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DENDROIDAL SETS

AS MODELS FOR HOMOTOPY OPERADS

DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Abstract. The homotopy theory of ∞-operads is defined by extending Joyal’s

homotopy theory of ∞-categories to the category of dendroidal sets. We prove
that the category of dendroidal sets is endowed with a model category structure
whose fibrant objects are the ∞-operads (i.e. dendroidal inner Kan complexes).

This extends the theory of ∞-categories in the sense that the Joyal model
category structure on simplicial sets whose fibrant objects are the ∞-categories
is recovered from the model category structure on dendroidal sets by simply

slicing over the point.
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Introduction

The notion of dendroidal set is an extension of that of simplicial set, suitable
for defining and studying nerves of (coloured) operads in the same way as nerves
of categories feature in the theory of simplicial sets. It was introduced by one of
the authors and I. Weiss in [MW07]. As explained in that paper, the category
dSet of dendroidal sets carries a symmetric monoidal structure, which is closely
related to the Boardman-Vogt tensor product for operads [BV73]. There is also
a corresponding internal Hom of dendroidal sets. The category of dendroidal sets
extends the category sSet of simplicial sets, in the precise sense that there are
adjoint functors (left adjoint on the left)

i! : sSet ⇄ dSet : i∗

2000 Mathematics Subject Classification. 55P48, 55U10, 55U40, 18D10, 18D50, 18G30.
Key words and phrases. Inner Kan complex, operad, ∞-operad, dendroidal set, ∞-category,

quasi-category, simplicial set.
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2 D.-C. CISINSKI AND I. MOERDIJK

with good properties. In particular, the functor i! is strong monoidal and fully
faithful, and identifies sSet with the slice category dSet/η, where η is the unit of
the monoidal structure on dSet . (In fact, this adjunction is an open embedding of
toposes.)

Using these adjoint functors i! and i∗, we can say more precisely how various
constructions and results from the theory of simplicial sets extend to that of den-
droidal sets. For example, the nerve functor N : Cat −→ sSet and its left adjoint,
which we denote by τ , naturally extend to a pair of adjoint functors

τd : dSet ⇄ Operad : Nd

which plays a central role in our work.
The goal of this paper is to lay the foundations for a homotopy theory of den-

droidal sets and “∞-operads” (or “operads-up-to-homotopy”, or “quasi-operads”)
which extends the simplicial theory of∞-categories (or quasi-categories) which has
recently been developed by Joyal, Lurie and others. Our main result is the existence
of a Quillen closed model structure on the category of dendroidal sets, having the
following properties:

1. This Quillen model structure on dSet is symmetric monoidal (in the sense
of [Hov99]) and left proper;

2. The fibrant objects of this model structure are precisely the ∞-operads.
3. The induced model structure on the slice category dSet/η is precisely the

Joyal model structure on simplicial sets [JT07, Lur06].

The existence of such a model structure was suggested in [MW07]. The ∞-operads
refered to in 2. are the dendroidal analogues of the∞-categories forming the fibrant
objects in the Joyal model structure. They are the dendroidal sets satisfying a
lifting condition analogous to the weak Kan condition of Boardman-Vogt, and were
introduced in [MW07, MW09] under the name “(dendroidal) inner Kan complexes”.
The dendroidal nerve of every operad is such an ∞-operad; conversely, intuitively
speaking, ∞-operads are operads in which the composition of operations is only
defined up to homotopy, in a way which is associative up to homotopy. For example,
the homotopy coherent nerve of a symmetric monoidal topological category is an
∞-operad. The theory of ∞-operads contains the theory of ∞-categories, as well
as the theory of symmetric monoidal ∞-categories and of operads in them. The
theory of∞-operads is also likely to be of use in studying the notion of∞-category
enriched in a symmetric monoidal ∞-category (e.g. the various notions of A∞-
categories, dg categories, weak n-categories).

The proof of our main theorem is based on three sources: First of all, we use the
general methods of constructing model structures on presheaf categories developed
in [Cis06] (we only use the first chapter and Section 8.1 of that book, which are both
elementary). Secondly, we use some fundamental properties of dendroidal inner
Kan complexes proved in [MW09]. And finally, we use some important notions and
results from Joyal’s seminal paper [Joy02]: namely, the theory of join operations
and the notions of left or right fibration of simplicial sets. Apart from these sources,
our proof is entirely self-contained. In particular, we do not use the Joyal model
structure in our proof, but instead deduce this model structure as a corollary, as
expressed in 3. above.
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It is known that there are several (Quillen) equivalent models for ∞-categories:
one is given by a left Bousfield localisation of the Reedy model structure on simpli-
cial spaces and has as its fibrant objects Rezk’s complete Segal spaces; another is
given by a Dwyer-Kan style model structure on topological categories established
by Bergner, in which all objects are fibrant. The equivalence of these approaches
is extensively discussed in Lurie’s book [Lur06]; see also [Ber07, JT07]. It is nat-
ural to ask whether analogous models exist for ∞-operads. In two subsequent
papers [CMa, CMb], we will show that this is indeed the case. We will prove
there that the model structure on dendroidal sets described above is equivalent to
a model structure on topological operads in which all objects are fibrant, as well
as to a model structure on dendroidal spaces whose fibrant objects are “dendroidal
complete Segal spaces”. The models for∞-categories just mentioned as well as the
equivalences between them will again emerge simply by slicing over suitable unit
objects of the respective monoidal structures. Together these model categories fit
into a row of Quillen equivalences

sOperad ∼ // dSet
∼ // dSpaces

sCat
∼ //

OO

sSet
∼ //

OO

sSpaces

OO

in which the vertical arrows are (homotopy) full embeddings.

This paper is organized as follows. In the first section, we recall the basics
about dendroidal sets. In Section 2, we state the main results of this paper: the
existence of a model category structure on the category of dendroidal sets whose
fibrant objects are the ∞-operads, as well as its main properties. In Section 3, we
construct this model structure through rather formal arguments. At this stage, it
is clear, by construction, that the fibrant objects are ∞-operads, but the converse
is not obvious. Sections 4 and 5 provide the tools to prove that any ∞-operad is
fibrant, following the arguments which are known to hold in the case of simplicial
sets for the theory of ∞-categories. More precisely, in Section 4, we develop a
dendroidal analog of Joyal’s join operations, and prove a generalization of a theorem
of Joyal which ensures a right lifting property for inner Kan fibrations with respect
to certain non-inner horns, under an additional hypothesis of weak invertibility of
some 1-cells. In Section 5, we construct and examine a subdivision of cylinders
of trees in terms of dendroidal horns. At last, in Section 6, we prove that any
∞-operad is fibrant, and study some of the good properties of fibrations between
∞-operads. This is done by proving an intermediate result which is important by
itself: a morphism of diagrams in an ∞-operad is weakly invertible if and only if
it is locally (i.e. objectwise) weakly invertible (this is where Sections 4 and 5 have
their roles to play).

We also added two appendices, which are independent of the rest of this paper. In
Appendix A, we study the join operations on leaves (while in Section 4, we studied
join operations on roots), and in Appendix B, we study another subdivision of
cylinders of trees. In fact, these appendices can be used to provide another proof
of our main results: Section 6 might have been written using Appendices A and B
instead of Sections 4 and 5 respectively, without any changes (except, sometimes,
replacing the evaluation by 1 by the evaluation by 0, whenever necessary). However,
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these appendices are not formal consequences of the rest ot these notes, and it will
be useful to have this kind of results available for further work on the subject.

1. Dendroidal sets

1.1. Recall from [MW07] the category of trees Ω. The objects of Ω are non-empty
non-planar trees with a designated root, and given two trees T and T ′, a map from
T to T ′ is a morphism of the corresponding operads which, in these notes, we will
denote by T and T ′ again. Hence, by definition, the category of trees is a full
subcategory of the category of operads. Recall that the category dSet of dendroidal
sets is defined as the category of presheaves of sets on the category of trees Ω.
Given a tree T , we denote by Ω[T ] the dendroidal set represented by T .

Let 0 be the tree with only one edge, and set η = Ω[0]. Then the category Ω/η
identifies canonically with the category ∆ of simplices, so that the category dSet/η
is canonically equivalent to the category sSet of simplicial sets. The corresponding
functor

(1.1.1) i : ∆ −→ Ω , [n] 7−→ i[n] = n

is fully faithful and its image is a sieve in Ω. This functor i induces an adjunction

(1.1.2) i! : sSet ⇄ dSet : i∗

(where i! is the left Kan extension of i). Under the identification sSet = dSet/η,
the functor i! is simply the forgetful functor from dSet/η to dSet . The functor i!
is fully faithful and makes sSet into an open subtopos of dSet . In other words, if
there is a map of dendroidal sets X −→ Y with Y a simplicial set, then X has to
be a simplicial set as well.

We also recall the pairs of adjoint functors

(1.1.3) τ : sSet ⇄ Cat : N and τd : dSet ⇄ Operad : Nd

where N and Nd denote the nerve functors from the category of categories to the
category of simplicial sets and from the category of (symmetric coloured) operads
to the category of dendroidal sets.

The category of operads is endowed with a closed symmetric monoidal structure:
the tensor product is defined as the Boardman-Vogt tensor product; see [MW07,
Section 5]. This defines canonically a unique closed symmetric monoidal structure
on the category of dendroidal sets such that the functor τd is symmetric monoidal,
and such that, for two trees T and S, we have

Ω[T ]⊗ Ω[S] = Nd(T ⊗BV S) ,

where T ⊗BV S is the Boardman-Vogt tensor product of operads. We will denote
internal Hom objects by Hom(A,X) or by XA.

Note that the functor i! : sSet −→ dSet is a symmetric monoidal functor, if we
consider sSet with its closed cartesian monoidal structure.

The functor i∗ turns the category of dendroidal sets into a simplicial category;
given two dendroidal sets A and X, we will write hom(A,X) for i∗(Hom(A,X)),
the simplicial set of maps from A to X.

1.2. We recall here from [MW07] the different kinds of faces of trees in Ω.
Let T be a tree.
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If e is an inner edge of T , we will denote by T/e the tree obtained from T by
contracting e. We then have a canonical inclusion

(1.2.1) ∂e : T/e −→ T .

A map of type (1.2.1) is called an inner face of T .
If v is a vertex of T , with the property that all but one of the edges incident to v

are outer, we will denote by T/v the tree obtained from T by removing the vertex
v and all the outer edges incident to it. We then have a canonical inclusion

(1.2.2) ∂v : T/v −→ T .

A map of type (1.2.2) is called an outer face of T .
A map of type (1.2.1) or (1.2.2) will be called an elementary face of T .
We define ∂Ω[T ] as the union in dSet of all the images of elementary face maps

Ω[T/x] −→ Ω[T ]. We thus have, by definition, an inclusion

(1.2.3) ∂Ω[T ] −→ Ω[T ] .

Maps of shape (1.2.3) are called boundary inclusions. The image of a face map ∂x
will sometimes be denoted by ∂x(T ) for short.

We will call faces the maps of Ω which are obtained, up to an isomorphism,
as compositions of elementary faces. It can be checked that faces are exactly the
monomorphisms in Ω; see [MW07, Lemma 3.1].

1.3. A monomorphism of dendroidal sets X −→ Y is normal if for any tree T , any
non degenerate dendrex y ∈ Y (T ) which does not belong to the image of X(T ) has
a trivial stabilizer Aut(T )y ⊂ Aut(T ). A dendroidal set X is normal if the map
∅ −→ X is normal. For instance, for any tree T , the dendroidal set Ω[T ] is normal.

Proposition 1.4. The class of normal monomorphisms is stable by pushouts,
transfinite compositions and retracts. Furthermore, this is the smallest class of
maps in dSet which is closed under pushouts and tranfinite compositions, and which
contains the boundary inclusions ∂Ω[T ] −→ Ω[T ], T ∈ Ω.

Proof. This follows from [Cis06, Proposition 8.1.35]. �

Proposition 1.5. A monomorphism of dendroidal sets X −→ Y is normal if and
only if for any tree T , the action of Aut(T ) on Y (T )−X(T ) is free.

Proof. It is easily seen that the class of monomorphisms which satisfy the above
property is stable by pushouts and transfinite compositions, and contains the
boundary inclusions ∂Ω[T ] −→ Ω[T ]. It thus follows from the preceding propo-
sition that any normal monomorphism has this property. But it is also obvious
that any monomorphism with this property is normal. �

Corollary 1.6. A dendroidal set X is normal if and only if for any tree T , the
action of the group Aut(T ) on X(T ) is free.

Corollary 1.7. Given any map of dendroidal sets X −→ Y , if Y is normal, then
X is normal.

Corollary 1.8. Any monomorphism i : A −→ B with B normal is a normal
monomorphism.
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Proposition 1.9. Let A −→ B and X −→ Y be two normal monomorphisms. The
induced map

A⊗ Y ∐A⊗X B ⊗X −→ B ⊗ Y

is a normal monomorphism.

Proof. As the class of normal monomorhisms is generated by the boundary inclu-
sions, it is sufficient to check this property in this case; see e.g. [Hov99, Lemma
4.2.4].

Consider now two trees S and T . We have to show that the map

∂Ω[S]⊗ Ω[T ]∐∂Ω[S]⊗∂Ω[T ] Ω[S]⊗ ∂Ω[T ] −→ Ω[S]⊗ Ω[T ]

is a normal monomorphism. But as Ω[S] ⊗ Ω[T ] is the dendroidal nerve of the
Boardman-Vogt tensor product of S and T , which is Σ-free, it is a normal dendroidal
set. Hence we are reduced to prove that the above map is a monomorphism. This
latter property is equivalent to the fact that the commutative square

∂Ω[S]⊗ ∂Ω[T ] //

��

∂Ω[S]⊗ Ω[T ]

��
Ω[S]⊗ ∂Ω[T ] // Ω[S]⊗ Ω[T ]

is a pullback square in which any map is a monomorphism. As the nerve functor
preserves pullbacks, this reduces to the following property: for any elementary faces
S/x −→ S and T/y −→ T the commutative square

S/x⊗BV T/y
//

��

S/x⊗BV T

��
S ⊗BV T/y

// S ⊗BV T

is a pullback square of monomorphisms in the category of operads. This is an
elementary consequence of the definitions involved. �

1.10. Under the assumtions of Proposition 1.9, we shall write A⊗Y ∪B⊗X instead
of A⊗ Y ∐A⊗X B ⊗X.

2. Statement of main results

In this section, we state the main results of this paper.

2.1. Recall from [MW09, Section 5] the notion of inner horn. Given an inner edge
e in a tree T , we get an inclusion

(2.1.1) Λe[T ] −→ Ω[T ] ,

where Λe[T ] is obtained as the union of all the images of elementary face maps
which are distinct from the face ∂e : T/e −→ T . The maps of shape (2.1.1) are
called inner horn inclusions.

A map of dendroidal sets is called an inner anodyne extension if it belongs to
the smallest class of maps which is stable by pushouts, transfinite composition and
retracts, and which contains the inner horn inclusions.

A map of dendroidal sets is called an inner Kan fibration if it has the right lifting
property with respect to the class of inner anodyne extensions (or, equivalently, to
the set of inner horn inclusions).



DENDROIDAL SETS AS MODELS FOR HOMOTOPY OPERADS 7

A dendroidal set X is an inner Kan complex if the map from X to the terminal
dendroidal set is an inner Kan fibration. We will also call inner Kan complexes ∞-
operads. For example, for any operad P , the dendroidal set Nd(P ) is an ∞-operad;
see [MW09, Proposition 5.3]. In particular, for any tree T , the dendroidal set Ω[T ]
is an ∞-operad. For a simplicial set K, its image by i! is an ∞-operad if and only
if K is an ∞-category (i.e. K is a quasi-category in the sense of [Joy02]).

A map of dendroidal sets will be called a trivial fibration if it has the right lifting
property with respect to normal monomorphisms.

Note that the small object argument implies that we can factor any map of
dendroidal sets into a normal monomorphism followed by a trivial fibration (resp.
into an inner anodyne extension followed by an inner Kan fibration).

Remark 2.2. A morphism between normal dendroidal sets is a trivial fibration if
and only if it has the right lifting property with respect to monomorphisms: this
follows immediately from Corollaries 1.7 and 1.8.

2.3. Recall the naive model structure on the category of operads [Wei07]: the weak
equivalences are the equivalences of operads, i.e. the maps f : P −→ Q which are
fully faithful and essentially surjective: for any n+ 1-uple of objects (a1, . . . , an, a)
in P , f induces a bijection

P (a1, . . . , an; a) −→ Q (f(a1), . . . , f(an); f(a)) ,

and any object of Q is isomorphic to the image of some object in P . The fibrations
are operadic fibrations, i.e. the maps f : P −→ Q such that, given any isomorphism
β : b0 −→ b1 in Q , and any object a1 in P such that f(a1) = b1, there exists an
isomorphism α : a0 −→ a1 in P , such that f(α) = β.

This model structure is closely related with the naive model structure on Cat
(for which the weak equivalences are the equivalences of categories). In fact, the
latter can be recovered from the one on operads by slicing over the unit operad
(which is also the terminal category). The fibrations of the naive model structure
on Cat will be called the categorical fibrations.

Theorem 2.4. The category of dendroidal sets is endowed with a model category
structure for which the cofibrations are the normal monomorphisms, the fibrant
objects are the ∞-operads, and the fibrations between fibrant objects are the inner
Kan fibrations between ∞-operads whose image by τd is an operadic fibration. The
class of weak equivalences is the smallest class of maps of dendroidal sets W which
satisfies the following three properties.

(a) (‘2 out 3 property’) In any commutative triangle, if two maps are in W,
then so is the third.

(b) Any inner anodyne extension is in W.
(c) Any trivial fibration between ∞-operads is in W.

Proof. This follows from Proposition 3.12, Theorem 6.10, and Corollary 6.11. �

Corollary 2.5. The adjunction τd : dSet ⇄ Operad : Nd is a Quillen pair. More-
over, the two functors τd and Nd both preserve weak equivalences. In particular, a
morphism of operads is an equivalence of operads if and only if its dendroidal nerve
is a weak equivalence.

Proof. See 6.17. �
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Proposition 2.6. The model category structure of Theorem 2.4 has the following
additional properties:

(a) it is left proper;
(b) it is cofibrantly generated (it is even combinatorial);
(c) it is symmetric monoidal.

Proof. See Propositions 3.12 and 3.17. �

Corollary 2.7. For any normal dendroidal set A and any ∞-operad X, the set of
maps [A,X] = HomHo(dSet)(A,X) is canonically identified with the set of isomor-

phism classes of objects in the category τhom(A,X).

Proof. See Proposition 6.20. �

Corollary 2.8. Let f : X −→ Y be a morphism of ∞-operads. The following
conditions are equivalent.

(a) The map f : X −→ Y is a weak equivalence.
(b) For any normal dendroidal set A, the map

τd Hom(A,X) −→ τd Hom(A, Y )

is an equivalence of operads.
(c) For any normal dendroidal set A, the map

τhom(A,X) −→ τhom(A, Y )

is an equivalence of categories.

Proof. Remember that, by definition (and any∞-operad being fibrant), the map f
is a weak equivalence if and only if, for any normal dendroidal set A, the induced
map

[A,X] −→ [A, Y ]

is bijective. This corollary is thus a direct consequence of Corollaries 2.5 and 2.7
and of the fact the model category structure on dSet is monoidal. �

Corollary 2.9. Let u : A −→ B be a morphism of normal dendroidal sets. The
following conditions are equivalent.

(a) The map u : A −→ B is a weak equivalence.
(b) For any ∞-operad X, the map

τd Hom(B,X) −→ τd Hom(A,X)

is an equivalence of operads.
(c) For any ∞-operad X, the map

τhom(B,X) −→ τhom(A,X)

is an equivalence of categories.

Proof. The fibrant objects of dSet are exactly the ∞-operads. Hence, the map
u : A −→ B is a weak equivalence if and only if, for any ∞-operad X, the map

[B,X] −→ [A,X]

is bijective. We conclude the proof using the same arguments as in the proof of
Corollary 2.8. �
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Corollary 2.10 (Joyal). The category of simplicial sets is endowed with a left
proper, cofibrantly generated, symmetric monoidal model category structure for
which the cofibrations are the monomorphisms, the fibrant objects are the ∞-ca-
tegories, and the fibrations between fibrant objects are the inner Kan fibrations
between ∞-categories whose image by τ is a categorical fibration.

Proof. The model category structure on dSet induces a model category structure
on dSet/η ≃ sSet ; see also Remark 3.14 for B = η. �

Remark 2.11. Note that, the functor i! : sSet −→ dSet is fully faithful and symmet-
ric monoidal. Moreover, for any simplicial setsA andX, we have hom(i!(A), i!(X)) =
XA. We deduce from this that the induced map

HomHo(sSet)(A,X) −→ HomHo(dSet)(i!(A), i!(X))

is bijective (where Ho(sSet ) denotes the homotopy category of the Joyal model
structure, given by Corollary 2.10). As a consequence, we also have formally the
simplicial analogs of Corollaries 2.7, 2.8 and 2.9.

3. Construction of an abstract model category for ∞-operads

This section is devoted to the construction of a model category structure on dSet .
The construction is relatively formal and uses very little of the theory of dendroidal
sets. By definition, we will have that any fibrant object of this model category is
an ∞-operad. The proof of the converse (any ∞-operad is fibrant) is the ‘raison
d’être’ of the next sections.

Proposition 3.1. Let A −→ B and X −→ Y be an inner anodyne extension and
a normal monomorphism respectively. The induced map

A⊗ Y ∪B ⊗X −→ B ⊗ Y

is an inner anodyne extension.

Proof. Using [Cis06, Corollary 1.1.8], we see that it is sufficient to check this prop-
erty when A −→ B is an inner horn inclusion and when X −→ Y is a boundary
inclusion. This proposition thus follows from [MW09, Proposition 9.2]. �

3.2. We denote by J the nerve of the contractible groupoid with two objects 0 and
1 (i.e. J is the nerve of the fundamental groupoid of ∆[1]). We will write Jd = i!(J)
for the corresponding dendroidal set.

A morphism of dendroidal sets is a J-anodyne extension if it belongs to the
smallest class of maps which contains the inner anodyne extensions and the maps

∂Ω[T ]⊗ Jd ∪ Ω[T ]⊗ {e} −→ Ω[T ]⊗ Jd T ∈ Ω, e = 0, 1 ,

and which is closed under pushouts, transfinite compositions and retracts.
A morphism of dendroidal sets will be called a J-fibration if it has the right

lifting property with respect to J-anodyne extensions.
A dendroidal set X is J-fibrant if the map from X to the terminal dendroidal

set is a J-fibration.

Proposition 3.3. Let A −→ B and X −→ Y be a J-anodyne extension and a
normal monomorphism respectively. The induced map

A⊗ Y ∪B ⊗X −→ B ⊗ Y

is a J-anodyne extension.
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Proof. Using [Cis06, Corollary 1.1.8], this follows formally from the definition and
from Proposition 3.1. �

3.4. Let B be a dendroidal set. Denote by AnB the class of maps of dSet/B whose
image in dSet is J-anodyne. For each dendroidal set X over B, with structural
map a : X −→ B, we define a cylinder of X over B

X ∐X
(∂0

X ,∂
1
X)//

(a,a)
%%KKKKKKKKKKK Jd ⊗X

σX //

a′

��

X

a
{{wwwwwwwww

B

(3.4.1)

in which ∂eX is the tensor product of {e} −→ Jd with 1X , while σX is the tensor
product of Jd −→ η with 1X , and a′ is the composition of 1Jd

⊗ a with the map
σB .

These cylinders over B define the notion J-homotopy over B (or fiberwise J-
homotopy) between maps in dSet/B. Given two dendroidal sets A and X over B,
we define [A,X]B as the quotient of the set HomdSet/B(A,X) by the equivalence

relation generated by the relation of J-homotopy over B. A morphism A −→ A′ of
dendroidal sets over B is a B-equivalence if, for any dendroidal set X over B such
that the structural map X −→ B is a J-fibration, the map

[A′, X]B −→ [A,X]B

is bijective.
In the case B is normal, any monomorphism over B is normal; see Corollaries 1.7

and 1.8. We see from Proposition 3.3 and from [Cis06, Lemma 1.3.52] that the class
AnB is a class of anodyne extensions with respect to the functorial cylinder (3.4.1)
in the sense of [Cis06, Definition 1.3.10]. In other words, the functorial cylinder
(3.4.1) and the class AnB form a homotopical structure on the category dSet/B in
the sense of [Cis06, Definition 1.3.14]. As a consequence, a direct application of
[Cis06, Theorem 1.3.22, Proposition 1.3.36 and Lemma 1.3.52] leads to the following
statement1.

Proposition 3.5. For any normal dendroidal set B, the category dSet/B of den-
droidal sets over B is endowed with a left proper cofibrantly generated model category
structure for which the weak equivalences are the B-equivalences, the cofibrations
are the monomorphisms, and the fibrant objects are the dendroidal sets X over B
such that the structural map is a J-fibration. Moreover, a morphism between fibrant
objects is a fibration in dSet/B if and only if its image in dSet is a J-fibration.

Remark 3.6. Any J-anodyne extension over B is a trivial cofibration in the model
structure of the preceding proposition; see [Cis06, Proposition 1.3.31].

Lemma 3.7. Let p : X −→ Y be a trivial fibration between normal dendroidal sets.
Any section s : Y −→ X is a J-anodyne extension.

Proof. This is a particular case of [Cis06, Corollary 1.3.35] applied to the homo-
topical structure defined in 3.4 on dSet/Y . �

1The results of [Cis06] are stated for presheaves categories, so that, strictly speaking, to apply

them, we implicitely use the canonical equivalence of categories between dSet/B and the category
of presheaves on Ω/B.
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3.8. We fix once and for all a normalization E∞ of the terminal dendroidal set: i.e.,
we choose a normal dendroidal set E∞ such that the map from E∞ to the terminal
dendroidal set is a trivial fibration.

Lemma 3.9. For any normal dendroidal set X, and any map a : X −→ E∞, the
map (a, 1X) : X −→ E∞ ×X is a J-anodyne extension.

Proof. This follows immediately from Lemma 3.7 because (a, 1X) is a section of the
projection X × E∞ −→ X, which is a trivial fibration by definition of E∞. �

Lemma 3.10. Let i : A −→ B be a morphism of normal dendroidal sets, and
p : X −→ Y a morphism of dendroidal sets. The map p has the right lifting
property with respect to i in dSet if and only if, for any morphism B −→ E∞, the
map 1E∞

× p has the right lifting property with respect to i in dSet/E∞.

Proof. Suppose that 1E∞
× p has the right lifting property with respect to i, and

consider the lifting problem below.

A
a //

i

��

X

p

��
B

b
//

ℓ

>>

Y

As B is normal, there exists a map β : B −→ E∞. If we write α = β i, we see
immediately that the lifting problem above is now equivalent to the lifting problem

A
(α,a) //

i

��

E∞ ×X

1E∞
×p

��
B

(β,b)
//

(β,ℓ)
;;

E∞ × Y

and this proves the lemma. �

3.11. Given a normal dendroidal set A and a J-fibrant dendroidal set X, we denote
by [A,X] the quotient of HomdSet (A,X) by the equivalence relation generated by
the J-homotopy relation (i.e., with the notations of 3.4, [A,X] = [A,X]e, where e
denotes the terminal dendroidal set).

Proposition 3.12. The category of dendroidal sets is endowed with a left proper
cofibrantly generated model category in which the cofibrations are the normal mono-
morphisms, the fibrant objects are the J-fibrant dendroidal sets, and the fibrations
between fibrant objects are the J-fibrations. Furthermore, given a normal dendroidal
set A and a J-fibrant dendroidal set X, we have a canonical identification

[A,X] = HomHo(dSet)(A,X) .

Proof. Proposition 3.5 applied to B = E∞ gives us a model category structure on
dSet/E∞. Consider the adjunction

p! : dSet/E∞ ⇄ dSet : p∗ ,

where p∗ is the functor X 7−→ E∞ ×X. It follows obviously from Lemma 3.9 that
the functor p∗p! is a left Quillen equivalence from the category dSet/E∞ to itself.
This implies immediately that the adjunction (p!, p

∗) satisfies all the necessary
hypothesises to define a model structure on dSet by transfer; see e.g. [Cra95]
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or [Cis06, Proposition 1.4.23]. In other words, the category of dendroidal sets
is endowed with a cofibrantly generated model category structure for which the
weak equivalences (resp. the fibrations) are the maps whose image by p∗ is a
weak equivalence (resp. a fibration) in dSet/E∞. The description of cofibrations
follows from Proposition 1.4. We know that the fibrations between fibrant objects
in dSet/E∞ are the maps whose image in dSet is a J-fibration; see Proposition
3.5. The description of fibrant objects and of fibrations between fibrant objects in
dSet as J-fibrant objects and J-fibrations is thus a direct consequence of Lemma
3.10. The identification [A,X] = HomHo(dSet)(A,X) is obtained from the general
description of the set of maps from a cofibrant object to a fibrant object in an
abstract model category. It remains to prove left properness: this follows from
the left properness of the model category structure of Proposition 3.5 for B = E∞

(which is obvious, as any object over E∞ is cofibrant), and from the fact that
p∗ preserves cofibrations as well as colimits, while it preserves and detects weak
equivalences. �

3.13. The weak equivalences of the model structure defined in Proposition 3.12
will be called the weak operadic equivalences.

Given a dendroidal set A, a normalization of A is a trivial fibration A′ −→ A
with A′ normal. For instance, the projection E∞ × A −→ A is a normalization of
A (as E∞ is normal, it follows from Corollary 1.7 that E∞ × A is normal). For a
morphism of dendroidal sets f : A −→ B, the following conditions are equivalent.

(a) The map f is a weak operadic equivalence.
(b) For any commutative square

A′ //

��

A

��
B′ // B

in which the horizontal maps are normalizations, and for any J-fibrant
dendroidal set X, the map [B′, X] −→ [A′, X] is bijective.

(c) There exists a commutative square

A′ //

��

A

��
B′ // B

in which the horizontal maps are normalizations such that, for any J-fibrant
dendroidal set X, the map [B′, X] −→ [A′, X] is bijective.

Remark 3.14. Given a normal J-fibrant dendroidal set B, the model structure
induced on dSet/B by the model structure of Proposition 3.12 coincide with the
model structure of Proposition 3.5 (this follows, for instance, from the fact these
model structures have the same cofibrations and fibrations between fibrant objects).

Remark 3.15. The model category structure of Proposition 3.12 is cofibrantly gen-
erated. The generating cofibrations are the inclusions of shape ∂Ω[T ] −→ Ω[T ]
for any tree T . We don’t know any explicit set of generating trivial cofibrations.
However, we know (from the proof of Proposition 3.12) that there exists a gener-
ating set of trivial cofibrations J for the model structure on dSet/E∞, such that
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p!(J ) is a generating set of trivial cofibrations of dSet . In particular, there exists
a generating set of trivial cofibrations of dSet which consists of trivial cofibrations
between normal dendroidal sets. Statements about trivial cofibrations will often be
reduced to statements about J-anodyne extensions using the following argument.

Proposition 3.16. The class of trivial cofibrations between normal dendroidal sets
is the smallest class C of monomorphisms between normal dendroidal sets which
contains J-anodyne extensions, and such that, given any monomorphisms between
normal dendroidal sets

A
i // B

j // C ,

if j and ji are in C , so is i.

Proof. Let i : A −→ B be a monomorphism between normal dendroidal sets. As B
is normal, we can choose a map from B to E∞. We can then choose a commutative
diagram over E∞

A
a //

i

��

A′

i′

��
B

b
// B′

in which a and b are J-anodyne extensions, A′ and B′ are fibrant in dSet/E∞,
and i′ is a monomorphism: this follows, for instance, from the fact that any J-
fibrant resolution functor constructed with the small object argument applied to
the generating set of J-anodyne extensions preserves monomorphisms; see [Cis06,
Proposition 1.2.35]. Applying [Cis06, Corollary 1.3.35] to the model structure of
Proposition 3.5 for B = E∞, we see that i is a trivial cofibration if and only if i′ is
a J-anodyne extension. This proves the proposition. �

Proposition 3.17. The model category structure on dSet is symmetric monoidal.

Proof. As we already know that normal monomorphisms are well behaved with
respect to the tensor product (Proposition 1.9) it just remains to prove that, given
a normal monomorphism i : A −→ B and a trivial cofibration j : C −→ D, the
induced map

A⊗D ∪B ⊗ C −→ B ⊗D

is a trivial cofibration. According to [Hov99, Lemma 4.2.4], we can assume that i
is a generating cofibration, and j a generating trivial cofibration. In particular, we
can assume that i and j are monomorphisms between normal dendroidal sets; see
Remark 3.14. It is thus sufficient to prove that, given a normal dendroidal set A,
the functor X 7−→ A⊗X preserves trivial cofibrations between normal dendroidal
sets. By Proposition 3.16, it is even sufficient to prove that tensor product by A
preserves J-anodyne extensions, which follows from Proposition 3.3. �

4. The join operation on trees

The aim of this section is to study a dendroidal analog of the join operations on
simplicial sets introduced by Joyal in [Joy02]. We shall prove a generalization of
[Joy02, Theorem 2.2]; see Theorem 4.2.
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4.1. Let X be a ∞-operad. A 1-simplex of X (i.e. a map ∆[1] −→ i∗(X)) will be
called weakly invertible if the corresponding morphism in the category τ(i∗(X)) is
an isomorphism.

Note that, for any∞-operad X, the category τ(i∗(X)) is canonically isomorphic
to the category underlying the operad τd(X): this comes from the explicit descrip-
tion of τ(i∗(X) given by Boardman and Vogt (see [Joy02, Proposition 1.2]) and
from its dendroidal generalization, which describes τd(X) explicitely; see [MW09,
Proposition 6.10]. As a consequence, weakly invertible 1-cells in X can be de-
scribed as the maps i!∆[1] = Ω[1] −→ X which induce invertible morphisms in the
underlying category of the operad τd(X).

Theorem 4.2. Let T be a tree with at least two vertices as well as a unary vertex
r at the root, and let p : X −→ Y be an inner Kan fibration between ∞-operads.
Then any solid commutative square of the form

Λr[T ]
f //

��

X

p

��
Ω[T ]

g //

h

==

Y

in which f(r) is weakly invertible in X has a diagonal filling h.

4.3. In order to prove this theorem, we will introduce join operations on forests.
A forest is a finite set of trees (i.e. of objects of Ω). Given a forest T =

(T1, . . . , Tk), k > 0, we write T /dSet for the category of dendroidal sets under the
coproduct Ω[T ] = ∐ki=1Ω[Ti]. The objects of T /dSet are thus of shape (X,xi) =
(X,x1, . . . , xk), where X is a dendroidal set, and xi ∈ X(Ti), for 1 6 i 6 k.
Morphisms (X,xi) −→ (Y, yi) are maps f : X −→ Y such that f(xi) = yi for all i,
1 6 i 6 k.

Given an integer n > 0, we construct the tree T ⋆n by joining the trees T1, · · · , Tk
together over a new vertex v, and then grafting the result onto i[n] (i.e. onto [n]
viewed as a tree).

•

CCCC
{{{{

T1

•

CCCC
{{{{

T2

······ •

CCCC
{{{{

Tk

•
a2

a1

QQQQQQQQ ak

hhhhhhhhhhhh

(T1, . . . , Tk) ⋆ n = •
0

v

1

•
n

...

(4.3.1)

We insist that the forest T might be empty: for k = 0, we have

•

•
0

v

1

( ) ⋆ n =

•
n

...

(4.3.2)
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As each Ti, 1 6 i 6 k, embeds canonically into T ⋆ n, we can view Ω[T ⋆ n] as an
object of T /dSet . One checks that there is a unique functor

∆ −→ Ω , [n] 7−→ T ⋆ n

such that the inclusions Ti −→ T ⋆n are functorial in Ti and such that the canonical
inclusion i[n] −→ T ⋆ n is functorial in [n]. This defines a functor

(4.3.3) T ⋆ (−) : ∆ −→ T /dSet .

By Kan extension, we obtain a colimit preserving functor which extends (4.3.3):

(4.3.4) T ⋆ (−) : sSet −→ T /dSet .

We have T ⋆∆[n] = Ω[T ⋆ n]. The functor (4.3.4) has a right adjoint

(4.3.5) T \(−) : T /dSet −→ sSet .

For a one tree forest T = (T ), we will simply write T ⋆ K = T ⋆ K and T \X =
T\X for any simplicial set K and any dendroidal set X under Ω[T ]. Under these
conventions, these operations extend the join operations introduced by Joyal in
[Joy02] in the sense that we have the following formulas.

i[n] ⋆ i!(K) = i!(∆[n] ⋆ K)

i[n]\i!(L) = i!(∆[n]\L)

Note that the inclusions Ω[n] −→ T ⋆∆[n] in dSet induce a natural projection map

(4.3.6) πX : T \X −→ i∗(X)

for any dendroidal set X under T .

Remark 4.4. Note that any tree with at least one vertex T is obtained by joining
a forest with an ordinal, i.e. as T = T ⋆ n for some forest T and some integer
n > 0. A tree T has at least two vertices and a unary vertex at the root (as in the
statement of Theorem 4.2) if and only if there exists a forest T such that T = T ⋆1.

4.5. In order to prove Theorem 4.2, we will have also to consider some specific
maps of forests. For this purpose, we introduce the following terminology.

Let T be a tree. A set A of edges in T is is called admissible if, for any input
edge e of T , and any vertex v in T , if A contains a path (branch) from e to v, then
A contains all the edges above v.

If A is an admissible set of edges in T , we will define a forest ∂A(T ), and for
each tree S in ∂A(T ), a face map S −→ T in the category Ω. Roughly speaking,
one deletes from T all edges in A, and defines ∂A(T ) as the resulting connected
components. A formal definition is by induction on the cardinality of A.

(i) If A is empty, then ∂A(T ) = T .
(ii) If A contains the root edge e of T , let T1, . . . , Tk be the trees obtained from

T by deleting e and the vertex immediately above it, let Ai = Ti ∩ A, and
define ∂A(T ) as the union of the forests ∂Ai

(Ti), 1 6 i 6 k.
(iii) If A contains an input edge a of T , it must contain all the edges above the

vertex v just below a. Let T(v) be the tree obtained from T by pruning
away v and all the edges above it. Let A(v) = T(v) ∩A, and define ∂A(T ) =
∂A(v)

(T(v)).

(iv) If A contains an inner edge a of T , let T/a be the tree obtained by con-
tracting a, and define ∂A(T ) to be ∂A−{a}(T/a).



16 D.-C. CISINSKI AND I. MOERDIJK

One can check that the steps (i)–(iv) can be performed in any order, so that the
forest ∂A(T ) is well defined. Each tree S in this forest ∂A(T ) is a face of T , hence
comes with a canonical map S −→ T .

Example 4.6. The tree

•c

CCCC d

{{{{ •

T = •b

====== e

������

a
v

has two input edges c and d. The edges b and c form a path from c down to v. So
any admissible set A which contains b and c, for example, must contain d and e as
well.

4.7. This construction extends to forests in the following way. Let T = (T1, . . . , Tk)
be a forest. An admissible subset of edges A in T is a k-tuple A = (A1, . . . , Ak),
where Ai is an admissible set of edges of Ti for 1 6 i 6 k. We can then define the
forest ∂A(T ) as the union of the forests ∂Ai

(Ti). Given any integer n > 0, we have
a canonical map

(4.7.1) ∂A(T ) ⋆ n −→ T ⋆ n

which is characterized by the fact that, given any tree S in some ∂Ai
(Ti), for

1 6 i 6 k, the diagram

S ⋆ n

��

// Ti ⋆ n

��
∂A(T ) ⋆ n // T ⋆ n

(4.7.2)

commutes. The map (4.7.1) is a monomorphism of trees in Ω and is natural in [n]
(as an object of ∆). More generally, given an inclusion A ⊂ B between admissible
subsets of edges in T , we have canonical monomorphisms of trees

(4.7.3) ∂B(T ) ⋆ n −→ ∂A(T ) ⋆ n

(which is just another instance of (4.7.1) for the forest ∂A(T ) with admissible sub-
set of edges given by the sets Bi∩∂Ai

(Ti)). The maps (4.7.3) define a contravariant
functor from the set of admissible subsets of edges in T (partially ordered by in-
clusion) to Ω. Given an inclusion A ⊂ B of admissible subsets of edges in T , there
exists a unique morphism

(4.7.4) Ω[∂B(T )] −→ Ω[∂A(T )]

such that the following diagram commutes for any simplicial set K.

Ω[∂B(T )] //

��

Ω[∂A(T )]

��
∂B(T ) ⋆ K // ∂A(T ) ⋆ K

(4.7.5)

By adjunction, we also have natural morphisms

(4.7.6) ∂B(T )\X −→ ∂A(T )\X

for all dendroidal sets X under Ω[∂A(T )].
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Example 4.8. If a is the root of T , and if T is obtained by grafting trees Ti with
root edges ai onto a corolla, then the map of type (4.7.3) for A = ∅ and B = {a}
is the map ∂a given by contracting a:

•

CCCC
{{{{

T1

•

CCCC
{{{{

T2

······ •

CCCC
{{{{

Tk

•
a2

a1

QQQQQQQQ ak

hhhhhhhhhhhh

•
0

1

•
n

...

∂a //

•

CCCC
{{{{

T1

•

CCCC
{{{{

T2

······ •

CCCC
{{{{

Tk

•
a2

a1

QQQQQQQQ ak

hhhhhhhhhhhh

•
a

0

•
n

...

4.9. We will now study an elementary combinatorial situation which we will have
to consider twice to prove Theorem 4.2: in the proof of Proposition 4.11 and in the
proof of 4.15.2.

Consider a tree T . Assume that T = T ⋆ n for a non-empty forest T =
(T1, . . . , Tk) and an ordinal [n], n > 0.

Let i, 0 6 i < n, be an integer, and {A1, . . . , As}, s > 1, a finite family of
admissible subsets of edges in T . Define

C ⊂ D ⊂ Ω[T ]

by

C =
(

s
⋃

r=1

∂Ar
(T ) ⋆ Λi[n]

)

∪ Ω[n] and D =

s
⋃

r=1

∂Ar
(T ) ⋆∆[n] ,

where Ω[n] is considered as a subcomplex of Ω[T ] through the canonical map.

Lemma 4.10. Under the assumptions of 4.9, the map C −→ D is an inner anodyne
extension.

Proof. If T is the empty forest, we must have s = 1 and A1 = ∅, so that D = Ω[T ],
and C = Λi[T ] is an inner horn. From now on, we will assume that T is non-empty.

Given a forest T ′, the number of edges in T ′ is simply defined as the sum of the
number of edges in each of the trees which occur in T ′. For each integer p > 0,
write Fp for the set of faces F which belong to D but not to C, and which are of
shape F = Ω[∂A(T ) ⋆n] for an admissible subset of edges A in T , such that ∂A(T )
has exactly p edges.

Define a filtration

C = C0 ⊂ C1 ⊂ . . . ⊂ Cp ⊂ . . . ⊂ D

by

Cp = Cp−1 ∪
⋃

F∈Fp

F , p > 1 .

We have D = Cp for p big enough, and it is sufficient to prove that the inclusions
Cp−1 −→ Cp are inner anodyne for p > 1. If F and F ′ are in Fp, then F ∩ F ′ is in
Cp−1. Moreover, if F = Ω[∂A(T ) ⋆ n] for an admissible subset of edges A, then we
have

F ∩ Cp−1 = Λi[∂A(T ) ⋆ n] ,



18 D.-C. CISINSKI AND I. MOERDIJK

which is an inner horn. Hence we can describe the inclusion Cp−1 −→ Cp as a
finite composition of pushouts by inner horn inclusions of shape F ∩ Cp−1 −→ F
for F ∈ Fp. �

Proposition 4.11. Let T = (T1, . . . , Tk) be a forest, and n > 1, 0 6 i < n,
be integers. The inclusion (T ⋆ Λi[n]) ∪ Ω[n] −→ T ⋆ ∆[n] is an inner anodyne
extension.

Proof. This is a particular case of the preceding lemma. �

4.12. Remember from [Joy02] that a morphism of simplicial sets is called a left
(resp. right) fibration if it has the right lifting property with respect to inclusions
of shape Λi[n] −→ ∆[n] for n > 1 and 0 6 i < n (resp. 0 < i 6 n).

A morphism between ∞-categories X −→ Y is conservative if the induced func-
tor τ(X) −→ τ(Y ) is conservative (which can be reformulated by saying that a
1-simplex of X is weakly invertible if and only if its image in Y is weakly invert-
ible). For instance, by virtue of [Joy02, Proposition 2.7], any left (resp. right)
fibration between ∞-categories is conservative.

Proposition 4.13. Let p : X −→ Y be an inner Kan fibration of dendroidal sets
under a forest T . The map

T \X −→ T \Y ×i∗(Y ) i
∗(X)

is a left fibration.
In particular, for any ∞-operad X under a forest T , the map T \X −→ i∗(X)

is a left fibration.

Proof. This follows immediately from Proposition 4.11 by a standard adjunction
argument. �

Corollary 4.14. For any ∞-operad X and any forest T over X, the simplicial set
T \X is an ∞-category. Similarly, for any inner Kan fibration between ∞-operads
X −→ Y and any forest T over X, the simplicial set T \Y ×i∗(Y ) i

∗(X) is an
∞-category.

Proof. If X is an∞-operad, then i∗(X) is clearly an∞-category. Since the projec-
tion T \X −→ i∗(X) is a left fibration, this implies this corollary. �

As a warm up to prove Theorem 4.2, we shall consider a particular case.

Lemma 4.15. Theorem 4.2 is true if T = ( ) ⋆ 1 (where ( ) denotes the empty
forest).

Proof. In this case, T is a tree of shape

1
•r
0
•
v

and Λr[T ] is the union of the two faces

1
•
v

and
1
•r
0
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In other words, we get Λr[T ] = ( ) ⋆ Λ1[1] ∪ Ω[1]. Thus, a lifting problem of shape

Λr[T ]
f //

��

X

p

��
Ω[T ]

g //

h

==

Y

is equivalent to a lifting problem of shape

{1}
f̃ //

��

( )\X

ϕ

��
∆[1]

g̃ //

h̃

77

( )\Y ×i∗(Y ) i
∗(X)

By virtue of Proposition 4.13, the map ϕ is a left fibration, and, as left fibrations
are stable by pullback and by composition, so is the projection of ( )\Y ×i∗(Y ) i

∗(X)
to i∗(X). The image of g̃ by the latter is nothing but f(r), and, as we know that
left fibrations between∞-categories are conservative (see [Joy02, Proposition 2.7]),
the 1-cell g̃ is quasi-invertible in ( )\Y ×i∗(Y ) i

∗(X). We conclude the proof using
[Joy02, Propositions 2.4 and 2.7]. �

Proof of Theorem 4.2. Let T be a tree with at least two vertices and a unary vertex
r at the root. There is a forest T = (T1, · · · , Tk), k > 0, such that T = T ⋆ 1.
By virtue of Lemma 4.15, we may assume that T is not the empty forest, or,
equivalently, that k > 1. We will write T ′ = T ⋆ 0. The trees T and T ′ can be
represented as follows.

T =

•

CCCC
{{{{

T1

•

CCCC
{{{{

T2

······ •

CCCC
{{{{

Tk

•
a2

a1

QQQQQQQQ ak

hhhhhhhhhhhh

•
0

1

r

T ′ =
•

CCCC
{{{{

T1

•

CCCC
{{{{

T2

······ •

CCCC
{{{{

Tk

•
a2

a1

QQQQQQQQ ak

hhhhhhhhhhhh
0

Given a dendroidal set X, a map Λr[T ] −→ X corresponds to a compatible
family of maps of simplicial sets

{1} = ∆[0] −→ ∂A(T ′)\X ,

indexed by the non-empty admissible subset of edges A in T ′. This family corre-
sponds to a map

∆[0] −→ lim←−
A

∂A(T ′)\X .

By separating the case A = {0} (the root edge of T ′) from the others, the map
Λr[T ] −→ X corresponds to a commutative square of shape

∆[0] //

∂0

��

T \X

��
∆[1] // lim←−∂B̄(T )\X
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in which the limit lim←−∂B̄(T )\X is over the non-empty admissible subsets of edges

B in T ′ with 0 /∈ B, and B̄ = (B ∩ T1, . . . , B ∩ Tk).
Consider from now on an inner Kan fibration between ∞-operads p : X −→ Y .

Lifting problems of shape

Λr[T ]
f //

��

X

p

��
Ω[T ]

g //

h

==

Y

correspond to lifting problems

∆[0]
f̃ //

∂0

��

P

ϕ

��
∆[1]

g̃ //

h̃

>>

Q

where P = T \X and Q = U ×W V , with

U = lim←−∂B̄(T )\X , V = T \Y , W = lim←−∂B̄(T )\Y .

Exactly like in the proof of Proposition 4.15, it now suffices to prove the following
three statements:

(i) the map ϕ : P −→ Q is a left fibration;
(ii) the simplicial set Q is an ∞-category;
(iii) if f(r) is weakly invertible in X, then the 1-cell g̃ is weakly invertible in

i∗(Q).

Note that, as left fibrations are conservative and are stable by pullback and com-
position, statements (ii) and (iii) will follow from the following two assertions:

(iv) the map V −→W is a left fibration;
(v) the map U −→ i∗(X) is a left fibration.

But (iv) is a particular case of (i): just replace p by the map from Y to the terminal
dendroidal set. It thus remains to prove (i) and (v).

4.15.1. Proof of (i).

For 0 6 i < n, a lifting problem of the form

Λi[n] //

��

P

ϕ

��
∆[n] //

==

Q

correspond to a lifting problem of the form

Λi[T ⋆ n] //

��

X

p

��
Ω[T ⋆ n] //

;;

Y

As Λi[T ⋆ n] is an inner horn, (i) thus follows from the fact p is an inner Kan
fibration.



DENDROIDAL SETS AS MODELS FOR HOMOTOPY OPERADS 21

4.15.2. Proof of (v).

For 0 6 i < n, a lifting problem of the form

Λi[n] //

��

U

��
∆[n] //

;;

i∗(X)

corresponds to a lifting problem of the form

C //

��

X

D

>>

where the inclusion C −→ D can be described as follows. The dendroidal set D is
the union of all the faces ∂x(T ⋆n) given by contracting an inner edge or a root edge
in one of the trees Ti, or by deleting a top vertex in the tree T ⋆ n. The dendroidal
set C is the union of the image of Ω[n] −→ Ω[T ⋆n] and all the ‘codimension 2’ faces
of Ω[T ⋆ n] of shape ∂j∂x(T ⋆ n), where ∂x is as above, and 0 6 j 6 n is distinct
from i. It is now sufficient to check that the inclusion C −→ D is an inner anodyne
extension, which follows from a straightforward application of Lemma 4.10. �

5. Subdivision of cylinders

5.1. Let S be a tree with at least one vertex, and consider the tensor product
Ω[S]⊗∆[1]. It has a subobject

A0 = ∂Ω[S]⊗∆[1] ∪ Ω[S]⊗ {1}

where {1} −→ ∆[1] is ∂0 : ∆[0] −→ ∆[1]. In this section, we will prove the following
result.

Theorem 5.2. There exists a filtration of Ω[S]⊗∆[1] of the form

A0 ⊂ A1 ⊂ · · · ⊂ AN−1 ⊂ AN = Ω[S]⊗∆[1] ,

where:

(i) the inclusion Ai −→ Ai+1 is inner anodyne for 0 6 i < N − 1;
(ii) the inclusion AN−1 −→ AN fits into a pushout of the form

Λr[T ] //

��

AN−1

��
Ω[T ] // AN

for a tree T with at least two vertices and a unary vertex r at the root;
(iii) the map

∆[1] −→ Λr[T ] −→ AN−1 ⊂ Ω[S]⊗∆[1]

corresponding to the vertex r in (ii) coincides with the inclusion

{eS} ⊗∆[1] −→ Ω[S]⊗∆[1]

where eS is the edge at the root of the tree S.
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5.3. The proof of Theorem 5.2 is in fact very similar to that of [MW09, Proposition
9.2], stated here as Proposition 3.1. We recall from loc. cit. that, for any two trees
S and T , one can write

Ω[S]⊗ Ω[T ] =
N
⋃

i=1

Ω[Ti] ,

where Ω[Ti] −→ Ω[S] ⊗ Ω[T ] are ‘percolation schemes’. Drawing vertices of S as
white, and those of T as black, these percolation schemes are partially ordered in
a natural way, starting with the tree obtained by stacking a copy of the black tree
T on top of each input edge of the white tree S, and ending with the tree obtained
by stacking copies of S on top of T . The intermediate trees are obtained by letting
the black vertices of T percolate through the white tree S, by successive ‘moves’ of
the form

•

CCCC
{{{{

···
··· •

CCCC
{{{{

···
{{{{

◦

sn⊗w{{{{{

s1⊗w CCCCC
v⊗t

=⇒
◦

CCCC
{{{{

···
··· ◦

CCCC
{{{{

···
··· ◦

CCCC
{{{{

···

•

v⊗t1 QQQQQQQQ

v⊗tnmmmmmmmms⊗w

with ◦
sn

{{{{s1

CCCC···

s
in S, and • tm

{{{{t1

CCCC···

t
in T .

In the special case where T = [1], the filtration referred to in Theorem 5.2 is given
by

Ai = A0 ∪ Ω[T1] ∪ · · · ∪ Ω[Ti] ,

where T1, . . . , TN is any linear order on the percolation schemes extending the
natural partial order.

Remark 5.4. For any tree S with at least one vertex, and root edge named eS (e for
‘exit’), the last tree TN in the partial order of percolation schemes for Ω[S]⊗∆[1]
is of shape

◦
{{{{

CCCCS

TN = •r
(eS ,0)

(eS ,1)

It always has a unique predecessor TN−1 of the form

◦

CCCC
{{{{

S1

··· ◦

CCCC
{{{{

Sn
{{{{

TN−1 = •
(s1,0)

··· •
(sn,0)

◦
(sn,1)

������
(s1,1)

;;;;;;

(eS ,1)



DENDROIDAL SETS AS MODELS FOR HOMOTOPY OPERADS 23

where S is of the form (S1, · · · , Sn) ⋆ [0].

◦

CCCC
{{{{

S1

··· ◦

CCCC
{{{{

Sn
{{{{

S = ◦
sn

������s1

======

eS

This observation already enables us to get

Proof of parts (ii) and (iii) of Theorem 5.2. Consider all the faces of TN . For such
a face F −→ TN , there are three possibilities;

(a) it misses an S-colour entirely (i.e. there is an edge s in S so that neither
(s, 0) nor (s, 1) are in F , so that Ω[F ] factors through ∂Ω[S]⊗∆[1];

(b) F is given by contracting the edge (eS , 0), in which case Ω[F ] factors
through Ω[TN−1] (since the face F then coincides with the face of TN−1

obtained by contracting (s1, 1), . . . , (sn, 1));
(c) F is given by chopping off the edge (eS , 1) and the black vertex above it, i.e.

Ω[F ] = Ω[S] ⊗ {0}. This face cannot factor through A0, nor through any
of the earlier percolation schemes since none of these has an edge coloured
(eS , 0).

Thus, Ω[TN ]∩AN−1 = Λr[TN ], where r denotes the black vertex as pictured above.
This shows that

Λr[T ] //

��

AN−1

��
Ω[T ] // AN

is a pushout, exactly as stated in part (ii) of Theorem 5.2. Moreover, the statement
of part (iii) of Theorem 5.2 is obvious from the construction. �

5.5. The proof of part (i) of Theorem 5.2 is more involved, but it is completely
analogous to the proof of [MW09, Proposition 9.2]. The difference with the situation
in loc. cit. is that, now, we are dealing with an inclusion of the form

∂Ω[S]⊗ Ω[T ] ∪ Ω[S]⊗ Λe[T ] −→ Ω[S]⊗ Ω[T ] ,

where e is an outer edge of T = i[1], whereas in loc. cit., we dealt with

Ω[S]⊗ ∂Ω[T ] ∪ Λe[S]⊗ Ω[T ] −→ Ω[S]⊗ Ω[T ] ,

where e is an inner edge of S. This forces us to look at different ‘spines’ and
‘characteristic edges’ compared to the ones in loc. cit. (notice also in this connection
that although the tensor product is symmetric, the partial order on the percolation
schemes is reversed).

The following lemma was also used (implicitly) in [MW09].

Lemma 5.6. Let Ti and Tj be two distinct percolation schemes for Ω[S] ⊗ ∆[1].
Then

Ω[Ti] ∩ Ω[Tj ] ⊂ ∪kΩ[Tk]

as subobjects of Ω[S]⊗∆[1], where the union ranges over all the percolation schemes
Tk which precede both Ti and Tj in the partial order.
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Proof. Let F be a common face of Ω[Ti] and Ω[Tj ]. If Tj 6 Ti in the partial order,
there is nothing to prove. Otherwise, we will give an algorithm for replacing Tj by
successively earlier percolation schemes,

Tj = Tj0 > Tj1 > Tj2 > · · ·

each having F as a face, and eventually preceding Ti in the partial order. As a first
step, Tj is obtained from an earlier percolation scheme Tj′ by changing

• ···

(s1,0)

•
(sn,0)

◦ (sn,1)

tttttt(s1,1)

JJJJJJ

(s,1)

in Tj′

into

◦

uuuuu

IIIII···

•
(s,0)

(s,1)

in Tj

If F is also a face of Tj′ , we ‘push up the black vertices’ by replacing Tj by Tj1 = Tj′ .
If not, then the colour (s, 0) must occur in F , hence in Tj as well as in Ti. So the
occurrence of (s, 0) in Tj is not the reason that Tj 
 Ti, and we put Tj1 = Tj .
Treating all black vertices in this way, we can push them up if they occur below
black vertices in Ti, until we eventually reach a percolation scheme Tjn 6 Tj , still
having F as a face, for which Tjn 6 Ti. �

5.7. We return to the proof of Theorem 5.2. Consider the inclusion

(5.7.1) Ak −→ Ak+1 = Ak ∪ Ω[Tk+1] ,

for k + 1 < N . The percolation scheme Tk+1 will have at least one black vertex.
Consider all the black vertices in Tk+1, and the corresponding faces of Tk+1 which
are formed by paths from these black vertices to the root of Tk+1:

•
(s,0)

◦
(s,1)

... mmmmmmmm

β = ◦

;;;;;
... qqqqqqqq

◦

...
;;;;;

... qqqqqqqq
(eS ,1)

(5.7.2)

The face β is the minimal external face which contains the given black vertex as well
as the root edge. We call a face β of Tk+1 of this form a spine in Tk+1. Notice that
the vertex just above (eS , 1) is indeed white, as in the picture, because k + 1 < N .
Notice also that the outer face of β given by chopping off this vertex misses the
colour eS , hence belongs to ∂Ω[S] ⊗∆[1] ⊂ A0. Furthermore, the outer face of β
given by chopping off its black top vertex belongs to Ω[S] ⊗ {1} ⊂ A0. Finally,
all the inner faces of β miss an S-color, hence factor through ∂Ω[S]⊗∆[1], except
possibly the one given by contracting the edge (s, 1) near the top. However, if this
last face ∂(s,1)(β) of β belongs to Ak, then some earlier Ti, 1 6 i 6 k, contains the
edge (s, 0), hence all of β. Thus, either Ω[β] is contained in Ak, or we can adjoin it
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by an inner anodyne extension

Λ(s,1)[β] //

��

Ak

��
Ω[β] // Ak ∪ Ω[β] .

(5.7.3)

Such a spine β is an example of an initial segment of Tk+1. Recall from [MW09]
that a face R −→ Tk+1 is called an initial segment if it is obtained by successively
chopping off top vertices. Our strategy will be to adjoin more initial segments of
Tk+1 to Ak, starting with the spines. To this end, we need the following definition
and lemma from [MW09], in which we use the notation m(R) ⊂ Ω[Tk+1] for the
image of the map Ω[R] −→ Ω[Tk+1] given by an initial segment R.

Definition 5.8 ([MW09]). Let R, Q1, . . . , Qp be initial segments of Tk+1, and let
B = m(Q1) ∪ · · · ∪ m(Qp). Suppose that, for every top face F of R, we have
m(F ) ⊂ Ak ∪ B. In this situation, an inner edge ξ of R is called characteristic
with respect to Q1, . . . , Qp if, for any inner face F of R, if m(F/ξ) is contained in
Ak ∪B, then so is m(F ) (where F/ξ −→ F is the face obtained by contracting ξ).

Example 5.9. In any spine β as in picture (5.7.2), the edge ξ = (s, 1) is characteristic
with respect to any family of initial segments.

Example 5.10. More generally, suppose R is an initial segment of Tk+1 given by a
spine β expanded by one (or more) white vertices, say

•
(s,0)

◦
(s,1)

{{{{ ◦
{{{{

R = ◦
(s′,1)

ppppppppp

◦

...
=====

(eS ,1)

Then ξ = (s, 1) is again characteristic with respect to any family Q1, . . . , Qp. In-
deed, if R/ξ is a face of an initial segment Qi, then so is R itself; see [MW09,
Remark 9.6 (iv)]. And if R/ξ is a face of Tj for a percolation scheme Tj , then Tj
either contains R, or looks like

◦
(s,0)

{{{{

•
(s′,0)

◦
{{{{

◦
(s′,1)

mmmmmmmm

◦

...
CCCC

(eS ,1)

But, by Lemma 5.6, we can assume Tj comes before Tk+1 in the partial order, so
this is impossible. Finally, if Ω[R/ξ] −→ Ω[S]⊗∆[1] factors through A0, then R/ξ
misses an S-colour, and hence so does R.



26 D.-C. CISINSKI AND I. MOERDIJK

5.11. The proof of Theorem 5.2 (i) is based on a repeated use of arguments like
the preceding one in Example 5.10. We quote the following lemma on characteristic
edges from [MW09].

Lemma 5.12 ([MW09, Lemma 9.7]). Let R, Q1, . . . , Qp be initial segments of
Tk+1. Let B = m(Q1) ∪ · · · ∪ m(Qp), and suppose each top face of R has the
property that m(F ) is contained in Ak ∪ B. If R possesses a characteristic edge
with respect to Q1, . . . , Qp, then the inclusion

Ak ∪B −→ Ak ∪B ∪m(R)

of subobjects of Ω[S]⊗∆[1] is inner anodyne.

Lemma 5.13. Let R, Q1, . . . , Qp be initial segments of Tk+1, satisfying condition
(i) in Definition 5.8, and let β be a spine in R. Then the edge ξ = (s, 1) immediately
below the black vertex on the spine is a characteristic edge for R.

Hint for a proof. This is proved exactly as Example 5.10; cf. also [MW09, Lemma
9.8]. �

5.14. Using the characteristic edges from Lemma 5.13, one can now copy the proof
of [MW09, Lemma 9.9], repeated below as Lemma 5.15, verbatim. This proof is by
induction on l, and describes a precise strategy for adjoining more and/or larger
initial segments of Tk+1 to Ak.

Lemma 5.15. Fix l 6 0, and let Q1, . . . , Qp be a family of initial segments in
Tk+1, each containing at least one spine, and at most l spines (so, necessarily,
p = 0 if l = 0). Let R1, . . . , Rq be initial segments which each contain exactly
l + 1 spines. Then the inclusion Ak −→ Ak ∪ B ∪ C is inner anodyne, where
B = m(Q1) ∪ · · · ∪m(Qp) and C = m(R1) ∪ · · · ∪m(Rq).

5.16. This strategy terminates when one arrives at the number l of all spines in
Tk+1. Indeed, for this l and p = 0, q = 1, Lemma 5.15 states for R1 = Tk+1 that
Ak −→ Ak+1 is inner anodyne, as asserted in Theorem 5.2 (i). This completes the
proof of Theorem 5.2.

6. ∞-operads as fibrant objects

6.1. The aim of this section is to characterize ∞-operads as the fibrant objects
of the model category structure on the the category of dendroidal sets given by
Proposition 3.12. This characterization is stated in Theorem 6.10 below.

Given an∞-categoryX, we denote by k(X) the maximal Kan complex contained
in X; see [Joy02, Corollary 1.5].

Recall that, given two dendroidal sets A and X, we write

hom(A,X) = i∗ Hom(A,X) .

Note that, by virtue of Proposition 3.1, if X is an ∞-operad, and if A is normal,
then Hom(A,X) is an ∞-operad, so that hom(A,X) is an ∞-category.

For an∞-operadX and a simplicial setK, we will writeX(K) for the subcomplex
of Hom(i!(K), X) which consists of dendrices

a : Ω[T ]× i!(K) −→ X

such that, for any 0-cell u in T , the induced map

au : K −→ i∗(X)
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factors through k(i∗(X)) (i.e. all the 1-cells in the image of au are weakly invertible
in i∗(X)).

For an ∞-operad X and a normal dendroidal set A, we will write k(A,X) for
the subcomplex of hom(A,X) which consists of maps

u : A⊗ i!(∆[n]) −→ X

such that, for all vertices a of A (i.e. maps a : η −→ A), the induced map

ua : ∆[n] −→ i∗(X)

factors through k(i∗(X)). So, by definition, for any normal dendroidal set A, any
simplicial set K, and any ∞-operad X, there is a natural bijection:

(6.1.1) HomsSet (K, k(A,X)) ≃ HomdSet (A,X
(K)) .

Remark 6.2. The simplicial set k(A,X) is by definition the∞-category of objectwise
weakly invertible 1-cells in hom(A,X). We can reformulate the definition of k(A,X)
as follows (still with A normal and X an ∞-operad). Define

(6.2.1) ObA =
∐

A0

η .

We have a unique monomorphism i : ObA −→ A which is the identity on 0-cells.
As A is normal, i is a normal monomorphism. We also have

(6.2.2) k(ObA,X) = k(hom(ObA,X)) =
∏

A0

k(i∗X) ,

and k(A,X) fits by definition in the following pullback square.

k(A,X) //

��

hom(A,X)

��
k(hom(ObA,X)) // hom(ObA,X)

(6.2.3)

In particular, the projection of k(A,X) on k(ObA,X) is an inner Kan fibration,
and as the latter is a Kan complex, this shows that k(A,X) is an ∞-category. One
of the key results of this section asserts that k(A,X) is a Kan complex as well,
which can be reformulated by saying that the inclusion k(hom(A,X)) ⊂ k(A,X) is
in fact an equality. In other words, a map in the ∞-category hom(A,X) is weakly
invertible if and only it is objectwise weakly invertible; see Corollary 6.8.

6.3. Before stating the next theorem, we recall that, for a morphism between ∞-
categories f : X −→ Y , the induced map τ(f) : τ(X) −→ τ(Y ) is a categorical
fibration if and only if the map

ev1 : X(∆[1]) −→ Y (∆[1]) ×Y X

induced by evaluating at 1 (i.e. by the inclusion {1} −→ ∆[1]) has the right lifting
property with respect to ∂∆[0] −→ ∆[0]; see [Joy02, Proposition 2.4].

Theorem 6.4. Let p : X −→ Y be an inner Kan fibration between ∞-operads.
The map ev1 : X(∆[1]) −→ Y (∆[1]) ×Y X has the right lifting property with respect
to inclusions ∂Ω[S] −→ Ω[S] for any tree S with at least one vertex. Consequently,
the functor τi∗(p) is a categorical fibration if and only if the evaluation at 1 map
X(∆[1]) −→ Y (∆[1]) ×Y X is a trivial fibration of dendroidal sets.
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Proof. Consider a tree S with at least one vertex and a solid commutative square

∂Ω[S]
f //

��

X(∆[1])

��
Ω[S]

g //

h

88

Y (∆[1]) ×Y X

We want to prove the existence of a diagonal filling h. This corresponds by adjunc-
tion to a filling h̃ in the following commutative square

∂Ω[S]⊗∆[1] ∪ Ω[S]⊗ {1}
f̃ //

��

X

��
Ω[S]⊗∆[1]

g̃ //

h̃

66

Y

(as the inclusion of ∂Ω[S] in Ω[S] is bijective on objects, and as the restriction of h̃

to ∂Ω[S]⊗∆[1]∪Ω[S]⊗{1} coincides with f̃ , the map Ω[S] −→ X∆[1] corresponding

to a filling h̃ will automatically factor through X(∆[1])).
Consider the filtration

∂Ω[S]⊗∆[1] ∪ Ω[S]⊗ {1} = A0 ⊂ A1 ⊂ · · · ⊂ AN−1 ⊂ AN = Ω[S]⊗∆[1]

given by Theorem 5.2. As the map X −→ Y is an inner Kan fibration, using
Theorem 5.2 (i), it is sufficient to find a filling in a solid commutative diagram of
shape

AN−1
f ′

//

��

X

��
Ω[S]⊗∆[1]

g̃ //

h̃

::

Y

in which the restriction of f ′ to ∂Ω[S]⊗∆[1]∪Ω[S]⊗{1} coincides with f̃ . By virtue
of Theorem 5.2 (ii), it is even sufficient to find a filling k in a solid commutative
diagram of shape

Λr[T ]
a //

��

X

��
Ω[T ]

b //

k

==

Y

in which T is a tree with unary vertex r at the root, and a is the restriction of f ′

to Λr[T ] ⊂ AN−1. Furthermore, by Theorem 5.2 (iii), we may assume that a(r)
is weakly invertible in i∗(X). Thus, the existence of the filling k is ensured by
Theorem 4.2.

The last assertion of the theorem follows from 6.3. �

Lemma 6.5. Any left fibration between Kan complexes is a Kan fibration.

Proof. This follows from [Joy02, Theorem 2.2 and Proposition 2.7]. �

Lemma 6.6. A morphism of simplicial sets X −→ Y is a left (resp. right) fibration
if and only it has the right lifting property with respect to maps of shape

∂∆[n]×∆[1] ∪∆[n]× {e} −→ ∆[n]×∆[1]
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for e = 1 (resp. for e = 0) and n > 0.

Proof. The map ∂∆[n]×∆[1] ∪∆[n]× {0} −→ ∆[n]×∆[1] is obtained as a finite
composition of pushouts of horns of shape Λk[n+1] −→ ∆[n+1] with 0 6 k < n+1;
see (the dual version of) [GZ67, Chapter IV, 2.1.1].

Conversely, the inclusion map Λk[n] −→ ∆[n], 0 6 k < n, is a retract of the map
Λk[n]×∆[1] ∪∆[n]× {0} −→ ∆[n]×∆[1]; see [GZ67, Chapter IV, 2.1.3].

We deduce easily from this that a morphism of simplicial sets X −→ Y is a right
fibration if and only if the evaluation at 0 map X∆[1] −→ Y ∆[1] ×Y X is a trivial
fibration (i.e. has the right lifting property with respect to monomorphisms). The
case of left fibrations follows by duality. �

Proposition 6.7. Let p : X −→ Y be an inner Kan fibration between ∞-operads.
If τi∗(p) is a categorical fibration, then, for any monomorphism between normal
dendroidal sets A −→ B, the map

k(B,X) −→ k(B, Y )×k(A,Y ) k(A,X)

is a Kan fibration between Kan complexes.

Proof. The functor i! : sSet −→ dSet being symmetric monoidal and preserving
inner anodyne extensions, Proposition 3.1 implies that the map

hom(B,X) −→ hom(B, Y )×hom(A,Y ) hom(A,X)

is an inner Kan fibration between ∞-categories. This implies the map

k(B,X) −→ k(B, Y )×k(A,Y ) k(A,X)

is an inner Kan fibration between ∞-categories.
We claim that this map has the right lifting property with respect to the inclusion

{1} −→ ∆[1]. Using the identification (6.1.1), we see that lifting problems of shape

{1} //

��

k(B,X)

��
∆[1] //

66

k(B, Y )×k(A,Y ) k(A,X)

(6.7.1)

correspond to lifting problems of shape

A //

��

X(∆[1])

��
B //

99

Y (∆[1]) ×Y X

(6.7.2)

so that our claim follows from Theorem 6.4.
More generally, the map k(B,X) −→ k(B, Y ) ×k(A,Y ) k(A,X) has the right

lifting property with respect to maps of shape

∂∆[n]×∆[1] ∪∆[n]× {1} −→ ∆[n]×∆[1] , n > 0 .(6.7.3)
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We have just checked it above in the case where n = 0, so that it remains to
prove the case where n > 0. Consider a lifting problem of shape

∂∆[n]×∆[1] ∪∆[n]× {1}
u //

��

k(B,X)

��
∆[n]×∆[1]

v
//

g

44

k(B, Y )×k(A,Y ) k(A,X)

(6.7.4)

This lifting problem gives rise to a lifting problem of shape

∂Ω[n]⊗B ∪ Ω[n]⊗A //

��

X(∆[1])

��
Ω[n]⊗B //

h

55

Y (∆[1]) ×Y X .

(6.7.5)

The existence of the lifting h is provided again by Theorem 6.4. The map h defines
a map

l : i!(∆[n]×∆[1])⊗B −→ X .

As a consequence, it is sufficient to check that, for every non-degenerate m-simplex
δ : ∆[m] −→ ∆[n] × ∆[1], m > 1, and for any object b : η −→ B, the map
(li!(δ))b : ∆[m] −→ i∗(X) factors through k(i∗(X)). Using the ‘2 out of 3 property’
for weakly invertible 1-cells in i∗(X), we can assume that m = 1. But then, as
n > 0, using again the ‘2 out of 3 property’ for weakly invertible 1-cells, we may
assume that δ factors through ∂∆[n] × ∆[1], which implies then that (l ◦ i!(δ)) ⊗
1B factors through the subcomplex i!(∂∆[n] × ∆[1]) ⊗ B: the required property
thus follows from the fact that the restriction of the transpose of h to the object
i!(∆[n]×∆[1] ∪ ∂∆[n]× {1})⊗B corresponds to the map u in (6.7.4).

By virtue of Lemma 6.6, the map k(B,X) −→ k(B, Y )×k(A,Y ) k(A,X) is a left
fibration, hence, by [Joy02, Proposition 2.7], is conservative. By applying [Joy02,
Corollary 1.4], we deduce, from the case where A = ∅ and Y is the terminal
dendroidal set, that k(B,X) is a Kan complex for any normal dendroidal set B
and any ∞-operad X. As any left fibration between Kan complexes is a Kan
fibration (Lemma 6.5), the maps k(B,X) −→ k(A,X) are thus Kan fibrations
between Kan complexes for any monomorphisms between normal dendroidal sets
A −→ B and any ∞-operad X. As a consequence, Kan fibrations being stable by
pullback, we see that the fiber product k(B, Y )×k(A,Y ) k(A,X) is a Kan complex.
Using again Lemma 6.5, we conclude that k(B,X) −→ k(B, Y )×k(A,Y ) k(A,X) is
a Kan fibration between Kan complexes. �

Corollary 6.8. For any normal dendroidal set A and any ∞-operad X, we have

k(hom(A,X)) = k(A,X) .

For any inner Kan fibration between ∞-operads p : X −→ Y such that τi∗(p) is
a categorical fibration, and for any monomorphism between normal dendroidal sets
A −→ B, we have

k(hom(B, Y )×hom(A,Y ) hom(A,X)) = k(B, Y )×k(A,Y ) k(A,X) .
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Proof. If A is normal, then, for any operad X, k(A,X) is a Kan complex which
contains k(hom(A,X)). As k(hom(A,X)) is the maximal sub Kan complex con-
tained in the ∞-category hom(A,X), this proves the first assertion. The second
assertion is proved similarly. �

Corollary 6.9. Let p : X −→ Y be an inner Kan fibration between ∞-operads. If
τi∗(p) is a categorical fibration, then, for any anodyne extension of simplicial sets
K −→ L, the map

X(L) −→ Y (L) ×Y (K) X(K)

is a trivial fibration of dendroidal sets.

Proof. This follows from Proposition 6.7 and from the natural identification (6.1.1).
�

Theorem 6.10. A dendroidal set is J-fibrant if and only if it is an ∞-operad.
An inner Kan fibration between ∞-operads p : X −→ Y is a J-fibration (i.e. a
fibration for the model category structure of Proposition 3.12) if and only if τi∗(p)
is a categorical fibration.

Proof. Let p : X −→ Y be inner Kan fibration between ∞-operads. We have to
prove that, for e = 0, 1, the anodyne extension {e} −→ J induces a trivial fibration
of dendroidal sets

XJd −→ Y Jd ×Y X

if and only if τi∗(p) is a categorical fibration. But, for any ∞-operad Z, we clearly
have ZJd = Z(J) and Z = Z({e}). Hence, by virtue of Corollary 6.9, if τi∗(p) is a
categorical fibration, then p is a J-fibration. The converse is a direct consequence
of [Joy02, Corollary 1.6]. �

Corollary 6.11. The class of weak operadic equivalences is the smallest class of
maps of dendroidal sets W which satisfies the following three properties.

(a) (‘2 out 3 property’) In any commutative triangle, if two maps are in W,
then so is the third.

(b) Any inner anodyne extension is in W.
(c) Any trivial fibration between ∞-operads is in W.

Proof. Consider a class of maps W satisfying conditions (a), (b) and (c) above. We
want to prove that any weak operadic equivalence is in W.

Let f : A −→ B be a morphism of dendroidal sets. Using the small object
argument applied to the set of inner horns, we can see there exists a commutative
square

A
a //

f

��

X

p

��
B

b // Y

in which the maps a and b are inner anodyne extensions, and X and Y are ∞-
operads. It is clear that f is a weak operadic equivalence (resp. is in W) if and
only p has the same property. Hence it is sufficient to prove that any weak operadic
equivalence between∞-operads is in W. As any trivial fibration between∞-operads
is in W by assumption, and as∞-operads are the fibrant objects of a model category,
this corollary follows from Ken Brown’s Lemma [Hov99, Lemma 1.1.12]. �
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6.12. We will write Cn for the corolla with n+ 1 edges,

······

Cn = •
a2

a1

MMMMMMMMM an

kkkkkkkkkkkk .
a

Let X be an ∞-operad. Given an (n + 1)-tuple of 0-cells (x1, . . . , xn, x) in X,
the space of maps X(x1, . . . , xn;x) is obtained by the pullback below, in which the
map p is the map induced by the inclusion η∐ · · · ∐ η −→ Ω[Cn] (with n+ 1 copies
of η, corresponding to the n+ 1 objects (a1, . . . , an, a) of Cn).

X(x1, . . . , xn;x) //

��

Hom(Ω[Cn], X)

p

��
η

(x1,...,xn,x)
// Xn+1

Using the identification sSet = dSet/η, we shall consider X(x1, . . . , xn;x) as a
simplicial set.

Proposition 6.13. The simplicial set X(x1, . . . , xn;x) is a Kan complex.

Proof. The first assertion of Corollary 6.8 for A = Ω[Cn] can be reinterpreted by
saying we have the pullback square below (see Remark 6.2).

k(hom(Ω[Cn], X)) //

��

Hom(Ω[Cn], X)

��
k(i∗X)n+1 // Xn+1

As the terminal simplicial set η is certainly a Kan complex, it thus follows from the
construction of X(x1, . . . , xn;x) that we have a pullback square

X(x1, . . . , xn;x) //

��

k(hom(Ω[Cn], X))

��
η

(x1,...,xn,x)
// k(i∗X)n+1

in which the right vertical map in this diagram is a Kan fibration (by Proposition
6.7, applied for A = η∐ · · · ∐ η and B = Ω[Cn]). The stability of Kan fibrations by
pullback achieves the proof. �

Proposition 6.14. There is a canonical bijection

π0(X(x1, . . . , xn;x)) ≃ τd(X)(x1, . . . , xn;x) .

Proof. We will use the explicit description of τd(X) given by [MW09, Lemma 6.4
and Proposition 6.6]. The unit map X −→ Ndτd(X) induces a map

X(x1, . . . , xn;x) −→ (Ndτd(X))(x1, . . . , xn;x) .
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It is easily seen that (Ndτd(X))(x1, . . . , xn;x) is the discrete simplicial set associated
to τd(X)(x1, . . . , xn;x), so that we get a surjective map

π0(X(x1, . . . , xn;x)) −→ τd(X)(x1, . . . , xn;x) .

Using the explicit description of τd(X) given by [MW09, Lemma 6.4 and Propo-
sition 6.6], it is now sufficient to prove that, if f and g are two 0-simplices of
X(x1, . . . , xn;x) which are homotopic along the edge 0 in the sense of [MW09,
Definition 6.2], then they belong to the same connected component. But then, f
and g define two objects of τ(hom(Ω[Cn], X)) which are isomorphic, which can be
expressed by the existence of a map

h : ∆[1] −→ k(hom(Ω[Cn], X))

which connect f and g. Using that k(hom(Ω[Cn], X)) −→ i∗(X)n+1 is a Kan
fibration between Kan complexes, we can see by a path lifting argument that such
a map h is homotopic under ∂∆[1] to a map ∆[1] −→ X(x1, . . . , xn;x) which
connects f and g. �

Lemma 6.15. Let X −→ Y be a trivial fibration between ∞-operads. Then, for
any (n+ 1)-tuple of 0-cells (x1, . . . , xn, x) in X, the induced map

X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

is a trivial fibration of simplicial sets.

Proof. We know that the map

Hom(Ω[Cn], X) −→ Hom(Ω[Cn], Y )×Y n+1 Xn+1

is a trivial fibration (this follows from Proposition 1.9 by adjunction). As we have
a pullback of shape

X(x1, . . . , xn;x) //

��

Hom(Ω[Cn], X)

��
Y (f(x1), . . . , f(xn); f(x)) // Hom(Ω[Cn], Y )×Y n+1 Xn+1

this proves the lemma. �

Proposition 6.16. The functor τd : dSet −→ Operad sends weak operadic equiva-
lences to equivalences of operads.

Proof. We know that τd sends inner horn inclusions to isomorphisms of operads
(this follows from [MW09, Theorem 6.1] by the Yoneda Lemma). As τd preserves
colimits, we deduce that τd sends inner anodyne extensions to isomorphisms of
operads. By virtue of Corollary 6.11, it is thus sufficient to prove that τd sends
trivial fibrations between ∞-operads to equivalences of operads. Let f : X −→ Y
be a trivial fibration between ∞-operads. By virtue of Proposition 6.14 and of
Lemma 6.15, we see that τd(f) is fully faithful. As f is obviously surjective on
0-cells, τd(f) has to be an equivalence of operads. �

Corollary 6.17. The adjunction τd : dSet ⇄ Operad : Nd is a Quillen pair. More-
over, the two functors τd and Nd both preserve weak equivalences. In particular, a
morphism of operads is an equivalence of operads if and only if its dendroidal nerve
is a weak operadic equivalence.
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Proof. The functor τd preserves cofibrations, so that this is a direct consequence
of Proposition 6.16. Note that any operad is fibrant, so that the dendroidal nerve
functor Nd preserves weak equivalences. Hence the last assertion comes from the
fact Nd is fully faithful and τd preserves weak equivalences. �

Remark 6.18. Theorem 6.10 also asserts that the functor τd preserves fibrations
between ∞-operads.

6.19. If A is a normal dendroidal set, and if X is an ∞-operad, we have

(6.19.1) HomHo(dSet)(A,X) = [A,X] ≃ π0(k(hom(A,X))) .

Indeed, J ⊗A is a cylinder of A, and morphisms

J ⊗A −→ X

correspond to morphisms

J −→ k(hom(A,X)) ,

so that this formula follows from the fact X is J-fibrant. The next statement is a
reformulation of (6.19.1).

Proposition 6.20. Let A be a normal dendroidal set, and X an ∞-operad. The
set [A,X] = HomHo(dSet)(A,X) can be canonically identified with the set of iso-

morphism classes of objects in the category τhom(A,X) (which is also the category
underlying τd(Hom(A,X))).

Proof. This proposition is a direct application of the explicit description of the
operad τd(Hom(A,X)) given by [MW09, Proposition 6.6] and of Corollary 6.9. �

Appendix A. Grafting orders onto trees

The main goal of the technical sections 4 and 5 was to deduce Theorem 6.10, and
from it, Corollary 6.9. There is an asymmetry in this approach, in that Theorem
6.10 was only proved for evaluation at one of the end points, and the symmetry was
established in Corollary 6.9 by using the theory of left fibrations between simplicial
sets.

In these two appendices, we will prove the analogs of Theorems 4.2 and 5.2,
from which one can deduce directly the symmetric version of Theorem 6.10 (for
evaluation at 0). These two appendices can also be used as an alternative approach
to the results in Section 6. Moreover, they are of interest by themselves, as they
form the basis of a theory of right fibrations of dendroidal sets.

However, since the left-right duality for simplicial sets does not extend to den-
droidal sets, the results of these appendices cannot be deduced from their analogs
proved earlier.

We begin by studying the analog of Theorem 4.2 (see Theorem A.7 below).

A.1. Let T be a tree endowed with an input edge (leaf) e.

T =
________

e

•
...

mmmmmmmm

QQQQQQQQ(A.1.1)
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Given an integer n > 0, we define the tree n ⋆e T as the tree obtained by joining
the n-simplex to the edge e by a new vertex v.

n ⋆e T =

•
0

1

•

...

•
n

v

________
e

•
...

mmmmmmmm

QQQQQQQQ

(A.1.2)

This defines a unique functor

(A.1.3) ∆ −→ Ω , [n] 7−→ n ⋆e T

such that the obvious inclusions i[n] −→ n⋆eT are functorial. We thus get a functor

(A.1.4) (−) ⋆e T : ∆ −→ T/dSet

(where T/dSet denotes the category of dendroidal sets under Ω[T ]). By Kan ex-
tension, we obtain a colimit preserving functor

(A.1.5) (−) ⋆e T : sSet −→ T/dSet .

We have ∆[n] ⋆e T = Ω[n ⋆e T ]. The functor (A.1.5) has a right adjoint

(A.1.6) (−)/eT : T/dSet −→ sSet .

Remark A.2 (Functoriality in T ). We shall say that a face map R −→ T is e-
admissible if it does not factor through the external face map which chops off e.
For such a face R −→ T , e is also a leaf of R, and there are natural maps

(A.2.1) n ⋆e R −→ n ⋆e T .

Thus, we obtain, for each simplicial set K, and each dendroidal set X under T (i.e.
under Ω[T ]), natural maps

(A.2.2) K ⋆e R −→ K ⋆e T

and

(A.2.3) X/eT −→ X/eR .

Similarly, the inclusions Ω[n] −→ ∆[n] ⋆e T induce a projection

(A.2.4) X/eT −→ i∗(X)

for any dendroidal set X under T .

A.3. Let 0 < i 6 n be integers. Let {R1, . . . , Rt}, t > 1, be a finite family of
e-admissible faces of T , and define

C ⊂ D ⊂ Ω[n ⋆e T ]

by

C =
(

t
⋃

s=1

Λi[n] ⋆e Rs
)

∪ Ω[n] and D =

t
⋃

s=1

∆[n] ⋆e Rs ,

where Ω[n] is seen as a subcomplex of Ω[n ⋆e T ] through the canonical embedding.
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Lemma A.4. Under the assumptions of A.3, the map C −→ D is an inner anodyne
extension.

Proof. For p > 1, write Fp for the set of faces F of Ω[n ⋆e T ] which belong to D
but not to C, and which are of the form F = Ω[n ⋆e R] for an e-admissible face R
of T with exactly p edges. Define a filtration

C = C0 ⊂ C1 ⊂ . . . ⊂ Cp ⊂ . . . ⊂ D

by

Cp = Cp−1 ∪
⋃

F∈Fp

F , p > 1 .

We have D = Cp for p big enough, and it is sufficient to prove that the inclusions
Cp−1 −→ Cp are inner anodyne for p > 1. If F and F ′ are in Fp, then F ∩ F ′ is in
Cp−1. Moreover, if F = Ω[n ⋆e R] for an e-admissible face R of T , then we have

F ∩ Cp−1 = Λi[n ⋆e R] ,

which is an inner horn. Hence we can describe the inclusion Cp−1 −→ Cp as a
finite composition of pushouts by inner horn inclusions of shape F ∩ Cp−1 −→ F
for F ∈ Fp. �

Proposition A.5. Let 0 < i 6 n be integers. The inclusion

(Λi[n] ⋆e T ) ∪ Ω[n] −→ Ω[n ⋆e T ]

is an inner anodyne extension.

Proof. Apply Lemma A.4. �

Proposition A.6. For any inner Kan fibration p : X −→ Y under T , the mor-
phism X/eT −→ Y/e ×i∗(Y ) i

∗(X) is a right fibration of simplicial sets.
In particular, for any ∞-operad X under T , the map X/eT −→ i∗(X) is a right

fibration between ∞-categories.

Proof. This follows from Proposition A.5 by a standard adjunction argument. �

Theorem A.7. Let S be a tree with at least two vertices, let v be a unary top vertex
in S, and let p : X −→ Y be an inner Kan fibration between ∞-operads. Then any
solid commutative square of the form

Λv[S]
ϕ //

��

X

p

��
Ω[S]

ψ //

h

==

Y

in which ϕ(v) is weakly invertible in X has a diagonal filling h.

Proof. The tree S has to be of shape S = 1 ⋆e T for a tree T with a given leaf
e. Under this identification, we have Λv[S] = Λ0[1 ⋆e T ]. A lifting h in the solid
commutative square

Λ0[1 ⋆e T ]
ϕ //

��

X

p

��
Ω[1 ⋆e T ]

ψ //

h

;;

Y
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is thus equivalent to a lifting k in the diagram

{0}
ϕ̃ //

��

P

��
∆[1]

ψ̃ //

k

>>

Q

in which P = X/eT and Q = U ×W V , with

U = lim←−
R

X/eR , V = Y/eT , W = lim←−
R

Y/eR ,

where R ranges over all the proper e-admissible faces of T . As in the proof of
Theorem 4.2, it is now sufficient to prove the three following properties:

(i) the map P −→ Q is a right fibration;
(ii) Q is an ∞-category.

(iii) if ϕ(x) is weakly invertible in X, then so is the 1-cell ψ̃ in Q.

Properties (ii) and (iii) will follow from the two assertions below:

(iv) the map V −→W is a right fibration;
(v) the map U −→ i∗(X) is a right fibration.

As (iv) is a particular case of (i), we are thus reduced to prove (i) and (v).

A.7.1. Proof of (i).

A lifting problem of shape

Λi[n] //

��

P

��
∆[n] //

==

Q

0 < i 6 n

is equivalent to a lifting problem of shape

C //

��

X

p

��
Ω[n ⋆e T ] //

::

Y

where C is the union of Λi[n] ⋆e T with the union of the faces of Ω[n ⋆e T ] which
are of the form n ⋆e S −→ n ⋆e T , where S ranges over the e-admissible elementary
faces of T . In other words, C = Λi[n ⋆e T ] is an inner horn, so that the required
lifting exists, because p is assumed to be an inner Kan fibration.

A.7.2. Proof of (v).

A lifting problem of shape

Λi[n] //

��

U

��
∆[n] //

;;

i∗(X)

0 < i 6 n



38 D.-C. CISINSKI AND I. MOERDIJK

is equivalent to a lifting problem of shape

C //

��

X

D

>>

in which the inclusion C −→ D can be described as follows:

C = Ω[n] ∪
⋃

R

Λi[n] ⋆e R ⊂ D =
⋃

R

Ω[n ⋆e R] ⊂ Ω[n ⋆e T ] ,

where R ranges over the e-admissible elementary faces of T . It is easily seen that
the inclusion C −→ D is an inner anodyne extension by Lemma A.4. �

Appendix B. Another subdivision of cylinders

B.1. We will refer to the horn inclusions of shape Λx[S] −→ Ω[S], where S is a
tree with a unary top vertex x, as end extensions. A composition of pushouts of
end extensions will be called an end anodyne map.

The goal of this section is to prove a dual version of Theorem 5.2, namely:

Theorem B.2. Let T be a tree with at least one vertex, and consider the subobject

B0 = {0} ⊗ Ω[T ] ∪∆[1]⊗ ∂Ω[T ] ⊂ ∆[1]⊗ Ω[T ] .

There exists a filtration of ∆[1]⊗ Ω[T ] of the form

B0 ⊂ B1 ⊂ . . . ⊂ BN−1 ⊂ BN = ∆[1]⊗ Ω[T ]

where, for each i, 0 6 i < N , the map Bi −→ Bi+1 is either inner anodyne or end
anodyne.

Moreover, the end anodyne maps are all push outs of the form

Λv[S] //

��

Bi

��
Ω[S] // Bi+1

with the following properties:

(i) the tree S has at least two vertices, and v is a unary top vertex;
(ii) the map

∆[1] −→ Λv[S] −→ Bi ⊂ ∆[1]⊗ Ω[T ] ,

corresponding to the vertex v in S, coincides with an inclusion of shape

∆[1]⊗ {t} −→ ∆[1]⊗ Ω[T ]

for some edge t in T .

B.3. As in the proof of Theorem 5.2, we will follow the convention of [MW09], and
write

Ω[S]⊗ Ω[T ] =

m
⋃

i=1

Ω[Ti] ,
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where the union ranges over the partially ordered set of percolation schemes, start-
ing with a number of copies of T grafted on top of S, and ending with the reverse
grafting. For

S = [1] = ◦ ,

the first tree is of shape

T1 =
•
T

PPPPPPPP

oooooooo

◦
,(B.3.1)

and the last one is

Tm =

◦ ◦ ... ◦ ◦

•
T

PPPPPPPP

oooooooo

.(B.3.2)

Let us fix a linear order on the percolation schemes for ∆[1]⊗Ω[T ] which extends
the natural partial order. Such a linear ordering induces a filtration on the tensor
product ∆[1]⊗ Ω[T ],

(B.3.3) C0 ⊂ C1 ⊂ . . . ⊂ Cm−1 ⊂ Cm = ∆[1]⊗ Ω[T ]

by setting

(B.3.4) C0 = B0 = {0} ⊗ Ω[T ] ∪∆[1]⊗ ∂Ω[T ] and Ci = B0 ∪ Ω[T1] ∪ · · · ∪ Ω[Ti] .

the filtration of Theorem B.2 will be a refinement of this one.
Let us start by considering T1. If the root edge of T is called r, then T1 looks

like

...
...

...
...

•
...

RRRRRRRR
llllllll

CCCC
{{{{

◦
(0,r)

(1,r)

(B.3.5)

With the exception of the faces ∂(0,r)(T1) (which contracts (0, r)) and ∂(1,r)(T1)
(which chops off (1, r) as well as the white vertex), any face F of T1 misses a colour
of T (by this, we mean there is an edge a in T such that no edge in F is named
(i, a)). Hence, Ω[F ] ⊂ ∆[1] ⊗ ∂Ω[T ] for these F . Moreover, ∂(1,r)(T1) = {0} ⊗ T1.

So Ω[T1] ∩B0 = Λ(0,r)[T1], and

Λ(0,r)[T1] //

��

B0

��
Ω[T1] // B0 ∪ Ω[T1]

(B.3.6)

is a pushout. So, if we let B1 = C1, then B0 −→ B1 is obviously inner anodyne.
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Suppose we have defined a filtration up to some Bl

(B.3.7) B0 ⊂ B1 ⊂ . . . ⊂ Bl l > 1 ,

so that Bl = Ck for some k, 1 6 k 6 m. We will extend this filtration as Bl ⊂
Bl+1 ⊂ . . . ⊂ Bl′ , so that Bl′ = Ck+1. The percolation scheme Tk+1 is obtained
from an earlier one Tj by pushing a white vertex in Tj one step up through a black
vertex x, as in

•
...

IIIIII
uuuuuu

◦

x

in Tj

=⇒

◦

7777
◦

����

•

MMMMMMM

qqqqqqq
...

x

in Tk+1

(B.3.8)

(we have denoted by x the black vertex in both trees, although it would be more
accurate to write x for the relevant vertex of T , and write 0⊗ x and 1⊗ x for the
corresponding vertices in Tj and Tk+1 repectively). The Boardman-Vogt relation
states that, as subobjects of ∆[1]⊗Ω[T ], the face of Tk+1 obtained by contracting
all input edges of x coincides with the face of Tj obtained by contracting the output
edge of x in Tj . In particular, notice that if x has no input edges at all (i.e. if x
is a ‘nullary operation’ in T ), then Tk+1 is a face of Tj , so Ck+1 = Ck, and we
let Bl′ = Bl, and there is nothing prove. Therefore, from now on, we will assume
that the set of input edges of x, denoted input(x), is non-empty, and we proceed
as follows.

Let E be the set of all colours (edges) e in T for which

◦
(0,e)

(1,e)
(B.3.9)

occurs in Tk+1. For U ⊂ E, let

(B.3.10) T
(U)
k+1 ⊂ Tk+1

be the face given by contracting all the edges (1, e) for e ∈ E but e not in U . Notice

that if U ∩ input(x) = ∅, then Ω[T
(U)
k+1] ⊂ Bl by the Boardman-Vogt relation just

mentioned. Therefore, we will only consider U with U ∩ input(x) 6= ∅. We will

successively adjoin Ω[T
(U)
k+1] to Bl for larger and larger such U , until we reach the

case where U = E and T
(U)
k+1 = Tk+1.

If U = {e} is a singleton (with e an input edge of x), then the face ∂(1,e)Ω[T
({e})
k+1 ]

is contained in Bl as said, while the face ∂(0,e)Ω[T
({e})
k+1 ] is not (it cannot belong to

an earlier Ti, and is obviously not contained in B0 = C0). Any other face of T
({e})
k+1

misses a colour of T and hence is contained in B0. Thus,

(B.3.11) Ω[T
({e})
k+1 ] ∩Bl ⊂ Ω[T

({e})
k+1 ]

is either an inner horn (if (0, e) is an inner edge of Tk+1) or an end extension (if

(1, e) is an input edge of Tk+1). In either case, we can adjoin Ω[T
({e})
k+1 ] by forming
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the pushout below.

Ω[T
({e})
k+1 ] ∩Bl //

��

Bl

��

Ω[T
({e})
k+1 ] // Ω[T

({e})
k+1 ] ∪Bl

(B.3.12)

We successively adjoin Ω[T
({e})
k+1 ] to Bl in this way for all e in E which are input

edges of x in T : if these are e1, . . . , ep, let

(B.3.13) Bl+r = Bl ∪ Ω[T
({e1})
k+1 ] ∪ · · · ∪ Ω[T

({er})
k+1 ] .

Then, for each r < p, the map Bl+1 −→ Bl+r+1 is inner anodyne or end anodyne.
In general, we proceed by induction on U . Choose U ⊂ E with U∩input(x) 6= ∅,

and assume we have adjoined Ω[T
(U ′)
k+1 ] already, for all U ′ of smaller cardinality than

U . We will write Bl′′ for the last object in the filtration constructed up to that
point. Fix an order on the set of elements of U , and write it as

(B.3.14) U = {α1, . . . , αs} .

Consider Ω[T
(U)
k+1]. The tree T

(U)
k+1 has edges (0, c) or (1, c) for c not in E, and the

corresponding face misses the colour c alltogether, hence ∂(i,c)Ω[T
(U)
k+1] is contained

in B0 for these c. Next, the tree T
(U)
k+1 has edges coloured (1, αi) for 1 6 i 6 s, and

contracting any of these gives a face

(B.3.15) ∂(1,αi)Ω[T
(U)
k+1] = Ω[T

(U−{αi})
k+1 ]

which is contained in Bl′′ by the inductive assumption on U . None of the faces
given by contracting (if it is inner) or by chopping off (if it is outer) an edge (0, αi)

in T
(U)
k+1 can be contained in Bl′′ , however.

Let A1, . . . , At be all the subsets of the set of these edges {(0, α1), . . . , (0, αs)}

of T
(U)
k+1 which contain (0, α1), and order them by some linear order extending the

inclusion order. So there are t = 2s−1 such Ai, and we could fix the order to be

A1 = {(0, α1)}

A2 = {(0, α1), (0, α2)}

...
...

As = {(0, α1), (0, αs)}

As+1 = {(0, α1), (0, α2), (0, α3)}

...
...

At = {(0, α1), . . . , (0, αs)} .

For q = 1, . . . , t, let T
(U,q)
k+1 be the tree obtained from T

(U)
k+1 by contracting or chopping

off all the edges (0, αi) not in Aq. So

(B.3.16) T
(U,1)
k+1 = ∂(0,αs)∂(0,αs−1) . . . ∂(0,α2)T

(U)
k+1 ,

and

(B.3.17) T
(U,t)
k+1 = T

(U)
k+1 .
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We will successively adjoin these Ω[T
(U,q)
k+1 ] to the filtration, to form the part

(B.3.18) Bl′′ ⊂ Bl′′+1 ⊂ . . . ⊂ Bl′′+t = Bl′′ ∪ Ω[T
(U)
k+1]

of the filtration, as

(B.3.19) Bl′′+q = Bl′′ ∪ Ω[T
(U,1)
k+1 ] ∪ . . .Ω[T

(U,q)
k+1 ] .

We start with T
(U,1)
k+1 . The only face of Ω[T

(U,1)
k+1 ] not contained in Bl′′ is the one

given by the edge (0, α1). Thus

(B.3.20) Ω[T
(U,1)
k+1 ] ∩Bl′′ ⊂ Ω[T

(U,1)
k+1 ]

is either an inner horn (if (0, α1) is an inner edge) or an end extension (if (0, α1) is

an input edge of T
(U)
k+1, i.e. α1 is an input edge of T ). So the pushout Bl′′ −→ Bl′′+1

is either inner anodyne or end anodyne.

Suppose we have adjoined Ω[T
(U,q′)
k+1 ] for all 1 6 q′ < q, so have arrived at the

stage Bl′′+q−1 of the filtration. Consider now Aq and the corresponding dendroidal

set Ω[T
(U,q)
k+1 ]. As before, its faces given by edges coloured by (i, c) for i = 0, 1 with

c not in E are contained in B0, and its faces given by edges coloured (1, e) with

e ∈ U are contained in Ω[T
(U ′)
k+1 ] for a smaller U ′ = U − {e}, hence are contained in

Bl′′ . Let us consider the remaining faces given by the edges (0, α1), . . . , (0, αr) in

Aq. If i 6= 1, the face of Ω[T
(U,q)
k+1 ] given by (0, αi) ∈ Aq is contained in Ω[T

(U,q′)
k+1 ]

for some q′ < q with Aq′ = Aq − {(0, αi)}. So the only face that is missing is the
one given by (0, α1), i.e.

(B.3.21) Ω[T
(U,q)
k+1 ] ∩Bl′′+q−1 = Λ(0,α1)[T

(U,q)
k+1 ] .

Therefore, the induced pushout Bl′′+q−1 −→ Bl′′+q is either inner anodyne or end
anodyne (depending on whether α1 is an external edge of T or not). At the end,

when q = t, we have adjoined all of Ω[T
(U)
k+1].

This completes the contruction of the segment of the filtration for the subset
U ⊂ E. As said, we continue this construction until we reach the stage U = E, when

T
(U)
k+1 = Tk+1, which completes the construction of the segment of the filtration from
Bl until Bl′ , interpolating between Ck and Ck+1. This completes the description
of the filtration. From it, the last part of the theorem is clear.
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