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Stationary states and frational dynamis in systems with long range interationsTineke Van den Berg1, Duio Fanelli2, Xavier Leonini31. IM2NP, Aix-Marseille Université, Centre de Saint Jér�me, Case 142, 13397 Marseille Cedex 20, Frane2. Dipartimento di Energetia "Sergio Steo", Universita' di Firenze, via s. Marta 3, 50139 Firenze,Italia and Centro interdipartimentale per lo Studio delle Dinamihe Complesse (CSDC) and INFN3. Centre de Physique Théorique, Aix-Marseille Université,CNRS, Luminy, Case 907, F-13288 Marseille edex 9, FraneDynamis of many-body Hamiltonian systems with long range interations is studied, in theontext of the so alled α−HMF model. Building on the analogy with the related mean �eld model,we onstrut stationary states of the α−HMF model for whih the spatial organization satis�es afrational equation. At variane, the mirosopi dynamis turns out to be regular and expliitlyknown. As a onsequene, dynamial regularity is ahieved at the prie of strong spatial omplexity,namely a mirosopi inhomogeneity whih loally displays sale invariane.The out-of-equilibrium dynamis of many body sys-tems subjet to long range ouplings de�nes a fasinat-ing �eld of investigations, whih an potentially impatdi�erent domains of appliations. In a long range sys-tem every onstituent is simultaneously soliited by theensemble of mirosopi ators, resulting in a omplexdynamial piture. This latter senario applies to a vastrealm of fundamental problems, inluding gravity andplasma physis, and also extends to a rih variety of rossdisiplinary studies, lassially falling within the bound-aries of biologial and soial sienes, where an intriatenetwork of mutual interations between agents has to beaommodated for [1℄. In partiular, and with spei�emphasis on the peuliar non equilibrium features, longrange systems often display a slow relaxation to equilib-rium. They are in fat trapped in long-lasting out of equi-librium regimes, termed in the literature Quasi Station-ary States (QSS) whih bear distint harateristis, asompared to the orresponding deputed equilibrium on-�guration. A paradigmati representative of long rangeinterations, sharing the mean �eld viewpoint, is the soalled Hamiltonian Mean Field model, whih desribesthe oupled evolution of N rotators, populating the uni-tary irle and interating via a osines like potential. Inthe limit of in�nite system size the disrete HMF modelbeomes a Vlasov equation for the evolution of the sin-gle partile distribution funtion[2℄. This leads to a sta-tistial based treatment, inspired to the seminal work ofLynden-Bell, whih revealed the existene of two di�erentlasses of QSS, spatially homogeneous or magnetized[3℄.More reently, and still with referene to the HMF asestudy, stationary states have been onstruted using adynamial sheme whih exploited the formal analogywith a set of unoupled pendula [4℄. This represented asubstantial leap forward in understanding of the dynam-ial properties of the QSS in the HMF model, beyondthe aforementioned statistial approah. Indeed, it wasunderstood that the mirosopi dynamis in the magne-tized stationary state is regular and expliitly known, anobservation whih ontributed to shed light onto the puz-zling abundane of emerging regular orbits as revealed in[5℄.These last results have been though obtained in the

framework of mean �eld systems: The atual distanebetween partiles does no expliitly appear in the HMFpotential. In this letter we aim at bridging this gap, byfousing on the so alled α−HMF model [6℄. In its longrange version (α < 1 as disussed below), this model be-haves at equilibrium as the HMF, see for instane [3, 7, 8℄.We may then ask if the same orrespondene appliesto the out of equilibrium dynamis. QSS exists as de-pited in[9℄, but, an one still appreiate the asymptotitrend towards regularity? How does the spatial organi-zation impat on the aforementioned features? It wasalso shown reently that frational alulus may be aruial ingredient when dealing with long range systems[10℄, and we shall see how this point enters the piture inthe onsidered ase. To antiipate our �ndings, we shallhere show that all stationary states of the HMF modelare shared by the α−HMF model: Partiles still exhibitregular orbits, at the prie of a degree of of enhanedmirosopi spatial omplexity, whih materializes in asmall sale inhomogeneity being loally sale invariant.Let us start by introduing the governing Hamiltonianwhih an be ast in the form:
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 , (1)where qi stands for the orientation of the rotor oupy-ing the lattie position i, while pi labels the onjugatemomentum. The quantity ‖i − j‖ denotes the shortestdistane on the irle of perimeter N − 1. The ouplingonstant between lassial rotators deays as a power lawof the sites distane. The HMF limit is reovered for
α = 0. For N even, we have
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, (2)whih guarantees extensivity of the system. The equa-tion of motions of element i are derived from the aboveHamiltonian and an be written as follows

ṗi = − sin(qi)Ci + cos(qi)Si = Mi sin(qi − ϕi) . (3)



2where use has been made of the following global quanti-ties:
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, . (5)These identify the two omponents of a non-loal mag-netization per site, with modulus Mi =
√

C2
i + S2

i , andphase ϕi = arctan(Si/Ci). In doing so, one brings intoevidene the formal analogy with the HMF setting. In-deed we notie that eah individual α−HMF partileobeys a dynamial equation whih losely resembles thatof a pendulum. This observation represented the start-ing point of the analysis arried out in [4℄, where station-ary states were onstruted from �rst priniples. Morespei�ally, the authors of [4℄ imagined that the system ofoupled rotators reahed a given equilibrium state, har-aterized by a onstant magnetization in the limit for
N → ∞ . Then, the HMF model is mapped into a setof N unoupled pendula, onstrained to olletively re-turn a global magnetization idential to that driving theirindividual dynamis. Self-onsisteny is hene a ruialingredient expliitly aommodated for the formulationproposed in [4℄. Tehnially, the stationary state is builtby exploiting the ergodi measure on the torus originat-ing from the pendulum motion, a working ansatz that weannot invoke in the ontext of the α−HMF, due to siteloalization. Eventually we will overome this di�ultyby onsidering the ontinuous limit. We notie that, forlarge N , and assuming 0 < α < 1, the following estimateapplies

Ñ ≈
2

1 − α
(N/2)1−α . (6)We an then use expression (6) in Eq.(4) and, asN → ∞ ,introdue the ontinuous variables x = i/N and y = j/Nand arrive to the following Riemann integral

C(x) =
1 − α

2α

∫ 1/2

−1/2

cos (q(y))

‖x − y‖α
dy , (7)where ‖x−y‖ represents the minimal distane on a irleof perimeter one. By invoking the Riemann-Liouville for-malism on the irle, we reognize the frational integral

I1−αand onsequently write
C(x) =

1 − α

2α
Γ(1 − α)I1−α (cos q(x)) . (8)A similar relation holds for the S(x) omponent. Study-ing the α−HMF dynamis implies haraterizing the evo-lution of the salar �elds q(x, t) and p(x, t) whih areruled by the frational (non-loal) partial di�erential

equations
∂q

∂t
= p(x, t)

∂p

∂t
=

µ

2α
Γ(µ) (− sin(q)Iµ (cos q) + cos(q)Iµ (sin q)) .where µ = 1 − α. At variane with the simpler HMF(α = 0) model, the spatial organization q(x) matterswithin the general setting α > 0, an observation whih, asantiipated above, poses tehnial problems to a straight-forward extension of the analysis in [4℄. At �rst sight, itwould be tempting to require C(x) = 〈C〉 = M , if on-ditioning, at the same time, the system to Iµ (sin q) = 0.The translation invariane along the lattie is also likelyto statistially lead to suh a state[8℄. For �nite size sys-tems, the latter identity an be solely mathed by thetrivial state where all q are equal. Conversely, in the in-�nite N limit, and realling expression (8), we requirethat:

Dα cos q =
dα cos q

dxα
= 0 . (9)where the operator Dα stands for the frational deriva-tive. Trivial states as evidened in the �nite size approx-imation are also solutions of this equation. However, aswe will argue in the following, the ontinuum limit en-ables us to ompute an independent set of admissiblesolutions. This task is aomplished by exploiting thefat that α < 1, whih makes the integral ∫

1/‖x‖αdxonvergent near 0 and that the funtion 1/‖x − y‖α issmooth. Notiing that we rewrite Eq. (7) as:
C(x) =
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dy,using the regularity of 1/‖x−y‖α, we an extrat it fromthe integral:
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∫ (k+1)/L

k/L

cos q(y) dy,with yk ∈ [k/L,(k + 1)/L] [14℄. We now assign the q val-ues on a irle so that in any small interval the averageof cos q(x) is onstant and equal to the magnetization ofthe system. This proedure implies a peuliar spatial or-ganization whih returns a onstant oarse grained imageof the funtion cos q, equal in turn to M . We have now aon�guration whih gives C(x) = M , a onstant funtionon the irle. However we still need stationarity. This anbe ahieved by refering to the available stationary distri-bution for the HMF. The reipe goes as follows: we pikup q and p values as originating from this distribution, soas to ensure that the time evolution will only onsist ofa loal reshu�ing of the atual phase spae oordinate,without a�eting their assoiated oarse grained value.In doing so, we hene obtain a family of stationary solu-tions of the α-HMF model. [15℄
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Figure 1: QSS for the α-HMF model built using a stationarysolution of the HMF model orresponding to a one partilePDF of the type f(I, θ) = δ(I − I0)/2π (one torus M = 0.5).The system is evolved via the α-HMF dynamis with α =
0.25. The �gure displays the resulting distribution of ations
I at t = 200, for di�erent sizes. The integration uses the�fth order optimal sympleti integrator [11℄ and a time step
δt = 0.05.The mirosopi dynamis of the partiles in suhstates an be mapped into a pendulum motion and ishene integrable. Interestingly, the spatial organizationis loally sale free. The funtions q(x, t) and p(x, t) arethus �very ompliated� along the spatial diretion, whiledisplaying a regular time evolution and no haos. In or-der to validate this result for a �nite size sample on theoriginal lattie we proeed as follows. We onsider a sta-tionary state of the HMF onsisting of just one toruswith assoiated magnetization M = 0.5. In pendulumation-angle variable we refer hene to a one partile dis-tribution of the type f(I, θ) = δ(I − I0)/2π. We arefousing our attention on an �individual omponent� be-longing to the extended set of a linearly independent el-ements, whih de�ne the QSS basis. In order to be aslose as possible to the stationary state of the α-HMFmodel, we simply distribute randomly on the lattie thevalues piked from suh, analytially aessible, distribu-tion. The analysis for di�erent values of the number ofsites and α = 0.25, is then performed by monitoring thevalues of the ation and shows as expeted a trend to-wards the stabilization of suh a state as N inreases (seeFig. 1). We also heked that as expeted inreasing thevalue of α, whih weakens the oupling strength, impliesinduing a more pronouned destabilization of the state,whih an be e�etively opposed by inreasing the num-ber of simulated rotors. The solutions here onstrutedare hene stable versus the α-HMF dynamis, providedthe ontinuum limit is being performed and so represent aonsistent analytial predition for the existene of quasi-stationary states, beyond the original HMF setting.To further srutinize the dynamis of the α-HMFmodel we turn to diret simulations. We initialize thesystem in q = 0 and a Gaussian distribution for the on-jugate momenta p [7℄. The system state is monitoredby estimating the average magnetization amount as a
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C(x, t)2 + S(x, t)2 versus time andestimated an individual ation, stemming from a Hamil-tonian pendulum, whih would give rise to an equationof motion formally idential to the Eq.(3). Results of theanalysis are depited in Fig. 4. One learly sees that thefuntion M(x, t) is homogeneous and presents a modest

dependene on t, thus suggesting that the distributionof q(x, t) is a solution of Eq.(9). The plot of ation ver-sus time as depited in Fig. 4, learly indiates a degreeof enhaned spatial omplexity, nearby partiles not be-longing to the same tori. We �nd in these simulationsand in this (N - �nite) steady state the same distintivefeatures of the stationary solutions as depited earlier.To onlude, in this Letter we have shown that sta-tionary solutions for the mean �eld HMF model are aswell stationary ones of the α-HMF model. Mirosopidynamis in these stationary states is regular, and expli-itly known. The prie to pay for this mirosopi regular-ity in time is a omplex, self similar, spatial organizationorresponding to the solution of a frational equation.When turning to diret numerial investigations we haveidenti�ed a series of quasi-stationary states, whih or-responds to steady states. Still, suh states share manyof the features of their stationary ounterparts. The im-portane of these onlusions are manifold: On the oneside, we on�rm that QSS do exist in a generalized nonmean �eld setting [9℄. Also, we validate a theoretialmethod to onstrut, from �rst priniple, (out of) equi-librium stationary solutions. Finally, the fat that inlong range systems stationary states (among whih wemay of ourse ount the equilibrium) whih display regu-lar mirosopi dynamis do exist, allows us to dispose ofan enormous amount of information regarding the inti-mate dynamis of a system frozen in suh state. Lookingforward, we may speulate that the knowledge of the mi-rosopi dynamis an somehow enables one to hallengethermodynamis by setting up appropriate Maxwell dae-mons. Note also, that the regularity of the dynamis inthe large N limit, indues from a statistial stand pointa freezing of the system in a zero entropy state.AknowledgmentsWe are very grateful to S. Ru�o for pointing us to thisproblem and providing useful omments and remarks. X.L. would also like to thank F. Bouhet for fruitfull andinspiring disussions.[1℄ Dynamis and Thermodynamis of Systems with LongRange Interations, Vol. 602 of Let. Not. Phys., editedby T. Dauxois, S. Ru�o, E. Arimondo, and M. Wilkens(Springer-Verlag, Berlin, 2002).[2℄ P. H. Chavanis, G. D. Ninno, D. Fanelli, and S. Ru�o, inChaos, Complexity and Transport, edited by C. Chandre,X. Leonini, and G. Zaslavsky (World Sienti�, Singa-pore, 2008), pp. 3�26.[3℄ A. Campa, T. Dauxois, and S. Ru�o, Phys. Rep. 480, 57(2009).[4℄ X. Leonini, T. L. Van den Berg, and D. Fanelli, EPL86, (2009).[5℄ R. Bahelard et al., Phys. Rev. Lett. 101, (2008).
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5Systems (Imperial College Press, London, 2007), seondEdition.[14℄ The above approximation an be rigorously justi�ed viaa detailed expansion nor reported here.[15℄ We note that many distint stationary distributions ofthe original HMF model are in priniple allowed, yieldingto idential values of M . It should then be possible toplae di�erent distributions in distint regions of spae.
Thus stationary distributions of the α-HMF model anorrespond to either a stationary distribution of the HMFmodel put sale free on the irle, or to deomposition ofit in a sum of di�erent stationary distributions, whih allhave the same magnetization and are put in a sale freeform in di�erent regions of the irle.


