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Dynamics of many-body Hamiltonian systems with long range interactions is studied, in the
context of the so called a—HMF model. Building on the analogy with the related mean field model,
we construct stationary states of the a—HMF model for which the spatial organization satisfies a
fractional equation. At variance, the microscopic dynamics turns out to be regular and explicitly
known. As a consequence, dynamical regularity is achieved at the price of strong spatial complexity,
namely a microscopic inhomogeneity which locally displays scale invariance.

The out-of-equilibrium dynamics of many body sys-
tems subject to long range couplings defines a fascinat-
ing field of investigations, which can potentially impact
different domains of applications. In a long range sys-
tem every constituent is simultaneously solicited by the
ensemble of microscopic actors, resulting in a complex
dynamical picture. This latter scenario applies to a vast
realm of fundamental problems, including gravity and
plasma physics, and also extends to a rich variety of cross
disciplinary studies, classically falling within the bound-
aries of biological and social sciences, where an intricate
network of mutual interactions between agents has to be
accommodated for [1]. In particular, and with specific
emphasis on the peculiar non equilibrium features, long
range systems often display a slow relaxation to equilib-
rium. They are in fact trapped in long-lasting out of equi-
librium regimes, termed in the literature Quasi Station-
ary States (QSS) which bear distinct characteristics, as
compared to the corresponding deputed equilibrium con-
figuration. A paradigmatic representative of long range
interactions, sharing the mean field viewpoint, is the so
called Hamiltonian Mean Field model, which describes
the coupled evolution of N rotators, populating the uni-
tary circle and interacting via a cosines like potential. In
the limit of infinite system size the discrete HMF model
becomes a Vlasov equation for the evolution of the sin-
gle particle distribution function[2]. This leads to a sta-
tistical based treatment, inspired to the seminal work of
Lynden-Bell, which revealed the existence of two different
classes of QSS, spatially homogeneous or magnetized|[3].
More recently, and still with reference to the HMF case
study, stationary states have been constructed using a
dynamical scheme which exploited the formal analogy
with a set of uncoupled pendula [4]. This represented a
substantial leap forward in understanding of the dynam-
ical properties of the QSS in the HMF model, beyond
the aforementioned statistical approach. Indeed, it was
understood that the microscopic dynamics in the magne-
tized stationary state is regular and explicitly known, an
observation which contributed to shed light onto the puz-
zling abundance of emerging regular orbits as revealed in
[5].

These last results have been though obtained in the

framework of mean field systems: The actual distance
between particles does no explicitly appear in the HMF
potential. In this letter we aim at bridging this gap, by
focusing on the so called a—HMF model [6]. In its long
range version (a < 1 as discussed below), this model be-
haves at equilibrium as the HMF, see for instance [3, 7, §].
We may then ask if the same correspondence applies
to the out of equilibrium dynamics. QSS exists as de-
pcited in[9], but, can one still appreciate the asymptotic
trend towards regularity? How does the spatial organi-
zation impact on the aforementioned features? It was
also shown recently that fractional calculus may be a
crucial ingredient when dealing with long range systems
[10], and we shall see how this point enters the picture in
the considered case. To anticipate our findings, we shall
here show that all stationary states of the HMF model
are shared by the a—HMF model: Particles still exhibit
regular orbits, at the price of a degree of of enhanced
microscopic spatial complexity, which materializes in a
small scale inhomogeneity being locally scale invariant.
Let us start by introducing the governing Hamiltonian
which can be cast in the form:
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where ¢; stands for the orientation of the rotor occupy-
ing the lattice position 4, while p; labels the conjugate
momentum. The quantity ||¢ — j|| denotes the shortest
distance on the circle of perimeter NV — 1. The coupling
constant between classical rotators decays as a power law
of the sites distance. The HMF limit is recovered for
a = 0. For N even, we have
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which guarantees extensivity of the system. The equa-
tion of motions of element ¢ are derived from the above
Hamiltonian and can be written as follows

p; = —sin(q;)C; + cos(q;)S; = M;sin(q; — ;) . (3)



where use has been made of the following global quanti-
ties:
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These identify the two components of a non-local mag-
netization per site, with modulus M; = \/C? + S? , and
phase ; = arctan(S;/C;). In doing so, one brings into
evidence the formal analogy with the HMF setting. In-
deed we notice that each individual a—HMF particle
obeys a dynamical equation which closely resembles that
of a pendulum. This observation represented the start-
ing point of the analysis carried out in [4], where station-
ary states were constructed from first principles. More
specifically, the authors of [4] imagined that the system of
coupled rotators reached a given equilibrium state, char-
acterized by a constant magnetization in the limit for
N — oo . Then, the HMF model is mapped into a set
of N uncoupled pendula, constrained to collectively re-
turn a global magnetization identical to that driving their
individual dynamics. Self-consistency is hence a crucial
ingredient explicitly accommodated for the formulation
proposed in [4]. Technically, the stationary state is built
by exploiting the ergodic measure on the torus originat-
ing from the pendulum motion, a working ansatz that we
cannot invoke in the context of the a—HMF, due to site
localization. Eventually we will overcome this difficulty
by considering the continuous limit. We notice that, for
large N , and assuming 0 < « < 1, the following estimate
applies
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We can then use expression (6) in Eq.(4) and, as N — oo,
introduce the continuous variables ¢ = i/N and y = j/N
and arrive to the following Riemann integral

Cw) = 5= | Vs,
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where ||z — y|| represents the minimal distance on a circle
of perimeter one. By invoking the Riemann-Liouville for-
malism on the circle, we recognize the fractional integral
I'~“and consequently write
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C(z) = I'(1—a)I* (cosq(x)) . (8)

A similar relation holds for the S(z) component. Study-
ing the a—HMF dynamics implies characterizing the evo-
lution of the scalar fields ¢(x,t) and p(x,t) which are
ruled by the fractional (non-local) partial differential

equations
dq
19) . .
5 = 33 L(w) (= sin(g) " (cosq) + cos(q)[* (sing)) -

where ¢ = 1 — «. At variance with the simpler HMF
(o = 0) model, the spatial organization ¢(z) matters
within the general setting o > 0, an observation which, as
anticipated above, poses technical problems to a straight-
forward extension of the analysis in [4]. At first sight, it
would be tempting to require C(x) = (C') = M, if con-
ditioning, at the same time, the system to I* (sinq) = 0.
The translation invariance along the lattice is also likely
to statistically lead to such a state[8]. For finite size sys-
tems, the latter identity can be solely matched by the
trivial state where all ¢ are equal. Conversely, in the in-
finite N limit, and recalling expression (8), we require
that:
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where the operator D stands for the fractional deriva-
tive. Trivial states as evidenced in the finite size approx-
imation are also solutions of this equation. However, as
we will argue in the following, the continuum limit en-
ables us to compute an independent set of admissible
solutions. This task is accomplished by exploiting the
fact that a < 1, which makes the integral [ 1/|z||*dz
convergent near 0 and that the function 1/||x — y||* is
smooth. Noticing that we rewrite Eq. (7) as:
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using the regularity of 1/||z —y||%, we can extract it from
the integral:

(k+1)/L
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with yi, € [k/L,(k+1)/L] [14]. We now assign the ¢ val-
ues on a circle so that in any small interval the average
of cosq(x) is constant and equal to the magnetization of
the system. This procedure implies a peculiar spatial or-
ganization which returns a constant coarse grained image
of the function cos g, equal in turn to M. We have now a
configuration which gives C(x) = M, a constant function
on the circle. However we still need stationarity. This can
be achieved by refering to the available stationary distri-
bution for the HMF. The recipe goes as follows: we pick
up ¢ and p values as originating from this distribution, so
as to ensure that the time evolution will only consist of
a local reshuffling of the actual phase space coordinate,
without affecting their associated coarse grained value.
In doing so, we hence obtain a family of stationary solu-
tions of the a-HMF model. [15]

cos q(y) dy,
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Figure 1: QSS for the a-HMF model built using a stationary
solution of the HMF model corresponding to a one particle
PDF of the type f(I,0) = 6(I — Io)/2m (one torus M = 0.5).
The system is evolved via the a-HMF dynamics with o =
0.25. The figure displays the resulting distribution of actions
I at t = 200, for different sizes. The integration uses the
fifth order optimal symplectic integrator [11] and a time step
0t = 0.05.

The microscopic dynamics of the particles in such
states can be mapped into a pendulum motion and is
hence integrable. Interestingly, the spatial organization
is locally scale free. The functions ¢(z,t) and p(z,t) are
thus “very complicated” along the spatial direction, while
displaying a regular time evolution and no chaos. In or-
der to validate this result for a finite size sample on the
original lattice we proceed as follows. We consider a sta-
tionary state of the HMF consisting of just one torus
with associated magnetization M = 0.5. In pendulum
action-angle variable we refer hence to a one particle dis-
tribution of the type f(I,0) = 6(I — Iy)/2n. We are
focusing our attention on an “individual component” be-
longing to the extended set of a linearly independent el-
ements, which define the QSS basis. In order to be as
close as possible to the stationary state of the a-HMF
model, we simply distribute randomly on the lattice the
values picked from such, analytically accessible, distribu-
tion. The analysis for different values of the number of
sites and « = 0.25, is then performed by monitoring the
values of the action and shows as expected a trend to-
wards the stabilization of such a state as IV increases (see
Fig. 1). We also checked that as expected increasing the
value of «a, which weakens the coupling strength, implies
inducing a more pronounced destabilization of the state,
which can be effectively opposed by increasing the num-
ber of simulated rotors. The solutions here constructed
are hence stable versus the ac-HMF dynamics, provided
the continuum limit is being performed and so represent a
consistent analytical prediction for the existence of quasi-
stationary states, beyond the original HMF setting.

To further scrutinize the dynamics of the a-HMF
model we turn to direct simulations. We initialize the
system in ¢ = 0 and a Gaussian distribution for the con-
jugate momenta p [7]. The system state is monitored
by estimating the average magnetization amount as a
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Figure 2: Magnetization vs. energy per particle E/N for
different «, for a system made of N = 4096 particles. The
magnetization values here reported follow from a time average
over the window 400 < 7" < 800.
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Figure 3: Left:“Poincaré section” of a QSS for E/N = 1.2,
N = 65536. Initial conditions are Gaussian in p and g = 0.
The section is computed for 150 < ¢ < 1000 and o = 0.25.
Right: Magnetization versus time.

function of the energy, see Fig. 2. For energies larger
than 0.75 one would expect the homogeneous solution to
prevail, as dictated by the statistical mechanics calcu-
lation. However, the system gets confined into a inho-
mogeneous state, the residual time averaged magnetiza-
tion being large and persistent in time. It is therefore
tempting to interpret those states as QSS, and so ana-
lyze their associated dynamical features in light of the
above conclusions. In particular, we expect the micro-
scopic dynamics to resemble that of a pendulum, bearing
some degree of intrinsic regularity. To unravel the phase
space characteristics we compute the Poincaré sections,
following the recipe in [5, 12] and so visualizing the single
particle stroboscopic dynamics, with a rate of acquisition
imposed by the self-consistent mean field evolution. The
averages of C; and S; refer to the two components of the
magnetization per site. The Poincaré sections are drawn
by recording the positions p; and g; — ¢; in phase space
each time the equality M; = M is verified. Results for
a specific initial conditions are depicted in Fig. 3 where
one hundred trajectories are retained. The phase portrait
shares many similarities with that obtained for a sim-
ple one and a half degree of freedom Hamiltonian (see
for instance [13]), with many resonances and invariant
tori. Clearly, and in agreement with the above scenario, a
large number of particles exhibit regular dynamics. How-
ever as the nature of phase space reveals, these QSSs are
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Figure 4: Top: M(x) = /C(x)? + S(z)? as a function of
time. Bottom: individual particle’s action as a function of
time. The system is initialized to get a QSS with E/N = 1.2
and a = 0.25 (see Fig. 3). Total number of particle is N =
8192, x = i/N, with 1 < ¢ < N. The actions are those of a
pendulum corresponding to Eq.(3). M(z) is almost uniform
in space, while the individual spatial organization is complex.
The time evolution of the actions appears quite regular.

steady state of the dicrete dynamics, not stationary so-
lutions. Nevertheless, we set to analyze the spatial or-
ganization of the identified steady state to test whether
stationary state features are present in this configuration.
To this end, we computed the values of the local magne-
tization M (z,t) = \/C(z,t)2 + S(z,t)? versus time and
estimated an individual action, stemming from a Hamil-
tonian pendulum, which would give rise to an equation
of motion formally identical to the Eq.(3). Results of the
analysis are depicted in Fig. 4. One clearly sees that the
function M (x,t) is homogeneous and presents a modest

dependence on t, thus suggesting that the distribution
of q(x,t) is a solution of Eq.(9). The plot of action ver-
sus time as depicted in Fig. 4, clearly indicates a degree
of enhanced spatial complexity, nearby particles not be-
longing to the same tori. We find in these simulations
and in this (N- finite) steady state the same distinctive
features of the stationary solutions as depicted earlier.

To conclude, in this Letter we have shown that sta-
tionary solutions for the mean field HMF model are as
well stationary ones of the a-HMF model. Microscopic
dynamics in these stationary states is regular, and explic-
itly known. The price to pay for this microscopic regular-
ity in time is a complex, self similar, spatial organization
corresponding to the solution of a fractional equation.
When turning to direct numerical investigations we have
identified a series of quasi-stationary states, which cor-
responds to steady states. Still, such states share many
of the features of their stationary counterparts. The im-
portance of these conclusions are manifold: On the one
side, we confirm that QSS do exist in a generalized non
mean field setting [9]. Also, we validate a theoretical
method to construct, from first principle, (out of) equi-
librium stationary solutions. Finally, the fact that in
long range systems stationary states (among which we
may of course count the equilibrium) which display regu-
lar microscopic dynamics do exist, allows us to dispose of
an enormous amount of information regarding the inti-
mate dynamics of a system frozen in such state. Looking
forward, we may speculate that the knowledge of the mi-
croscopic dynamics can somehow enables one to challenge
thermodynamics by setting up appropriate Maxwell dae-
mons. Note also, that the regularity of the dynamics in
the large N limit, induces from a statistical stand point
a freezing of the system in a zero entropy state.
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