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Stationary states and fra
tional dynami
s in systems with long range intera
tionsTineke Van den Berg1, Du

io Fanelli2, Xavier Leon
ini31. IM2NP, Aix-Marseille Université, Centre de Saint Jér�me, Case 142, 13397 Marseille Cedex 20, Fran
e2. Dipartimento di Energeti
a "Sergio Ste

o", Universita' di Firenze, via s. Marta 3, 50139 Firenze,Italia and Centro interdipartimentale per lo Studio delle Dinami
he Complesse (CSDC) and INFN3. Centre de Physique Théorique, Aix-Marseille Université,CNRS, Luminy, Case 907, F-13288 Marseille 
edex 9, Fran
eDynami
s of many-body Hamiltonian systems with long range intera
tions is studied, in the
ontext of the so 
alled α−HMF model. Building on the analogy with the related mean �eld model,we 
onstru
t stationary states of the α−HMF model for whi
h the spatial organization satis�es afra
tional equation. At varian
e, the mi
ros
opi
 dynami
s turns out to be regular and expli
itlyknown. As a 
onsequen
e, dynami
al regularity is a
hieved at the pri
e of strong spatial 
omplexity,namely a mi
ros
opi
 inhomogeneity whi
h lo
ally displays s
ale invarian
e.The out-of-equilibrium dynami
s of many body sys-tems subje
t to long range 
ouplings de�nes a fas
inat-ing �eld of investigations, whi
h 
an potentially impa
tdi�erent domains of appli
ations. In a long range sys-tem every 
onstituent is simultaneously soli
ited by theensemble of mi
ros
opi
 a
tors, resulting in a 
omplexdynami
al pi
ture. This latter s
enario applies to a vastrealm of fundamental problems, in
luding gravity andplasma physi
s, and also extends to a ri
h variety of 
rossdis
iplinary studies, 
lassi
ally falling within the bound-aries of biologi
al and so
ial s
ien
es, where an intri
atenetwork of mutual intera
tions between agents has to bea

ommodated for [1℄. In parti
ular, and with spe
i�
emphasis on the pe
uliar non equilibrium features, longrange systems often display a slow relaxation to equilib-rium. They are in fa
t trapped in long-lasting out of equi-librium regimes, termed in the literature Quasi Station-ary States (QSS) whi
h bear distin
t 
hara
teristi
s, as
ompared to the 
orresponding deputed equilibrium 
on-�guration. A paradigmati
 representative of long rangeintera
tions, sharing the mean �eld viewpoint, is the so
alled Hamiltonian Mean Field model, whi
h des
ribesthe 
oupled evolution of N rotators, populating the uni-tary 
ir
le and intera
ting via a 
osines like potential. Inthe limit of in�nite system size the dis
rete HMF modelbe
omes a Vlasov equation for the evolution of the sin-gle parti
le distribution fun
tion[2℄. This leads to a sta-tisti
al based treatment, inspired to the seminal work ofLynden-Bell, whi
h revealed the existen
e of two di�erent
lasses of QSS, spatially homogeneous or magnetized[3℄.More re
ently, and still with referen
e to the HMF 
asestudy, stationary states have been 
onstru
ted using adynami
al s
heme whi
h exploited the formal analogywith a set of un
oupled pendula [4℄. This represented asubstantial leap forward in understanding of the dynam-i
al properties of the QSS in the HMF model, beyondthe aforementioned statisti
al approa
h. Indeed, it wasunderstood that the mi
ros
opi
 dynami
s in the magne-tized stationary state is regular and expli
itly known, anobservation whi
h 
ontributed to shed light onto the puz-zling abundan
e of emerging regular orbits as revealed in[5℄.These last results have been though obtained in the

framework of mean �eld systems: The a
tual distan
ebetween parti
les does no expli
itly appear in the HMFpotential. In this letter we aim at bridging this gap, byfo
using on the so 
alled α−HMF model [6℄. In its longrange version (α < 1 as dis
ussed below), this model be-haves at equilibrium as the HMF, see for instan
e [3, 7, 8℄.We may then ask if the same 
orresponden
e appliesto the out of equilibrium dynami
s. QSS exists as de-p
ited in[9℄, but, 
an one still appre
iate the asymptoti
trend towards regularity? How does the spatial organi-zation impa
t on the aforementioned features? It wasalso shown re
ently that fra
tional 
al
ulus may be a
ru
ial ingredient when dealing with long range systems[10℄, and we shall see how this point enters the pi
ture inthe 
onsidered 
ase. To anti
ipate our �ndings, we shallhere show that all stationary states of the HMF modelare shared by the α−HMF model: Parti
les still exhibitregular orbits, at the pri
e of a degree of of enhan
edmi
ros
opi
 spatial 
omplexity, whi
h materializes in asmall s
ale inhomogeneity being lo
ally s
ale invariant.Let us start by introdu
ing the governing Hamiltonianwhi
h 
an be 
ast in the form:
H =

N
∑

i=1





p2
i

2
+

1

2Ñ

N
∑

j 6=i

1 − cos (qi − qj)

‖i − j‖α



 , (1)where qi stands for the orientation of the rotor o

upy-ing the latti
e position i, while pi labels the 
onjugatemomentum. The quantity ‖i − j‖ denotes the shortestdistan
e on the 
ir
le of perimeter N − 1. The 
oupling
onstant between 
lassi
al rotators de
ays as a power lawof the sites distan
e. The HMF limit is re
overed for
α = 0. For N even, we have

Ñ =

(

2

N

)α

+ 2

N/2−1
∑

i=1

1

iα
, (2)whi
h guarantees extensivity of the system. The equa-tion of motions of element i are derived from the aboveHamiltonian and 
an be written as follows

ṗi = − sin(qi)Ci + cos(qi)Si = Mi sin(qi − ϕi) . (3)



2where use has been made of the following global quanti-ties:
Ci =

1

Ñ

∑

j 6=i

cos qj

‖i − j‖α
(4)

Si =
1

Ñ

∑

j 6=i

sin qj

‖i − j‖α
, . (5)These identify the two 
omponents of a non-lo
al mag-netization per site, with modulus Mi =
√

C2
i + S2

i , andphase ϕi = arctan(Si/Ci). In doing so, one brings intoeviden
e the formal analogy with the HMF setting. In-deed we noti
e that ea
h individual α−HMF parti
leobeys a dynami
al equation whi
h 
losely resembles thatof a pendulum. This observation represented the start-ing point of the analysis 
arried out in [4℄, where station-ary states were 
onstru
ted from �rst prin
iples. Morespe
i�
ally, the authors of [4℄ imagined that the system of
oupled rotators rea
hed a given equilibrium state, 
har-a
terized by a 
onstant magnetization in the limit for
N → ∞ . Then, the HMF model is mapped into a setof N un
oupled pendula, 
onstrained to 
olle
tively re-turn a global magnetization identi
al to that driving theirindividual dynami
s. Self-
onsisten
y is hen
e a 
ru
ialingredient expli
itly a

ommodated for the formulationproposed in [4℄. Te
hni
ally, the stationary state is builtby exploiting the ergodi
 measure on the torus originat-ing from the pendulum motion, a working ansatz that we
annot invoke in the 
ontext of the α−HMF, due to sitelo
alization. Eventually we will over
ome this di�
ultyby 
onsidering the 
ontinuous limit. We noti
e that, forlarge N , and assuming 0 < α < 1, the following estimateapplies

Ñ ≈
2

1 − α
(N/2)1−α . (6)We 
an then use expression (6) in Eq.(4) and, asN → ∞ ,introdu
e the 
ontinuous variables x = i/N and y = j/Nand arrive to the following Riemann integral

C(x) =
1 − α

2α

∫ 1/2

−1/2

cos (q(y))

‖x − y‖α
dy , (7)where ‖x−y‖ represents the minimal distan
e on a 
ir
leof perimeter one. By invoking the Riemann-Liouville for-malism on the 
ir
le, we re
ognize the fra
tional integral

I1−αand 
onsequently write
C(x) =

1 − α

2α
Γ(1 − α)I1−α (cos q(x)) . (8)A similar relation holds for the S(x) 
omponent. Study-ing the α−HMF dynami
s implies 
hara
terizing the evo-lution of the s
alar �elds q(x, t) and p(x, t) whi
h areruled by the fra
tional (non-lo
al) partial di�erential

equations
∂q

∂t
= p(x, t)

∂p

∂t
=

µ

2α
Γ(µ) (− sin(q)Iµ (cos q) + cos(q)Iµ (sin q)) .where µ = 1 − α. At varian
e with the simpler HMF(α = 0) model, the spatial organization q(x) matterswithin the general setting α > 0, an observation whi
h, asanti
ipated above, poses te
hni
al problems to a straight-forward extension of the analysis in [4℄. At �rst sight, itwould be tempting to require C(x) = 〈C〉 = M , if 
on-ditioning, at the same time, the system to Iµ (sin q) = 0.The translation invarian
e along the latti
e is also likelyto statisti
ally lead to su
h a state[8℄. For �nite size sys-tems, the latter identity 
an be solely mat
hed by thetrivial state where all q are equal. Conversely, in the in-�nite N limit, and re
alling expression (8), we requirethat:

Dα cos q =
dα cos q

dxα
= 0 . (9)where the operator Dα stands for the fra
tional deriva-tive. Trivial states as eviden
ed in the �nite size approx-imation are also solutions of this equation. However, aswe will argue in the following, the 
ontinuum limit en-ables us to 
ompute an independent set of admissiblesolutions. This task is a

omplished by exploiting thefa
t that α < 1, whi
h makes the integral ∫

1/‖x‖αdx
onvergent near 0 and that the fun
tion 1/‖x − y‖α issmooth. Noti
ing that we rewrite Eq. (7) as:
C(x) =

1 − α

2α

L−1
∑

k=0

∫ (k+1)/L

k/L

cos q(y)

‖x − y‖α
dy,using the regularity of 1/‖x−y‖α, we 
an extra
t it fromthe integral:

C(x) ≈
1 − α

2α

L−1
∑

k=0

1

‖x − yk‖α

∫ (k+1)/L

k/L

cos q(y) dy,with yk ∈ [k/L,(k + 1)/L] [14℄. We now assign the q val-ues on a 
ir
le so that in any small interval the averageof cos q(x) is 
onstant and equal to the magnetization ofthe system. This pro
edure implies a pe
uliar spatial or-ganization whi
h returns a 
onstant 
oarse grained imageof the fun
tion cos q, equal in turn to M . We have now a
on�guration whi
h gives C(x) = M , a 
onstant fun
tionon the 
ir
le. However we still need stationarity. This 
anbe a
hieved by refering to the available stationary distri-bution for the HMF. The re
ipe goes as follows: we pi
kup q and p values as originating from this distribution, soas to ensure that the time evolution will only 
onsist ofa lo
al reshu�ing of the a
tual phase spa
e 
oordinate,without a�e
ting their asso
iated 
oarse grained value.In doing so, we hen
e obtain a family of stationary solu-tions of the α-HMF model. [15℄
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Figure 1: QSS for the α-HMF model built using a stationarysolution of the HMF model 
orresponding to a one parti
lePDF of the type f(I, θ) = δ(I − I0)/2π (one torus M = 0.5).The system is evolved via the α-HMF dynami
s with α =
0.25. The �gure displays the resulting distribution of a
tions
I at t = 200, for di�erent sizes. The integration uses the�fth order optimal symple
ti
 integrator [11℄ and a time step
δt = 0.05.The mi
ros
opi
 dynami
s of the parti
les in su
hstates 
an be mapped into a pendulum motion and ishen
e integrable. Interestingly, the spatial organizationis lo
ally s
ale free. The fun
tions q(x, t) and p(x, t) arethus �very 
ompli
ated� along the spatial dire
tion, whiledisplaying a regular time evolution and no 
haos. In or-der to validate this result for a �nite size sample on theoriginal latti
e we pro
eed as follows. We 
onsider a sta-tionary state of the HMF 
onsisting of just one toruswith asso
iated magnetization M = 0.5. In penduluma
tion-angle variable we refer hen
e to a one parti
le dis-tribution of the type f(I, θ) = δ(I − I0)/2π. We arefo
using our attention on an �individual 
omponent� be-longing to the extended set of a linearly independent el-ements, whi
h de�ne the QSS basis. In order to be as
lose as possible to the stationary state of the α-HMFmodel, we simply distribute randomly on the latti
e thevalues pi
ked from su
h, analyti
ally a

essible, distribu-tion. The analysis for di�erent values of the number ofsites and α = 0.25, is then performed by monitoring thevalues of the a
tion and shows as expe
ted a trend to-wards the stabilization of su
h a state as N in
reases (seeFig. 1). We also 
he
ked that as expe
ted in
reasing thevalue of α, whi
h weakens the 
oupling strength, impliesindu
ing a more pronoun
ed destabilization of the state,whi
h 
an be e�e
tively opposed by in
reasing the num-ber of simulated rotors. The solutions here 
onstru
tedare hen
e stable versus the α-HMF dynami
s, providedthe 
ontinuum limit is being performed and so represent a
onsistent analyti
al predi
tion for the existen
e of quasi-stationary states, beyond the original HMF setting.To further s
rutinize the dynami
s of the α-HMFmodel we turn to dire
t simulations. We initialize thesystem in q = 0 and a Gaussian distribution for the 
on-jugate momenta p [7℄. The system state is monitoredby estimating the average magnetization amount as a
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tFigure 3: Left:�Poin
aré se
tion� of a QSS for E/N = 1.2,
N = 65536. Initial 
onditions are Gaussian in p and q = 0.The se
tion is 
omputed for 150 < t < 1000 and α = 0.25.Right: Magnetization versus time.fun
tion of the energy, see Fig. 2. For energies largerthan 0.75 one would expe
t the homogeneous solution toprevail, as di
tated by the statisti
al me
hani
s 
al
u-lation. However, the system gets 
on�ned into a inho-mogeneous state, the residual time averaged magnetiza-tion being large and persistent in time. It is thereforetempting to interpret those states as QSS, and so ana-lyze their asso
iated dynami
al features in light of theabove 
on
lusions. In parti
ular, we expe
t the mi
ro-s
opi
 dynami
s to resemble that of a pendulum, bearingsome degree of intrinsi
 regularity. To unravel the phasespa
e 
hara
teristi
s we 
ompute the Poin
aré se
tions,following the re
ipe in [5, 12℄ and so visualizing the singleparti
le strobos
opi
 dynami
s, with a rate of a
quisitionimposed by the self-
onsistent mean �eld evolution. Theaverages of Ci and Si refer to the two 
omponents of themagnetization per site. The Poin
aré se
tions are drawnby re
ording the positions pi and qi − ϕi in phase spa
eea
h time the equality Mi = M is veri�ed. Results fora spe
i�
 initial 
onditions are depi
ted in Fig. 3 whereone hundred traje
tories are retained. The phase portraitshares many similarities with that obtained for a sim-ple one and a half degree of freedom Hamiltonian (seefor instan
e [13℄), with many resonan
es and invarianttori. Clearly, and in agreement with the above s
enario, alarge number of parti
les exhibit regular dynami
s. How-ever as the nature of phase spa
e reveals, these QSSs are
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C(x)2 + S(x)2 as a fun
tion oftime. Bottom: individual parti
le's a
tion as a fun
tion oftime. The system is initialized to get a QSS with E/N = 1.2and α = 0.25 (see Fig. 3). Total number of parti
le is N =
8192, x = i/N , with 1 ≤ i ≤ N . The a
tions are those of apendulum 
orresponding to Eq.(3). M(x) is almost uniformin spa
e, while the individual spatial organization is 
omplex.The time evolution of the a
tions appears quite regular.steady state of the di
rete dynami
s, not stationary so-lutions. Nevertheless, we set to analyze the spatial or-ganization of the identi�ed steady state to test whetherstationary state features are present in this 
on�guration.To this end, we 
omputed the values of the lo
al magne-tization M(x, t) =

√

C(x, t)2 + S(x, t)2 versus time andestimated an individual a
tion, stemming from a Hamil-tonian pendulum, whi
h would give rise to an equationof motion formally identi
al to the Eq.(3). Results of theanalysis are depi
ted in Fig. 4. One 
learly sees that thefun
tion M(x, t) is homogeneous and presents a modest

dependen
e on t, thus suggesting that the distributionof q(x, t) is a solution of Eq.(9). The plot of a
tion ver-sus time as depi
ted in Fig. 4, 
learly indi
ates a degreeof enhan
ed spatial 
omplexity, nearby parti
les not be-longing to the same tori. We �nd in these simulationsand in this (N - �nite) steady state the same distin
tivefeatures of the stationary solutions as depi
ted earlier.To 
on
lude, in this Letter we have shown that sta-tionary solutions for the mean �eld HMF model are aswell stationary ones of the α-HMF model. Mi
ros
opi
dynami
s in these stationary states is regular, and expli
-itly known. The pri
e to pay for this mi
ros
opi
 regular-ity in time is a 
omplex, self similar, spatial organization
orresponding to the solution of a fra
tional equation.When turning to dire
t numeri
al investigations we haveidenti�ed a series of quasi-stationary states, whi
h 
or-responds to steady states. Still, su
h states share manyof the features of their stationary 
ounterparts. The im-portan
e of these 
on
lusions are manifold: On the oneside, we 
on�rm that QSS do exist in a generalized nonmean �eld setting [9℄. Also, we validate a theoreti
almethod to 
onstru
t, from �rst prin
iple, (out of) equi-librium stationary solutions. Finally, the fa
t that inlong range systems stationary states (among whi
h wemay of 
ourse 
ount the equilibrium) whi
h display regu-lar mi
ros
opi
 dynami
s do exist, allows us to dispose ofan enormous amount of information regarding the inti-mate dynami
s of a system frozen in su
h state. Lookingforward, we may spe
ulate that the knowledge of the mi-
ros
opi
 dynami
s 
an somehow enables one to 
hallengethermodynami
s by setting up appropriate Maxwell dae-mons. Note also, that the regularity of the dynami
s inthe large N limit, indu
es from a statisti
al stand pointa freezing of the system in a zero entropy state.A
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