.5’

and the cutting radiu®, =0.2R=0.5 mm (solid line in Fig. 6a). Note that the giedtress,
Ib=7000Pa and the parametB; =0.5 mm give us a yield pressure drop value of @47

small enough, as compared to the experimental ymessange (0.5-2.5 bars). So, in
experiments, this yield pressure loss was simplgigiimguishable. The pressure-flow rate

relation (29) can also be presented in dimensisrfi@sn by normalizing the excess pressure

37Q

5 - In this case, the dimensionless

by the one in the absence of magnetic fid&, .. (0) =

pressure drop appears to be inversely proportitmahe dimensionless flow rate — shear

Mason numberAP, _ (H)/AP_ (0)= A+ BOMn _ .-, with A andB — constants depending

shear?
on physical properties of the MR fluid. Such the¢ioced dependence (solid line in Fig. 6b) is
consistent with Bingham behavior of the MR fluidertensional flow, predicted by the eq.
(11). At low Mason numberdnspea<<30, the dimensionless pressure drop diverges and, a

high Mason numberdyinghea>>100, it varies only slightly tending to a Newtoniéimit

AF?sxces& H)/APeXCeQ) =2.3.

It should be noted that the present theory has Hedwmed for the chains with a high aspect
ratio, at least/a>10, and the stress tensor was calculated using theufae valid for dilute

suspensions of long fibrous aggregates. To chedkeifrestriction on the chain length is
satisfied, we estimate the chain aspect ratio uiegormulas (11), (18) with the magnetic

field strength H,=30.6 kA/m. In the worst case of the maximal exiemsl rate,

(=R16,,00 — 47?53 = 2500 &, the aspect ratio is about 7, but is well abovenithe

€ = €]
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major part of the funnel. So, the slender body eagh is considered to be appropriate for the
stress calculations. At the same time, at theaarifevel, the chains remain relatively short
(21~20um), compared to the orifice diameter RG2300 upm). Thus, the assumption
2a<<2<<2R, holds as well. Concerning the non-diluteness ef EhR fluid, the normal
stresses (6), (7) could be corrected by replacimg éxpression (8) for the viscosity
coefficient 7., by a more rigorous expression derived for conetdedr aligned fiber

suspensions (Shagfeh and FredricR§on

" 4o (1/a)?
e =3 ello In(@/ ®_)+InIn(/®,,)+0.1585

(30)

For a given chain aspect ratida=7, the corrected stress will be 1.6 times thesstre

calculated for the dilute regime. At the same time;oncentrated regime, the chains will be
subject to higher tensile hydrodynamic forces, teey must be shorter than at the dilute
regime. Thus, the total concentration effect on $tress enhancement is expected to be

weaker than the one predicted by eq. (30).

In perspective, flow visualization with very diludR suspensions could be useful, in order
to confirm the funnel flow hypothesis. To overcothe problem of MR fluid opacity, one
could try to employ transparent magnetic partid@®lo®*; Lahanaset al®¥. The further
development of the theory will touch, first of &l field-dependence of the apex angle; the
stress tensor in the upstream funnel will be cateal more rigorously taking into account a
finite aspect ratio of the chains as well as a hgsment between the stream-lines and the
chains. Finally, direct numerical simulations of MIRid contraction flows could be useful
for the analysis of both the velocity profile arftetMR fluid structure in the upstream

channel.



37

Conclusions

In this paper, we have presented the first experiatestudy of the MR fluid contraction flow
and we have focused on the extensional responbtRafiuid in the presence of a magnetic
field, axial or transverse relative to the chanaris. The total pressure drop has been
measured as a function of the flow rate, and tloesx pressure drop has been derived from
experimental data using the Bagley correction pgooe Conclusions can be summarized as

follows:

1. In the axial magnetic field, the pressure-fl@terdependence remains linear as in the case
of a Newtonian fluid. The magnetic field effectnmnifested through a 2.3-times increase in
the slope of theé\Peycs(Q)-curve atHy=30.6 KA/m. To explain this behavior, observed at
shear Mason numbers, 4PInshea<<100, an assumption of the funnel flow was introduce
and the funnel apex angle was supposed to deongtiisthe magnetic field growth. The sink
flow model was proposed with a free parameter +dg@x angle,&. The theory fits the

experimental data reasonably wellgt7.5".

2. At the same range of Mason numberssMBsn.a<<100, the transverse magnetic field has
not shown any distinguishable effect on the presflow rate characteristics. This is
explained by a total destruction of the MR fluidgegpgates by large hydrodynamic forces.
The major difference between the two cases of axidltransverse magnetic fields is that, in
the axial field, the chains exist, they generatarge extensional stress and induce a narrow
funnel flow. On the other hand, in the transveist&lf there are no chains, no large corner

dead zones, and no funnel flow expected.

3. In addition to the contraction flow, we madehadretical study of an uniaxial extension

flow of MR fluids in a magnetic field, parallel the extension axis. This study allows us to



38

better understand the MR fluid behavior in entrafho&s. The chain rheological model has
been developed on the basis of the Batchelor'sistebody theory. A Bingham-like law has

been predicted for the normal stress differencg:—r1,, =37,6+7,, with a dynamic

extensional yield stressp, being a few times larger than the yield stresssueed in the
shear flow at intermediate magnetic fields. In higagnetic fields, only a slight difference is

expected between extensional and shear yield efress
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Figure captions

Fig. 1. Experimental flow cell. 1 — plexiglass tuBe- upper brass lid; 3 — lower brass lid; 4 —
thin titanium disk with a coaxial orifice, 0.3 mm diameter; 5 — MR fluid; 6 — hanging MR
fluid drop; 7 — pressure transducer; 8 — air reserviL; 9 — precision control valve.

Helmholtz coils and electronic balance are not showthe schema.

Fig. 2. Distribution of the magnetic field strengtlong the flow cell axis in the downstream

direction. The orifice length is=0.5mm. Two vertical lines indicate the orifice pias.

Fig. 3. Shear rheometry of the MR fluid in the grese of the magnetic field normal to the
flow: flow curves (a) at different magnetic fielaténsities; the yield stress versus the
magnetic field intensity (b). In figure (a), thew curves correspond to the magnetic field
intensity, varying from the lower to the upper @irHo= 0, 6.1, 12.2, 18.3, 24.4 and

30.6kA/m. The solid line in figure (b) is a fit die experimental dynamic yield stress by the

equation (1).

Fig.4. Total pressure drop versus the flow ratettier orifice length 0.1 mm (a) and 0.5 mm

(b). Lines represent a linear fit to the experirakdata.

Fig. 5. Bagley plot for the MR fluid contractiorof at various flow rates and in the presence

of axial magnetic field of intensityy=30.6 KA/m.

Fig. 6. Dimensional (a) and dimensionless (b) ddpanies of the excess pressure drop
versus the flow rate in the absence and in theepoesof a magnetic field axial to the channel

axis,Hp=30.6 kA/m.
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Fig. 7. Geometry of the abrupt contraction flowtle presence of a magnetic field axial to
the channel axis. Either a large vortex (a) oraddmne without any flow (b) are expected in
the corner of the upstream channel. This dead zon&l appear because of field-induced
aggregation of the MR fluid. In both cases (a) én)l the MR fluid flows through a narrow
funnel with a small half-apex anglé. Spherical coordinate system{¢ is introduced
together with an apex point O in figure (b). A stiaic pressure profile along the channel
axis is shown in figure (c) and each term contiiimutto the total pressure drop is
represented. An extensionally unyielded flow reg®mlustrated schematically in figure (d).
The extensional rate vanishes within this zone evitile shear rate is finite and non-

homogeneous.

Fig. 8. Uniaxial extension of the MR fluid in theegence of a magnetic field parallel to the
extension axis. The particle chains are approxilpyaégned with the stream-lines and

subject to both the hydrodynamic tensile and thgmafic attractive forces.



