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TRIANGULATED CATEGORIES OF MIXED MOTIVES

DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

ABSTRACT. We construct triangulated categories of mixed motives over a noetherian scheme of
finite Krull dimension, extending Voevodsky’s definition of motives over a field. We prove that
motives with rational coefficients satisfy the formalism of the six operations of Grothendieck.
This is achieved by studying descent properties of motives, as well as by comparing different
presentations of these categories, following insights and constructions of Beilinson, Morel and
Voevodsky. Finally, we associate to any mixed Weil cohomology a system of categories of

coefficients and well behaved realization functors.

CONTENTS

Introduction
Outline of the work
Notations and conventions

Part 1. Fibred categories and the six functor formalism

1. General definitions and axiomatic

1.1. Z-fibred categories

1.1.a. Definitions

1.1.b. Monoidal structures

1.1.c. Geometric sections

1.1.d. Twists

1.2.  Morphisms of Z-fibred categories

1.2.a. General case

1.2.b. Monoidal case

1.3.  Structures on P-fibred categories

1.3.a. Abstract definition

1.3.b. The abelian case

1.3.c. The triangulated case

1.3.d. The model category case

1.4. Premotivic categories

2. Triangulated &-fibred categories in algebraic geometry
2.1.  Elementary properties

2.2.  Exceptional functors, following Deligne
2.3. The localization property

2.3.a. Definition

2.3.b. First consequences of localization
2.3.c. Localization and the support property
2.3.d. Localization and monoidal structures
2.3.e. Localization and morphisms

2.4. The theorem of Ayoub

3. Descent in &-fibred model categories

3.1. Extension of &-fibred categories to diagrams
3.1.a. The general case

3.1.b. The model category case

Partially supported by the ANR (grant No. ANR-07-BLAN-042).
1

oo oo

NeliNejiNe]

12

16
17
17
18
19
19
20
21
23
24
26
26
29
35
35
37
38
40
42
44
49
49
49
51



2 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

3.2. Hypercoverings, descent, and derived global sections 60
3.3. Descent over schemes 68
3.3.a. localization and Nisnevich descent 68
3.3.b. Proper base change isomorphism and descent by blow-ups 70
3.3.c. Proper descent with rational coefficients I: Galois excision 72
3.3.d. Proper descent with rational coefficients II: separation 79
4. Basic homotopy commutative algebra 83
4.1. Rings 83
4.2. Modules 87
Part 2. Construction of fibred categories 92
5. Fibred derived categories 92
5.1. From abelian premotives to triangulated premotives 92
5.1.a. Abelian premotives: recall and examples 92
5.1.b. The t-descent model category structure 94
5.1.c. Compacity and geometric triangulated premotives 100
5.2. The A'-derived premotivic category 102
5.2.a. Localization of triangulated premotivic categories 102
5.2.b.  The homotopy relation 106
5.2.c. Explicit A'-resolution 109
5.2.d. Geometric Al-local premotives 112
5.3. The stable A'-derived premotivic category 113
5.3.a. Modules 113
5.3.b. Symmetric sequences 114
5.3.c. Symmetric Tate spectra 115
5.3.d. Symmetric Tate Q2-spectra 117
6. Localization and the universal derived example 121
6.1. Generalized derived premotivic categories 121
6.2. The fundamental example 124
6.3. Nearly Nisnevich sheaves 125
6.3.a. Support property (effective case) 125
6.3.b. Support property (stable case) 127
6.3.c. Localization for smooth schemes 128
Part 3. Motivic complexes and relative cycles 128
7. Relative cycles 128
7.1. Definitions 128
7.1l.a. Category of cycles 129
7.1.b. Hilbert cycles 130
7.1.c. Specialization 132
7.1.d. Relative product 135
7.2. Intersection theoretic properties 138
7.2.a. Commutativity 139
7.2.b. Associativity 139
7.2.c. Projection formulas 141
7.3. Geometric properties 142
7.3.a. Constructibility 142
7.3.b.  Samuel’s multiplicities 144
8. Finite correspondences 149
8.1. Definition and composition 149
8.2. Monoidal structure 152
8.3. Functoriality 153
8.3.a. Base change 153

8.3.b. Restriction 154



TRIANGULATED CATEGORIES OF MIXED MOTIVES 3

8.3.c. A finiteness property 155
8.4. The fibred category of correspondences 155
9. Sheaves with transfers 156
9.1. Presheaves with transfers 157
9.2. Sheaves with transfers 157
9.3. Associated sheaf with transfers 158
9.4. Examples 163
9.5. Comparison results 164
9.5.a. Representable gfh-sheaves 165
9.5.b. qfh-sheaves and transfers 165
10. Nisnevich motivic complexes 167
10.1. Definition 167
10.2. Nisnevich motivic cohomology 168
10.2.a. Definition and functoriality 168
10.2.b. Motivic cohomology in weight 0 and 1 169
10.3. Orientation and purity 171
10.4. Functoriality 172
Part 4. Beilinson motives and algebraic K-theory 173
11. Stable homotopy theory of schemes 173
11.1. Ring spectra 173
11.2.  Orientation 173
11.3. Rational category 175
12.  Algebraic K-theory 175
12.1. The K-theory spectrum 175
12.2. Periodicity 176
12.3. Modules over algebraic K-theory 176
12.4. K-theory with support 177
12.5. Fundamental class 178
12.6. Absolute purity for K-theory 179
12.7.  Trace maps 181
13. Beilinson motives 183
13.1. The ~-filtration 183
13.2. Localization with respect to rational K-theory 184
13.3. Motivic proper descent 187
13.4. Motivic absolute purity 188
14.  Constructible motives 189
14.1. Finiteness theorems 189
14.2.  Continuity 198
14.3. Duality 204
15. Comparison theorems 212
15.1. Comparison with Voevodsky motives 212
15.2.  Comparison with Morel motives 214
16. Realizations 219
16.1. Tilting 219
16.2. Mixed Weil cohomologies 222

References 227



4 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

INTRODUCTION

The aim of these notes is to define a system of triangulated categories of mixed motives which
satisfies Grothendieck’s six functors formalism. This is achieved partially with integral coefficients,
and rather fully with rational coefficients.

Motivic complexes. We construct, for any noetherian scheme of finite dimension X, a trian-
gulated category of mixed motives DM (X)), from the abelian category of Nisnevich sheaves with
transfers over X, extending Voevodsky’s theory. This construction has the following functorial
properties.

e For any scheme! X, DM(X) is a closed symmetric monoidal category.
e For any morphism of schemes f: Y — X, a pair of adjoint functors

f*:DM(X) =2 DM(Y) : f.,
with f* monoidal.
e For any separated morphism of finite type f : Y — X, a pair of adjoint functors
fi :DM(Y) = DM(X) : f*,
and a natural transformation
f! - f*
which is invertible for f proper, while
f! — f*
whenever f is an open immersion.
e For any cartesian square

X
YT),

with f separated of finite type, there is a natural transformation ¢* fi — f/ ¢’*, which is
invertible whenever g is smooth separated of finite type.
We also prove the following localization property: given a scheme S and a closed immersion
between smooth S-schemes i : Z — X, with complement open immersion j : U — X, we have the
six gluing functors:

Ji i*
DM(U) <5'= DM(X) .= DM(Z).
e -~
J* i

This means that the functors j, and i, are fully faithful, satisfy the identity ¢* j; ~ 0, and that,
for any object M of DM(X), we have a natural distinguished triangle

G13 (M) — M — i, i*(M) — M[1].

Unfortunately, we don’t know if this property remains true in DM without this smoothness as-
sumption. The formalism of the six gluing functors for a general closed immersion is needed if one
wants to prove that the exchange maps ¢* fi — f/ ¢’* are invertible in general.

Beilinson motives. However, if we work with rational coefficients, the situation is much better.
We construct, using Morel and Voevodsky’s homotopy theory of schemes, for any scheme X, a Q-
linear triangulated category DMp (X ), which we call the triangulated category of Beilinson motives.
Essentially by construction, in the case where X is regular, we have a natural identification

Homp, (x)(Qx, Qx (p)[g]) = Gri Koy ¢(X)q
where the right hand side is the graded part of the algebraic K-theory of X with respect to the
~-filtration.

n this introduction, all the schemes will be assumed to be noetherian of finite Krull dimension.
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The six operations of Grothendieck act naturally on DMp: we have all the functors ®, Hom,
I*, fe, fi, f' (with the same properties as above). The following result is a direct consequence of
its analog in SH.

Theorem 1 (localization). For any closed immersion i : Z — X with complement open immersion
j U — X, we have the siz gluing functors:

Ji i*

DM;g (U) ej*— DM (X) —i.> DMg(Z).
J i

The result above allows us to use Ayoub’s results on cross functors, which gives the following
properties. We recall that, for f : Y — X proper, we have fi ~ f.. Moreover, if f is smooth
and quasi-projective of relative dimension d, we have, for any object M of DMp(X), a purity
isomorphism

FH(M)(d)[2d] =~ f'(M)
These identifications allow to interpret the following theorem as the proper base change formula
and the smooth base change formula in DMg.

Theorem 2 (base change isomorphisms). For any cartesian square

’

Y/fHX/

X
Y=

with f separated of finite type, the natural transformation g* fi — f ¢'* as well as its transposed
g. " — f'g. are invertible.

We also deduce from Quillen’s localization theorem in algebraic K-theory an absolute purity
theorem:

Theorem 3 (absolute purity). For any closed immersion between regular schemesi: Z — X of
codimension ¢, there is canonical isomorphism in DMg(Z)

Qz(—¢)[-2d = i(Qx).
Using the existence of trace maps in algebraic K-theory, we also prove:

Theorem 4 (proper descent). Consider a Galois alteration p : X' — X of group G (i.e. p is an
alteration, while G is a finite group acting on X' over X, such that, generically, X'/G — X is
finite surjective and radicial) , as well as a closed subscheme Z C X, such that U = X — Z is
normal, and such that the induced map py : U' = p~1(U) — U is a finite morphism. Then the
pullback square

induces a canonical distinguished triangle
M — i i* (M) @ p.p"(M)% — g g" i* (M) — M([1]
for any object M of DMp(X).

As a corollary of the previous result, we obtain that DMg satisfies h-descent (in particular,
étale descent as well as proper descent).

Given a scheme X, we define DMg .(X) as the thick subcategory of DMp (X)) generated by the
objects of shape Mx (Y)(p) = fi f(Qx)(p), for f:Y — X separated smooth of finite type, and
p € Z. This category coincides with the full subcategory of compact objects in DMp (X).
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Theorem 5 (continuity). Let S be a scheme which is the limit of an essentially affine projective
system of schemes {S,}. Then there is a canonical equivalence of triangulated categories

Q-MDMB’C(SQ) >~ DME’C(S) .

The following theorem uses absolute purity, (a weak form of ) proper descent, as well as Gabber’s
weak uniformisation theorem (i.e. that, locally for the h-topology, any excellent scheme is regular,
and any closed immersion between excellent schemes is the embedding of a strict normal crossing
divisor into a regular scheme). Its proof relies on a mix of arguments of Gabber and Ayoub.

Theorem 6 (finiteness). The subcategory DM . is stable under the siz operations of Grothendieck
(for excellent schemes).

The absolute purity theorem, proper descent, de Jong’s resolution of singularities by Galois
alterations, and Ayoub’s methods lead to:

Theorem 7 (duality). Let B be an excelllent scheme of dimension < 2. For any separated B-
morphism f : X — S between B-schemes of finite type, with S regular, f'(Qs) is a dualizing
object in DMz (X).

Comparison theorems. Recall the gfh-topology (resp. the h-topology): this is the Grothendieck
topology on the category of schemes, generated by étale surjective morphisms and finite (resp.
proper) surjective morphisms.

In his first published work on the triangulated categories of mixed motives, Voevodsky studied
the A'-homotopy category of the derived category of qfh-sheaves. We consider a Q-linear and
P'-stable version of it, which we denote by DM, g o(S). By construction, for any S-scheme of
finite type X, there is a qfh-motive Ms(X) in DM g o(S). We define DMy, q(5) as the smallest
triangulated full subcategory of quhyq(S) which is stable by direct sums, and which contains
the objects Mg(X)(p), for X/S smooth of finite type, and p € Z. Using Voevodsky’s comparison
results between rational étale and gqfh-cohomologies, we obtain the following:

Theorem 8. If S is excellent and geometrically unibranch, then there is a canonical equivalence
of categories

DMq($5) ~ DMgm.q(5) ,
where DM@ (S) denotes the Q-linear version of DM(SS).

One constructs DMy, q C DMy,  in a similar way as we did for DMym,q C DMyg, o, by
replacing the gfh-topology by the h-topology. Using h-descent in DMy, we also get the following
comparison result.

Theorem 9. If S is excellent, then we have canonical equivalences of categories
DMB (S) ~ Dquh7Q(S) ~ DMh7Q(S) )

Denote by KGLg the algebraic K-theory spectrum in Morel and Voevodsky’s stable homotopy
category SH(S). By virtue of a result of Riou, the y-filtration on K-theory induces a decomposition
of KGLS,Q:

KGL&Q >~ @ HB75(n)[2n] .
neZ
The ring spectrum Hp g represents Beilinson motivic cohomology. By construction, the category
DMg(S) is the full subcategory of SHq(.S) which consists of objects E such that the unit map
E — Hp s ® E is an isomorphism. If S is excellent and geometrically unibranch, we have:

Hps~Hpms®Q,

where Haq s is Voevodsky’s motivic cohomology spectrum in SH(S). We deduce from the preced-
ing comparison results a version with rational coefficients of a conjecture of Voevodsky [Voe02].



TRIANGULATED CATEGORIES OF MIXED MOTIVES 7

Corollary. For any morphism f : T — S of excellent geometrically unibranch schemes, the
canonical map

S Hms ®Q — Humr ® Q
is an isomorphism of ring spectra.

Theorem 10. Let E be an object of SHg(S). The following conditions are equivalent:

(i) E is a Beilinson motive (i.e. is in DMgp(S));
(i) E is an Hp g-module in SHq(S);
(1ii) E satisfies qfth-descent;

(i) E satisfies h-descent.

The ring spectrum Hp g can be endowed with a structure of commutative monoid in the model
category underlying SHq(S). In particular, it makes sense to speak of the homotopy category of
Hp, s-modules.

Theorem 11. For any scheme S, there is a canonical equivalence of categories
DMg(S) ~ Ho(Hp,s-mod) .

According to Morel, the category SHq(S) can be decomposed into two factors, one of them
being SHq(S)+, that is the part of SHg(S) on which the map e : S% — S%, induced by the
permutation of the factors in G,,, A G, acts as —1. Let S%Jr be the unit object of SHq(5)+.

Using the previous theorem as well as Morel’s computation of the motivic sphere spectrum in
terms of Milnor-Witt K-theory, we obtain a proof of:

Theorem 12 (Morel). For any scheme S, the canonical map 582+ — Hpg,s is an isomorphism.
Corollary. For any scheme S, there is a canonical equivalence of categories
SHQ(S)+ >~ DMB(S) .

As a corollary, as DMy satisfies étale descent, and as, locally for the étale topology, —1 is always
a square in the residue fields of S, we finally get another comparison result, where Da1 ¢ (S, Q) is
the étale version of SHq(S).

Theorem 13. For any scheme S, there is a canonical equivalence of categories
Da1et(S,Q) ~ DMg(S).

Corollary. An object of SHq(S) is a Beilinson motive if and only if it satisfies étale descent.

Realizations.
Given a strict ring spectrum £ in DMp(S) (that is a commutative monoid in the underlying
model category), one can define, for any S-scheme X, the triangulated category

D(X,€&) = Ho(Ex-mod),

where Ex = f*&, for f: X — S the structural map.
We then have realization functors

DMB(X)HD(X,S), Ml—>gx®XM

which commute with the six operations of Grothendieck. Using Ayoub’s description of the Betti
realization, we obtain:

Theorem 14. If S = Spec (k) with k a subfield of C, and if Epers represents Betti cohomol-
ogy in DMg(S), then, for any k-scheme of finite type, the full subcategory of compact objects of
D(X, Egetti) s canonically equivalent to DZ(X(C), Q).
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More generally, if S is the spectrum of some field %k, given a mixed Weil cohomology £, with
coefficient field (of characteristic zero) K, we get realization functors

DMg o(X) = Do(X, &), M—Ex®x M

(where D.(X, £) stands for the category of compact objects of D(X, £)), which commute with the
six operations of Grothendieck (which preserve compact objects on both sides). Moreover, the
category D.(S, &) is then canonically equivalent to the bounded derived category of the abelian
category of finite dimensional K-vector spaces. As a byproduct, we get the following concrete
finiteness result: for any k-scheme of finite type X, and for any objects M and N in D.(X, &),
the K-vector space Homp_(x ¢)(M, N[n]) is finite dimensional, and it is trivial for all but a finite
number of values of n.

If k is of characteristic zero, this abstract construction gives essentially the usual categories
of coefficients (as seen above in the case of Betti cohomology), and in a sequel of this work, we
shall prove that one recovers in this way the derived categories of constructible ¢-adic sheaves (of
geometric origin) in any characteristic. But something new happens in positive characteristic:

Theorem 15. Let V be a complete discrete valuation ring of mized characteristic, with field of
functions K, and residue field k. Then rigid cohomology is a K -linear mized Weil cohomology, and
thus defines a ring spectrum £y in DMgp (k). We obtain a system of closed symmetric monoidal
triangulated categories Dyig(X) = De(X, Erig), for any k-scheme of finite type X, such that

Homp,, (x)(1x, 1x(p)lq]) = Hy (X)(p),
as well as realization functors
Rm'g : DMB’C(X) — Dmg(X)

which preserve the six operations of Grothendieck.

OUTLINE OF THE WORK

This work is divided into four parts. The first one contains the foundations, stated in the
language of fibred categories. The main notion is that of a £2-fibred category (definition 1.1.9),
eventually equiped with a monoidal structure (definition 1.1.26) and a triangulated structure. We
study axioms and constructions for these categories on the following themes: the six functors
formalism of Grothendieck (section 2), descent theory (section 3).

The second part gives a way to construct derived categories which fits into the theory of &2-
fibred categories.

The third part contains a reformulation of the theory of relative cycles of Suslin and Voevodsky
— together with some complements. This is used to construct the example, presented in the first
part of this introduction, of motivic complexes as a &-fibred category.

The fourth part is concerned with the rational theory of mixed motives and the fundamental
theorems stated above. Besides the main definition of Beilinson motives (definition 13.2.1), we
also use the theory of modules over a ring spectrum (section 4) to construct other interesting
P-fibred categories: modules over the algebraic K-theory spectrum (corollary 12.3.3), modules
over a mixed Weil cohomology spectrum (section 16).

NOTATIONS AND CONVENTIONS

In every section, we will fix a category denoted by . which will contain our geometric objects.
Most of the time, . will be a category of schemes which are suitable for our needs; the required
hypothesis on . are given at the head of each section. In the text, when no precisions are given,
any scheme will be assumed to be an object of ..

When 7 is an additive category, we denote by o7 the pseudo-abelian enveloppe of «/. We
denote by C(«7) the category of complexes of 7. We consider K(<7) (resp. K’(7)) the category
of complexes (resp. bounded complexes) of .27 modulo the chain homotopy equivalences and when
o/ is abelian, we let D() be the derived category of <.

If 4 is a model category, Ho(.#') will denote its homotopy category.
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We will use the notation
a:6€=9:0

to mean a pair of functors such that « is left adjoint to 3. Similarly, when we speak of an adjoint
pair of functors (a, 3), a will always be the left adjoint. We will denote by

ad(a, 3) : 1 — Ba (resp. ad' (o, 3) : aff — 1)

the unit (resp. counit) of the adjunction (¢, 3). Considering a natural tranformation 7 : FF — G
of functors, we usually denote by the same letter n — when the context is clear — the induced
natural transformation AFB — AGB obtained when considering functors A and B composed on
the left and right with F' and G respectively.

Part 1. Fibred categories and the six functor formalism
1. GENERAL DEFINITIONS AND AXIOMATIC
1.0. We assume that . is an arbitrary category.
We shall say that a class & of morphisms of . is admissible if it is has the following properties.
(Pa) Any isomorphism is in &.
(Pb) The class & is stable by composition.
(Pc) The class & is stable by pullbacks: for any morphism f : X — Y in &2 and any morphism
Y’ — Y, the pullback X’ = Y’ xy X is representable in ., and the projection [’ : X’ — Y’
is in 2.
The morphisms which are in &2 will be called the Z2-morphisms.?
In what follows, we assume that an admissible class of morphisms &2 is fixed.

1.1. Z-fibred categories.

1.1.a. Definitions. Let %at be the 2-category of categories.

1.1.1. Let .# be a fibred category over ., seen as a 2-functor 4 : /°P — €at; see [Gro03,
Exp. VI
Given a morphism f: T — S in ., we shall denote by

ffeH#(S)— #(T)

the corresponding pullback functor between the corresponding fibers. We shall always assume

that (1s)* = 1 4(s), and for any morphisms W Ry JERN S in ., we have structural isomorphisms

(1.1.1.1) g f = (f9)

which are subject to a cocyle condition with respect to composition of morphisms.
Given a morphism f : T — S in ., if the corresponding inverse image functor f* has a left
adjoint, we shall denote it by

for M(T) = (S).

For any morphisms W % T 7, S in . such that f* and ¢g* have a left adjoint, we have an
isomorphism obtained by transposition from the isomorphism (1.1.1.1):

(1.1.1.2) (f9)s = fegs-

Definition 1.1.2. A pre-P-fibred category .4 over .7 is a fibred category .# over .# such that,
for any morphism p : T'— S in &, the pullback functor p* : #(S) — .#(T) has a left adjoint
py: M(T) — A (T).

’In practice, . will be an adequate subcategory of the category of noetherian schemes and & will be the class
of smooth morphisms (resp. of étale morphisms, resp. of morphisms of finite type) in ..
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Convention 1.1.3. Usually, we will consider that (1.1.1.1) and (1.1.1.2) are identities. Similarly,
we consider that for any object S of .7, (15)* =1 4(s) and (1g)y = 1‘///(5).3

Ezample 1.1.4. Let S be an object of . We let &?/S be the full subcategory of the comma
category /S made of objects over S whose structural morphism is in &. We will usually call
the objects of &/S the P-objects over S.

Given a morphism f : T — S in .% and a &-morphism 7 : X — S, we put f*(7) = 7 xg T
using the property (Pc) of £2. This defines a functor f*: £2/S — 2/T.

Given two &-morphisms f: T — S and 7 : Y — T, we put fy(m) = f o7 using the property
(Pb) of &. this defines a functor f; : /T — & /S. According to the property of pullbacks, fj
is left adjoint to f*.

We thus get a pre-Z-fibred category £/?: S +— £/S.

Ezxample 1.1.5. Assume . is the category of noetherian schemes of finite dimension, and P = Sm.
For a scheme S of .77, let #,(S) be the pointed homotopy category of schemes over S defined by
Morel and Voevodsky in [MV99]. Then according to op. cit., 5, is a pre-Sm-fibred category over
S

1.1.6. Ezchange structures I1— Suppose given a weak Z-fibred category . .
Consider a commutative square of .

q

Y — X

g A f
such that p and ¢ are &Z-morphisms, we get using the identification of convention 1.1.3 a canonical
natural transformation

ad(py.p") * ad'(a,0) s
Ex(A]) : q9" =" q39"0"py = 424" [ oy —— [Py

called the exchange transformation between ¢ and g*.

Remark 1.1.7. These exchange transformations satisfy a coherence condition with respect to the
relations (fg)* = ¢* f* and (fg)3 = fygs- As an example, consider two commutative squares in .7

7 =Y —>X
h\L 09| a ¢ f
W—>T-—>S5
P
and let A o © be the commutative square made by the exterior maps — it is usually called the hor-
izontal composition of the squares. Then, the following diagram of 2-morphisms is commutative:

Ez(Ao0©);

(qq")3h* I (op')s

! 1, % EI(@;) L * /
Wh ———— 49"y ———— ["psp;
This follows easily from the equations of the relevant adjunctions (see also [Ayo07a, 1.2.5]). Thus,
according to our abuse of notation for natural transformations, EFx behaves as a contravariant
functor with respect to the horizontal composition of squares. The same is true for vertical
composition of commutative squares.

3We can always strictify globally the fibred category structure so that g* f* = (fg)* for any composable mor-
phisms f and g, and so that (1g)* = 1 #(s) for any object S of .%; moreover, for a morphism h of .# such that a
left adjoint of h* exists, and we can choose the left adjoint functor hy which we feel as the most convenient for us,
depending on the situation we deal with. For instance, if h = 1g, we can choose hy to be 1_4(g), and if h = fg,
with f* and g* having left adjoints, we can choose hy to be fzgy (with the unit and counit naturally induced by
composition).
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1.1.8. Under the assumptions of 1.1.6, we will consider the following property:
(P-BC) Z-base change— For any cartesian square

Y > X

ol a s

T T> S
such that p is a &-morphism, the exchange transformation
Ex(A]) :a59™ — [y
is an isomorphism.

Definition 1.1.9. A P-fibred category over . is a pre-P-fibred category .# over . which
satisfies the property of &-base change.

Example 1.1.10. Consider the notations of example 1.1.4. Then the transitivity property of pull-
backs of morphisms in &2 amounts to say that &7/? satisfies the ?-base change property. Thus,
P /7 is in fact a P-fibred category, called the canonical &2-fibred category.

Definition 1.1.11. A Z-fibred category .# over . is complete if, for any morphism f : T — S,
the pullback functor f*: .#(S) — .#(T) admits a right adjoint f, : .#(S) — .#(T).

Remark 1.1.12. In the case where & is the class of isomorphisms a &-fibred category is what we
usually call a bifibred category over .%.

Example 1.1.13. The pre-Sm-fibred category 7%, of example 1.1.5 is a complete Sm-fibred category
according to [MV99].

1.1.14. FExchange structures II.— Let .# be a Z-fibred ¥-category. Consider a commutative

square

x

Y
9\LA f
T

?S.

We obtain an exchange transformation:

* * (Ld(g*,g*) * % * Pk (,Ld/(f*7f*) *
Ex(A) : p*fo ——= 9.9 fx = 90" f" [ ——> g.¢".

Assume moreover that p and g are #2-morphism. Then we can check that Fxz(Af) is the transpose
of the exchange Ex(A}). Thus, when A is cartesian and p is a &-morphism, Exz(A) is an
isomorphism according to (£7-BC).

We can also define an exchange transformation:

ad(f*,f+) Ba(Ap) ™ «  ad'(g".gx)
Ex(Ap) : ppge ——" fof*Prge ——— futtg" g — " foqy.

Remark 1.1.15. Asin remark 1.1.7, we obtain coherence results for these exchange transformations.
First with respect to the identifications of the kind f*g* = (9f)*, (f9)« = fegs, (f9)s = figs-
Secondly when several exchange transformations of different kind are involved. As an example,

we consider the following commutative diagram in .7:

q Y q
77— 1  =x
\
h e % A f

P \p\

i
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Then the following diagram of natural transformations is commutative:

* ./ EI(AJ) % /
9", — [ e

Bx(7)] =

G q.h* f7ppj
Em " {Efm:)
qxqy W‘ 4«9 Py

We left the verification to the reader (it is based on the equations of the relevant adjunctions).

Definition 1.1.16. Let .# be a complete &-fibred category. Consider a commutative square in

5

q

Y —X
g A f

We will say that A is . -transversal if the exchange transformation
Ex(AY) :p" fe — 90"

of 1.1.14 is an isomorphism.

Given an admissible class of morphisms @ in ., we say that .# has the transversality (resp.
cotransversality) property with respect to Q-morphisms, if, for any cartesian square A as above
such that f is in @ (resp. p is in Q), A is .#-transversal.

Remark 1.1.17. Assume .¥ is a sub-category of the category of schemes. When (@ is the class of
smooth morphisms (resp. proper morphisms),

the cotransversality (resp. transversality) property with respect to @ is usually called the
smooth base change property

(resp. proper base change property).

Note finally that we get the following consequences of the axioms:

Proposition 1.1.18. Any complete &Z-fibred category has the cotransversality property with re-
spect to 2.

See paragraph 1.1.14.

Proposition 1.1.19. If 4 is a &2-fibred category, then, for any monomorphism j : U — S in
P, the functor jy is fully faithful. If moreover .4 is complete, then the functor j,. is fully faithful
as well.

Proof. Because j is a monomorphism, we get a cartesian square in .%:

U=—=U

I

U—S.
J

Remark that Ex(A}) : 1 — j*jy is the unit of the adjunction (jg,j*). Thus the 7-base change
property shows that jy is fully faithful.

Assume # is complete. We remark similarly that Ex(AZ%) : j*j. — 1 is the counit of the
adjunction (j*,j.). Thus, the above proposition shows readily that j, is fully faithful. O

1.1.b. Monoidal structures. Let €at® be the sub-2-category of ¥at made of symmetric monoidal
categories whose 1-morphisms are (strong) symmetric monoidal functors and 2-morphisms are
symmetric monoidal transformations.
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Definition 1.1.20. A monoidal pre-Z-fibred category over . is a 2-functor
M S — Cat®
such that . is a pre-Z-fibred category.

In other words, .# is a pre-Z-fibred category such that each of its fibers .Z(S) is endowed
with a structure of a monoidal category, and any pullback morphism f* is monoidal, with the
obvious coherent structures. For an object S of ., we will usually denote by ®g (resp. 1g) the
tensor product (resp. unit) of .Z(5).

In particular, we then have the following natural isomorphisms:

e for a morphism f: T — S in ., and objects M, N of .Z(S),
f*(M) @7 f*(N) = f*(M ®s N);
e for a morphism f:7T — S in .,
fr(1s) = 1r.

Convention 1.1.21. As in convention 1.1.3, we will generally consider that these structural iso-
morphisms are identities.

Ezxample 1.1.22. Consider the notations of example 1.1.4.

Using the property (Pb) and (Pc) of &2, for two S-objects X and Y in &2/S, the cartesian
product X xgY is an object of &2/S. This defines a symmetric monoidal structure on &?/S with
unit the trivial S-object S. Moreover, the functor f* defined in loc. cit. is monoidal. Thus, the
pre-Z-fibred category &7/? is in fact monoidal.

1.1.23. Monoidal exchange structures I. Let .# be a monoidal pre-Z-fibred category .# over .7 .
Consider a &-morphism f : T — S, and M (resp. N) an object of .#(T) (resp. #(S)).
We get a morphism in .Z(S)
Ex(ff,®): fy(M @7 f*(N)) — f1(M) ®s N
as the composition
fs(M @7 f*(N)) = f(f* fs(M) @r f*(N)) = fof* (fs(M) ®s N) — fy(M) @5 N .

This map is natural in M and N. It will be called the exchange transformation between f; and

Q.
Remark also that the functor fy, as a left adjoint of a symmetric monoidal functor, is colax
symmetric monoidal: for any objects M and N of .#(T), there is a canonical morphism

(1.1.23.1) fe(M) @5 fy(N) — f3(M @1 N)
natural in M and N, as well as a natural map
(1.1.23.2) fy(lp) — 1g.

Remark 1.1.24. As in remark 1.1.7, the preceding exchange transformations satisfy a coherence

condition for composable morphisms W % T 15 We get in fact a commutative diagram:

() (M @5 (f9)*(N)) Er03e) ((F9)2(M)) ®w N

fag:(M @5 g (V) 225 b 0y o 12(V) 2L (g (00)) o N

As in remark 1.1.15, there is also a coherence relation when different kind of exchange transfor-
mations are involved. Consider a commutative square in .%

Y —> X

glAlf

TT>S
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such that p and ¢ are ZZ-morphisms and put h = foq = pog. Then the following diagram is
commutative:

) oy BEAD o Bai®)
49" (M @7 p*N) ———— f*py(M @1 p"N) ——— [*(pyM ®s N)

* H * Lk Em(qg,@) * * EI(AB‘) * H *
a(9"M ®y ¢" f*N) (g9"M) ®@x f*N (f*psM) @x f*N

We left the verification to the reader.

1.1.25. Under the assumptions of 1.1.23, we will consider the following property:
(Z-PF) P-projection formula— For any &-morphism f : T — S the exchange transformation

Ex(fy,@r) : fs(M @7 f*(N)) — fy(M) ®s N
is an isomorphism for all M and N.

Definition 1.1.26. A monoidal P-fibred category over .# is a monoidal pre-F-fibred category
M S P — Gat® over ./ which satisfies the Z-projection formula.

Ezample 1.1.27. Counsider the canonical monoidal weak Z-fibred category &2/?7 (see example
1.1.22). The transitivity property of pullbacks implies readily that £2/?7 satisfies the property
(Z2-PF). Thus, & /7 is in fact a monoidal ZP-fibred category called canonical.

Definition 1.1.28. A monoidal £-fibred category .# over . is complete if it satisfies the fol-
lowing conditions:

(1) A is complete as a Z-fibred category.

(2) For any object S of ., the monoidal category .#(S) is closed (i.e. has an internal Hom).

In this case, we will usually denote by Homg the internal Hom in .#(S), so that we have
natural bijections
Hom///(s)(A ®s B, C) ~ Hom//l(s)(A, HomS(B, C)) .

Example 1.1.29. The P-fibred category 7, of example 1.1.13 is in fact a complete monoidal
P-fibred category. The tensor product is given by the smash product (see [MV99]).

1.1.30. Monoidal exchange structures I1.— Let .# be a complete monoidal &-fibred category.
Consider a morphism f : 7T — S in .. Then we obtain an exchange transformation:

Ba(f:,®s) : (f.M)®s N “00 ¢ p((£.0M) @5 N)

— L ((f M) @r FN) 2L 0 op N,

Remark 1.1.31. As in remark 1.1.24, these exchange transformations are compatible with the
identifications (fg). = fi«g« and (fg)* = g* f*.

Moreover, there is a coherence relation when composing the exchange transformations of the kind
Ex(ff,®) with exchange transformations of the kind Ex(A¥) as in loc. cit.

Finally, note another kind of coherence relations involving Ez(f}, ®), Ex(Ag) (resp. Ez(f;,®))
and Ex(Ags).

We left the formulation of these coherence relations to the reader, on the model of the preceding
ones.

1.1.32. Monoidal exchange structures I11.— Let .# be a complete monoidal &-fibred category
and f:7T — S be a morphism in ..
Because f* is monoidal, we get by adjunction a canonical isomorphism

Homg(M, fuN) — f.Homp(f*M,N).

Assume that f is a &-morphism. Then from the &-projection formula, we get by adjunction two
canonical isomorphisms:

f*Homg(M,N) — Homrp(f*M, f*N),
Homg(fyM,N) — f.Homy(M, f*N)
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1.1.c. Geometric sections.

1.1.33. Consider a weak Z-fibred category . .

Let S be a scheme. For any &-morphism p : X — S, we put Mg(X) := ps(1x). According
to our conventions, this object is identified with pyp*(1s). In particular, it defines a covariant
functor Mg : Ps — #(S).

Consider a cartesian square in %

y 1> x
qi A lp
T?S

such that p is a &-morphism. With the notations of example 1.1.4, Y = f*(X). Then we get a
natural exchange transformation

Exz(Ay)

Ex(Mr, f*) : Mr(f*(X)) = ¢:(1y) = ¢:9"(1x) [py(lx) = f*Ms(X).

In other words, M defines a lax natural transformation &2/? — 4.
Consider Z-morphisms p: X — S, q:Y — S. Let Z = X xgY be the cartesian product and
consider the cartesian square:

7"y
q’il e \Lq
) ey

Using the exchange transformations of the preceding paragraph, we get a canonical morphism
EQT(MS, ®S> : Ms(X X g Y) — Ms(X) Rg M5<Y)

as the composition
i Ex(0y) * *
Ms(X xsY) = pygp™ (ly) ——— pip"@:(1y) py(Ix ®x pgs(Ly))
pi(lx) ®s gz (ly) = Ms(X) @5 Ms(Y).

In other words, the functor Mg is symmetric colax monoidal.
Remark finally that for any &Z-morphism p : T'— S, and any &?-object Y over T, we obtain
according to convention an identification pyMr(Y) = Mg(X).

Ex(ps,®x)
—_

Definition 1.1.34. Given a monoidal pre-Z-fibred category .# over ., the lax natural trans-
formation M : £ /? — .4 constructed above will be called the geometric sections of A .

The following lemma is obvious from the definitions above:
Lemma 1.1.35. let A4 be a monoidal P-fibred category. Let M : 2|7 — M be the geometric

sections of M . Then:

(i) For any morphism f : T — S in 7, the exchange Ex(Mr, f*) defined above is an iso-
morphism.
(ii) For any scheme S, the exchange Ex(Mg,®g) defined above is an isomorphism.

In other words, M is a cartesian functor and Mg is a (strong) symmetric monoidal functor.

1.1.36. In the situation of the lemma we thus obtain the following identifications:
° f*Ms(X) ~ MT(X Xs T),
o pyMrp(Y) ~ Mg(X),
° Ms(X Xg Y) ~ Ms(X) XRg Ms(Y),

whenever it makes sense.
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1.1.d. Twists.

1.1.37. Let .# be a pre-P-fibred category of .. Recall that a cartesian section of .Z (i.e. a
cartesian functor A : . — #) is the data of an object Ag of .#(S) for each object S of .7 and
of isomorphisms
[*(As) = Ar
for each morphism f : T — S, subject to coherence identities; see [Gro03, Exp. VI].
If A is monoidal, the tensor product of two cartesian sections is defined termwise.

Definition 1.1.38. let .# be a monoidal pre-Z?-fibred category. A set of twists T for .4 is a set
of cartesian sections of .# stable by tensor product. For short, we say also that . is 7-twisted.

1.1.39. Let .# be a monoidal pre-Z-fibred category endowed with a set of twists 7.

The tensor product on 7 induces a monoid structure that we will denote by + (the unit object
of 7 will be written 0).

Consider an object ¢ € 7. For any object S of ., we thus obtain an object ig in .#(S)
associated to i. Given any object M of .#(S), we simply put:

M{i} = M ®g is
and call this object the twist of M by i. We have, by definition: M{0} = M.

For any i,j € 7, and any object M of .#(S), we obtain M{i + j} = (M{i}){j} — using the
structural associativity isomorphism of the monoidal structure. Given a morphism f:7 — S, an
object M of .#(S) and a twist ¢ € 7, we also obtain f*(M{i}) = (f*M){i}. If f is a &-morphism,
for any object M of .#(T), the exchange transformation E:v(fg‘, ®7) of paragraph 1.1.6 induces
a canonical morphism

Ex(fy, {i}) : fy(M{i}) — (fsM){i}.
We will say that f; commutes with 7-twists (or simply twists when 7 is clear) if for any ¢ € I, the
natural transformation Ez(fy,{i}) is an isomorphism.

Definition 1.1.40. Let .# be a monoidal pre-Z-fibred category with a set of twists 7 and
M : P/? — A be the geometric sections of .Z .
We say . is T-generated if for any object S of ., the family of functors

Hom//((_g) (Ms(X){’L}, —) : %(S) — Set

indexed by a Z-object X/S and an element i € T is conservative.
Of course, we do not exclude the case where 7 is trivial , but then, we shall simply say that .#
is geometrically generated.

We shall frequently use the following proposition to characterize complete monoidal Z-fibred
categories over .7

Proposition 1.1.41. Let .4 : .7 — €at® be a 2-functor such that:
(1) For any P-morphism f: T — S, the pullback functor f* : #(S) — #(T) is monoidal
and admits a left adjoint fy in €.
(2) For any morphism f : T — S, the pullback functor f* : #(S) — A (T) admits a right
adjoint f, in €.
We consider .# as a monoidal weak &P -fibred category and denote by M : P /7 — M its associated
geometric sections. Suppose given a set of twists T such that # is T-generated. Then, the following
assertions are equivalent:
(8) A satisfies properties (#-BC) and (&?-PF)
(i.e. A is a complete monoidal P-fibred category.)
(3°) (a) M is a cartesian functor.
(b) For any object S of ¥, Mg is (strongly) monoidal.
(c) For any &-morphism f, fy commutes with T-twists.

Proof. (i) = (it): This is obvious (see lemma 1.1.35).
(73) = (i): We use the following easy lemma:
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Lemma 1.1.42. Let €, and %> be categories, F,G : €1 — 6 be two left adjoint functors and
n: F — G be a natural transformation. Let G be a class of objects of €1 which is generating in
the sense that the family of functors Home, (X, —) for X in G is conservative.

Then the following conditions are equivalent:

(1) n is an isomorphism.

(2) For all X in G, nx is an isomorphism.
Given this lemma, to prove (£-BC), we are reduced to check that the exchange transformation
Ex(Ag) is an isomorphism when evaluated on an object Mp(U){i} for an object U of &2 /T and
a twist i € 7. Then it follows from (ii), 1.1.39 and example 1.1.10.*
To prove (Z-PF), we proceed in two steps first proving the case M = Mp(U){i} and N any
object of .Z(S) using the same argument as above with the help of 1.1.27. Then, we can prove
the general case by another application of the same argument. O

Suppose given a complete monoidal &Z-fibered category .# with a set of twists 7. Let f : T — S
be a morphism of .. Then the exchange transformation 1.1.30 induces for any ¢ € 7 an exchange
transformation

Ex(fe,{i}) : (feM){i} — f.(M{i}).

Definition 1.1.43. In the situation above, we say that f. commutes with T-twists (or simply with
twists when 7 is clear) if for any ¢ € 7, the exchange transformation Exz(f., {¢}) is an isomorphism.

1.2. Morphisms of &-fibred categories.
1.2.a. General case.

1.2.1. Consider two ZP-fibred categories .# and .#’' over ., as well as a cartesian functor
©* M — A" between the underlying fibred categories: for any object S of ., we have a functor

05 M(S) — M(S),
and for any map f:7 — S in ., we have an isomorphism of functors cy

P
Ps

M(S) —25 = a'(S)
(1.2.1.1) f*i Y e lf* cii [P s = o f*

M(T) ——.4'(T)
T
satisfying some cocycle condition with respect to composition in ..
For any &Z-morphism p : T'— S, we construct an exchange morphism
Ex(py, ) : pypr — 5y
as the composition

* 1 *
« ad(py,p) « ad'(py,p*) 4

Pept s pyhp Dy o P PPy — s Gy
Definition 1.2.2. Consider the situation above. We say that the cartesian functor
oM — M
is a morphism of P-fibred categories if, for any &-morphism p, the exchange transformation

Ex(py, ¢*) is an isomorphism.

Ezample 1.2.3. If .4 is a monoidal &-fibred category, then the geometric sections M : &/? — A
is a morphism of Z-fibred categories (1.1.35).

4The cautious reader will use remark 1.1.7 to check that the corresponding map
Mx(U XT Y){’L} — Mx(U X7 Y){Z}
is the identity.
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Definition 1.2.4. Let .# and .#' be two complete P-fibred categories. A morphism of complete
P-fibred categories is a morphism of &-fibred categories
oM — M
such that, for any object S of ., the functor ¢% : A (S) — .#'(S) has a right adjoint
g M(S)— M(5).

When we want to indicate a notation for the right adjoint of a morphism as above, we use the

notation
M =N,

the left adjoint being in the left hand side.

1.2.5. Ezchange structures III. Consider a morphism ¢* : .# — #' of complete &-fibred cate-
gories.
Then for any morphism f : 7T — S in ./, we define exchange transformations

(1.2.5.1) Ex(¢*, fi) 1 @5 fx — fupim,
(1.2.5.2) Ex(f*,04) : [Tos,s — ourf7,
as the respective compositions
* ad(f™,f«) * % * pk ad/(f*,f*) *
Osfe —— [T 05 S = frpor 7 fs ——— fuers
ad(f*vf*) * ad/(f*7f*)

f*SO*,S —_— f*@*,Sf*f* = f*f*@*,Tf I (P*,Tf*'

Remark 1.2.6. We warn the reader that ¢, : .#’' — .# is not a cartesian functor in general,
meaning that the exchange transformation Fx(f*, ¢.) is not necessarily an isomorphism, even
when f is a &-morphism.

1.2.b. Monoidal case.

Definition 1.2.7. Let .# and .#’ be monoidal Z-fibred categories.

A morphisms of monoidal P-fibred categories is a morphism ¢* : A — A’ of P-fibred
categories such that for any object S of ., the functor ¥ : A4 (X) — A7(S) has the structure of
a (strong) symmetric monoidal functor, and such that the structural isomorphisms (1.2.1.1) are
isomorphisms of symmetric monoidal functors.

In the case where .# and .#' are complete monoidal &-fibred categories, we shall say that such
a morphism ¢* is a morphism of complete monoidal Z2-fibred categories if ¢* is also a morphism
of complete Z-fibred categories.

Remark 1.2.8. If we denote by M(—, .#) and M(—, #") the geometric sections of .# and .#’
respectively, we have a natural identification:

0s(Ms(X, #)) ~ Mg (X, . 4").
1.2.9. Monoidal exchange structures IV. Consider a a morphism ¢* : .# — .#’ of complete
monoidal Z-fibred categories. For objects M (resp. N) of .#(S) (resp. .#'(S)), we define an
exchange transformation
Ex(0x, ®,0%) : (px,sM) @5 N = ¢u,5(M @1 95N),

natural in M and N, as the following composite

d(e” )

(e, sM) @5 N =25 0, 505((pe,sM) @5 N)

_ * * ad/(w*7W*) *

= x.5((p502,sM) ©1 Y5 N) ——— ¢u (M @1 o5 N).

As in remark 1.1.31, we get coherence relations between the various exchange transformations

associated with a morphism of monoidal Z-fibred categories. We left the formulation to the
reader.
Note also that, because ¢* is monoidal, we get by adjunction a canonical isomorphism:

Hom g (s)y(M, ¢ sM') = @, sHom g (sy(psM, M) .
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1.2.10. Cousider two monoidal £-fibred categories #, .#" and a cartesian functor ©* : # — A’
such that, for any scheme S, % : #(S) — .#'(S) is monoidal.

Given a cartesian section K = (Kg)se.» of .4, we obtain for any morphism f: 7 — S in .% a
canonical map

[res(Ks) = op(f*(Ks)) — »7(Kr)
which defines a cartesian section of .#’, which we denote by ¢*(K).
Definition 1.2.11. Let (.#,7) and (.#’,7") be twisted monoidal Z-fibred categories. Let ¢* :
M — M be a cartesian functor as above (resp. a morphism of monoidal Z-fibred categories).
We say that ¢* : (#,7) — (A',7") commutes with twists (resp. is a morphism of twisted
P-fibred categories) if for any 7 € 7, the cartesian section ¢* () is in 7’ (up to isomorphism in

M.

In particular, ¢* induces a morphism of monoids 7 — 7’ (if we consider the isomorphism classes
of objects). Moreover, for any object K of .#(S) and any twist i € 7, we get an identification:

s (K{i}) ~ (psK){e™ (i)}

Moreover, the exchange transformation Ex(p.,®) induces an exchange:

Ex(x {i}) + pus(K){i} — pus (K{e"(0)}).
When this transformation is an isomorphism for any twist ¢ € 7, we say that ¢, commutes with

twists.

Remark 1.2.12. In every examples, the morphism 7 — 7/ will be an explicit injection and we will
cancel it in the notations of twists.

Note finally that lemma 1.1.42 allows to prove, as for proposition 1.1.41, the following useful
lemma:

Lemma 1.2.13. Consider two complete monoidal P-fibred categories M, .#' and denote by
M(—, #) and M(—, #") their respective geometric sections. Let ©* : M — M’ be a cartesian
functor such that

(1) For any scheme S, ¢ : M (S) — #'(S) is monoidal.
(2) For any scheme S, ¢% admits a right adjoint ¢, s.

Assume M (resp. M') is T-generated (resp. T'-twisted) and p* commutes with twists. Then the
following conditions are equivalent:

(8) ©* is a morphism of complete monoidal P -fibred categories.
(3°) For any object X of P/S, the exchange transformation (cf. 1.2.1)

(p*Ms(X, %) — Ms(X, %/)
8 an isomorphism.

1.3. Structures on Z-fibred categories.

1.3.a. Abstract definition.

1.3.1. We fix a sub-2-category € of Gat with the following properties®:
(1) the 2-functor
Cat — Cat' , A— AP
sends € to €', where ¢’ denotes the 2-category whose objects and maps are those of 4
and whose 2-morphisms are the 2-morphisms of &, put in the reverse direction.

(2) ¥ is closed under adjunction: for any functor u: A — B in %, if a functor v: B — Ais a
right adjoint or a left adjoint to u, then v is in % .

5See the following sections for examples.
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(3) the 2-morphisms of ¥ are closed by transposition: if
u:A=2B:vandu : A= B:v

are two adjunctions in € (with the left adjoints on the left hand side), a natural transfor-
mation u — u’ is in ¢ if and only if the corresponding natural transformation v — v is
in .

We can then define and manipulate €-structured &-fibred categories as follows.

Definition 1.3.2. A € -structured &-fibred category (rvesp. €-structured complete LP-fibred cat-
egory) A over . is simply a P-fibred category (resp. a complete P-fibred category) whose
underlying 2-functor .# : . °P — %at factors through %.

If A and .4’ are €-structured fibred categories over ., a cartesian functor .# — .#’ is € -
structured if the functors .4 (S) — .#'(S) are in € for any object S of .7, and if all the structural
2-morphisms (1.2.1.1) are in € as well.

Definition 1.3.3. A morphism of @-structured &-fibred categories (resp. €-structured complete
P-fibred categories) is a morphism of &-fibred categories (resp. of complete &-fibred categories)
which is @-structured as a cartesian functor.

1.3.4. Consider a 2-category ¥ as in the paragraph 1.3.1. In order to deal with the monoidal
case, we will consider also a sub-2-category €® of ¢ such that:

(1) The objects of €® are objects of € equipped with a symmetric monoidal structure;
(2) the 1-morphisms of €® are exactly the 1-morphisms of ¢ which are symmetric monoidal
as functors;
(3) the 2-morphisms of €'® are exactly the 2-morphisms of 4’ which are symmetric monoidal
as natural transformations.
Note that ¢® satisfies condition (1) of 1.3.1, but it does not satisfies conditions (2) and (3) in
general. Instead, we get the following properties:
(2') If u : A — B is a functor in €®, a right (resp. left) adjoint v is a lax% (resp. colax)
monoidal functor in €.
(3') Consider adjunctions

u:A=2B:vandu : A= B
in € (with the left adjoints on the left hand side). If u — v’ (resp. v — v’) is a 2-morphism
in €® then v — v’ (resp. u — ') is a 2-morphism in % which is a symmetric monoidal
transformation of lax (resp. colax) monoidal functors.
We thus adopt the following definition:

Definition 1.3.5. A (¢, % ®)-structured monoidal P-fibred category (resp. a (€, €®)-structured
complete monoidal &P-fibred category) is simply a monoidal -fibred category (resp. a complete
monoidal Z-fibred category) whose underlying 2-functor .# : .#°P — €at® factors through €®.
Morphisms of such objects are defined in the same way.

Note that, with the hypothesis made on %, all the exchange natural transformations defined in
the preceding paragraphs lie in ¥’ and satisfy the appropriate coherence property with respect to
the monoidal structure.

1.3.b. The abelian case.
1.3.6. Let @b be the sub-2-category of €at made of the abelian categories, with the additive

functors as 1-morphisms, and the natural transformations as 2-morphisms. Obviously, it satisfies
properties of 1.3.1. When we will apply one of the definitions 1.3.2, 1.3.3 to the case € = &b, we
will use the simple adjective abelian for @7b-structured.

1
SFor any object a, a’ in A, F is lax if there exists a structural map F(a) ® F(a’) Q F(a ® a') satisfying

coherence relations (see [Mac98, XI. 2]). Colax is defined by reversing the arrow (1).
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Let 27/b® be the sub-2-category of .2Zb made of the abelian monoidal categories, with 1-morphisms
the symmetric monoidal additive functors and 2-morphisms the symmetric monoidal natural trans-
formations. It satisfies the hypothesis of paragraph 1.3.4. When we will apply definition 1.3.5 to
the case of (b, #b®), we will use the simple expression monoidal abelian for (b, @/b®)-structured
monoidal.

Lemma 1.3.7. Consider an abelian 2P-fibred category < such that for any object S of .77, o/ (S)
is a Grothendieck abelian category. Then the following conditions are equivalent:

(i) < is complete.

(ii) For any morphism f:T — S in 7, f* commutes with sums.

If in addition, <7 is monoidal, the following conditions are equivalent:

(1) < is monoidal complete.
W) (a) For any morphism f:T — S in 7, f* is right exact.
( y g

(b) For any object S of 7, the bifunctor Qg is right exact.

In view of this lemma, we adopt the following definition:

Definition 1.3.8. A Grothendieck abelian (resp. Grothendieck abelian monoidal) &-fibred cat-
egory &/ over . is an abelian Z-fibred category which is complete (resp. complete monoidal)
and such that for any scheme S, &7(S) is a Grothendieck abelian category.

Remark 1.3.9. Let o be a Grothendieck abelian monoidal &-fibred category. Conventionally, we
will denote by Mg(—, /) its geometric sections. Note that if o7 is T-twisted, then any object of
&/ is a quotient of a direct sum of objects of shape Mg(X, &){i} for a Z-object X/S and a twist
1E€T.

1.3.c. The triangulated case.

1.3.10. Let J7ri be the sub-2-category of ¥at made of the triangulated categories, with the trian-
gulated functors as 1-morphisms, and the triangulated natural transformations as 2-morphisms.
Then Jri satisfies the properties of 1.3.1 (property (2) can be found for instance in [Ayo07a,
Lemma 2.1.23], and we leave property (3) as an exercise for the reader). When we will apply one
of the definitions 1.3.2, 1.3.3 to the case € = Jri, we will use the simple adjective triangulated
for Jri-structured.

Let I7i® be the sub-2-category of 7ri made of the triangulated monoidal categories, with 1-
morphisms the symmetric monoidal triangulated functors and 2-morphisms the symmetric monoidal
natural transformations. It satisfies the hypothesis of paragraph 1.3.4. When we will apply def-
inition 1.3.5 to the case of (i, 7ri®), we will use the expression monoidal triangulated for
(Tri, Tri®)-structured monoidal.

Convention 1.3.11. The set of twists of a triangulated monoidal £-fibred category 7 will always
be of the form Z x 7 where the first factor corresponds to the cartesian sections defined by
suspensions 1[n], n € Z. In the notation, we shall often make the abuse of only indicating 7. In
particular, the expression . is T-generated will mean conventionally that 7 is (Z x 7)-generated
in the sense of definition 1.1.40.

1.3.12. Consider a triangulated category 7 which admits small sums. Recall the following defi-
nitions:

An object X of .7 is called compact if the functor Hom o (X, —) commutes with small sums. A
class G of objects of .7 is called generating if the family of functor Hom # (X [n],—), X € G, n € Z,
is conservative.

The triangulated category 7 is called compactly generated if there exists a generating set G of
compact objects of 7. This property of being compact has been generalized by A. Neeman to
the property of being a-small for some cardinal a (¢f. [Nee01, 4.1.1]) — recall compact=Rg-small.
Then the property of being compactly generated has been generalized by Neeman to the property
of being well generated; see [Kra0l] for a convenient characterization of well generated triangulated
categories.
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Definition 1.3.13. Let .7 be a triangulated Z-fibred category over .. We say that 7 is
compactly generated (resp. well generated) if for any object S of ., 7 (S) admits small sums and
is compactly generated (resp. well generated).

Remark 1.3.14. Remember that a monoidal triangulated &-fibred category is compactly T-generated
in the sense of definition 1.1.40 if it is compactly generated in the sense of the previous definition
and for any #-object X/S, any twist i € 7, Mg(X){i} is compact.

1.3.15. For a triangulated category 7 which has small sums, given a family G of objects of .7, we
denote by (G) the localizing subcategory of J generated by G, i.e. (G) is the smallest triangulated
full subcategory of 7 which is stable by small sums and which contains all the objects in G.
Recall that, in the case .7 is well generated (e.g. if Z compactly generated), then the family G
generates .7 (in the sense that the family of functors {Hom # (X, —)} xeg is conservative) if and
only if .7 = (G). The following lemma is a consequence of [Nee01]:

Lemma 1.3.16. Let . be a triangulated monoidal P-fibred category over . with geometric
sections M. Assume 7 is T-generated.
If T is well generated, then for any object S of .7,

T(S) = (Ms(X){i}; X/S a P-object,i € T)

Moreover, there exists a regular cardinal o such that all the objects of shape Mg(X){i} are a-
compact.

Note finally that the Brown representability theorem of Neeman (cf. [Nee01]) gives the following
lemma (analog of 1.3.7):

Lemma 1.3.17. Consider a well generated triangulated &2-fibred category 7. Then the following
conditions are equivalent:

(i) T is complete.

(ii) For any morphism f:T — S in ., f* commutes with sums.
If in addition, 7 is monoidal, the following conditions are equivalent:

(1) T is monoidal complete.

(i) (a) For any morphism f:T — S in .7, f* is right exact.

(b) For any object S of 7, the bifunctor Qg is right exact.

We finish this section with a proposition which will constitute a useful trick:

Proposition 1.3.18. Consider an adjunction of triangulated categories
a: T =9 b

Assume that T admits a set of compact generators G such that any object in a(G) in compact in
J'. Then b commutes with direct sums. If in addition T is well generated then b admits a right
adjoint.

Proof. The second assertion follows from the first one according to a corollary of the Brown
representability theorem of Neeman (cf. [NeeO1, 8.4.4]).
For the first one, we consider a family (X;);e; of objects of ' and prove that the canonical
morphism
Dierb(Xi) — b(DierXi)
is an isomorphism in 7. To prove this, it is sufficient to apply the functor Hom & (G, —) for any
object G of G. Then the result is obvious from the assumptions. O

We shall use often the following standard argument to produce equivalences of triangulated
categories.

Corollary 1.3.19. Let a : F — ' be a triangulated functor between triangulated categories.
Assume that the functor a preserves small sums, and that J admits a small set of compact
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generators G, such that a(G) form a family of compact objects in T'. Then a is fully faithful if
and only if, for any couple of objects G and G’ in G, the map

Hom & (G, G'[n]) — Hom z/(a(G), a(G")[n])

is bijective for any integer n. If a is fully faithful, then a is an equivalence of categories if and
only if a(G) is a generating family in T'.

Proof. Let us prove that this is a sufficient condition. As 7 is in particular well generated, by the
Brown representability theorem, the functor b admits a right adjoint b : ./ — 7. By virtue of the
preceding proposition, the functor b preserves small sums. Let us prove that a is fully faithful. We
have to check that, for any object M of .7, the map M — b(a(M)) is invertible. As a and b are
triangulated and preserve small sums, it is sufficient to check this when M runs over a generating
family of objects of J (e.g. G). As G is generating, it is sufficient to prove that the map

Hom o (G, M[n]) — Homg (a(G), a(M)[n]) = Homg (a(G), b(a(M))[n])

is bijective for any integer n, which hold then by assumption. The functor a thus identifies .7
with the localizing subcategory of 7’ generated by a(G); if moreover a(G) is a generating family
in 7', then .7’ = (a(G)), which also proves the last assertion. O

1.3.d. The model category case.

1.3.20. We shall use Hovey’s book [Hov99] for a general reference to the theory of model categories.
Note that, following loc. cit., all the model categories we shall consider will have small limits and
small colimits.

Let .4 be the sub-2-category of ¥at made of the model categories, with 1-morphisms the left
Quillen functors and 2-morphisms the natural transformations. When we will apply definition
1.3.2 (resp. 1.3.3) to € = .#, we will speak of a P-fibred model category for a .4 -structured
P-fibred category .# (resp. morphism of £-fibred model categories). Note that according to the
definition of left Quillen functors, .# is then automatically complete.

Given a property (P) of model categories (like being cofibrantly generated, left and/or right
proper, combinatorial, stable, etc), we will say that a P-fibred model category .# over . has the
property (P) if, for any object S of .7, the model category .#(S) has the property (P).

For the monoidal case, we let .#® be the sub-2-categories of .# made of the symmetric monoidal
model categories (see [Hov99, Definition 4.2.6]), with 1-morphisms the symmetric monoidal left
Quillen functors and 2-morphisms the symmetric monoidal natural transformations, following
the conditions of 1.3.4. When we will apply definition 1.3.5 to the case of (., .#%), we will
speak simply of a monoidal P-fibred model category for a (M ,.#%)-structured monoidal 22-
fibred category .#. Again, .# is then monoidal complete.

Remark 1.3.21. Let 4 be a &-fibred model category over .. Then for any &-morphism p :
X — Y, the inverse image functor p* : #Z(Y) — .#(X) has very strong exactness properties:
it preserves small limits and colimits (having both a left and a right adjoint), and it preserves
weak equivalences, cofibrations, and fibrations. The only non (completely) trivial assertion here
is about the preservation of weak equivalences. For this, one notices first that it preserves trivial
cofibrations and trivial fibrations (being both a left Quillen functor and a right Quillen functor). In
particular, by virtue of Ken Brown Lemma [Hov99, Lemma 1.1.12], it preserves weak equivalences
between cofibrant (resp. fibrant) objects. Given a weak equivalence u : M — N in .Z(Y'), we can
find a commutative square

MIUH/NI
M ——=N

in which the two vertical maps are trivial fibrations, and where v’ is a weak equivalence between
cofibrant objects, from which we deduce easily that p*(u) is a weak equivalence in .Z(X).
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1.3.22. Consider a &-fibred model category .# over .. By assumption, we get the following
pairs of adjoint functors:

(a) For any morphism f: X — S of .7,
Lf* :Ho(#(S)) 2 Ho(A# (X)) : Rf.
(b) For any P-morphism p: T — S, the pullback functor
Lpy : Ho(#(S)) = Ho(#(T)) : Lp* = p* = Rp*

Moreover, the canonical isomorphism of shape (fg)* ~ ¢*f* induces a canonical isomorphism
R(fg)* ~ Rg*Rf*. In the situation of the £-base change formula 1.1.8, we obtain also that the
base change map

Lg;Lg* — Lf*Lpy
is an isomorphism from the equivalent property of .#. Thus, we have defined a complete &-fibred
category whose fiber over S is Ho(.Z(S)).

Definition 1.3.23. Given a &-fibred model category .# as above, the complete &-fibred cate-
gory defined above will be denoted by Ho(.#) and called the homotopy &2-fibred category associ-
ated with .Z.

1.3.24. Assume that .# is a monoidal &-fibred model category over .. Then, for any object S
of #, Ho(.#)(S) has the structure of a symmetric closed monoidal category; see [Hov99, Theorem
4.3.2]. The (derived) tensor product of Ho(.#)(S) will be denoted by M ®% N, and the (derived)
internal Hom will be written RHomg(M, N), while the unit object will be written 1g.

For any morphism f : 7T — S in ., the derived functor Lf* is symmetric monoidal as follows
from the equivalent property of its homologue f*.

Moreover, for any P-morphism p: T'— S and for any object M in Ho(.#)(T') and any object
N in Ho(.#)(S), the exchange map of 1.1.23

Lp;(M @ p*(N)) — Lpy(M) @" N
is an isomorphism.

Definition 1.3.25. Given a monoidal &-fibred model category .# as above, the complete
monoidal P-fibred category defined above will be denoted by Ho(.#) and called the monoidal
homotopy &2-fibred category associated with . .

1.4. Premotivic categories. In the present article, we will focus on a particular type of #-fibred
category.

1.4.1. Let S be a scheme. Assume .¥ is a full subcategory of the category of S-schemes. We let
7Tt be the class of morphisms of finite type in . and Sm be the class of smooth morphisms of
finite type in .. In practice, the classes Sm and .#/* are admissible in .# in the sense of 1.0 (this
is automatic, for instance, if . is stable by pullbacks).

Definition 1.4.2. Let & be an admissible class of morphisms in .7.

A P-premotivic category over ./ — or simply &-premotivic category when & is clear — is a
complete monoidal &-fibred category over .# endowed with a small set of twists 7 such that .#
is T-generated.

We will also say: premotivic for Sm-premotivic and generalized premotivic for .#7t-premotivic.

The sections of a &-premotivic category will be called premotives.

Given a 2-category € as in 1.3.1, we define similarly the notion of a ¢-structured &-premotivic
(resp. premotivic, generalized premotivic) category. This will be particularly applied in the
abelian and triangulated cases (cf. respectively 1.3.6 and 1.3.10). In partcilular, we shall consider
compactly T-generated triangulated premotivic categories: these are the triangulated premotivic
categories 7, such that, for any scheme S in .7, the objects Mg(X){n}, for X/S smooth of finite
type, and n € 7, form a generating family of compact objects (in particular, such a 7 is compactly
generated as a triangulated £-fibred category; see 1.3.12).
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Example 1.4.3. Let % be the category of noetherian schemes of finite dimension.

For such a scheme S, recall .74, (.S) is the pointed homotopy category of Morel and Voevodsky;
cf. examples 1.1.5, 1.1.13, 1.1.29. Then, according to the fact recalled in these examples the
2-functor 7, is an N-generated premotivic category.

For such a scheme S, consider the stable homotopy category SH(S) of Morel and Voevodsky (see
[Jar00, Ayo07b]). According to [Ayo07b], it defines a triangulated premotivic category denoted by
SH. Moreover, it is compactly (Z x Z)-generated in the sense of definition 1.1.40 where the first
factor refers to the suspension and the second one refers to the Tate twist (i.e. as a triangulated
premotivic category, it is compactly generated by the Tate twists).

Definition 1.4.4. Let .# and .#’ be &-premotivic categories.
A premotivic morphism from .# to .#' is a morphism ¢* : . # — .#' of twisted complete
monoidal Z-fibred categories. We shall also say that

o M2 M .
is a premotivic adjunction.

Given a 2-category € as in 1.3.1, we define similarly the notion of a morphism (resp. adjunction)
of €-structured &-premotivic (resp. premotivic, generalized premotivic) category.

Ezxample 1.4.5. With the hypothesis and notations of 1.4.3, we get a premotivic adjunction
X0 =2 SH: Q%
induced by the infinite suspension functor according to [Jar00].

1.4.6. Let 7 (resp. &7) be an triangulated &7-premotivic category with geometric sections M and
set of twists 7. For any scheme S, we let .7 _ g, (S) be the smallest triangulated thick subcategory
of 7 (S) which contains premotives of shape Mg (S){i} (resp. Mg(X, «7){i}) for a Z-scheme X/S
and a twist ¢ € 7. This subcategory is stable by the operations f*, py and ®. In particular, 7.
defines a not necessarily complete triangulated (resp. abelian) &-fibred category over .. We also
obtain a morphism of triangulated (resp. abelian) monoidal &-fibred categories, fully faithful as
a functor,

v 9. — T

Definition 1.4.7. Consider the notations introduced above. We will call .7, the 7-constructible
part of 7. For any scheme S, the objects of Z.(S) will be called 7-constructible, or simply,
constructible.

When 7 is clear from the context, we will not indicate it in the notation or terminology of
this definition. Note also that if Z is compactly 7-generated, then 7-geometric premotives over
S coincide with the compact objects of Z(S). Thus, in this case, the &-fibred sub-category of
T-constructible premotives does not depend on 7 so that the preceding abuse of notation is fully
legitimated (this will be the case in practice).

Definition 1.4.8. Consider a 7-generated premotivic category . .
An enlargement of .# is the data of a 7/-twisted generalized premotivic category .# together
with a premotivic adjunction
pp: M — M :p"
(where . is considered as a premotivic category in the obvious way), satisfying the following
properties:
(a) For any scheme S in ., the functor py g : A (S) — #(S) is fully faithful and its right
adjoint p§ : M (S) — A (S) commutes with sums.
(b) py induces an equivalence 7 ~ 7',
Again, this notion is defined similarly for a €-structured £-premotivic category.

Note that for any smooth S-scheme X, we get in the context of an enlargement as above the
following identifications:
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where M (resp. M) denote the geometric sections of .# (resp. #).
Remember also that for any morphism of schemes f and any smooth morphism p, p; commutes
with f* and py, while p* commutes with f, and p*.

2. TRIANGULATED Z-FIBRED CATEGORIES IN ALGEBRAIC GEOMETRY
2.0. In this entire section, we fix a base scheme S assumed to be noetherian and a full subcategory
& of the category of noetherian S-schemes satisfying the following properties:

(a) . is closed under finite sums and pullback along morphisms of finite type.
(b) For any scheme S in ., any quasi-projective S-scheme belongs to ..

In sections 2.2 and 2.4, we will add the following assumption on .%:

(¢) Any separated morphism f : Y — X in ., admits a compactification in . in the sense
of [AGV73, 3.2.5], i.e. admits a factorization of the form

yLyEXx
where j is an open immersion, p is proper, and Y belongs to .. Furthermore, if f is
quasi-projective, then p can be chosen to be projective.
(d) Chow’s lemma holds in . (i.e., for any proper morphism ¥ — X in ., there exists a

projective birational morphism p : Y — Y in .% such that fp is projective as well).

A category .7 satisfying all these properties will be called adequate for future references.”

We also fix an admissible class &2 of morphisms in .¥ and a complete triangulated &?-fibred
category 7. We will add the following assumptions:

(d) In section 2.2 and 2.3, & contains the open immersions.
(e) In section 2.4, & contains the smooth morphisms of ..

In the case 7 is monoidal, we denote by
M:2]?"— T

its geometric sections.
According to the convention of 1.4.2, we will speak of the premotivic case when &2 is the class
of smooth morphisms in . and 7 is a premotivic triangulated category.

2.1. Elementary properties.

Definition 2.1.1. We say that 7 is additive, if for any finite family (S;);c.» of schemes in .7,

the canonical map
§<H&>Hny@>

is an equivalence.
Recall this property implies in particular that 7 (@) = 0.
Lemma 2.1.2. Let S be a scheme, p : AL — S be the canonical projection. The following
conditions are equivalent:
(i) The functor p* : T (S) — T (AY) is fully faithful.
(ii) The counit adjunction morphism 1 — p.p* is an isomorphism.
In the premotivic case, these conditions are equivalent to the following ones:
(111) The unit adjunction morphism pyp* — 1 is an isomorphism.
() The morphism Ms(AY) X 1g induced by p is an isomorphism.
(iv’) For any smooth S-scheme X, the morphism Mg(AY) Uxxp)., Mg(X) is an isomorphism.

"For instance, the scheme S can be the spectrum of a prime field or of a Dedekind domain. The category .7
might be the category of all noetherian S-schemes of finite dimension or simply the category of quasi-projective
S-schemes. In all these cases, property (c) is ensured by Nagata’s theorem (see [Con07]) and property (d) by Chow’s
lemma (see [GD61, 5.6.1]).
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The only thing to recall is that in the premotivic case, pyp* (M) = Mgs(AL)®@M and p.p*(M) =
Homs(Ms(Ag), M).

Definition 2.1.3. The equivalent conditions of the previous lemma will be called the homotopy
property for 7, denoted by (Htp).

2.1.4. Consider a scheme S, p : P4 — S the canonical projection and s : S — P} the oo-section.
The composite natural transformation

ad(p”,p«) « ad(s”,sx) *
Il ———=pp” ——— pssusp=1
is an isomorphism. In particular, for any premotive M over S, the map M — p,p*M admits a
cokernel in the additive category .7 (S). The cokernel of this map thus defines a functor which we
denote by coKer(1 — p.p*). The following lemma is easy:

Lemma 2.1.5. Consider the notations above and the assumption.:
(i) The functor coKer(1 — p.p*) is an equivalence of categories.

Assume 7 is premotivic and put 1g(1) = Ker (Mg(P}) L 1s)[—2]. Then the condition (i)
above is equivalent to the following ones:
(i) The counit map pyp* — 1 is a split epimorphism and its kernel Ker(pyp* — 1) is an
equivalence of categories.
(iii) The premotive 1g(1) is ®-invertible in 7 (S).

Definition 2.1.6. In any case, we call the condition (i) above the stability property for 7. We
denote it by (Stab).
In the premotivic case, we call 1g(1) the Tate premotive. Under (Stab), its inverse will be denoted

by 1s(—1).

Remark 2.1.7. In the premotivic case and under the property (Stab), the Tate inverse premotive
1(—1) is a cartesian section and it generates a set of twists (most of the time isomorphic to the
monoid N). Then, a natural assumption on the triangulated premotivic category  is that it is
1(—1)-generated (equivalently, generated by (negative) Tate twists).

2.1.8. Recall that a sieve R of a scheme X is a class of morphisms in /X which is stable by
composition on the right by any morphism of schemes (see [AGV73, 1.4]).

Given such a sieve R, we will say that .7 is R-separated if the class of functors f* for f € R is
conservative. Given two sieves R, R’ of X, the following properties are immediate:

(a) If " C R then J is R-separated implies 7 is R’-separated.
(b) If 7 is R-separated and is R’-separated then .7 is (R U R’)-separated.

A family of morphisms (f; : X; — X);er of schemes defines a sieve R = (f;,i € I) such that f is
in R if and only if there exists ¢ € I such that f can be factored through f;. Obviously,

(¢) 7 is R-separated if and only if the family of functors (f;);er is conservative.

Recall that a topology on . is the data for any scheme X of a set of sieves of X satisfying certain
stability conditions (¢f. [AGV73, II, 1.1]), called t-covering sieves. A pre-topology ¢y on . is the
data for any scheme X of a set of families of morphisms of shape (f; : X; — X);ecs satisfying
certain stability conditions (¢f. [AGV73, II, 1.3]), called to-covers. A pre-topology to generated a
unique topology t.

Definition 2.1.9. Let t be a Grothendieck topology on .. We say that 7 is t-separated if the
following property holds:

(t-sep) For any t-covering sieve R, 7 is R-separated in the sense defined above.

Obviously, given two topologies ¢ and ¢’ on . such that ¢ is finer than ¢/, if 7 is t-separated
then it is t’-separated.

If the topology t on . is generated by a pre-topology tg then .7 is t-separated if and only if
for any tg-covers (fi)icr, the family of functors (f);cs is conservative — use [AGV73, 1.4] and
2.1.8(a)+(c).
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2.1.10. Recall that a morphism of schemes f : T — S is radicial if it is injective and for any point
t of T, the residual extension induced by f at ¢ is radicial (c¢f. [GD60, 3.5.4, 3.5.8])%.

Definition 2.1.11. We simply say that .7 is separated (resp. semi-separated) if 7 is separated
for the topology generated by surjective families of morphisms of finite type (resp. finite radicial
morphisms) in .. We also denote by (Sep) (resp. (sSep)) this property.

Remark 2.1.12. If 7 is additive, property (Sep) (resp. (sSep)) is equivalent to ask that for any
surjective morphism of finite type (resp. finite surjective radicial morphism) f : T — S in ., the
functor f* is conservative.

Note the following interesting result:

Proposition 2.1.13. Assume 7 is semi-separated and satisfies the transversality property with
respect to finite surjective radicial morphisms.
Then for any finite surjective radicial morphism f:Y — X, the functor
[T 7(X) = 7(Y)
is an equivalence of categories.

Proof. We first consider the case when f =i is in addition a closed immersion. In this case, we
can consider the pullback square bellow.

Using the transversality property with respect to ¢, we see that the counit i*i, — 1 is an iso-
morphism. It thus remains to prove that the unit map 1 — 4,7* is an isomorphism. As i* is
conservative by semi-separability, it is sufficient to check that

is an isomorphism. But this is a section of the map i* i,i*(M) — i*(M), which is already known

to be an isomorphism.
Consider now the general case of a finite radicial extension f. We introduce the pullback square

Y xx Y 2>y

Q\L if

Y X

Consider the diagonal immersion i : Y — Y X x Y. Because Y is noetherian and p is separable, i is
finite (¢f. [GD61, 6.1.5]) thus a closed immersion. As p is a universal homeomorphism, the same
is true for its section i. The preceding case thus implies that ¢* is an equivalence of categories.
Moreover, as pi = qi = 1y, we see that p* and ¢* are both quasi-inverses to *, which implies that
they are isomorphic equivalences of categories. More precisely, we get canonical isomorphisms of
functors

1" ~p,~q, and i, ~p" ~q".

We check that the unit map 1 — f,f* is an isomorphism. Indeed, by semi-separability, it is
sufficient to prove this after applying the functor f*, and we get, using the transversality property
for f:

[Pt fr e qup T U
We then check that the counit map f*f, — 1 is an isomorphism as well. In fact, using again the
transversality property for f, we have isomorphisms

F* £ (M) 2 q.p* (M) = %0, (M) ~ M.

8Tt is equivalent to ask that f is universally injective. When f is surjective, this is equivalent to ask that f is a
universal homeomorphism.
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O

2.1.14. Recall from [Voe00a] that a cd-structure on . is a collection P of commutative squares
of schemes
B—Y
e
A—X
which is closed under isomorphisms. We will say that a square @ in P is P-distinguished.
Voevodsky associates to P a topology tp, the smallest topology such that:
e for any distinguished square @ as above, the sieve generated by {f : A — X,e: Y — X}
is tp-covering on X.
e the empty sieve covers the empty scheme.

Example 2.1.15. A Nisnevich distinguished square is a square @ as above such that @ is cartesian,
f is étale, e is an open embedding with reduced complement Z and the induced map p~1(2) — Z
is an isomorphism. The corresponding cd-structure is called the upper cd-structure (see section
2 of [VoeO0Ob]). Because we work with noetherian schemes, the corresponding topology is the
Nisnevich topology (see proposition 2.16 of loc.cit.).

A proper cdh-distinguished square is a square @ as above such that @ is cartesian, f is proper,
e is a closed embedding with open complement U and the induced map p~'(U) — U is an
isomorphism. The corresponding cd-structure is called the lower cd-structure. The topology
associated to the lower cd-structure is called the proper cdh-topology.

The topology generated by the lower and upper cd-structures is by definition (according to the
preceding remark on Nisnevich topology) the cdh-topology.

All these three examples are complete cd-structures in the sense of [Voe00a, 2.3].

Lemma 2.1.16. Let P be a complete cd-structure (see [Voe00a, def 2.3]) on . and tp be the
associated topology. The following conditions are equivalent:

(i) 7 is tp-separated.
(i) For any distinguished square @Q for P of the above form, the pair of functors (e*, f*) is
conservative.

Proof. This follows from the definition of a complete cd-structure and 2.1.8(a). g

Remark 2.1.17. If we assume that . is stable by arbitrary pullback then any cd-structure P on
. such that P-distinguished squares are stable by pullback is complete (see [Voe00a, 2.4]).

2.2. Exceptional functors, following Deligne.

2.2.1. Consider an open immersion j : U — S. Applying 1.1.14 to the cartesian square

U:U
|
U——=S8

J

we get a canonical natural transformation
. . Ex(Age) . .
Vi g = Jgle —— Julp = e
Recall that the functors jy and j, are fully faithful (1.1.19).
Note that according to remark 1.1.7, this natural transformation is compatible with the iden-
tifications of the kind (jk)y = jyky and (jk)« = jiks.

Lemma 2.2.2. Let S be a scheme, U and V be subschemes such that S = ULV . Weleth: U — S
(resp. k:V — S) be the canonical open immersions.

Assume that the functor (h*,k*) : 7(S) — T (U) x T (V) is conservative and that 7 (&) = 0.
Then the natural transformation vy, (resp. i) is an isomorphism. Moreover, the functor (h*, k*)
is then an equivalence of categories.
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Proof. As hy and h, are fully faithful, we have h*hy ~ h*h.. By &-base change, we also get
k*hy ~ k*h, ~ 0. It remains to prove the last assertion. The functor R = (h*, k*) has a left
adjoint L defined by L=h, & ki:

L(M,N)=h(M)®k(N).
The natural transformation LR — 1 is an isomorphism: to see this, is it sufficient to evaluate at h*

and k*, which gives an isomorphism in .7 (U) and .7 (V') respectively. The natural transformation
1 — RL is also an isomorphism because hy and ky are fully faithful. O

Remark 2.2.3. Assume 7 is Zariski separated (definition 2.1.9). Then, as a corollary of this
lemma, .7 is additive (definition 2.1.1) if and only if .7 (&) = 0.

2.2.4. Exchange structures V.— Assume 7 is additive. We consider a commutative square of
schemes
k
V—T
(2.2.4.1) qi A ip
U—=S

J
such that j, k are an open immersions and p, ¢ are a proper morphisms.

This diagram can be factored into the following commutative diagram:

k

UxgT —j'=T

oo

U—>5—86.

Then [ is an open and closed immersion so that the previous lemma implies the canonical morphism
v : ly — I, is an isomorphism. As a consequence, we get a natural exchange transformation

. ) Ex(0y.) gy N )
Ex(Au*) D J4G« = jﬁp;l* _— p*Jél* e p*]élﬁ = p*kﬁ

using the exchange of 1.1.14. Note that, with the notations introduced in 2.2.1, the following
diagram is commutative.

. Ex(Ays)
WAL Dk

(2.2.4.2) vjq*i \Lp*vk

JxQx — (JQ)* = (pk)* <;p*kﬁ

Indeed one sees first that it is sufficient to treat the case where A is cartesian. Then, as j; is a
fully faithful left adjoint to j* it is sufficient to check that (2.2.4.2) commutes after having applied
7*. Using the cotransversality property with respect to open immersions, one sees then that this
consists to verify the commutativity of (2.2.4.2) when j is the identity, in which case it is trivial.

Definition 2.2.5. We say that the triangulated &?-fibred category 7 satisfies the support prop-
erty, denoted by (Supp), if it is additive and for any commutative square of shape (2.2.4.1) the
exchange transformation Ex(Ay.) : jyg« — piky defined above is an isomorphism.

By definition, it is sufficient to check the last property of property (Supp) in the case where A is
cartesian.

2.2.6. We denote by 7% (resp. /°P" #PT°P) the sub-category of the category . with the
same objects but morphisms are separated morphisms of finite type (resp. open immersions,
proper morphisms). We denote by

T2 S — Tri®
resp. F; 1 SP" — Tri®
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the 2-functor defined respectively by morphisms of type f. and jy (f any morphism of schemes).
The proposition below is essentially based on a result of Deligne [AGV73, XVII, 3.3.2]:

Proposition 2.2.7. Assume the triangulated premotivic category 7 satisfies (Supp).
Then there exists a unique 2-functor

T S5 — Tri®
with the property that
$|yp7‘op - %‘yprop, 47!.|5ﬁopen - Q%

and for any commutative square A of shape (2.2.4.1) the composition of the structural isomor-
phisms

J1qx = jrg = (J@)r = (pk)r = piky = p.ky
is equal to the exchange transformation Ex(Ay,).
2.2.8. Under the assumptions of the proposition, for any separated morphism of finite type f :

Y — X, we will denote by fi : 7(Y) — 7(X) the functor Z(f). The functor fi is called the
direct image functor with compact support (associated with f).

Proof. We recall the principle of the proof of Deligne. Let f : Y — X be a separated morphism
of finite type in ..
Let € be the category of compactifications of f in .7, i.e. of factorizations of f of the form

(2.2.8.1) vyLyLx

where j is an open immersion, p is proper, and Y belongs to .#. Morphisms of Cy are given by
commutative diagrams of the form

s

Y//7

Y/

(2.2.8.2) < v \

in .. To any compactification of f of shape (2.2.8.1), we associate the functor p,js.
To any morphism of compactifications (2.2.8.2), we associate a natural isomorphism

a(Ag) !
Pt = pemady 2t il = pjse

where A stands for the commutative square made by removing 7 in the diagram (2.2.8.2), and
Ex(Ay.) is the corresponding natural transformation (see 2.2.4). The compatibility of Ex(Ag.)
with composition of morphisms of schemes shows that we have defined a functor

Ty : %7 — Hom(7(Y), 7(X))

which sends all the maps of @ to isomorphisms (by the support property).

The category % is non-empty by the assumption 2.0(c) on ., and it is in fact left filtering;
see [AGVT73, XVII, 3.2.6(ii)]. This defines a canonical functor fi : 7 (Y) — 7 (X), independent of
any choice compactification of f, defined in the category of functors Hom (7 (Y), .7 (X)) by the
formula

f! = li_I’)an.
€7’

If f = p is proper, then the compactification
y v 4 x

is an initial object of €y, which gives a canonical identification py = p,. Similarly, if f = j is an
open immersion, then the compactification

yLx=x

is a terminal object of €}, so that we get a canonical identification j1 = j;.
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This construction is compatible with composition of morphisms. Let g: Z - Y and f: Y — X
be two separated morphisms of finite type in .. For any a couple of compactifications
Z5 7Ly andy Ly B X
of f and g respectively, we can choose a compactification
zLTLy
of jgq, and we get a canonical isomorphisms
fror > vy grae by > pery hiky >~ (pr)« (hk)g ~ (fg)r .

The independence of these isomorphic with respect to the choices of compactification follows from
[AGVT3, XVII, 3.2.6(iii)]. The cocycle conditions (i.e. the associativity) also follows formally from
[AGVT73, XVII, 3.2.6]. The uniqueness statement is obvious. O

2.2.9. This construction is functorial in the following sense.
Define a 2-functor with support on J to be a triple (2, a,b), where:

(i) 2 : P — Triis a 2-functor (we shall write the structural coherence isomorphisms as
co.f  P(9f) = 2(9)2(f) for composable arrows f and g in .*?;
(ii) a : Fi|spror — D|gpror and b : Fy — 2 are morphisms of 2-functors which agree on
objects, i.e. such that for any scheme S in .¥’, we have
Ys =as =bs: T(S) — 2(5);
(iii) for any commutative square of shape (2.2.4.1) in which j and k are open immersions, while
p and g are proper morphisms, the diagram below commutes.

Ys Bz (Agy)

Vs Jdx Vs puky
bQ*\L \Lakﬁ
@(j)wUQ* 9(]?)?%1%
2a) » I T

PG 2@y == 2(jg) = D(pk) v <= D(p) D (k)dy
Morphisms of 2-functors with support on 7
(97 a? b) - (9/’ a/) b/)

are defined in the obvious way: these are morphisms of 2-functors 2 — 2’ which preserve all the
structure on the nose.

Using the arguments of the proof of 2.2.7, one checks easily that the category of 2-functors with
support has an initial object, which is nothing but the 2-functor .7 together with the identities of
T|eror and of J respectively. In particular, for any 2-functor & : .#°? — Jri, a morphism of
2-functors 9 — 2 is completely determined by its restrictions to .#P7°P and #°P", and by its
compatibility with the exchange isomorphisms of type Ex(Ay,) in the sense described in condition
(iii) above.

Proposition 2.2.10. Assume that Z satisfies the support property. For any separated morphism
of finite type f in 7, there exists a canonical natural transformation
ap: fi— fo.
The collection of maps oy defines a morphism of 2-functors
0: G Falgwen , frolag: fio o)
whose restrictions to SP7P and P are respectively the identity and the morphism of 2-functors

v Ty — Ti|sporen defined in 2.2.1.

Proof. The identities f, = f. for f proper (resp. projective) and the exchange natural transfor-
mations of type Ex(Ay.) turns Ji|.»ser into a 2-functor with support (resp. restricted support)
on .7 (property (iiil) of 2.2.9 is expressed by the commutative square (2.2.4.2)). O
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Proposition 2.2.11. Let .7’ be another triangulated complete 22-fibred category over .. Assume
that 7 and J' both have the support property, and consider given a triangulated morphism of -
fibred categories o* 1 T — T’ (recall definition 1.2.2).

Then, there is a canonical family of natural transformations

Ex(e™, i) X i = froy
for each separated morphism of finite type f :' Y — X in &, which is functorial with respect to

composition in . (i.e. defines a morphism of 2-functors) and such that, the following conditions
are verified:

(a) if f is proper, then, under the identification fi = f., the map Ex(p*, fi) is the exchange
transformation Ex(o*, fi) @ % f« — fe 0y defined in 1.2.5;
(b) if f is an open immersion, then, under the identification fi = fy, the map Ex(¢*, fi) is
the inverse of the exchange isomorphism Ex(fy, ") : fy vy — 0 fi defined in 1.2.1.
Proof. The exchange maps of type Ex(¢*, f.) define a morphism of 2-functors
a %lyprop — Z’|5ﬂprop = %/lyprop
while the inverse of the exchange isomorphisms of type Ex(fy, ¢*) define a morphism of 2-functors
b: Ty T = F|pomn
in such a way that the triple (.’, a,b) is a 2-functor with support on 7. O
Corollary 2.2.12. Suppose  satisfies the support property.

(i) For any cartesian square

Y’ i> X’
g/\L A ig
Y e X,
such that f is separated of finite type, there exists a natural transformation
EBx(AY):g* fi — fig"”

which is natural with respect to the horizontal composition of such squares, and such that,
in each of the following cases, we have the following identifications in T (X')

(a) f proper: (b) f open immersion:
* E'L(A'*) /WA * EI(A'*) 1%
g fi———1fig g h———fig

*‘ Exz(A}) H % *‘ Ez(A; -1 H N

9" f MY gl ———fig'

*

Moreover, when g is a &2-morphism, Ex(AY) is an isomorphism.
(i) If, furthermore,  is a monoidal triangulated P-fibred category over .7, then, for any
separated morphism of finite type f:Y — X, there is a natural transformation

Ex(f,®y): (fK)®x L— fi(K®y f°L)

which is natural with respect to composition in ., and such that, in each of the following
cases, we have the following identifications:

(a) f proper: (b) f open immersion:
Ba(f7,0) Bx(ff,®) .
K)o L 2 fke ) (K el S @3 1)
H Em(f;‘@) H H Em(f*,@)’l H .
(fK) @ L—""> f.(K ®y f*L),  ({K)®L ——= (K @y f*L).

As in the previous analogous cases, the natural transformations Exz(A[) and Ex(f", ®y) will
be called exchanged transformations.
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Proof. To prove (i), consider a fixed map g : X’ — X in . We consider the triangulated P/X-
fibred categories .7/ and 7" over ./ X defined by 7/(Y) = 7(Y) and 7"(Y) = (V") for any
X-scheme Y (in .¥), with ¢’ : Y/ =Y xx X’ — Y the map obtained from ¥ — X by pullback
along g. The collection of functors

g7 TY) = 7Y
define an exact morphism of triangulated P/X-fibred categories over ./ X (by the £2-base change
formula):
o g g
Applying the preceding proposition to the latter gives (i). The fact that we get an isomorphism
whenever g is a &-morphism follows from the &?-base change formula and from 1.1.18.

The proof of (ii) is similar: fix a scheme X in .7, as well as an object L in .7 (X). We can
consider L as a cartesian section of 7|5/ x, and by the &-projection formula, we then have an
exact morphism of triangulated P/X-fibred categories over ./ X:

Lo (=): T|y/x = To/x -

Here again, we can apply the preceding proposition and conclude. O

Recall from definition 1.1.16 that we say .7 satisfies the transversality property with respect to
proper morphisms (in %) if the exchange transformation Ex(AZ%) : p* f. — g.q* defined in 1.1.14
is an isomorphism for any cartesian square A as soon as f is a proper morphism (in .%).

Proposition 2.2.13. Assume that  satisfies the support property. Then the following conditions
are equivalent:

(a) T satisfies the transversality property with respect to proper morphisms in .7 .
(b) For any cartesian square of ./

YILI)X/

g/l A ig

X
==

in which f is separated and of finite type, the exchange transformation
Ex(A}): 9" fi— flg”"
18 an isomorphism.
Proof. Property (b) is always verified in the case where f is an open immersion by assumption

(P-base change formula). As any separated morphism factors as an open immersion followed by
a proper morphism, this implies the equivalence between (a) and (b). O

As a conclusion of this part, we get the following:

Theorem 2.2.14. Consider the following assumptions:
(a) T satisfies (Supp).
(b) For any proper morphism f :T — S in .7, f. admits a right adjoint f".
(c) T satisfies the proper transversality property.
(d) T is monoidal.

Under assumptions (a) and (b), for any separated morphism of finite type f : Y — X in 7, there
exists an essentially unique pair of adjoint functors

f:T¥)=T(X): f
such that:

(1) There exists a natural transformation oy : fi — fi which is an isomorphism when f is
proper.
(2) For any open immersion j, j1 = jy and j=j*.
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(8) For any cartesian square

Y/L;X/

g’l A ig

Y T> X,
in which f is separated and of finite type, there exists natural transformations
Ex(AY): g"fi = flg",
Ex(AL): g,f" — f'g.
which are isomorphisms whenever f is an open immersion or g is a &2-morphism.

If we assume (a), (b), (c) then the following additional property holds:

(4c) For any cartesian square A in .7, the natural transformations Ex(A}) and Ex(Al) are
isomorphisms.

If we assume (a), (b), (d) then the following additional property holds:

(4d) For any separated morphism of finite type f : Y — X in 7, there exists a natural trans-
formation
Ex(f),®): (hK)®x L — fi(fqK @y [*L).

2.2.15. Recall that an exact functor between well generated triangulated categories admits a right
adjoint if and only if it commutes with small sums: this is an immediate consequence of the Brown
representability theorem proved by Neeman (cf. [NeeOl, 8.4.4]). We deduce the following useful
result.

Proposition 2.2.16. Assume that 7 is a compactly T-generated triangulated premotivic category
over <.

Then, for any morphism of schemes f : T — S, the functor fi : T(T) — T(S) admits a right
adjoint.

Proof. This follows directly from proposition 1.3.18. O
2.3. The localization property.
2.3.a. Definition.

2.3.1. Consider a closed immersion i : Z — S in .. Let U = S — Z be the complement open
subscheme of S and j : U — S the canonical immersion. We will use the following consequence of
the triangulated #-fibred structure on 7:

(a) The unit 1 — j*j; is an isomorphism.

(b) The counit j*j, — 1 is an isomorphism.

(c) *j3=0.
(d) j*i. = 0.
d’(j4,3" d(i™,is) .
(e) The composite map jzj* adgad") 12 i) 11" is zero.

In fact, the first four relations all follow from the base change property (42-BC). Relation (e) is a
consequence of (d) once we have noticed that the following square is commutative

Jit ——=1

I /

4750 = Q0.
For the closed immersion i and the triangulated premotivic category .7, we introduce the
property (Loc;) made of the following assumptions:
(a) The pair of functors (j*,7*) is conservative.

oo ad (i . . .
(b) The counit i*i, — %), 1 is an isomorphism.

Definition 2.3.2. We say that 7 satisfies the localization property, denoted by (Loc), if:



36 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

(1) 7(2) = 0.

(2) For any closed immersion ¢ in ., (Loc;) is satisfied.

The main consequence of the localization axiom is that it leads to the situation of the six gluing
functor (c¢f. [BBD82, prop. 1.4.5]):

Proposition 2.3.3. Leti: Z — S be a closed immersion such that (Loc;) is satisfied.

(1) The functor i, admits a right adjoint i'.
or any K in , there exists a unique map O; i : 1% — J4J suc at the
2) F K in 7(S), th st ] 0;, 1K 37" K[1 h that th
triangle

ad’(jz,5”) ad(i” i)

0; ..
1 K K i K =5 Gy  K[1]
is distinguished. The map 0; i is functorial in K.
3) For any K in T (S), there exists a unique map 0! ;- : j.j*K — i,i'K[1] such that the
i, K
triangle

ad' (i, ,i') ad(j*,j+)

A
Qi K K G K =5 00 K]

18 distinguished. The map 8{7]( 18 functorial in K.

Under the property (Loc;), the canonical triangles appearing in 5) and (3) above are called the
localization triangles associated with 4.

Proof. We first consider point (2). For the existence, we consider a distinguished triangle

Applying 2.3.1(e), we obtain a factorization
ad(i” i) .
K—————i,4"K

We prove w is an isomorphism. According to the above triangle, j*w = 0. From 2.3.1(d),
j*i.1* K = 0 so that j*w is an isomorphism. Applying i* to the above distinguished triangle, we
obtain from 2.3.1(c) that ¢*m is an isomorphism. Thus, applying i* to the above commutative
diagram together with (Loc;) (a), we obtain that i*w is an isomorphism which concludes.
Consider a map K - L in .7 (S) and suppose we have chosen maps a and b in the diagram:

L ad (34,5* ad(i™ i a ..
Jt K Ul g odtt) iyi* K ————jyj" K[1]
P AL L R S R R £

such that the horizontal lines are distinguished triangles. Then we can find a map h : i,i* K —
i,1" L completing the previous diagram into a morphism of triangles. Then the map w = h — u
satisfy the relation w o a; = 0. Thus it can be lifted to a map in Hom(jyj*K[1],4,4*L). But this
is zero by adjunction and the relation 2.3.1(d). This proves both the naturality of 0; x and its
uniqueness.

For point (1) and (3), for any object K of Z(S), we consider a distinguished triangle

D — K 2D, G e

According to 2.3.1(b), 7D = 0. Thus according to the triangle of point (2) applied to D, we obtain
D = i,i*D. Arguing as for point (2), we thus obtain that D is unique and depends functorialy on
K so that, if we put ' K = i*D, point (1) and (3) follows. O

Remark 2.3.4. Consider the hypothesis and notations of the previous proposition.
(1) By transposition from 2.3.1(d), we deduce that 4'j, = 0.
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(2) Assume that i is a &-morphism. Then the &-base change formula implies that i*j, = 0.
Dually, we get that i!jﬁ = 0. By adjunction, we thus obtain 0; x = 0 and 82471( =0
for any object K so that both localization triangles are split. In that case, we get that

T(8) = T(Z) x T(U).

The preceding lemma admits the following reciprocal statement:

Lemma 2.3.5. Consider a closed immersioni : Z — S in . with complementary open immersion
j:U — S. Then the following properties are equivalent:
(i) 7 satisfies (Loc;).
(i) (a) The functor i, is conservative.
(b) For any object K of T (S), there exists a map 1.4*(K) — jyj*(K)[1] which fits into
a distinguished triangle

s ad/( 7,»*)
Jgg* (K) —2

Proof. The fact (i) implies (ii) follows from proposition 2.3.3. Conversely, (ii)(b) implies that the
pair (¢*,5*) is conservative and it remains to prove (Loc;) (b). Let K be an object of 7(S).
Consider the distinguished triangle given by (ii)(b):

ad(i* iv)

K ixi* (K) — jgg " (K)[1]

ad(i* i)

. d'(35:5") . o
ja"(K) —= K ii* (K) = jgg* (K)[1]-
If we apply ¢, on the left to this triangle, we get using 2.3.1(d) that the morphism

ad(i* i) ix
_—

iy (K) iyi%iy (K)

is an isomorphism. Hence, by the zig-zag equation, the morphism

dw.ad (i%ix)

141714 (K) 14 (K)

is an isomorphism. Property (ii)(a) thus implies that i*i.(K) ~ K. O
2.3.b. First consequences of localization. The following statement is straightforward.
Proposition 2.3.6. Assume 7 satisfies the localization property and consider a scheme S in ..

(1) Let Syeq be the reduced scheme associated with S. The canonical immersion Syeq %8
induces an equivalence of categories:

V' T(S) = T (Sred)-

(2) For any any partition (S; 25 S)icr of S by locally closed subset, the family of functors
(V) ier is conservative (S; is considered with its canonical structure of a reduced subscheme

of S).
Lemma 2.3.7. If T satisfies the localization property (Loc) then it is additive.

Proof. Note that, by assumption, (&) = 0. Then the assertion follows directly from lemma
2.2.2. O

Proposition 2.3.8. If T satisfies the localization property then it satisfies the property of sepa-
ration with respect to the cdh-topology.

Proof. Consider a cartesian square of schemes

B—Y

e

According to lemma 2.1.16, we have only to check that the pair of functors (e*, p*) is conservative
when @ is a Nisnevich (or respectively a proper cdh) distinguished square. Let v : A’ — X be the

9This remark explains why the localization property is too strong for generalized premotivic categories.
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complementary closed (resp. open) immersion to e, where A" have the induced reduced subscheme
(resp. induced subscheme) structure. Consider the cartesian square

Y<—D

r| |

X'?A

By assumption on @, ¢ is an isomorphism. According to (Loc) (ii), (e*,v*) is conservative. This
concludes. 0

The following proposition can be found in a slightly less precise and general form in [Ayo07a,
2.1.162].1°

Proposition 2.3.9. Assume 7 satisfies the localization property.
Then the following conditions are equivalent:

(i) 7 is separated.

(i) For a morphism f:T — S in 7, f*: T(S) — T (T) is conservative whenever f is:
(a) a finite étale cover;
(b) finite, faithfully flat and radicial.

Proof. Only (i1) = () requires a proof. Consider a surjective morphism of finite type f : T — S
in .. According to [GD67, 17.16.4], there exists a partition (S;);er of S by (affine) subschemes
and a family of maps of the form

S gr 2L S,

such that g; (resp. h;) satisfies assumption (a) (resp. (b)) above and such that for any i € I,
f x5S admits a section. Thus, proposition 2.3.6 concludes. O

2.3.c. Localization and the support property. The following lemma is obvious from relations 2.3.1.

Lemma 2.3.10. Consider a closed immersion i : Z — S such that  satisfies the property (Loc; ).
Then 7 satisfies the transversality property with respect to i.

Proposition 2.3.11. Assume that .7 satisfies the localization property.
Then the following conditions are equivalent:

(i) For any scheme S and any integer n > 0, J satisfies the transversality property with
respect to the projection P& — S.
(i) T satisfies the proper transversality property.

Proof. We prove that (i) implies (ii). We have to prove that for any cartesian square

Y/ f% X/
g'\L A i/g
X
Y T> 5
such that f is proper, the exchange transformation Exz(A¥) : ¢*f. — f.g’* is an isomorphism.
We first treat the case where f is projective. Recall that, from proposition 1.1.18, we know
that Fz(A¥) is an isomorphism as soon as ¢ is an open immersion. In particular, given any open
immersion j : U — X, denoting by Ay the pullback of A along j, we can check that j*Ex(A%X)
can be identified with Ex((Ay)%) through exchange isomorphisms. Thus, according to the Zariski
separation property (cf. proposition 2.3.8), we can assume that X is affine. Then f can be factored
into a closed immersion Y — P% and the projection p : P% — X so that the preceding lemma
and assumption (i) concludes.

104 warning: the proof in loc. cit. seems to require that the schemes are excellent.
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To treat the general case, we argue by noetherian induction on Y, assuming that for any proper
closed subscheme T of Y, the result is known for the composite square (A®) of the two cartesian
squares:

(2.3.11.1) T —Y — X'

o] als

T—>Y —X.
i f

In fact, the case Z = & is obvious because .7 (&) = 0.
According to Chow’s lemma [GD61, 5.6.2], there exists a morphism p : ¥y — Y such that:
(a) p and f o p are projective morphisms.
(b) There exists an open immersion j : V — Y such that ¢ : p~*(V) — V is an isomorphism.
If j is the identity, then we are in the case treated above. Thus we can assume that the complement
T of V in Y is a proper subscheme. Let i : T'— Y be the closed immersion where T is seen with
its reduced structure.
Consider the following cartesian square

/
p
Yo —Y’

gol/ Q lg/

Yo —> Y
Then the following diagram of exchange transformations

Ex(AY).pa fi Bx(Q) "
(2.3.11.2) 9 fspe ——— flg " p. — = [ipL9

g*(fp)« (f'")«g5

is commutative so that (a) and the preceding case implies that Fz(A¥).p, is an isomorphism.
But point (b) now implies that Ex(AZX).j. is an isomorphism. Consider the diagram (2.3.11.1)
for the immersion ¢ introduced above. The case of a closed immersion treated above implies that
Ex(©%) is an isomorphism. By the inductive assumption, Fz((AO)}) is an isomorphism. Thus,
considering the obvious analog of the commutative diagram (2.3.11.2), we conclude that Ex(A%).i,
is an isomorphism. Thus, the point (3) of proposition 2.3.3 allows to conclude. O

Ex((AQ)])

Lemma 2.3.12. Consider a closed immersion i : Z — S such that T satisfies the property (Loc;)
and a cartesian square in &

Ve
ay A P
U—=S

J
where j is the open immersion complementary to i and p satisfies the T -transversality property.
Then the exchange transformation (see 2.2.4)
Ex(Ag) : jypx — quky
is an isomorphism.
Proof. Using property (Loc;), we have only to prove that j* Ex(Ay.) and i* Ex(Ay,) are invertible.

This follows from the £-base change formula and from the .7 -transversality assumption on p by
2.3.1(a) and 2.3.1(c). O

Corollary 2.3.13. Assume J satisfies the localization property and the the transversality property
with respect to the projection P& — S for any scheme S and any integer n > 0.
Then T satisfies the support property.

Proof. Lemma 2.3.7 implies .7 is additive and the preceding lemma concludes. O
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2.3.d. Localization and monoidal structures.

2.3.14. Assume 7 is monoidal and let M denote its geometric sections. Fix a closed immersion
i:Z — S in . with complementary open immersion j : U — S. We fix an object Mg(S/S — Z)
of 7(S) and a distinguished triangle

(2.3.14.1) Mg(S — Z) 25 15 25 Mg(S/S — Z) 2 Ms(S — 2)[1].

Remark that according to 2.3.1(c), the map i*(p;) : 1z — *Mg(S/S — Z) is an isomorphism.
Given any object K in 7 (S), we thus obtain an isomorphism

i"(Mg(S/S —Z)®s K) =i"(Mg(S/S — 7)) @z i*(K) M 1y @z i"(K)=1i"(K)
which is natural in K. It induces by adjunction a map
(2.3.14.2) Vit Mg(S/S —Z)®s K — i,i*(K)
which is natural in K.

For any #-scheme X/S, we put Mg(X/X — Xz) = Mg(S/S —Z) ®s Ms(X) so that we get from
(2.3.14.1) a canonical distinguished triangle:

Ms(X — Xz) 25 Mg(X) — Ms(X/X — Xz) — Ms(X — Xz)[1].
The map (2.3.14.2) for K = Mg(X) gives a canonical map
(23143) 'l/}i,X : Ms(X/X - Xz) — l*(Mz(Xz))

Proposition 2.3.15. Consider the previous hypothesis and notations. Then the following condi-
tions are equivalent:
(i) T satisfies the property (Loc;).
(ii) (a) The functor i, is conservative.
(b) The morphism ¢, g : Mg(S/S — Z) — i.(1z) is an isomorphism.
(¢) For any object K of T (S), the exchange transformation
Ex(if,®): (i.lz) ®s K — i," K
is an isomorphism.
(ii) (a) The functor i, is conservative.
(b) The morphism ; g : Mg(S/S — Z) — i.(1z) is an isomorphism.
(c) For any objects K and L of 7 (S), the exchange transformation

Ex(if,®): (i+K)®s L — i.(K ®zi*L)
is an isomorphism.

Assume in addition that T is well generated and T-twisted as a triangulated 22-fibred category.
Then the above conditions are equivalent to the following one:
(iv) (a) The functor i, is conservative, commutes with direct sums and with T-twists.
(b) The morphism ; x : Ms(X/X — Xz) — i.(Mz(Xz)) is an isomorphism for any
P-scheme X/S.

In particular, (Loc;) implies that for any object K of 7 (5), the localization triangle of 2.3.3
- o Ok . %
Je " (K) = K — a0 (K) =5 jgj " (K)[1]

is canonically isomorphic (through exchange transformations) to the triangle (2.3.14.1) tensored
with K.

Proof. (i) = (iii) : According to (Loc;) (a), we need only to check that the maps in (iii)(b) and
(iii)(c) are isomorphisms after applying ¢* and j*. This follows easily from (Loc;) (b).

(#91) = (it) : Obvious

(#9) = () : According to (ii)(b), the distinguished triangle (2.3.14.1) is isomorphic to a triangle
of the form

ad/(jﬁ 7j*) ad(i*»i*)

Jgi"(1s) 1s 1" (1z) — jyi" (1s).
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According to (ii)(c), this latter triangle tensored with K is isomorphic through exchange transfor-
mations to a triangle of the form

J1J" (K)
Thus lemma 2.3.5 allows to conclude.

To end the proof, we remark by using the equations for the adjunction (i*,4.) that for any
object M of 7(S), the following diagram is commutative:

ad’ (j3,5") K ad(i”is)

ixi* (K) — jgj" (K).

09 H
Mgs(S/S—2Z)® K Bx(il,®)
141" (K) ——i. (17 ® i*i*(K)).

Note that (i) implies that 4, is conservative and commutes with direct sums (see 2.3.3) and (ii)(c)
implies it commutes with twists. According to the above diagram, (ii)(b) implies (iv)(b).

We prove that reciprocally that (iv) implies (ii). Because (ii)(b) (resp. (ii)(a)) is a particular case
of (iv)(b) (resp. (iv)(a)), we have only to prove (ii)(b). In view of the previous diagram, we are
reduced to prove that for any object K of .7(S), the map v; x is an isomorphism. Consider the
full subcategory % of .7 (S) made of the objects K such that 1); k is an isomorphism. Then % is
triangulated. Using (iv)(a), % is stable by small sums and 7-twists. By assumption, it contains
the objects of the form Mg(X) for a &-scheme X/S. Thus, because .7 is well generated by
assumption, lemma 1.3.16 concludes. O

Lemma 2.3.16. Consider a closed immersion i : Z — S. We assume the following assumption
(in addition to that of 2.0):
o 7 is well generated, T-twisted and satisfies the Zariski separation property.
o [For any &P-scheme Xo/Z and any point xo of Xo, there exists an open neighbourhood Uy
of xg in Xo and a P-scheme U/S such that Uy = U Xg z.1

Then the functor i, is conservative.

Proof. Consider an object K of 7 (Z) such that i,(K) = 0. We prove that K = 0.
Because 7 is T-generated, it is sufficient to prove that for a &-morphism py : Xg — Z and a
twist (n,i) € Z x 7,
HOHIQ(Z)(.Z\fz()(o){’i}[n}7 K) =0.
Because Mz(Xo) = poy(1x,), this equivalent to prove that

Hom 7 (x,) (Lx, {i}[n], po(K)) = 0.

Using the Zariski separation property on .7, this latter assumption is local in Xy. Thus, according
to the assumption on the class &2, we can assume there exists a &-scheme X/S such that X, =
X xg Z. Thus Mz (Xo){i}[n] = i*(Mg(X){i}[n]) and the initial assumption on K allows to
conclude. O

Note for future applications the following interesting corollaries:

Corollary 2.3.17. Assume .7 is a premotivic triangulated category which is compactly T-generated
for a group of twists T (i.e. any twists in T admits a tensor inverse) and which satisfies the Zariski
separation property.

Then, for any closed immersion i, the functor i, is conservative, commutes with sums and with
twists.

This is a consequence of lemmas 2.3.16 and 2.2.16. In fact, under these conditions, i, commutes
with arbitrary 7-twists because it is true for its (left) adjoint ¢*.

HThis property is trivial when £ is the class of open immersions or the class of morphisms of finite type in ..
It is also true when 27 is the class of étale morphism or & = Sm (¢f. [GD67, 18.1.1]).
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Corollary 2.3.18. Assume 7 satisfies the assumptions of the preceding corollary. Then the
following conditions on a closed immersion i are equivalent:

(i) T satisfies the property (Loc;).

(ii) For any scheme S in . and any smooth S-scheme X, the map (2.3.14.3)

wi,X : Ms(X/X - Xz) — ’L*Mz(Xz>
18 an 1somorphism.
2.3.e. Localization and morphisms.

Lemma 2.3.19. Let J7 be another complete triangulated & -fibred category over %, and consider
a morphism of triangulated &2-fibred categories over .

0 T2 ..

Leti: Z — S be a closed immersion with complementary open immersion j : U — S. If F and
T’ satisfies the property (Loc; ), then the following exchange transformation is an isomorphism

Ex(¢*,is) 1 ¢ i — ixip.

Proof. We use the facts that (i*,j*) is conservative and ¢* commutes with *, 7*. Then relations
2.3.1(d) and (Loc;) (b) concludes. O

2.3.20. Recall that to any morphism
T =T

of complete triangulated &-fibred categories satisfying the support property, and to any separable
morphism of finite type f : T — S in ¥, we have associated in 2.2.11 a canonical exchange
transformation

Ex(o*, fi) 1 " fi = fip™.

Proposition 2.3.21. Let .7’ be another complete triangulated &2-fibred category over ., and
consider a morphism of triangulated &-fibred categories over ./

T =T ..

Assume T and ' satisfy the localization and the support properties. Then the following conditions
are equivalent:

(i) For any scheme S and any integer n > 0, given the projection p : P% — S, the exchange
transformation

Ex(p",ps) : 97ps — pugp”
s an isomorphism.
(i) For any separated morphism of finite type f : T — S, the exchange transformation

Ex(o™, fi) 19" fi = fip”
is an isomorphism.

Proof. The only thing to prove is that, assuming (i), condition (ii) holds. We consider a morphism
of finite type f: T — S and we prove that Fx(¢*, fi) is an isomorphism.

This holds when f is an immersion according to lemma 2.3.19.

Suppose that f is affine. Then there exists an integer n > 0 such that it admits a factorization
into an immersion and the projection P% — S so that condition (i) allows to conclude.

To finish the proof, we use a noetherian induction on 7. Indeed, as .7 (&) = 0 and .7'(&) = 0,
the proposition holds trivially when 7' = & (or is a consequence of the case of an immersion).
Thus, by noetherian induction, we can assume that for any closed immersion i : Z — T of a proper
closed subscheme Z in T, the exchange transformation Ex(¢*, (fi):) is an isomorphism.
Consider an open immersion j : U — T of some non empty affine scheme. Then, according to the
case treated above, Ex(¢*, (fj)i) is an isomorphism. Let i : Z — T be the complementary open
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immersion to j. By induction, Ex(¢*, (fi)) is invertible. Let k be one of the immersions i, j.
Then the following diagram is commutative:

Ex(o*,f1).k 1.Ex(e” ki
™ fiky G LN Jio*ky Bt h) frkip*

(fE)p™

Thus, according to the case treated above, Ex(¢*, fi).k is an isomorphism and we can conclude
using the localization triangle for i (see 2.3.3(2)). O

Bx(e™,(fk)1)

Remark 2.3.22. When the equivalent conditions of this proposition will be satisfied, we will simply
say that ¢* commutes with f.
We finish this section with the following useful result:

Proposition 2.3.23. Assume 7 is T-twisted and consider a T'-twisted triangulated &-fibred
category 7' and a morphism

" (T 1) 2 (T ) s
compatible with twists. We assume the following assumption:

(a) The map T — 7' induced by p* is (essentially) surjective.
(b) T is well generated.

We consider a closed immersion i : Z — S and assume the following:

(c) T satisfies the property (Loc;).
(d) The exchange transformation Ex(o*,i.) : ©* i, — 1.0 is an isomorphism.
(e) The functor i, : T'(Z) — T'(S) commutes with T'-twists.'?

Then 7' satisfies the property (Loc;).
Proof. Note that, under the above assumptions, ¢, is conservative (in fact, for any #-scheme X/S
and any twists ¢ € 7/, M (X){i} is in the essential image of ¢*). Thus, if i, : T(Z) — T(5) is
conservative (resp. commute with sums), then i, : .77'(S) — 77(S) is conservative (resp. commute
with sums) using the isomorphism @i, ™~ i,@x.
Let M (resp. M') be the geometric sections of 7 (resp. 7). Asin 2.3.14, we fix a distinguished
triangle
Mg(S — Z) 25 15 25 Mg(S/S — Z) 25 Ms(S — 2)[1].

and we put M¢(S/S—2Z) = ¢*Ms(S/S—Z). According to loc. cit., we thus get for any &7-scheme
X/S canonical maps

wi,X . Ms(X/X — Xz) — i*Mz(Xz),

¢£,X M(X/X — Xz) — i My(Xz).

By construction, the following diagram is commutative:

0" Mo(X/X — Xz) =205 i My (X ) —2 ) o My (X )

H § |
ML(X/X — Xz) = My(Xz)

Thus, proposition 2.3.15 allows to conclude. O

12T his will be satisfied if any 7/-twists is invertible because the left adjoint of i« commutes with 7/-twists.



44 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

2.4. The theorem of Ayoub.

2.4.1. Recall that in this part, according to assumption 2.0, .7 is a complete triangulated Sm-
fibred category. In the next definition, we give a redundant terminology for some crucial properties
of 7.

Definition 2.4.2. A pregeometric category over . is a triangulated complete Sm-fibred category
over . which satisfies the homotopy, stability and localization properties.

A geometric category over . is a pregeometric category & over . such that, for any proper
morphism f in ., the functor f, has a right adjoint.

A motivic category over . is a premotivic triangulated category over . which is also geometric.

Remark 2.4.3. Assume 7 is a premotivic triangulated category such that:

(1) 7 is compactly T-generated.
(2) 7 satisfies the homotopy and stability properties.
(3) 7 satisfies the localization property.

Then .7 is a motivic triangulated category in the above sense (see lemma 2.2.16).'* More generally,
we will see below that, if 7 is pregeometric and well generated, then it is geometric; see 2.4.18.

Ezample 2.4.4. The premotivic category SH of example 1.4.3 is a motivic category (applying the
above remark).

Following [Ayo0T7a, section 1.5, we define:

Definition 2.4.5. Let p: E — S be a vector bundle over a scheme in ., and s its zero-section.
We define the Thom transformation associated with E/X as the composite

Th(E) = pys. : T(S) — T(95).

2.4.6. Let us recall an important construction about Thom transformations from [Ayo07a, p. 97].
Consider an exact sequence of vector bundles over a scheme X in .%:

v

(o) 0—-E S5ESE —O.

Note that 7 is smooth and v is a closed immersion. Let (p, s), (p, '), (p”, s”) be the pair of natural
projection/section of the respective vector bundles. We can derive from this exact sequence a
commutative diagram in .%:

AN

E = F

q s [N

X—F7F' —F7X
s p
where A is cartesian. Then we can define an exchange transformation:
Ex(Ay.
Ex(o) : Th(E) = pys. = pymyr.s, B2l pysipys., = Th(E") o Th(E").

Let S be a scheme. We denote by p and s (resp. ¢ and t) the projection and zero section of
PL/S (resp. AL/S). The unit map 1 — p,p* is a split monomorphism. Thus, by adjunction, the
counit map pyp* 2 1isa split epimorphism.

Proposition 2.4.7. Assume J satisfies properties (Loc) and (Htp).

Then using the notations above, there exists a canonical isomorphism

Ker(pyp* ~2 1) ~ Th(AL).

131 our examples, (1) will always be satisfied, (2) will be obtained by construction and (3) will be the hard
point.
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Proof. Let j (resp. k) be the complementary open immersion to s (resp. t). We obtain a cartesian
square

G, > AL

T

AL %> PL
where u is the complementary immersion to the oco-section. Let h = uw o k. According to the
P-base change formula, we get an exchange isomorphism hyh* =~ jyj*uyu* so that we obtain a
commutative diagram made of counit morphisms:

Jegtugu® = hyh* — uyu*

| M |

it ————————1

From the localization property, we thus obtain the following morphism of split (because s and
t are split monomorphisms) distinguished squares:

hyh* ugu* — > gt t ut —— hyh*[1]
(%) i (1) l \Le i
Jeg* 1 L 5.5 j:3* 1.

But € is an isomorphism: because (j, u) defines an open cover and 7 is Zariski separated according
t0 2.3.8, it is sufficient to check that j*e and u*e are isomorphisms and this follows from the previous
diagram and relation 2.3.1(a).

We thus obtain a canonical isomorphism

qite = ppugt ™ u’p” = pys.stpt = DgSx-

From the bottom line of diagram (*), we get a distinguished triangle

* a;. x* Qs *
@q" — pp” = pits — q:¢"[1]
so that g4t* is the cokernel of the split monomorphism a
counit morphisms, is commutative

. But the following triangle, made of

N R~
4q" —> pzp

<

so that property (Htp) allows to conclude. O

2.4.8. We introduce a useful terminology in order to simplify the next statements:

A morphism of schemes f : Y — X is strictly quasi-projective (resp. strictly projective) if it can be
factored over X through an immersion (resp. a closed immersion) Y - P% for an integer n > 0.
We let ) be the subcategory of . made of strictly quasi-projective S-schemes which are in ..

As a corollary of the preceding lemma, we get the following comparison of our axioms with that
of J. Ayoub (see [Ayo0T7al).

Corollary 2.4.9. The following conditions on a 2-functor Jy : S,°° — Tri are equivalent:
(i) T is a pregeometric Sm-fibred category over A.
(ii) Ty is a stable homotopy 2-functor in the sense of [AyoOTa, 1.4.1].

Proof. Indeed, all the axioms of loc. cit. are clear, except axiom 6 which follows from the preceding
proposition. O

Theorem 2.4.10 (Ayoub). If T is pregeometric, then, for any scheme S in % and any integer
n>1,if p: Pt — S denotes the structural map, there is a canonical isomorphism of functors
py(—n)[—2n] ~ p, in T .

Proof. Thanks to corollary 2.4.9, we can refer to [Ayo07a, thm. 1.7.9]. O
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Corollary 2.4.11. Consider a morphism of triangulated Sm-fibred categories o* : T — T’ over
. Assume that T and T’ are pregeometric. Let S be a scheme in &, n > 1 an integer, and
p: P% — S be the canonical projection. Then the exchange transformation ¢* p. — p. ™ is an
isomorphism.

Proof. By virtue of the preceding theorem, as ¢* commutes with p; (by definition of morphisms
of Sm-fibred categories), it is now sufficient to prove that ¢* commutes with Thom equivalences
Th(—FE) for any vector bundle FE over some scheme X in .7, or, equivalently, that ¢* commutes
with Th(E), the quasi-inverse of 7h(—FE). By definition, we have 7h(E) = ¢354, whereq: E — X
is the projection, and s : X — E is the zero section. As ¢* commutes with ¢y, it is sufficient
to prove that ¢* commutes with i, for any closed immersion i. This latter property is given by
lemma 2.3.19. O

Theorem 2.4.12. Assume 7 is pregeometric. Then the following properties hold:

(a) T satisfies the proper transversality property;
(b) T satisfies the support property.

Proof. By virtue of proposition 2.3.11 and corollary 2.3.13 it is sufficient to prove that 7 has
the transversality property with respect to the projection p : P§ — S for any scheme S in %/
and any integer n > 0. But this is a particular case of the preceding corollary (see the proof of
2.2.12 (i)). O

Remark 2.4.13. This holds in particular for the motivic category SH of example 2.4.4, by Ayoub’s
results [Ayo07b].

2.4.14. When .7 is pregeometric, according to the previous theorem, we can apply the construc-
tion of 2.2.7, so that, for any separated morphism of finite type f : T — S, we get a well defined
functor f, : 7(T) — Z(5). Recall also that the localization property shows that for any closed
immersion 7, the functor i, admits a right adjoint which we denote by i'.

We obtain from [Ayo07a] the following result:

Theorem 2.4.15 (Ayoub). Assume 7 is pregeometric and consider the above notations. Then
the following conditions hold.

(i) For any vector bundle E over a scheme S in .7, the Thom transformation Th(E) :
T(S) — F(S) is an equivalence of category with quasi-inverse Th(—FE) = s'p*, where p
is the projection of E onto X, while s denotes the zero section of E ).

(i) For any short exact sequence of vector bundles

0-E SESE -0
over a scheme X in .7, the map
Th(E) — Th(E") o Th(E')

18 an isomorphism.
(iii) For any smooth strictly quasi-projective morphism f :Y — X with tangent bundle Ty,
there exists a canonical isomorphism

fr = KTh(=Ty).

Proof. In fact, point (i) is easy from the homotopy and stability properties (see [Ayo07a, 1.5.7])
Point (ii) is proved in [Ayo07a, 1.5.18]. Point (iii) is a consequence of the theorem 1.4.2 of op. cit.
once we have noticed that the functor f; constructed by Ayoub agrees with that of proposition
2.2.7 (which we can apply, for any scheme Y in .7, over the category of strictly quasi-projective
Y-schemes by 2.4.9), according to the uniqueness statement of this proposition. O

Remark 2.4.16. The isomorphism of point (iii) is usually called the purity isomorphism associated
to f. Note that this isomorphism is compatible with composition in a suitable sense.'* Using

14The interested reader is referred to [Ayo07a, p. 105]. We will state this compatibility in the monoidal case
below.
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descent theory we will show that one can construct this isomorphism without the assumption that
f is strictly quasi-projective.

Proposition 2.4.17. Consider a morphism of triangulated Sm-fibred categories over .
T =T
Assume that T and T’ are pregeometric. For any separated morphism of finite type f : T — S
in &, the exchange transformation
" fi = fre®
is an tsomorphism.
Proof. This is a direct consequence of proposition 2.3.21, lemma 2.4.11, and theorem 2.4.12. O

Corollary 2.4.18. If T is pregeometric and well generated, then it is geometric.

Proof. By the Brown representability theorem [Nee01, 8.4.4], it is sufficient to prove that, for
any separated morphism of finite type f : T — S, the functor f, preserves small sums. Let I
be small set. For a scheme X in ., we write .7!(X) for the category of families of objects of
7 (X) indexed by I. This defines a pregeometric category over . (the adjunctions in .77 are
just computed termwise in .77). For any smooth morphism of finite type f in ., the functor fy
preserves small sums, and, for any morphism f in ./, the functor f* preserves smalls sums. In
other words, we have a morphism of (complete) triangulated Sm-fibred categories

T -7, (M)iel’_’@Mi-
=
We conclude by applying proposition 2.4.17 to the latter. O

Corollary 2.4.19. Assume that  is geometric. Then, for any separated morphism of finite type
f:Y — X, we have an adjunction

hi T = (X)) S
and a natural tranformation fi — fi, which is an isomorphism whenever f is proper. Moreover,

for any cartesian square

v Lo x

g/l A ig

Y —= X,
in which f is separated and of finite type, the exchange maps
g hi—flg" and g.f" = f'g.
are isomorphisms.
Proof. The existence of f; and f' follows from theorems 2.2.14 and 2.4.12. Consider a pullback

square A as above. The isomorphism g*fi ~ f/¢g'* follows from proposition 2.4.17, and the
isomorphism ¢’ f"* ~ f'g. is obtained from the preceding one by transposition. O

2.4.20. We assume now that 7 is a geometric and monoidal (i.e. symmetric monoidal as a
complete triangulated Sm-fibred category over .¥), with geometric section M.

Let p : E — S be a vector bundle with zero section s : S — E. We define the Thom motive
associated with E/S as the object MTh(E) = pys«(1x) in 7 (S5). Note that the localization
axiom implies that this motive is defined uniquely (c¢f. 2.3.3(2)) by the distinguished triangle

Mg(E — 8) 2 Mg(E) — MTh(E) — Ms(E — S)[1].

Also, by proposition 2.4.7, we have MTh(A}) ~ 1(1)[2].

Moreover, according to 2.3.15, for any object K of 7 (X), we can compute the Thom transforma-
tion:

(2.4.20.1) Th(E)(K)~ K® MTh(E).
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Thus the premotive MTh(E) is ®-invertible. We denote by MTh(—E) = s'(1g) its ®-inverse.
Finally, the construction of Ayoub recalled in 2.4.6 allows to associate to any short exact sequence
o as in loc. cit. an isomorphism in 7 (S):

¢y : MTh(E) = MTh(E') ® MTh(E").
Theorem 1.4.2 of [Ayo07a] then implies:

Theorem 2.4.21. Under the assumptions of 2.4.20, for any separated morphism of finite type
f:Y = X in &, there exists a pair of adjoint functors

7)== 7(X): f
such that:

(i) There exists a structure of a covariant (resp. contravariant) 2-functor on f — fi (resp.
1)

(i) There exists a natural transformation oy : fi — f. which is an isomorphism when f is
proper. Moreover, « is a morphism of 2-functors.

(111) For any smooth strictly projective morphism f in % with cotangent bundle Qy, there are
canonical natural isomorphisms

Py fI = MTh(Qp) ® f* and qf: fz ® MTh(—Qy) =

which are dual to each other. Moreover, for any smooth strictly quasi-projective morphisms

7%y L X in &, considering the exact sequence of cotangent bundles
(o) 0—9g"Qp = Qgp = Qy — 0,

the following diagram is commutative:

(f9) g/
\Lpg‘pf
MTh(Q,) ® MTh(g~'Qf) ® g* f*
Pgr (*)

MTh(g*) © MTh(Q,) ® g* f*

J/eﬂ

MTh(Qyy) ® (f9)" === MTh(Qy;) ® g" f*

where (x) denotes the natural symmetry isomorphism.
(iv) For any cartesian square:

v Lo x

g/l A ig

— X
Y gt
such that f is separated of finite type, there exist natural isomorphisms
g h= fg",
|~
gf" = flg..

(v) For any separated morphism of finite type f : Y — X in ., there exist natural isomor-
phisms

(K)®x L = fi(K ®x f*L),
Homx (L, fi(K)) = f.Homy (f'(L), K),
f'Homx (L, M) =5 Homy (f'(L), f*(M)).
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Proof. Given theorem 2.4.12, everything except point (iii) are consequences of theorem 2.2.14 (the
first isomorphism of property (v) is a special instance of proposition 2.4.17, while the other ones
are obtained from the first by transposition). Point (iii) follows from 2.4.15 applied to 7 |5,. O

Remark 2.4.22. In fact, the main step in the proof of [Ayo07a, 1.4.1] is to construct the morphism
f" by choosing a factorization:

(2.4.22.1) y5PLx
where 7 is a closed immersion and p is a smooth morphism and defining:
f' = (MTh(=N;) @ ) MTh(Ty) ® f*),

By virtue of a result of Ayoub [Ayo07a, 1.3.1], this construction is independent of the factorization.
Note also that the two possible definitions of the pair of functors (fi, f') was already evoked by
Deligne in [AGV73, XVII] (the other one being credited to Grothendieck).

3. DESCENT IN Z-FIBRED MODEL CATEGORIES

3.0. In this section, . is an abstract category and & an admissible class of morphisms in ..
In section 3.3 however, we will consider as in 2.0 a noetherian base scheme S and we will assume
that . is an adequate category of S-schemes satisfying the following condition on .&:

(a) Any scheme in . is finite dimensional.
Moreover, in sections 3.3.c and 3.3.d, we will even assume:
(a’) Any scheme in . is quasi-excellent and finite dimensional.

We fix an admissible class & of morphisms in . which contains the class of étale morphisms
in . and a stable combinatorial P-fibred model category .# over .7.
In section 3.3.d, we will assume furthermore that:

(b) The stable model Z-fibred category .# is Q-linear (see 3.2.14).

3.1. Extension of Z-fibred categories to diagrams.

3.1.a. The general case.

3.1.1. Assume given a P-fibered category .# over .. Then .# can be extended to .”-diagrams
(i.e. functors from a small category to .#) as follows. Let I be a small category, and 2~ a functor
from I to .. For an object ¢ of I, we will denote by 2 the fiber of 2™ at i (i.e. the evaluation of
Z at i), and, for a map u : ¢ — j in I, we will still denote by u : £; — Z; the morphism induced
by u. We define the category .# (2, 1) as follows.

An object of .# (2, 1) is a couple (M, a), where M is the data of an object M; in .#(Z;) for
any object ¢ of I, and a is the data of a morphism a, : u*(M;) — M; for any morphism v : i — j
in I, such that, for any object ¢ of I, the map aj, is the identity of M; (we will always assume
that 1} is the identity functor), and, for any composable morphisms u:4 — jandv:j — kin I,
the following diagram commutes.

w v (My) —= (vu)*(My)

uw* (ay) l lavu

u* (M) M;

A morphism p: (M,a) — (N,b) is a collection of morphisms

pi - M; — N;
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in A (%;), for each object 4 in I, such that, for any morphism v : i — j in I, the following diagram
commutes.

wr (M) L e ()

My —— N

In the case where .# is a monoidal &-fibred category, the category .# (2", I) is naturally endowed
with a symmetric monoidal structure. Given two objects (M,a) and (N,b) of # (%2, I), their
tensor product
(M,a) @ (N.b) = (M ® N,a )
is defined as follows. For any object i of I,
(M®N); =M; ® N;,

and for any map v : 4 — j in I, the map (a ® b),, is the composition of the isomorphism u*(M; ®
N;) ~ u*(M;) ® u*(N;) with the morphism
Note finally that if .# is complete monoidal &2-fibred category, then .# (2", I) admits an internal
Hom.
3.1.2. Ewvaluation functors. Assume now that for any S, .#(S) admits small sums.

For each object i of I, we have a functor

M) — ME)
(3.1.2.1)
(M,a) — M;

This functor * has a left adjoint
(3.1.2.2) iy ML) — M)
defined as follows. If M is an object of .#(.2;), then iz(M) is the data (M’,a’) such that for any
object j of I,
(3.1.2.3) (M), =Mj= J[ w(M),
u€Homy (j,7)

and, for any morphism v : kK — j in I, the map a is the canonical map induced by the collection
of maps
(3.1.2.4) vt (M) ~ (w)* (M) - [ wr()
weHomy (k,i)
for u € Homy(j,1).

If we assume that .# is a complete LP-fibred category and that . (S) admits small products
for any S, then ¢* has a right adjoint

(3.1.2.5) iw ML) — ML)

given, for any object M of .#(Z;) by the formula

(3.1.2.6) (M), = J[  w),
u€EHomy (¢,7)

with transition map given by the dual formula of 3.1.2.4.

3.1.3. Functoriality. Assume that .# if a &-fibred category suth that for any object S of .7,
A (S) has small colimits.

Remember that, if 2" and # are .¥-diagrams, indexed respectively by small categories I and
J, a morphism ¢ : (Z°,I) — (#,J) is a couple ¢ = (q, f), where f : I — J is a functor, and
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a: & — f*(#) is a natural transformation (where f*(%) = % o f). In particular, for any object
1 of I, we have a morphism
@it Zi = Yy

in .. This turns .-diagrams into a strict 2-category: the identity of (27,I) is the couple
(Lo, 1), and, if ¢ = (o, f) : (2,1) — (#,J) and ¢ = (B,9) : (#,J) — (Z,K) are two
composable morphisms, the morphism ¢ o ¢ : (Z7,I) — (£, K) is the couple (gf,~), where for
each object i of I, the map

it Li = Zo(s()
is the composition

@i B

Li == Ypi) — Zy(s)) -

There is also a notion of natural transformation between morphisms of .-diagrams: if ¢ = (a, f)

and ¢’ = (¢, f') are two morphisms from (£, I) to (#/,J), a natural transformation ¢ from ¢ to
¢’ is a natural transformation ¢ : f — f’ such that the following diagram of functors commutes.

Z

7

Yof Yo f

t

This makes the category of .#-diagrams a (strict) 2-category.
To a morphism of diagrams ¢ = («, f) : (2',I) — (%, J), we associate a functor

oMY T) = ()

as follows. For an object (M,a) of 4 (%), ¢*(M,a) = (¢*(M),¢*(a)) is the object of #(Z")
defined by ¢*(M); = My ;) for i in I, and by the formula ¢*(a)y, = apw) : f(u)*(Ms)) — My
foru:7— jin I.

We will say that a morphism ¢ : (2°,1) — (#/,J) is a &2-morphism if, for any object i in I,
the morphism «; : Z; — %}(;) is a #-morphism. For such a morphism ¢, the functor ¢* has a
left adjoint which we denote by

oy M(X ) — MY, T).

For instance, given a .#-diagram 2~ indexed by a small category I, each object ¢ of I defines a
Z-morphism of diagrams i : 2; — (2,I) (where 2; is indexed by the terminal category), so
that the corresponding the functor 44 corresponds precisely to (3.1.2.2).

Assume that . is a complete -fibred category such that .#(S) has small limits for any
object X of .. Then the functor ¢* has a right adjoint which we denote by

s M(X ) — MY, ).

In the case where ¢ is the morphism i : Z; — (2, 1) defined by an object i of I, i, corresponds
precisely to (3.1.2.5).

Remark 3.1.4. This construction can be applied in particular to any Grothendieck abelian (monoidal)
P-fibred category (cf. definition 1.3.8). The triangulated case cannot be treated in general with-
out assuming a thorough structure — this is the purpose of the next section.

3.1.b. The model category case.

3.1.5. Let .# be a &-fibred model category over . (¢f. 1.3.20). Given a .¥-diagram 2" indexed
by a small category I, we will say that a morphism of .#Z(%Z",I) is a termwise weak equivalence
(resp. a termwise fibration, resp. a termuwise cofibration) if, for any object i of I, its image by the
functor i* is a weak equivalence (resp. a fibration, resp. a cofibration) in .#(%;).

Proposition 3.1.6. If .# is a cofibrantly generated &2-fibred model category over ., then, for
any & -diagram £ indezed by a small category I, the category M (2 ,I) is a cofibrantly generated
model category whose weak equivalences (resp. fibrations) are the termwise weak equivalences (resp.
the termuwise fibrations). This model category structure on (X ,I) will be called the projective
model structure.
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Moreover, any cofibration of (2 ,1I) is a termwise cofibration, and the family of functors
i*: Ho( M) (X, 1) — Ho(A)(Z;), i€ Ob(),

18 conservative.
If A is left proper (resp. right proper, resp. combinatorial, resp. stable), then so is the
projective model category structure on M ().

Proof. Let 2°° be the .-diagram indexed by the set of objects of I (seen as a discrete category),
whose fiber at i is 2. Let ¢ : (2%, 0bI) — (2, 1) be the inclusion (i.e. the map which is the
identity on objects and which is the identity on each fiber). As ¢ is clearly a &Z-morphism, we
have an adjunction

oy 1 M (20, 00]) = [ [ (25) = ot (2,1) : o7

The functor ¢4 can be made explicit: it sends a family of objects (M;); (with M, in #(Z;))
to the sum of the i4(M;)’s indexed by the set of objects of I. Note also that this proposition is
trivially verified whenever 2% = 2°. Using the explicit formula for iy given in 3.1.2, it is then
straightforward to check that the adjunction (py, ¢*) satisfies the assumptions of [Cra95, Theorem
3.3], which proves the existence of the projective model structure on .# (2", I). Furthermore, the
generating cofibrations (resp. trivial cofibrations of .# (2", I)) can be described as follows. For
each object ¢ of I, let A; (resp. B;) be a generating set of cofibrations (resp. of trivial cofibrations
in #(Z;). The class of termwise trivial fibrations (resp. of termwise fibrations) of .# (2", I) is the
class of maps which have the right lifting property with respect to the set A = Ujeriy(A;) (resp.
to the set B = U;eri4(B;)). Hence, the set A (resp. B) generates the class of cofibrations (resp.
of trivial cofibrations). In particular, as any element of A is a termwise cofibration (which follows
immediately from the explicit formula for ¢4 given in 3.1.2), and as termwise cofibrations are stable
by pushouts, transfinite compositions and retracts, any cofibration is a termwise cofibration (by
the small object argument).

As any fibration (resp. cofibration) of .Z(2°,I) is a termwise fibration (resp. a termwise
cofibration), it is clear that, whenever the model categories .#(Z;) are right (resp. left) proper,
the model category .# (2, 1) has the same property.

The functor ¢* preserves fibrations and cofibrations, while it also preserves and detects weak
equivalences (by definition). This implies that the induced functor

" : Ho()(2",T) — Ho(l)(2°°, Ob T) ~ [ [ Ho(.¢ )(25)

is conservative (using the facts that the set of maps from a cofibrant object to a fibrant object in
the homotopy category of a model category is the set of homotopy classes of maps, and that a
morphism of a model category is a weak equivalence if and only if it induces an isomorphism in
the homotopy category). As ¢* commutes to limits and colimits, this implies that it commutes
to homotopy limits and to homotopy colimits (up to weak equivalences). Using the conservativity
property, this implies that a commutative square of .# (2 ,1I) is a homotopy pushout (resp. a
homotopy pullback) if and only if it is so in .# (2%, Ob I). Remember that stable model categories
are characterized as those in which a commutative square is a homotopy pullback square if and
only if it is a homotopy pushout square. As a consequence, if all the model categories .#(Z;) are
stable, as .# (%%, ObI) is then obviously stable as well, the model category .# (2", I) has the
same property.

It remains to prove that, if .#Z(X,I) is a combinatorial model category for any object X of
<, then # (% ,I) is combinatorial as well. For each object i in I, let G; be a set of accessible
generators of .#(%;). Note that, for any object i of I, the functor 44 has a left adjoint ¢* which
commutes to colimits (having itself a right adjoint i.). It is then easy to check that the set of
objects of shape i4(M), for M in G; and 7 in I, is a small set of accessible generators of .Z (%", I).
This implies that .# (2", I) is accessible and ends the proof. O

Proposition 3.1.7. Let .# be a combinatorial P-fibred model category over .. Then, for any
S -diagram Z indexed by a small category I, the category A#(Z ,I) is a combinatorial model
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category whose weak equivalences (resp. cofibrations) are the termwise weak equivalences (resp.
the termwise cofibrations). This model category structure on A (2 ,1) will be called the injective
model structure'®. Moreover, any fibration of the injective model structure on # (2 1) is a
termwise fibration.

If A is left proper (resp. right proper, resp. stable), then so is the injective model category
structure on M (2, I).

Proof. See [Bar(09, Theorem 2.28] for the existence of such a model structure (if, for any object X
in .7, all the cofibrations of .#(X) are monomorphisms, this can also be done following mutatis
mutandis the proof of [Ayo0O7a, Proposition 4.5.9]). Any trivial cofibration of the projective model
structure being a termwise trivial cofibration, any fibration of the injective model structure is a
fibration of the projective model structure, hence a termwise fibration.

The assertions about properness follows from their analogs for the projective model structure
and from [Cis06, Corollary 1.5.21] (or can be proved directly; see [Bar09, Proposition 2.31]).
Similarly, the assertion on stability follows from their analogs for the projective model structure.

O

3.1.8. From now on, we assume that a combinatorial &-fibred model category .# over .7 is
given. Then, for any .#-diagram (2", ), we have two model category structures on .# (2", I),
and the identity defines a left Quillen equivalence from the projective model structure to the
injective model structure. These will be used for the understanding of the functorialities coming
from morphisms of diagrams of S-schemes.

3.1.9. The category of .”-diagrams admits small sums. If {(%},1;)}jes is a small family of
#-diagrams, then their sum is the .-diagram (2, ), where
=14,
jedJ
and 2 is the functor from I to . defined by
X =9%;,; whenever i € I;.
Proposition 3.1.10. For any small family of .7-diagrams {(%;,1;)},cs, the canonical functor
Ho(.2)( I1 %) — T Ho(.2)(%)

JjeJ JjeJ

is an equivalence of categories.

Proof. The functor
a(11%) - ]« #)
jeJ jeJ
is an equivalence of categories. It thus remains an equivalence after localization. To conclude, it
is sufficient to see that the homotopy category of a product of model categories is the product of
their homotopy categories, which follows rather easily from the explicit description of the homotopy
category of a model category; see e.g. [Hov99, Theorem 1.2.10]. (]

Proposition 3.1.11. Let ¢ = (o, f) : (27, 1) — (%, J) be a morphism of .#-diagrams.
(i) The adjunction @* @ M (¥ ,J) 2 M (X ,I) : p. is a Quillen adjunction with respect to
the injective model structures. In particular, it induces a derived adjunction
Ly* : Ho(Z)(%,J) 2 Ho(A)(Z',I) : Ry .
(i) If ¢ is a PP-morphism, then the adjunction gy @ (X, 1) = (Y, J) : ¢* is a Quillen

adjunction with respect to the projective model structures, and the functor ¢* preserves
weak equivalences. In particular, we get a derived adjunction

Loy : Ho(#)(Z',I) 2 Ho(A) (¥, J) : Lo* = ¢* = Ro".

15Quite unfortunately, this corresponds to the ‘semi-projective’ model structure introduced in [Ayo0T7a, Def.
45.8].
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Proof. The functor ¢* obviously preserves termwise cofibrations and termwise trivial cofibrations
(we reduce to the case of a morphism of . using the explicit description of ¢* given in 3.1.3),
which proves the first assertion. Similarly, the second assertion follows from the fact that, under
the assumption that ¢ is a &-morphism, the functor p* preserves termwise weak equivalences
(see Remark 1.3.21), as well as termwise fibrations. O

3.1.12. The computation of the (derived) functors Ry, (and Lyy whenever it makes sense) given
by Proposition 3.1.11 has to do with homotopy limits (and colimits). It is easier to understand
this first in the non derived version as follows.

Consider first the trivial case of a constant .#-diagram: let X be an object of ., and I a small
category. Then, seeing X as the constant functor I — % with value X, we have a projection
map p; : (X,I) — X. ;From the very definition, the category .# (X, I) is simply the category of
presheaves on I with values in .#(X), so that the inverse image functor

(3.1.12.1) Py M(X) — (X, T) = H(X)
is the ‘constant diagram functor’, while its right adjoint

(3.1.12.2) lim = p;, : M (X, 1) — H(X)
Iop

is the limit functor, and its left adjoint,

(3.1.12.3) lim = py - (X, 1) — A (X)
Iop

is the colimit functor.

Let S be an object of .. A #-diagram over S is the data of a .-diagram (£, I), together
with a morphism of .-diagrams p : (2,1) — S (i.e. its a .//S-diagram). Such a map p factors
as

(3.1.12.4) CRIEYCNIEYS

where m = (p, 1;). Then one checks easily that, for any object M of .# (2", I), and for any object
i of I, one has

(3.1.12.5) T (M) = p; (M),

where p, : Z; — S is the structural map, from which we deduce the formula

(3.1.12.6) pe(M) = lim 7, (M); = lim p, (M),
i€lor icIop

Remark that, if I is a small category with a terminal object w, then any .%-diagram 2" indexed by
I is a .’-diagram over 2, and we deduce from the computations above that, if p : (27, 1) — 2,
denotes the canonical map, then, for any object M of 4 (2", 1),

(3.1.12.7) pe(M) ~ M, .

Consider now a morphism of .-diagrams ¢ = («a, f) : (2Z7,1) — (#,J). For each object j, we
can form the following pullback square of categories.

(3.1.12.8) f/ji lf

in which J/j is the category of objects of J over j (which has a terminal object, namely (j,1,),
and v; is the canonical projection; the category I/j is thus the category of pairs (i, a), where ¢ is
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an object of I, and a : f(i) — j a morphism in J. From this, we can form the following pullback
of ./-diagrams

(2 /1, 1/§) —— (2, 1)

(3.1.12.9) ga/jl lgp
(@ /5. J]3) 5—= (¥, J)

v

in which Z/j = Z oy, #/j = % owvj, and the maps p; and v; are the one induced by u; and
vj respectively. For an object M of .# (% ,I) (resp. an object N of .#(#,J)), we define M/j
(resp. N/j) as the object of .#(2/j,1/j) (vesp. of .#(#/j,J/j)) obtained as M/j = (M)
(resp. N/j = v;(N)). With these conventions, for any object M of .# (%", I) and any object j of
the indexing category J, one gets the formula

(31.12.10) oo (), = (o)1) M/~ lm  apa(M).
(i,a)el /35"

This implies that the natural map
(3.1.12.11) (M) /] = v pu(M) — (0/5)s 3 (M) = (¢/5)(M/])

is an isomorphism: to prove this, it is sufficient to obtain an isomorphism from (3.1.12.11) after
evaluating by any object (j',a : j/ — j) of J/j, which follows readily from (3.1.12.10) and from
the obvious fact that (I/5)/(j’,a) is canonically isomorphic to I/j’.

In order to deduce from the computations above their derived versions, we need two lemmata.

Lemma 3.1.13. Let 2 be a .Z-diagram indexed by a small category I, and i an object of I.
Then the evaluation functor

i M X)) — ML)
is a right Quillen functor with respect to the injective model structure, and it preserves weak
equivalences.

Proof. Proving that the functor ¢* is a right Quillen functor is equivalent to proving that its left
adjoint (3.1.2.2) is a left Quillen functor with respect to the injective model structure, which
follows immediately from its computation (3.1.2.3), as, in any model category, cofibrations and
trivial cofibrations are stable by small sums. The last assertion is obvious from the very definition
of the weak equivalences in .Z (2", I). O

Lemma 3.1.14. For any pullback square of .-diagrams of shape (3.1.12.8), the functors
py o ML) — M2 )5, 1/5), M—M[j
vi + MY 1) — MY )5, T]j), N N/j

are right Quillen functors with respect to the injective model structure, and they preserve weak
equivalences.

Proof. 1t is sufficient to prove this for the functor (as v; is simply the special case where I = J

and f is the identity). The fact that W preserves weak equivalences is obvious, so that it remains
to prove that it is a right Quillen functor. We thus have to prove that left adjoint of 7,

is s A1 T)G) — (2T,

is a left Quillen functor. In other words, we have to prove that, for any object i of I, the functor
N ERAC N ACY

is a left Quillen functor. For any object M of .# (2 ,I), we have a natural isomorphism

i g (M) =~ I G,

a€Hom  (f(i),J)
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But we know that the functors (7, a)y are left Quillen functors, so that the stability of cofibrations
and trivial cofibrations by small sums and this description of the functor i*u;; achieves the
proof. (]

Proposition 3.1.15. Let S be an object of &, and p : (Z',I) — S a -diagram over S, and
consider the canonical factorization (3.1.12.4). For any object M of Ho(.#)(Z ,I), there are
canonical isomorphisms and Ho(.#)(S):

Rm.(M); ~Rp; ,(M;) and Rp.(M)~ Rlim Rp, ,(M;).
icIop
In particular, if furthermore the category I has a terminal object w, then

Rp..(M) ~ Rpu,. (M) .

Proof. This follows immediately from (3.1.12.5) and (3.1.12.6) and from the fact that deriving
(right) Quillen functors is compatible with composition. O

Proposition 3.1.16. We consider the pullback square of #-diagrams (3.1.12.8) (as well as the
notations thereof ). For any object M of Ho(#)(Z ,I), and any object j of J, we have natural
isomorphisms

Re.(M); ~ Rlm Ra;.(M;) and Re.(M)/j~R(e/j)«(M/])
(i,a)el/j?
in Ho(A)(%;) and in Ho(.#)(¥ /4, J/j) respectively.
Proof. Using again the fact that deriving right Quillen functors is compatible with composition,

by virtue of Lemma 3.1.13 and Lemma 3.1.14, this is a direct translation of (3.1.12.10) and
(3.1.12.11). O

Proposition 3.1.17. Let u: T — S be a Z-morphism of %, and p : (Z',I) — S a /-diagram
over S. Consider the pullback square of 7 -diagrams

(@, 1) —2= (2, 1)

ql lp

r——>5

(i.e. % =T xgZ; for any object i of I). Then, for any object M of Ho(.#)(Z ,I), the canonical
map

Lu* Rp. (M) — Rg, Lv* (M)
is an isomorphism in Ho(.Z)(T).

Proof. By Remark 1.3.21, the functor v* is both a left and a right Quillen functor which preserves
weak equivalences, so that the functor Lv* = v* = Rv* preserves homotopy limits. Hence,
by Proposition 3.1.15, one reduces to the case where I is the terminal category, i.e. to the
transposition of the isomorphism given by the &-base change formula (£7-BC) for the homotopy
P-fibred category Ho(.#) (see 1.1.18). O

3.1.18. A morphism of .-diagrams v = («, f) : (#",J') — (¥, J), is cartesian if, for any arrow
1 — 7 in J’, the induced commutative square

@i/ - o gj/
Ys(i) — Y55)

is cartesian.
A morphism of ./-diagrams v = (o, f) : (%', J) = (¥, J) is reduced if J =J" and f =1,.
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Proposition 3.1.19. Let v : (#',J) — (#,J) be a reduced cartesian &-morphism of .-
diagrams, and ¢ = (o, f) : (Z,1) — (#,J) a morphism of .#-diagrams. Consider the pullback
square of .7 -diagrams

14

(2", 1) —— (Z,1)
‘| |+
(@', J)——(#,J)

(i.e. Z] = @f’(i) Xa, . Zi for any object i of I). Then, for any object M of Ho(.#)(Z", 1), the

canonical map
Lv* Ry, (M) — Ry, L™ (M)
is an isomorphism in Ho(4)(%',J).
Proof. By virtue of Proposition 3.1.6, it is sufficient to prove that the map
"L Rep. (M) — j*Rap, Lu* (M)
is an isomorphism for any object j of J. Let p : (27/4,1/j) — %; and q : (Z'/j,J,j) — ¥} be

the canonical maps. As v is cartesian, we have a pullback square of .#-diagrams

(27/5,1/5) L (2 15, 1/3)

But v; being a &-morphism, by virtue of Proposition 3.1.17, we thus have an isomorphism
j
LV; Rp.(M/j) ~ Ra. L(p/5)"(M/j) = Ra..(Lp* (M) /) -

Applying Proposition 3.1.16 and the last assertion of Proposition 3.1.15 twice, we also have canon-
ical isomorphisms

FRe.(M) = Rp,(M/j) and j*Rep. Lu*(M) = Ra. (L (M) /5) .
The obvious identity j*Lv* = Lv} j* achieves the proof. O

Corollary 3.1.20. Under the assumptions of Proposition 3.1.19, for any object N of Ho(.#) (%", j),
the canonical map

Lytg L™ (N) — Lg" L (V)
is an isomorphism in Ho(#) (X, I).

Remark 3.1.21. The class of cartesian &2-morphisms form an admissible class of morphisms in
the category of .#-diagrams, which we denote by ... Proposition 3.1.11 and the preceding
corollary thus asserts that Ho(.#Z) is a &.4-fibred category over the category of .#-diagrams.

3.1.22. We shall deal sometimes with diagrams of .”-diagrams. Let I be a small category, and
Z a functor from I to the category of .#-diagrams. For each object i of I, we have a .7-
diagram (% (i), J;), and, for each map u : i — ¢/, we have a functor f, : J; — J; as well as a
natural transformation «, : % (i) — Z(i') o fu, subject to coherence identities. In particular,
the correspondance ¢ — J; defines a functor from I to the category of small categories. Let
Iz be the cofibred category over I associated to it; see [Gro03, Exp. VI|. Explicitely, Iz is
described as follows. The objects are the couples (i,z), where 4 is an object of I, and x is an
object of J;. A morphism (i,z) — (i,2') is a couple (u,v), where u : ¢ — ¢ is a morphism of
I, and v : f,(z) — 2/ is a morphism of J;;. The identity of (i,x) is the couple (1;,1,), and,
for two morphisms (u,v) : (i,2) — (¢,2') and (v/,0") : (¢,2") — (¢",2”), their composition
(u”,0"): (i,x) — (i",2") is defined by u” = «’ o u, while v" is the composition of the map

Fur (@) = Fur (ful@)) 2290 £ (@) 25 .
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The functor p : I — I is simply the projection (i,z) — 4. For each object i of I, we get a
canonical pullback square of categories

£
Ji——1g

(3.1.22.1) qi P
3.1.22.1 | }L.

in which ¢ is the functor from the terminal category e which corresponds to the object i, and ¢; is
the functor defined by ¢;(z) = (i, x).

The functor .7 defines a .-diagram ([.#,Iz): for an object (i,z) of Iz, ([F)(iz) = F (i)a,
and for a morphism (u,v) : (¢,2) — (¢, 2’), the map

(,0) : (f F )iy = F (e = (J F) iy = F ()

is simply the morphism induced by «a,, and v. For each object i of I, there is a natural morphism
of ./-diagrams
(3.1.22.2) N (FG), ) — ([F,1z),
given by A\; = (1zziy,4:)

-
%

Proposition 3.1.23. Let X be an object of #, and f : F — X a morphism of functors (where
X is considered as the constant functor from I to .7 -diagrams with value the functor from e to .
defined by X ). Then, for each object i of I, we have a canonical pullback square of 7 -diagrams

(F (i), i) = ([F, 1)

X ———=(X,D)

in which ¢ and @; are the obvious morphisms induced by f (where, this time, (X, I) is seen as the
constant functor from I to .7 with value X ).
Moreover, for any object M of Ho(#4)([F,1%), the natural map

i R (M) = Rps(M); — Repi A (M)

is an isomorphism. In particular, if we also write by abuse f for the induced map of .7 -diagrams
from ([F,1z) to X, we have a natural isomorphism

Rf.(M) =~ Rlim Ry; . \f(M).

icror
Proof. This pullback square is the one induced by (3.1.22.1). We shall prove first that the map
" Ripu (M) = Repu (M )i — Repi « A7 (M)

is an isomorphism in the particular case where I has a terminal object w and ¢ = w. By virtue of
Propositions 3.1.15 and 3.1.16, we have isomorphisms

(3.1.23.1) w' R (M) ~ Rlim Ry, (M); ~ Rlim Re; ;. (M(ia))
ierer (i,x)€l®

where ¢; , : Z (i), — X denotes the map induced by f. We are thus reduced to prove that the
canonical map

(3.1.23.2) Rlim Re; .« (Miz) — RIm Row s (M) = Reow« AL (M)
(i,x)eI P zeJF

is an isomorphim. As Ig is cofibred over I, and as w is a terminal object of I, the inclusion
functor 4, : J, — Iz has a left adjoint, whence is coaspherical in any weak basic localizer
(i.e. is homotopy cofinal); see [Mal05, 1.1.9, 1.1.16 and 1.1.25]. As any model category defines
a Grothendieck derivator ([Cis03, Thm. 6.11]), it follows from [Cis03, Cor. 1.15] that the map
(3.1.23.2) is an isomorphism.
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To prove the general case, we proceed as follows. Let % /i be the functor obtained by composing
Z with the canonical functor v; : I/i — I. Then, keeping track of the conventions adopted in
3.1.12, we check easily that (I/i)z/; = (Iz)/i and that [(F /i) = ([.F#)/i. Moreover, the pullback
square (3.1.22.1) is the composition of the following pullback squares of categories.

Jii>fy/iu—i>fgr

e I)i—1

(4,14) vi

The pullback square of the proposition is thus the composition of the following pullback squares.

(Z(i), J;) —> ([ F )i, 1z /i) = ([ Z,]Iz)

X > (X, 1/i) > (X, 1)

The natural transformations
(i, L))" R(p/i)x — R ai and  vf Ry — R(p/i). pi]

are both isomorphisms: the first one comes from the fact that (i,1;) is a terminal object of I/i,
and the second one from Proposition 3.1.16. We thus get:

" Rpw (M) ~ (i, 1;)" vi Repu (M)
~ (i,1;)" R(p /i)« pi (M)
~ Repi v o i (M)
~ Ry, . \j (M) .
The last assertion of the proposition is then a straightforward application of Proposition 3.1.15. [
Proposition 3.1.24. If # is a monoidal &Z-fibred combinatorial model category over .#, then, for
any & -diagram Z indexed by a small category I, the injective model structure turns A (X, I) into

a symmetric monoidal model category. In particular, the categories Ho(.#) (%', I) are canonically

endowed with a closed symmetric monoidal structure, in such a way that, for any morphism of
S -diagrams ¢ : (X, 1) — (¥, J), the functor Lo* : Ho(#) (% ,J) — Ho( ) (X, I) is symmetric

monoidal.

Proof. This is obvious from the definition of a symmetric monoidal model category, as the tensor
product of A (X2, I) is defined termwise, as well as the cofibrations and the trivial cofibrations. [

Proposition 3.1.25. Assume that 4 is a monoidal &Z-fibred combinatorial model category over
7, and consider a reduced cartesian &2-morphism ¢ = (o, f) : (Z,1) — (#,I). Then, for any
object M in Ho(#)(Z ,I) and any object N in Ho(A)(# ,I), the canonical map

Liss (M &% " (N)) — Lg(M) &% N
is an isomorphism.
Proof. Let ¢ be an object of I. It is sufficient to prove that the map
"Ly (M @ ¢*(N)) — i"Lgpy(M) @% N

is an isomorphism in Ho(.#)(2;). Using Corollary 3.1.20, we see that this map can be identified
with the map

Lo; s (M; @ 07 (N;)) — Lepi 3(M;) @" N,
which is an isomorphism according to the &-projection formula for the homotopy &?-fibred cate-
gory Ho(.Z). O
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3.1.26. Let (£',1) be a .-diagram. An object M of .# (%, I) is homotopy cartesian if, for any
map u : 4 — j in I, the structural map u*(M;) — M, induces an isomorphism
Lu*(M;) ~ M;

in Ho(.#Z)(2,1) (i.e. if there exists a weak equivalence M} — M; with M; cofibrant in .Z(Z})
such that the map u*(M}) — M; is a weak equivalence in . (27)).

We denote by Ho(#) (2", I)heare the full subcategory of Ho(.#)(Z,I) spanned by homotopy
cartesian sections.

An homotopy cartesian resolution of an object M of # (X2, 1) is a weak equivalence M’ — M
in A4 (%, 1) with M’ cofibrant (for the injective model structure) and homotopy cartesian.

Definition 3.1.27. A cofibrantly generated model category ¥ is tractable is there exist sets I
and J of cofibrations between cofibrant objects which generate the class of cofibrations and the
class of trivial cofibrations respectively.

Remark 3.1.28. If .# is a combinatorial and tractable &-fibred model category over ., then so
are the projective and the injective model structures on . (2", I); see [Bar09, Thm. 2.28 and
2.30].

Proposition 3.1.29. If .# is tractable, then any object of M (X ,I) admits an homotopy carte-
sian resolution (and there even exists a functorial homotopy cartesian resolution in M (X', 1I)).
In particular, the inclusion functor

Ho( ) (X, I heart — Ho(A)( X, 1)
admits a left adjoint.

Proof. This follows from the fact that the cofibrant homotopy cartesian sections are the cofibrant
object of a right Bousfield localization of the injective model structure on .# (2", 1); see [Bar09,
Theorem 5.25]. O

Definition 3.1.30. Let .# and .#' two &-fibred model categories over .. A Quillen morphism
from .4 to .#' is a morphism of &-fibred categories v : # — ' such that v* : #(X) — A4’ (X)
is a left Quillen functor for any object X of .7.

Remark 3.1.31. If v : .4 — .#' is a Quillen morphism between Z?-fibred combinatorial model
categories, then, for any .#-diagram (27, T), we get a Quillen adjunction

v X )2 M (X))
(with the injective model structures as well as with the projective model structures).

Proposition 3.1.32. For any Quillen morphism ~ : M — M', the derived adjunctions
L~* : Ho(.#)(X) = Ho(4")(X) : Ry.

define a morphism of P-fibred categories Ho(.#) — Ho(.#') over . If moreover M and A’
are combinatorial, then the morphism Ho(.#) — Ho(.#") extends to a morphism of P cqrt-fibred
categories over the category of 7 -diagrams.

Proof. This follows immediately from [Hov99, Theorem 1.4.3]. O
3.2. Hypercoverings, descent, and derived global sections.

3.2.1. Let . be an essentially small category, and & an admissible class of morphisms in .. We
assume that a Grothendieck topology ¢ on .7 is given. We shall write .1 for the full subcategory
of the category of #-diagrams whose objects are the small families X = {X,;};c; of objects of
& (seen as functors from a discrete category to .#). The category .#! is equivalent to the
full subcategory of the category of presheaves of sets on .# spanned by sums of representable
presheaves. In particular, small sums are representable in . (but note that the functor from
Z to /! does not preserve sums). Finally, we remark that the topology ¢ extends naturally to
a Grothendieck topology on . such that the topology ¢ on .7 is the topology induced from
the inclusion .# C .#™.The covering maps for this topology on .#™ will be called t-coverings
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(note that the inclusion . C .#! is continuous and induces an equivalence between the topos of
t-sheaves on . and the topos of t-sheaves on .#1).

Let A be the category of non-empty finite ordinals. Remember that a simplicial object of .#!
is a presheaf on A with values in .#™. For a simplicial set K and an object X of .#", we denote
by K x X the simplicial object of .#™ defined by

(KxX),=[] X . n>0.
zeK,

We write A™ for the standard combinatorial simplex of dimension n, and 4, : A™ — A™ for its
boundary inclusion.

A morphism p : 2 — % between simplicial objects of .#™ is a t-hypercovering if, locally for
the t-topology, it has the right lifting property with respect to boundary inclusions of standard
simplices, which, in a more precise way, means that, for any integer n > 0, any object U of %!,
and any commutative square

IAN" x U 22— g

i,,Lxli lp

AnXU?@ ’

there exists a t-covering ¢ : V' — U, and a morphism of simplicial objects z : A™ x V — %, such
that the diagram bellow commutes.

z(1xq)

A" x V=L g

A" XV ——
y(1xq)

A t-hypercovering of an object X of .#! is a a t-hypercovering p : 2~ — X (where X is considered
as a constant simplicial object).

Remark 3.2.2. This definition of ¢-hypercovering is equivalent to the one given in [AGV73, Exp. V,
7.3.1.4].

3.2.3. Let 2" be a simplicial object of .#™. It is in particular a functor from the category A°P
to the category of .-diagrams, so that the constructions and considerations of 3.1.22 apply to
% . In particular, there is a .#-diagram 2 associated to 2", namely 2 = (JZ,(A°P) ). More
explicitely, for each integer n > 0, there is a family {2}, » }zek, of objects of ., such that

(3.2.3.1) Zn=1] %=
€K,

In fact, the sets K, form a simplicial set K, and the category (A°P) o) can be identified over A°P
to the category (A/K)°?, where A/K is the fibred category over A whose fiber over n is the set K,
(seen as a discrete category), i.e. the category of simplices of K. We shall call K the underlying
sitmplicial set of 2, while the decomposition (3.2.3.1) will be called the local presentation of Z .
The construction Z~ +— :%; is functorial. If p : 2" — % is a morphism of simplicial objects of .7 o
we shall denote by p: 2~ — % the induced morphism of .#-diagrams. However, for a morphism
of p: 2 — X, where X is an object of .7, we shall still denote by p : 2 — X the corresponding
morphism of .#-diagrams.

Let .4 be a P-fibred combinatorial model category over .. Given a simplicial object 2 of
I we define the category Ho(.#)(%") by the formula:

(3.2.3.2) Ho()(2') =Ho( M) ([ X, (AP)a).
Given an object X of . and a morphism p : 2~ — X, we have a derived adjunction

(3.2.3.3) Lp* : Ho(#)(X) = Ho(A)(Z) : Rp, .
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Proposition 3.2.4. Consider an object X of .7, a simplicial object X of .1, as well as a
morphism p : Z — X. Denote by K the underlying simplicial set of %, and for each integer
n > 0 and each simplex x € K, write ppy : Zn. — X for the morphism of Y induced by
the local presentation of 2 (3.2.3.1). Then, for any object M of Ho(.#)(X), there are canonical
isomorphisms

Rp.Rp" (M) = Rlim Rpy . Ly, (M) = Rlim ( [] Rppe.Lj, (M)
neA neA rxeK,

Proof. The first isomorphism is a direct application of the last assertion of Proposition 3.1.23 for
F = %, while the second follows from the first by Proposition 3.1.10. O

Definition 3.2.5. Given an object Y of .#™, an object M of Ho(.#)(Y) will be said to satisfy
t-descent if it has the following property: for any morphism f : X — Y and any ¢-hypercovering
p: Z — X, the map

Rf.Lf*(M) — Rf. Rp, Lp" Lf*(M)

is an isomorphism in Ho(.Z)(Y").
We shall say that .# (or by abuse, that Ho(.#)) satisfies t-descent if, for any object Y of .#!
any object of Ho(.Z)(Y') satisfies t-descent.

Proposition 3.2.6. If Y = {Y;}ics is a small family of objects of .7 (seen as an object of S ),
then an object M of Ho(.#)(Y) satisfies t-descent if and only if, for any i € I, any morphism
f: X =Y, of &, and any t-hypercovering p : Z — X, the map

Rf.Lf"(M;) — Rf. Rp. Lp™ Lf*(M;)
is an isomorphism in Ho(.#Z)(Y5).
Proof. This follows from the definition and from Proposition 3.1.10. O

Corollary 3.2.7. The &-fibred model category .# satisfies t-descent if and only if, for any object
X of &, and any t-hypercovering p : & — X, the functor

Lp* : Ho(A#)(X) — Ho(4)(Z)

18 fully faithful.

Proposition 3.2.8. If .# satisfies t-descent, then, for any t-covering f : Y — X, the functor
Lf* : Ho(#)(X) — Ho(.4)(Y)

18 conservative.

Proof. Let f: Y — X be a t-covering, and u : M — M’ a morphism of Ho(.#)(X) whose image
by Lf* is an isomorphism. We can consider the Cech t-hypercovering associated to f, that is the
simplicial object % over X defined by

%:YXXYXX“-X)(Y.

n 4+ 1 times

Let p: % — X be the canonical map. For each n > 0, the map p, : %, — X factor through f,
from wich we deduce that the functor

Lp;, : Ho(.#)(X) — Ho(.#) (%)
sends u to an isomorphism. This implies that the functor
Lp* : Ho(.#)(X) — Ho(.#) (%)

sends « to an isomorphism as well. But, as ¢ is a t-hypercovering of X, the functor Lp* is fully
faithful, from which we deduce that u is an isomorphism by the Yoneda Lemma. O
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3.2.9. Let ¥ be a complete and cocomplete category. For an object X of ., define Pr(7/X, V)
as the category of presheaves on .’/ X with values in ¥". Then Pr(C/—,¥') is a Z-fibred category
(where, by abuse of notations, . denotes also the class of all maps in .%): this is a special case
of the constructions explained in 3.1.2 applied to ¥/, seen as a fibred category over the terminal
category. To be more explicit, for each object X of ., we have a ¥ -enriched Yoneda embedding

(3.2.9.1) SYX <V - Pr(L/X, V) (U M)—U®M,
where, if U = {U, }ics is a small family of objects of ., U ® M is the presheaf

(3.2.9.2) v ] 1T M.

1€l a€Hom gy ,5(V,U;)
For a morphism f: X — Y in ., the functor
ffiPr(L)Y, V) — Pr(L/X,Y)

is the functor defined by composition with the corresponding functor ./ X — /Y. The functor
f* has always a left adjoint

fo: Pr(L)X, V) — Pr(Z/Y. V),
which is the unique colimit preserving functor defined by
[UM)=U® M,

where, on the left hand side U is considered as an object over X, while, on the right hand side,
U is considered as an object over Y by composition with f. Similary, if all the pullbacks by f are
representable in 7 (e.g. if f is a &-morphism), the functor f* can be described as the colimit
preserving functor defined by the formula

FU@M)=(XxyU)® M.

If ¥ is a cofibrantly generated model category, then, for each object X of .%, the category
Pr(&/X,¥) is naturally endowed with the projective model category structure, i.e. with the
cofibrantly generated model category structure whose weak equivalences and fibrations are defined
termwise (this is Proposition 3.1.6 applied to ¥, seen as a fibred category over the terminal
category). The cofibrations of the projective model category structure on Pr(./X,¥") will be
called the projective cofibrations. If moreover ¥ is combinatorial (resp. left proper, resp. right
proper, resp. stable), so is Pr(/X,¥). In particular, if ¥ is a combinatorial model category,
then Pr(7/—,7) is a &-fibred combinatorial model category over .7.

According to Definition 3.2.5, it thus makes sense to speak of t-descent in Pr(7/—, 7).

If U = {U; }ier is a small family of objects of . over X, and if F is a presheaf over .7 /X, we
define

(3.2.9.3) FU)=[]FW).
iel
the functor F' +— F(U) is a right adjoint to the functor £ — U ® E.

We remark that a termwise fibrant presheaf F' on ./ X satisfies t-descent if and only if, for
any object Y of # and any t-hypercovering % — Y over X, the map

F(Y) = Rlim F(%,)
neA

is an isomorphism in Ho(¥).

Proposition 3.2.10. If ¥ is combinatorial and left proper, then the category of presheaves
Pr(Z/X,¥) admits a combinatorial model category structure whose cofibrations are the projective
cofibrations, and whose fibrant objects are the termwise fibrant objects which satisfy t-descent. This
model category structure will be called the t-local model category structure, and the corresponding
homotopy category will be denoted by Hoi(Pr(.#/X,¥)).
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Moreover, any termwise weak equivalence is a weak equivalence for the t-local model structure,
and the induced functor

a* :Ho(Pr(7/X, 7)) — Ho(Pr(</X,¥))
admits a fully faithful right adjoint
ay : Ho (Pr(</X,¥)) — Ho(Pr(</X,¥))
whose essential image consists precisely of the full subcategory of Ho(Pr(.# /X, V")) spanned by the
presheaves which satisfy t-descent.
Proof. Let H be the class of maps of shape

(3.2.10.1) hocglign%@E—ﬂ/@E,
neA”

where Y is an object of ™ over X, # — Y is a t-hypercovering, and E is a cofibrant replacement
of an object which is either a source or a target of a generating cofibration of ¥". Define the t-
local model category structure as the left Bousfield localization of Pr(./X,¥") by H; see [Bar09,
Theorem 4.7]. We shall call t-local weak equivalences the weak equivalences of the t-local model
category structure. For each object Y over X, the functor Y ® (—) is a left Quillen functor from
¥ to Pr(#/X, 7). We thus get a total left derived functor

Y @ (=) : Ho(¥) — Hou(Pr(Z /X, V)

whose right adjoint is the evaluation at Y. For any object E of ¥ and any t-local fibrant presheaf
F on ./X with values in ¥, we thus have natural bijections

(3.2.10.2) Hom(E, F(Y)) ~ Hom(Y ®" E, F),

and, for any simplicial object % of ./ X, identifications

(3.2.10.3) Hom(E, Rlim F(%,)) ~ Hom( Llim %, " E, F),
neA neA

One sees easily that, for any t-hypercovering %" — Y and any cofibrant object E of ¥, the map

(3.2.10.4) Llim %, " E —Y " E
neA

is an isomorphism in the ¢-local homotopy category Hoi(Pr(.#/X,¥')): by the small object ar-
gument, the smallest full subcategory of Ho(Pr(.#/X, ")) which is stable by homotopy colimits
and which contains the source and the targets of the generating cofibrations is Ho,(Pr(7/X,¥))
itself, and the class of objects E of ¥ such that the map (3.2.10.4) is an isomorphism in Ho(¥)
is sable by homotopy colimits. Similarly, we see that, for any object F, the functor (—) ®@% E
preserves sums. As a consequence, we get from (3.2.10.2) and (3.2.10.3) that the fibrant objects of
the t-local model category structure are precisely the termwise fibrant objects F' of the projective
model structure which satisfy ¢-descent. The last part of the proposition follows from the general
yoga of left Bousfield localizations. O

3.2.11. Let .# be a P-fibred combinatorial model category over .7, and S an object of . .
Denote by

S LSS
the canonical forgetful functor. Then there is a canonical morphism of .-diagrams
(3.2.11.1) o:(S,.7/8)— (5,.7/5)
(where (S,.7/S) stands for the constant diagram with value S). This defines a functor
(3.2.11.2) Ro. : Ho(#) (&, /S) — Ho(A)(S,#/S) = Ho(Pr(S/S, #(5))) .

For an object M of Ho(.#)(S), one defines the presheaf of geometric derived global sections of M
over S by the formula

(3.2.11.3) RT yeom(—, M) = Ro, Lo* (M)
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This is a presheaf on .#/S with values in .Z(S) whose evaluation on a morphism f : X — S is,
by virtue of Propositions 3.1.15 and 3.1.16,

(3.2.11.4) RT geom (X, M) ~ Rf, Lf*(M).

Proposition 3.2.12. For an object M of Ho(.#)(S), the following conditions are equivalent.

(a) The object M satisfies t-descent.
(b) The presheaf RT geom (—, M) satisfies t-descent.

Proof. For any morphism f : X — S and any t-hypercovering p : £ — X over S, we have, by
Proposition 3.2.4 and formula (3.2.11.4), an isomorphism

Rf.Rp, Lp" Lf* (M) ~ RUmRT geom (25, M).
neA

From there, we see easily that conditions (a) and (b) are equivalent. O

3.2.13. The preceding proposition allows to reduce descent problems in a fibred model category
to descent problems in a category of presheaves with values in a model category. On can even
go further and reduce the problem to category of presheaves with values in an ‘elementary model
category’ as follows.

Consider a model category #". Then one can associate to ¥ its corresponding prederivator
Ho(7), that is the strict 2-functor from the 2-category of small categories to the 2-category of
categories, defined by

(3.2.13.1) Ho(¥)(I) = Ho(¥!") = Ho(Pr(I, ¥))
for any small category I. More explicitly: for any functor u : I — J, one gets a functor
u* : Ho(¥)(J) — Ho(¥)(I)

(induced by the composition with u), and for any morphism of functors

one has a morphism of functors

*

U
‘T —

Ho(7)(I) _ o Ho(#)(J)

v*

Moreover, the prederivator Ho(¥') is then a Grothendieck derivator; see [Cis03, Thm. 6.11]. This
means in particular that, for any functor between small categories u : I — J, the functor u* has
a left adjoint

(3.2.13.2) Luy : Ho(¥)(I) — Ho(¥)(J)
as well as a right adjoint
(3.2.13.3) Ru, : Ho(7)(I) — Ho(¥)(J)

(in the case where J = e is the terminal category, then Luy is the homotopy colimit functor, while
Ru. is the homotopy limit functor).
If ¥ and ¥’ are two model categories, a morphism of derivators

¢ : Ho(?) — Ho(?")
is simply a morphism of 2-functors, that is the data of functors
&1 : Ho(7)(I) — Ho(¥")(1)
together with coherent isomorphisms

uH (2 (F)) = &r(u*(F))
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for any functor v : I — J and any presheaf F' on J with values in ¥ (see [Cis03, p. 210] for a
precise definition).

Such a morphism @& is said to be continuous if, for any functor u : I — J, and any object F' of
Ho(?)(I), the canonical map

(3.2.13.4) &, Ru, (F) — Ru, &;(F)

is an isomorphism. One can check that a morphism of derivators @ is continuous if and only if
it commutes with homotopy limits (i.e. if and only if the maps (3.2.13.4) are isomorphisms in
the case where J = e is the terminal category); see [Cis08, Prop. 2.6]. For instance, the total
right derived functor of any right Quillen functor defines a continuous morphism of derivators; see
[Cis03, Prop. 6.12].

Dually a morphism @ of derivators is cocontinuous if, for any functor u : I — J, and any object
F of Ho(¥)(I), the canonical map

(3.2.13.5) Luy@;(F) — &5 Lu(F)
is an isomorphism.

3.2.14. We shall say that a stable model category ¥ is Q-linear if all the objects of the triangu-
lated category Ho(¥) are uniquely divisible.

Theorem 3.2.15. Let ¥ be a model category (resp. a stable model category, resp. a Q-linear
stable model category), and denote by S the model category of simplicial sets (resp. the stable
model category of S'-spectra, resp. the Q-linear stable model category of complexes of Q-vector
spaces). Denote by 1 the unit object of the closed symmetric monoidal category Ho(S).

Then, for each object E of Ho(¥), there exists a unique continuous morphism of derivators

RHom(E, —) : Ho(¥) — Ho(S)
such that, for any object F' of Ho(¥), there is a functorial bijection
Hompo(s) (1, RHom(E, F)) ~ Homgey) (E, F)) .

Proof. Note that the stable Q-linear case follows from the stable case and from the fact that the
derivator of complexes of Q-vector spaces is (equivalent to) the full subderivator of the derivator
of S'-spectra spanned by uniquely divisible objects.

It thus remains to prove the theorem in the case where ¥ be a model category (resp. a stable
model category) and S is the model category of simplicial sets (resp. the stable model category
of S'-spectra). The existence of RHom(E, —) follows then from [Cis03, Prop. 6.13] (resp. [CT09,
Lemma A.6]).

For the unicity, as we don’t really need it here, we shall only sketch the proof (the case of
simplicial sets is done in [Cis03, Rem. 6.14]). One uses the universal property of the derivator
Ho(S): by virtue of [Cis08, Cor. 3.26] (resp. of [CT09, Thm. A.5]), for any model category (resp.
stable model category) ¥’ there is a canonical equivalence of categories between the category
of cocontinous morphisms from Ho(S) to Ho(¥#’) and the homotopy category Ho(¥). As a
consequence, the derivator Ho(S) admits a unique closed symmetric monoidal structure, and any
derivator (resp. triangulated derivator) is naturally and uniquely enriched in Ho(S); see [Cis08,
Thm. 5.22]. More concretely, this universal property gives, for any object E in Ho(¥”), a unique
cocontinuous morphism of derivators

Ho(S) — Ho(?") K—K®E
such that 1 ® F = E. For a fixed K in Ho(S)(I), this defines a cocontinuous morphism of
derivators

Ho(7') - Ho(¥'"") |, E—KQ®E

which has a right adjoint

Ho(7''") = Ho(¥') , Fw~—FX.
Let

RHom(E, —) : Ho(¥) — Ho(S)
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be a continuous morphism such that, for any object F' of ¥, there is a functorial bijection
ir : Homge(sy (1, RHom(E, F)) ~ Homyey (E, F)) .
Then, for any object K of Ho(S)(I), and any object F' of Ho(?")(I) a canonical isomorphism
RHom(E, FX) ~ RHom(E, F)X

which is completely determined by being the identity for K = 1 (this requires the full universal
property of Ho(S) given by by [Cis08, Thm. 3.24] (resp. by the dual version of [CT09, Thm. A.5])).
We thus get from the functorial bijections ip the natural bijections:

Hompo(s)(r) (K, RHom(E, F)) ~Homyy,(s) (1, RHom(E, F)*)
~Homy,(s) (1, RHom(E, F¥))
~Homp,y) (£, FE)
~Hompyeyy (1) (K ® B, F).
In other words, RHom(FE, —) has to be a right adjoint to (—) ® E. O

Remark 3.2.16. The preceding theorem mostly holds for abstract derivators. The only problem
is for the existence of the morphism RHom(E, —) (the unicity is always clear). However, this
problem disapears for derivators which have a Quillen model (as we have seen above), as well as
for triangulated derivators (see [CT09, Lemma A.6]). Hence Theorem 3.2.15 holds in fact for any
triangulated Grothendieck derivator.

In the case when ¥ is a combinatorial model category (which, in practice, will essentially always
be the case), the enrichment over simplicial sets (resp, in the stable case, over spectra) can be
constructed via Quillen functors by Dugger’s presentation theorems [Dug01] (resp. [Dug06]).

Corollary 3.2.17. Let A be a P-fibred combinatorial model category (resp. a stable 2-fibred
combinatorial model category, resp. a Q-linear stable Z-fibred combinatorial model category) over
7, and S the model category of simplicial sets (resp. the stable model category of S*-spectra, resp.
the Q-linear stable model category of complexes of Q-vector spaces).
Consider an object S of ., a morphism f : X — S, and a morphism of .#-diagrams p :
(Z',I) — X over S. Then, for an object M of Ho(.#)(S), the following conditions are equivalent.
(a) The map
Rf, Lf*(M) — Rf, Rp, Lp* Lf*(M)
is an isomorphism in Ho(.#)(S).
(b) The map
Rrgeom(X7 M) - Rlﬂl R]-—‘geom(t%-ia M)
ielor
is an isomorphism in Ho(.#)(S).
(c) For any object E of Ho(.#)(S), the map

RHom(E, RT geom (X, M)) — Rlim RHom(E, RT g0 (25, M))
iclor
is an isomorphism in Ho(S).
Proof. The equivalence between (a) and (b) follows from Propositions 3.1.15 and 3.1.16, which

give the formula
R/, Rp. Ly Lf*(M) = Rlim RT oo (2;, M)
icIor
The identification
Hompq sy (1, RHom(E, F)) ~ Homgo(.z)(s) (£, F)
and the Yoneda Lemma show that a map in Ho(.#)(S) is an isomorphism if and only its image
by RHom(E, —) is an isomorphism for any object E of Ho(.#)(S). Moreover, as RHom(E, —)
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is continuous, for any small category I and any presheaf F' on I with values in .Z(5), there is a
canonical isomorphism

RHom(E, Rlim F;)) ~ Rlim RHom(E, F})).
ielor icron

This proves the equivalence between contitions (b) and (c). O

Corollary 3.2.18. Under the assumptions of Corollary 3.2.17, given an object S of ., an ob-
ject M of Ho(.#)(S) satisfies t-descent if and only if, for any object E of Ho(.#)(S) the presheaf of
simplicial sets (resp. of S*-spectra, resp. of complezes of Q-vector spaces) RHom(E, R geom (—, M))
satisfies t-descent over % /S.

Proof. This follows from the preceding corollary, using the formula given by Proposition 3.2.4. [

Remark 3.2.19. We need the category .# to be small in some sense to apply the two preceding
corollaries because we need to make sense of the model projective category structure of Proposition
3.2.10. However, we can use these corollaries even if the site .7 is not small as well: we can either
use the theory of universes, or apply these corollaries to all the adequate small subsites of .. As
a consequence, we shall feel free to use Corollaries 3.2.17 and 3.2.18 for non necessarily small sites
.7, leaving to the reader the task to avoid set-theoretic difficulties according to her/his taste.

Definition 3.2.20. For an S!'-spectrum E and an integer n, we define its nth cohomology group
H"(E) by the formula
H"(E) =7 _n(E),
where 7; stands for the ith stable homotopy group functor.
Let .# be a monoidal £-fibred stable combinatorial model category over .. Given an object
S of . as well as an object M of Ho(.#)(S), we define the presheaf of absolute derived global
sections of M over S by the formula

RI'(—, M) = RHom(1lg, RT geor(—, M)) .

For a map X — S of ., we thus have the absolute cohomology of X with coefficients in M,
RI'(X, M), as well as the cohomology groups of X with coefficients in M:

H"(X,M)=H"(R['(X,M)).
We have canonical isomorphisms of abelian groups
H"™(X, M) ~ Hompo(.z)(s)(Ls, Rfs Lf*(M))
~ Hompyo(.z)(x)(Ix, Lf*(M)).

Note that, if moreover .# is Q-linear, the presheaf RI'(—, M) can be considered as a presheaf
of complexes of Q-vector spaces on .#/S.

3.3. Descent over schemes. The aim of this section is to give natural sufficient conditions for
M to satisfy descent with respect to various Grothendieck topologies'®.

3.3.a. localization and Nisnevich descent.

3.3.1. Recall from example 2.1.15 that a Nisnevich distinguished square is a pullback square of
schemes

*l>

(3.3.1.1) g

S<=—<
><<T“<

—_—
J

161y fact, using remark 3.2.16, all of this section (results and proofs) holds for an abstract algebraic prederivator
in the sense of Ayoub [AyoOT7a, Def. 2.4.13] without any changes (note that the results of 3.1.b are in fact a proof
that (stable) combinatorial fibred model categories over . give rise to algebraic prederivators). The only interest
of considering a fibred model category over .7 is that it allows to formulate things in a little more naive way.
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in which f is étale, j is an open immersion with reduced complement Z and the induced morphism
f~Y(Z) — Z is an isomorphism.

For any scheme X in .¥; we denote by Xyjs the small Nisnevich site of X.
Theorem 3.3.2 (Morel-Voevodsky). Let ¥ be a (combinatorial) model category and T a scheme

in L. For a presheaf F' on Tyis with values in ¥, the following conditions are equivalent.

(i) F(2) is a terminal object in Ho(¥'), and for any Nisnevich distinguished square (3.3.1.1)
in Tnis, the square

18 a homotopy pullback square in ¥ .
(i) The presheaf F satisfies Nisnevich descent on Tis.

Proof. By virtue of corollaries 3.2.17 and 3.2.18, it is sufficient to prove this in the case where ¥ is
the usual model category of simplicial sets, in which case this is precisely Morel and Voevodsky’s
theorem; see [MV99, Voe00a, Voe0OOb]. O

3.3.3. Consider a Nisnevich distinguished square (3.3.1.1) and put a = jg = fl. According to
our general assumption 3.0, the maps a, j and f are &-morphisms. For any object M of .Z(X),
we obtain a commutative square in .# (which is well defined as an object in the homotopy of
commutative squares in .Z(X)):

Laga® M —— L, f*(M)
(3.3.3.1) i J/
Ljyj*(M) —— M.
We also obtain another commutative square in .# by appyling the functor RHom x(—, 1x):

M Rf. f*(M)

(3.3.3.2) i l

Rj, j*(M) — Ra, a*(M).

Proposition 3.3.4. If the category Ho(.#) has the localization property, then for any Nisnevich
distinguished square (3.3.1.1) and any object M of Ho(. A )(X), the squares (3.3.3.1) and (3.3.3.2)
are homotopy cartesians.

Proof. Let i : Z — X be the complement of the open immersion j (Z being endowed with the
reduced structure) and p: f~1(Z) — Z the map induced by f.

We have only to prove that one of the squares (3.3.3.1), (3.3.3.2) are cartesian. We choose the
square (3.3.3.1).

Because the pair of functor (Lé*, j*) is conservative on Ho(.#)(X), we have only to check that
the pullback of (3.3.3.1) along j* or Li* is homotopy cartesian.

But, using the £-base change property, we see that the image of (3.3.3.1) by j* is (canonically
isomorphic to) the commutative square

Lgya*(M) == Lgza™(M)
J* (M) J (M)

which is obviously homotopy cartesian.
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Using again the 4?-base change property, we obtain that the image of (3.3.3.1) by Li* is
isomorphic in Ho(.#Z) to the square

0 — pyp*Li* (M)

|

0 —— Li*(M)

which is again obviously homotopy cartesian because p is an isomorphism (note for this last reason,
pﬁ = Lpﬁ). O

Corollary 3.3.5. If Ho(.#) has the localization property, then it satisfies Nisnevich descent.

Proof. This corollary thus follows immediately from corollary 3.2.17, theorem 3.3.2 and proposition
3.3.4. O

3.3.b. Proper base change isomorphism and descent by blow-ups.

3.3.6. Recall from example 2.1.15 that a cdh-distinguished square is a pullback square of schemes
Tty

(3.3.6.1) gl lf
Z *Z> X

in which f is proper surjective, i a closed immersion and the induced map f~}(X —2) - X — Z
is an isomorphism.

The cdh-topology is the Grothendieck topology on the category of schemes generated by Nis-
nevich coverings and by coverings of shape {Z — X, Y — X} for any cdh-distinguished square
(3.3.6.1).

Theorem 3.3.7 (Voevodsky). Let ¥ be a (combinatorial) model category. For a presheaf F' on
& with values in ¥, the following conditions are equivalent.

(i) The presheaf F satisfies cdh-descent on ..
(ii) The presheaf F satisfies Nisnevich descent and, for any cdh-distinguished square (3.3.6.1)
of &, the square

18 a homotopy pullback square in ¥ .

Proof. 1t is sufficient to prove this in the case where ¥ is the usual model category of simplicial
sets; see corollaries 3.2.17 and 3.2.18. As the distinguished cdh-squares define a bounded regular
and reduced cd-structure on ., the equivalence between (i) and (ii) follows from Voevodsky’s
theorems on descent with respect to topologies defined by cd-structures [Voe00a, Voe00b]. U

3.3.8. Consider a cdh-distinguished square (3.3.6.1) and put a = ig = fk. For any object M of
A (X), we obtain a commutative square in .# (which is well defined as an object in the homotopy
of commutative squares in .Z(X)):

M —Rf, Lf*(M)

(3.3.8.1) l i

Ri, Li*(M) — Ra, La*(M)



TRIANGULATED CATEGORIES OF MIXED MOTIVES 71

Proposition 3.3.9. Assume Ho(#) satisfies the localization property and the transversality prop-
erty with respect to proper morphisms.'” Then the following conditions hold:

(i) For any cdh-distinguished square (3.3.6.1), and any object M of Ho(.#)(X) the commu-
tative square (3.3.8.1) is homotopy cartesian.
(i) The &-fibred model category Ho(. ') satisfies cdh-descent.

Proof. We first prove (i). Consider a cdh-distinguished square (3.3.6.1) and let j : U — X be the
complement open immersion of i. As the pair of functor (Li*, j*) is conservative on Ho(.#)(X),
we have only to check that the image of (3.3.8.1) under Li* and j* is homotopy cartesian.

Using projective transversality, we see that the image of (3.3.8.1) by the functor Li* is (isomor-
phic to) the homotopy pullback square

Li*(M) —— Rg. Lg* Li* (M)

Li*(M) —— Rg. Lg* Li*(M)

Let h : f~1(U) — U be the pullback of f over U. As j is an open immersion, it is by
assumption a #-morphism and the &-base change formula implies that the image of (3.3.8.1) by
j* is (isomorphic to) the commutative square

Lj* (M) — Rh,Lh*Lj*(M)
l |
) =——=0

which is obviously homotopy cartesian because h is an isomorphism.

We then prove (ii). We already know that .# satisfies Nisnevich descent (corollary 3.3.5). Thus,
by virtue of the equivalence between conditions (i) and (ii) of theorem 3.3.7, the computation
above, together with corollaries 3.2.17 and 3.2.18 imply that .# satisfies cdh-descent. O

3.3.10. To any cdh-distinguished square (3.3.6.1), one associates a diagram of schemes % over X
as follows. Let ™ be the category freely generated by the oriented graph

Hb

(3.3.10.1) I

Then % is the functor from ™ to ./ X defined by the following diagram.

T—"lsy
(3.3.10.2) gl
Z

We then have a canonical map ¢ : # — X, and the second assertion of theorem 3.3.9 can be
reformulated by saying that the adjunction map

M — R, Lo™ (M)

17Recall from proposition 2.3.11 it is sufficient that Ho(.#) satisfies transversality with respect to the projections
Pt — S.
S
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is an isomorphism for any object M of Ho(.#)(X): indeed, by virtue of proposition 3.1.15,
Ry, Lo* (M) is the homotopy limit of the diagram

Rf.Lf*(M)

|

Ri, Li*(M) — Ra, La*(M)

in Ho(#)(X). In other words, if .# has the properties of localization and of projective transver-
sality, then the functor

Lo* : Ho(A)(X) — Ho(.#) (%, )
is fully faithful.

3.3.c. Proper descent with rational coefficients I: Galois excision. From now on, we assume that
any scheme in . is quasi-excellent (we shall use several times the fact that the normalization of a
quasi-excellent schemes gives rise to a finite surjective morphism). We fix a scheme S in ., and
we shall work with S-schemes in . (assuming these form an essentially small category).

3.3.11. The h-topology (resp. the qfh-topology) is the Grothendieck topology on the category of
schemes associated to the pretopology whose coverings are the universal topological epimorphisms
(resp. the quasi-finite universal topological epimorphisms). This topology has been introduced
and studied by Voevodsky in [Voe96].

The h-topology is finer than the cdh-topology and, of course, finer than the gfh-topology. The
gfh-topology is in turn finer than the étale topology. An interesting feature of the h-topology (resp.
of the gfh-topology) is that any proper (resp. finite) surjective map is an h-covering. In fact, the
h-topology (resp. the gfh-topology) can be described as the topology generated by the Nisnevich
coverings and by the proper (resp. finite) surjective maps; see lemma 3.3.27 (resp. lemma 3.3.26)
below for a precise statement.

3.3.12. Consider a morphism of schemes f : Y — X. Consider the group of automorphisms
G = Auty (X) of the X-scheme Y.

Assuming X is connected, we say according to [Gro03, exp. V] that f is a Galois cover if it is
finite étale (thus surjective) and G operates transitively and faithfully on any (or simply one) of
the geometric fibers of Y/X. Then G is called the Galois group of Y/X .18

When X is not connected, we will still say that f is a Galois cover if it is so over any connected
component of X. Then G will be called the Galois group of X. If (X;);cr is the family connected
components of X, then G is the product of the Galois groups G; of f x x X; for each i € I. The
group Gj is equal to the Galois group of any residual extension over a generic point of X;.

The following definition is an extension of the definition 5.5 of [SV0O0Db]:

Definition 3.3.13. A pseudo-Galois cover is a finite surjective morphism of schemes f: Y — X
which can be factored as )
v Lox 2 x
where f’ is a Galois cover and p is radicial’® (such a p is automatically finite and surjective).
Note that the group G defined by the Galois cover f’ is independent of the choice of the

factorization. In fact, if X denotes the semi-localization of X at its generic points, considering the
cartesian squares

y — X' —>X
¢ f/ ¢/ P \L
Y —X —>X

then G = Autg(Y) — for any point y € Y, 2’ = f'(y), * = f(y), Ku /K, is the maximal radicial
sub-extension of the normal extension k,/k;. It will be called the Galois group of Y/X.

18The map f induces a one to one correspondence between the generic points of Y and that of X. For any
generic point y € Y, z = f(y), the residual extension ky/k; is a Galois extension with Galois group G.
19Gee 2.1.10 for a reminder on radicial morphisms.
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Remark also that Y is a G-torsor over X locally for the gfh-topology (i.e. it is a Galois object
of group G in the gfh-topos of X): this comes from the fact that finite radicial epimorphisms are
isomorphisms locally for the gfh-topology (any universal homeomorphism has this property by
[Voe96, prop. 3.2.5]).

Let f:Y — X be a finite morphism, and G a finite group acting on Y over X. Note that, as
Y is affine on X, the scheme theoretic quotient Y/G exists; see [Gro03, Exp. V, Cor. 1.8]. Such
scheme-theoretic quotients are stable by flat pullbacks; see [Gro03, Exp. V, Prop. 1.9].

Definition 3.3.14. Let G be finite group. A qth-distinguished square of group G is a pullback
square of S-schemes of shape

T sy
(3.3.14.1) gl !

in which Y is endowed with an action of G over X, and satisfying the following three conditions.
(a) The morphism f is finite and surjective.
(b) The induced morphism f~Y(X — Z) — f~1(X — Z2)/G is flat.
(c) The morphism f~1(X — Z)/G — X — Z is radicial.

Immediate examples of qfh-distinguished squares of trivial group are the following. The scheme
Y might be the normalization of X, and Z is a nowhere dense closed subscheme out of which f is
an isomorphism; or Y is dense open subscheme of X which is the disjoint union of its irreducible
components; or Y is a closed subscheme of X inducing an isomorphism Y;cq ~ X, eq.

A gfh-distinguished square of group G (3.3.14.1) will be said to be pseudo-Galois if Z is nowhere
dense in X and if the map f~}(X — Z) — X — Z is a pseudo-Galois cover of group G.

The main examples of pseudo-Galois qfh-distinguished squares will come from the following
situation.

Proposition 3.3.15. Consider an irreducible normal scheme X, and a finite extension L of its
field of functions k(X). Let K be the inseparable closure of k(X) in L, and assume that L/K is
a Galois extension of group G. Denote by Y the normalization of X in L. Then the action of
G on k(Y) = L extends naturally to an action on'Y over X. Furthermore, there exists a closed
subscheme Z of X, such that the pullback square

T—Y

Y

is a pseudo-Galois qth-distinguished square of group G.

Proof. The action of G on L extends naturally to an action on Y over X by functoriality. Fur-
thermore, Y/G is the normalization of X in K, so that Y/G — X is finite radicial and surjective
(see [Voe96, Lemma 3.1.7] or [Bou98, V, §2, n°® 3, lem. 4]). By construction, Y is generically a
Galois cover over Y/G, which implies the result (see [GD67, Cor. 18.2.4]). O

3.3.16. For a given S-scheme T', we shall denote by L(T") the corresponding representable gfh-sheaf
of sets (remember that the gfh-topology is not subcanonical, so that L(7T') has to be distinguished
from T itself). Beware that, in general, there is no reason that, given a finite group G acting on
T, the scheme-theoretic quotient L(T/G) (whenever defined) and the gfh-sheaf-theoretic quotient
L(T)/G would coincide.

Lemma 3.3.17. Let f: Y — X be a separated morphism, G a finite group acting on Y over X,
and Z a closed subscheme of X such that f is finite and surjective over X — Z, and such that the
quotient map f~H(X — Z) — f~YX — Z)/G is flat, while the map f~*(X — Z2)/G — X — 7 is
radicial. For g € G, write g: Y — Y for the corresponding automorphism of Y, and define Y, as
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the image of the diagonal Y — Y X x Y composed with the automorphism 1y Xx g:Y xxY —
Y xx Y. Then, if T = Z xx Y, we get a qth-covering of Y X x Y by closed subschemes:

YxXY:(TxZT)UUYg.
geG

Proof. Note that, as f is separated, the diagonal ¥ — Y X x Y is a closed embedding, so that
the Yy’s are closed subschemes of ¥ xx Y. As the map Y Xy, Y — Y xx Y is a universal
homeomorphism, we may assume that Y/G = X. It is sufficient to prove that, if y and y" are two
geometric points of Y whose images coincide in X and do not belong to Z, there exists an element
g of G such that y = gy (which means that the pair (y,y’) belongs to Y,). For this purpose,
we may assume, without loss of generality, that Z = @. Then, by assumption, Y is flat over X,
from which we get the identification (Y xx Y)/G =Y xx (Y/G) =Y (where the action of G on
Y X x Y is trivial on the first factor and is induced by the action on Y on the second factor). This
achieves the proof. O

Proposition 3.3.18. For any qth-distinguished square of group G (3.3.14.1), the commutative
square

L(T)/G —— L(Y)/G

L

L(Z) — = L(X)

is a pullback and a pushout in the category of qfh-sheaves. Moreover, if X is normal and if Z is
nowhere dense in X, then the canonical map L(Y)/G — L(Y/G) ~ L(X) is an isomorphism of
qth-sheaves (which implies that L(T)/G — L(Z) is an isomorphism as well).

Proof. Note that this commutative square is a pullback because it was so before taking the quo-
tients by G (as colimits are universal in any topos). As f is an qgfh-covering, it is sufficient to
prove that

L(T) xp(z) L(T) /G —— L(Y) xpx) L(Y)/G

l |

L(T) L(Y)

is a pushout square. This latter square fits into the following commutative diagram

L(T) L(Y)

| |

L(T) xp(z) L(T) /G —— L(Y) xpx) L(Y)/G

l l

L(T) L(Y)

in which the two vertical composed maps are identities (the vertical maps of the upper commutative
square are obtained from the diagonals by taking the quotients under the natural action of G on
the right component). It is thus sufficient to prove that the upper square is a pushout. As the
lower square is a pullback, the upper one shares the same property; moreover, all the maps in the
upper commutative square are monomorphisms of qfh-sheaves, so that it is sufficient to prove that
the map (L(T') xpz) L(T)/G) L L(Y') — L(Y') X1(x) L(Y)/G is an epimorphism of qfh-sheaves.
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According to lemma 3.3.17, this follows from the commutativity of the diagram

L(T x5z T)1I (ngc L(Yg)) L LY xxY)

| |

(L(T) X 1(z) L(T)/G) L L(Y) —— L(Y) xx) L(Y)/G

in which the vertical maps are obviously epimorphic.

Assume now that X is normal and that Z is nowhere dense in X, and let us prove that the
canonical map L(Y)/G — L(X) is an isomorphism of gfh-sheaves. This is equivalent to prove
that, for any qfh-sheaf of sets F', the map f*: F(X) — F(Y) induces a bijection

F(X)~F(Y)%.

Let F be a gfh-sheaf. The map f*: F(X) — F(Y) is injective because f is a qfh-covering, and it
is clear that the image of f* lies in F(Y)%.
Let a be a section of F' over Y which is invariant under the action of G. Denote by pry, pry :
Y Xx Y — Y the two canonical projections. With the notations introduced in lemma 3.3.17, we
have
pri(a)ly, = a = a.g = pri(a)ly,

for every element g in G. As Z does not contain any generic point of X, the scheme T x z T does
not contain any generic point of Y X x Y neither: as any irreducible component of ¥ dominates
an irreducible component of X, and, as X is normal, the finite map ¥ — X is universally open; in
particular, the projection pr; : ¥ xx Y — Y is universally open, which implies that any generic
point of Y X x Y lies over a generic point of Y. By virtue of [Voe96, prop. 3.1.4], lemma 3.3.17
thus gives a gfh-covering of Y X x Y by closed subschemes of shape

Y xxY = U Y,.
geG
This implies that
pri(a) = pry(a).
The morphism Y — X being a gfh-covering and F' a gfh-sheaf, we deduce that the section a lies
in the image of f*. O

Corollary 3.3.19. For any gfh-distinguished square of group G (3.3.14.1), we get a bicartesian
square of qth-sheaves of abelian groups

Zon(T)g — Zgm(Y)c
Zyin(Z) —— Zgm(X)

(where the subscript G stands for the coinvariants under the action of G). In other words, there
is a canonical short exact sequence of sheaves of abelian groups

0— quh(T)G — quh(Z) D quh(Y)G — quh(X) — 0.

Proof. As the abelianization functor preserves colimits and monomorphisms, the preceding propo-
sition implies formally that we have a short exact sequence of shape

quh(T)G — quh(Z) &) quh(Y)G — quh(X) — 0,

while the left exactness follows from the fact that Z — X being a monomorphism, the map
obtained by pullback, L(T)/G — L(Y)/G, is a monomorphism as well. O
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3.3.20. Let ¥ be a Q-linear stable model category (see 3.2.14).

Consider a finite group G, and an object E of ¥/, endowed with an action of G. By viewing G
as a category with one object we can see F as functor from G to ¥ and take its homotopy limit
in Ho(7'), which we denote by E"“ (in the literature, E"“ is called the object of homotopy fixed
points under the action of G on E). One the other hand, the category Ho(¥) is, by assumption,
a Q-linear triangulated category with small sums, and, in particular, a Q-linear pseudo-abelian
category so that we can define E¢ as the object of Ho(#') defined by

(3.3.20.1) E¢ =Imp,
where p: E — E is the projector defined in Ho(?") by the formula
1
(3.3.20.2) p(x) = v > g
geG

The inclusion E¢ — E induces a canonical isomorphism
(3.3.20.3) EC & ph¢

in Ho(¥'): to see this, by virtue of theorem 3.2.15, we can assume that ¥ is the model category
of complexes of Q-vector spaces, in which case it is obvious.

Corollary 3.3.21. Let C' be a presheaf of complexes of Q-vector spaces on the category of S-
schemes. Then, for any qth-distinguished square of group G (3.3.14.1), the commutative square

RI'gfm (X, quh) - Rquh(Yv quh)G

| |

qufh(Z7 quh) - qufh(Tv quh)G

is a homotopy pullback square in the derived category of Q-vector spaces. In particular, we get a
long exact sequence of shape

Hc?fh(X7 quh) - c?fh(Zz quh) D Hc?fh(Yv Cqﬂ’l)G - c?fh(Ta Oqfh)G - Hgf-}tl(X’ Oqfh)

If furthermore X is normal and Z is nowhere dense in X, then the maps
Hin, (X, Cqm) — Hin, (Y, Com)©  and - Hg,(Z, Com) — He (T, Cqm)©
are isomorphisms for any integer n.

Proof. Let Cymn — C’ be a fibrant resolution in the gfh-local injective model category structure on
the category of gfh-sheaves of complexes of Q-vector spaces; see for instance [Ayo07a, Cor. 4.4.42].
Then for U =Y, T, we have a natural isomorphism of complexes

Hom(Qu (V)e, C") = C'(U)
which gives an isomorphism
RHom(quh(U)G, quh) ~ Rquh(U, quh)G

in the derived category of the abelian category of Q-vector spaces. This corollary thus follows
formally from corollary 3.3.19 by evaluating at the derived functor RHom(—, Cym ).

If furthermore X is normal, then one deduces the isomorphism Hgth(X , Cqm) =~ Hgfﬂl(Y7 Coqm)®
from the fact that L(Y)/G ~ L(Y/G) ~ X (proposition 3.3.18), which implies that Zgm(Y)e ~
Zgm(X). The isomorphism Hiy (Z, Com) ~ H g, (T, Cym)€ then comes as a byproduct of the long
exact sequence above. O

Theorem 3.3.22. Let X be a scheme, and C be a presheaf of complezes of Q-vector spaces on the
small étale site of X. Then C satisfies étale descent if and only if it has the following properties.

(a) The complex C' satisfies Nisnevich descent.
(b) For any étale X-scheme U and any Galois cover V. — U of group G, the map C(U) —
C(V)¥ is a quasi-isomorphism.
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Proof. These are certainly necessary conditions. To prove that they are sufficient, note that the
Nisnevich cohomological dimension and the rational étale cohomological dimension of a noetherian
scheme are bounded by the Krull dimension; see [MV99, proposition 1.8, page 98] and [Voe96,
Lemma 3.4.7]. By virtue of [SV00a, Theorem 0.3], for 7 = Nis, ét, we have strongly convergent
spectral sequences

EY? = HP(U,HY(C),) = HTI(U,C,).

Condition (a) gives isomorphisms HP+¢(C(U)) ~ H%1 (U, Cyis), so that it is sufficient to prove
that, for each of the cohomology presheaves F' = H(C'), we have

HI{)Iis(U7 Fis) ~ Hé’t(U, Fg) .

As the rational étale cohomology of any henselian scheme is trivial in non-zero degrees, it is
sufficient to prove that, for any local henselian scheme U (obtained as the henselisation of an étale
X-scheme at some point), Fnis(U) =~ F&(U). Let G be the absolute Galois group of the closed
point of U. Then we have

Fris(U) = F(U) and  Fg(U) = lim F(Ua)%

where the U,’s run over all the Galois covers of U corresponding to the finite quotients G — G,,.
But it follows from (b) that F(U) =~ F(U,)%= for any a, so that Fxis(U) =~ Fus (U). O

Lemma 3.3.23. Any qfh-covering admits a refinement of the form Z —Y — X, where Z —'Y
is a finite surjective morphism, and Y — X is an étale covering.

Proof. This property being clearly local on X with respect to the étale topology, we can assume
that X is strictly henselian, in which case this follows from [Voe96, Lemma 3.4.2]. O

Theorem 3.3.24. A presheaf of complexes of Q-vector spaces C on the category of S-schemes
satisfies qfh-descent if and only if it has the following two properties:

(a) the complex C satisfies Nisnevich descent;
(b) for any pseudo-Galois qfh-distinguished square of group G (3.3.14.1), the commutative
square

C(X) —= C(V)C

L

C(Z) — C(T)C
is a homotopy pullback square in the derived category of Q-vector spaces.

Proof. Any complex of presheaves of Q-vector spaces satisfying qfh-descent satisfies properties (a)
and (b): property (a) follows from the fact that the qfh-topology is finer than the étale topology;
property (b) is corollary 3.3.21.

Assume now that C satisfies these two properties. Let ¢ : C' — C’ be a morphism of presheaves
of complexes of Q-vector spaces which is a quasi-isomorphism locally for the gfh-topology, and
such that C' satisfies qfh-descent (such a morphism exists thanks to the gfh-local model category
structure on the category of presheaves of complexes of Q-vector spaces; see proposition 3.2.10).
Then the cone of ¢ also satisfies conditions (a) and (b). Hence it is sufficient to prove the theorem
in the case where C is acyclic locally for the gfh-topology.

Assume from now on that Cqm, is an acyclic complex of gfh-sheaves, and denote by H"(C') the
nth cohomology presheaf associated to C. We know that the associated gfh-sheaves vanish, and
we want to deduce that H™(C') = 0.

We shall prove by induction on d that, for any S-scheme X of dimension d and for any integer
n, the group H"(C)(X) = H"(C(X)) vanishes. The case where d < 0 follows from the fact,
that by (a), the presheaves H™(C) send finite sums to finite direct sums, so that, in particular,
H"(C)(2) = 0. Before going further, notice that condition (b) implies H"(C)(Xeq) = H™(C)(X)
for any S-scheme X (consider the case where, in the diagram (3.3.14.1), Z =Y =T = X,e4), 80
that it is always harmless to replace X by its reduction. Assume now that d > 0, and that the
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vanishing of H"(C)(X) is known whenever X is of Krull dimension < d and for any integer n.
Under this inductive assumption, we have the following reduction principle.

Consider a pseudo-Galois gfh-distinguished square of group G (3.3.14.1). If Z and T are of
dimension < d, then by condition (b), the map H"(C)(X) — H"(C)(Y)¢ is an isomorphism:
indeed, we have an exact sequence of shape

H" 1 (C)(T)% — H™(C)(X) — H"(C)(Z) & H"(C)(Y)® — H"(C)(T)“,

which implies our assertion by induction on d.

We shall prove now the vanishing of H™(C)(T) for normal S-schemes T' of dimension d. Let a
be a section of H"(C') over such a T. As H"(C)qm(T) = 0, there exists a gfh-covering g : Y — T
such that g*(a) = 0. But, by virtue of lemma 3.3.23, we can assume g is the composition of a finite
surjective morphism f : Y — X and of an étale covering e : X — T. We claim that e*(a) = 0.
To prove it, as, by (a), the presheaf H™(C') sends finite sums to finite direct sums, we can assume
that X is normal and connected. Refining f further, we can assume that Y is the normalization
of X in a finite extension of k(X), and that k(Y) is a Galois extension of group G over the
inseparable closure of k(X) in k(Y). By virtue of proposition 3.3.15, we get by the reduction
principle the identification H™(C)(X) = H"(C)(Y)%, whence e*(a) = 0. As a consequence, the
restriction of the presheaf of complexes C to the category of normal S-schemes of dimension < d is
acyclic locally for the étale topology (note that this is quite meaningful, as any étale scheme over
a normal scheme is normal; see [GD67, Prop. 18.10.7]). But C satisfies étale descent (by virtue of
theorem 3.3.22 this follows formally from property (a) and from property (b) for Z = @), so that
H"(C)(T) = HZ (T, Ce¢) = 0 for any normal S-scheme 7' of dimension < d and any integer n.

Consider now a reduced S-scheme X of dimension < d. Let p: T — X be the normalization of
X. Aspis birational (see [GD61, Cor. 6.3.8]) and finite surjective (because X is quasi-excellent), we
can apply the reduction principle and see that the pullback map p* : H*(C)(X) — H"(C)(T) =0
is an isomorphism for any integer n, which achieves the induction and the proof. O

Lemma 3.3.25. Etale coverings are finite étale coverings locally for the Nisnevich topology: any
€tale covering admits a refinement of the form Z — 'Y — X, where Z — Y is a finite étale
covering and Y — X is a Nisnevich covering.

Proof. This property being local on X for the Nisnevich topology, it is sufficient to prove this in
the case where X is local henselian. Then, by virtue of [GD67, Cor. 18.5.12 and Prop. 18.5.15],
we can even assume that X is the spectrum of field, in which case this is obvious. O

Lemma 3.3.26. Any qfh-covering admits a refinement of the form Z —Y — X, where Z — 'Y
is a finite surjective morphism, and Y — X is a Nisnevich covering.

Proof. As finite surjective morphisms are stable by pullback and composition, this follows imme-
diately from lemmata 3.3.23 and 3.3.25. O

Lemma 3.3.27. Any h-covering of an integral scheme X admits a refinement of the form
U—-7—-Y—X,

where U — Z is a finite surjective morphism, Z — Y is a Nisnevich covering, Y — X is a proper
surjective birational map, and Y is normal.

Proof. By virtue of [Voe96, Theorem 3.1.9], any h-covering admits a refinement of shape
W-V-—-X,

where W — V is a gfh-covering, and V' — X is a proper surjective birational map. By replacing
V by its normalization Y, we get a refinement of shape

WxyY—-Y—-X

where W xy Y — Y is a gfh-covering, and Y — X is proper surjective birational map. We
conclude by lemma 3.3.26. O
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Lemma 3.3.28. Let C be a presheaf of complexes of Q-vector spaces on the category of S-schemes
satisfying qfh-descent. Then, for any finite surjective morphism f :Y — X with X normal, the
map f*: H*(C)(X) — H™"(C)(Y) is a monomorphism.

Proof. 1t is clearly sufficient to prove this when X is connected. Then, up to refinement, we can
assume that f is a map as in proposition 3.3.15. In this case, by virtue of corollary 3.3.21, the
Q-vector space H"(C)(X) ~ H*(C)(Y)Y is a direct factor of H"(C)(Y). d

Theorem 3.3.29. A presheaf of complexes of Q-vector spaces on the category of S-schemes
satisfies h-descent if and only if it satisfies qfh-descent and cdh-descent.

Proof. This is certainly a necessary condition, as the h-topology is finer than the gfh-topology
and the cdh-topology. For the converse, as in the proof of theorem 3.3.24, it is sufficient to prove
that any presheaf of complexes of Q-vector spaces C' on the category of S-schemes satisfying qfh-
descent and cdh-descent, and which is acyclic locally for the h-topology, is acyclic. We shall prove
by noetherian induction that, given such a complex C, for any integer n, and any S-scheme X, for
any section a of H"(C') over X, there exists a cdh-covering X’ — X on which a vanishes. In other
words, we shall get that C' is acyclic locally for the cdh-topology, and, as C' satisfies cdh-descent,
this will imply that H"(C)(X) = H, (X, Cean) = 0 for any integer n and any S-scheme X. Note
that the presheaves H™(C') send finite sums to finite direct sums (which follows, for instance, from
the fact that C satisfies Nisnevich descent). In particular, H"(C)(2&) = 0 for any integer n.

Let X be an S-scheme, and a € H™(C')(X). We have a cdh-covering of X of shape X'IIX" — X,
where X’ is the sum of the irreducible components of X,.q and X" is a nowhere dense closed
subscheme of X, so that we can assume X is integral. Let a be a section of the presheaf H™(C)
over X. As H"(C)p = 0, by virtue of lemma 3.3.27, there exists a proper surjective birationnal
map p: Y — X with Y normal, a Nisnevich covering ¢ : Z — Y, and a surjective finite morphism
r: U — Z such that r*(¢*(p*(a))) = 0 in H™(C)(U). But then, Z is normal as well (see [GD67,
Prop. 18.10.7]), so that, by lemma 3.3.28, we have ¢*(p*(a)) = 0in H"(C)(Z). Let T be a nowhere
dense closed subscheme of X such that p is an isomorphism over X —7T'. By noetherian induction,
there exists a cdh-covering T’ — T such that a|rs vanishes. Hence the section a vanishes on the
cdh-covering 7" 11 Z — X. O

3.3.d. Proper descent with rational coefficients II: separation. From now on, we assume that
Ho(#) is Q-linear.

Proposition 3.3.30. Let f : Y — X be a morphism of schemes in ., and G a finite group
acting on'Y over X. Denote by & the scheme Y considered a functor from G to the category of
S-schemes, and denote by ¢ : (#,G) — X the morphism induced by f. Then, for any object M
of Ho(#)(X), there are canonical isomorphisms

(RELf5(M))S o (Rf. Lf*(M))"C = R, Lp* (M) .
Proof. The second isomorphism comes from proposition 3.1.15, and the first, from (3.3.20.3). O

Theorem 3.3.31. If Ho(.#) satisfies Nisnevich descent, the following conditions are equivalent:

(i) Ho(#) satisfies étale descent.
(i) for any finite étale cover f:Y — X, the functor

Lf*:Ho(.#)(X) — Ho(A)(Y)
18 conservative;
(iii) for any finite Galois cover f:Y — X of group G, and for any object M of Ho(.#)(X),
the canonical map
M — (R Lf*(M))¢
s an isomorphism.
Proof. The equivalence between (i) and (iii) follows from theorem 3.3.22 by corollaries 3.2.17 and
3.2.18, and proposition 3.2.8 shows that (i) implies (ii). It is thus sufficient to prove that (ii)
implies (iii). Let f : Y — X be a finite Galois cover of group G. As the functor f* = Lf* is
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conservative by assumption, it is sufficient to check that the map M — (Rf. Lf*(M))¢ becomes
an isomorphism after applying f*. By virtue of proposition 3.1.17, this just means that it is
sufficient to prove (iii) when f has a section, i.e. when Y is isomorphic to the trivial G-torsor over
X. In this case, we have the (equivariant) identification @geG M ~ Rf.Lf*(M), where G acts

on the left term by permuting the factors. Hence M ~ (Rf. Lf*(M))%. O

Proposition 3.3.32. Assume that Ho(.#) has the localization property. The following conditions
are equivalent:

(i) Ho(A) is separated.
(ii) Ho(A) is semi-separated and satisfies étale descent.

Proof. This follows from proposition 2.3.9 and theorem 3.3.31. O

Corollary 3.3.33. Assume that all the residue fields of S are of characteristic zero, and that A
has the property of localization. Then the following conditions are equivalent:

(i) Ho(A) is separated.

(i) Ho(A) satisfies étale descent.

Proof. In this case, a finite surjective morphism f : Y — X is radicial if and only if it induces
an isomorphism after reduction Y.y ~ X,.q. But it is clear that, by the localization property,
such a morphism f induces an equivalence of categories Lf*, so that Ho(.#) is automatically
semi-separated. We conclude by proposition 3.3.32. O

Proposition 3.3.34. Assume that Ho(.#) is separated, satisfies the localization property the
proper transversality property. Then, for any pseudo-Galois cover f:Y — X of group G, and for
any object M of Ho(.#)(X), the canonical map

M — (Rf. Lf*(M))©
is an isomorphism.

Proof. By proposition 3.3.32, this is an easy consequence of proposition 2.1.13 and of condition
(iii) of theorem 3.3.31. O

3.3.35. From now on, we assume furthermore that any scheme in .% is quasi-excellent.

Theorem 3.3.36. Assume that Ho(.#) satisfies the localization and proper transversality prop-
erties. Then the following conditions are equivalent:
(i) Ho(A) is separated;
(i) Ho(A) satisfies h-descent;
(i1i) Ho(A) satisfies qth-descent;
(iv) for any qth-distinguished square (3.3.14.1) of group G, if we write a = fh=1ig: T — X
for the composed map, then, for any object M of Ho(.#)(X), the commutative square

M (RfLf(M))S

(3.3.36.1) J{ i
Ri, Li*(M) —> (Ra, La*(M))®

1s homotopy cartesian;
(v) the same as condition (iv), but only for pseudo-Galois qfh-distinguished squares.

Proof. As . satisfies cdh-descent (theorem 3.3.9), the equivalence between conditions (ii) and
(iii) follows from theorem 3.3.29 by corollary 3.2.18. Similarly, theorem 3.3.24 and corollaries
3.3.21, 3.2.17 and 3.2.18 show that conditions (iii), (iv) and (v) are equivalent. As étale surjective
morphisms as well as finite radicial epimorphisms are gfh-coverings, it follows from proposition
3.2.8, theorem 3.3.31 and proposition 3.3.32, that condition (iii) implies condition (i). It thus
remains to prove that condition (i) implies condition (v). So let us consider a pseudo-Galois qfh-
distinguished square (3.3.14.1) of group G, and prove that (3.3.36.1) is homotopy cartesian. Using
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proper transversality, we see that the image of (3.3.36.1) by the functor Li* is (isomorphic to) the
homotopy pullback square

Li* (M) — (Rg. Lg* Li*(

M
M

Li* (M) — (Rg, Lg* Li*(

)¢

)¢

Write j : U — X for the complement open immersion of i, and b : f~1(U) — U for the map
induced by f. As j is étale, we see, using proposition 3.1.17, that the image of (3.3.8.1) by
j* = Lj* is (isomorphic to) the square

J* (M) — (Rb, Lb* j*(M))“

| |

0 0

in which the upper horizontal map is an isomorphism by proposition 3.3.34. Hence it is a homotopy
pullback square. Thus, because the pair of functors (Li*, j*) is conservative on Ho(.Z)(X), the
square (3.3.36.1) is homotopy cartesian. O

Corollary 3.3.37. Assume that all the residue fields of S are of characteristic zero, and that
Ho(.#) has the localization and proper transversality properties. Then Ho(.#) satisfies h-descent
if and only if it satisfies étale descent.

Proof. This follows from corollary 3.3.33 and theorem 3.3.36. O

Corollary 3.3.38. Assume that Ho(.#) is separated and has the localization and proper transver-
sality properties. Let f : Y — X be a finite surjective morphism, with X normal, and G a group
acting on'Y over X, such that the map Y/G — X is generically radicial (i.e. radicial over a dense
open subscheme of X ). Consider at last a pullback square of the following shape.

Y —Y
ol

X —X

Then, for any object M of Ho(.#)(X'), the natural map
M — (Rf{Lf"(M))¢
is an isomorphism.
Proof. For any presheaf C' of complexes of Q-vector spaces on ./ X, one has an isomorphism
R i (X, Cypn) = R g (Y, Cypn )

This follows from the fact that we have an isomorphism of gfh-sheaves of sets L(Y)/G ~ L(X)
(the map Y — Y/G being generically flat, this is proposition 3.3.18), which implies that the map
L(Y")/G — L(X') is an isomorphism of gfh-sheaves (by the universality of colimits in topoi), and
implies this assertion (as in the proof of 3.3.21).

By virtue of theorem 3.3.36, Ho(.#) satisfies qfh-descent, so that the preceding computations
imply the result by corollaries 3.2.17 and 3.2.18. O

Corollary 3.3.39. Assume that Ho(.#) is separated and has the localization and proper transver-
sality properties. Then for any finite surjective morphism f : Y — X with X normal, the morphism
M — Rf, Lf*(M)

is a monomorphism and admits a functorial splitting in Ho(.#)(X). Furthermore, this remains
true after base change by any map X' — X.
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Proof. Tt is sufficient to treat the case where X is connected. We may replace Y by a normalization
of X in a suitable finite extension of its field of function, and assume that a finite group G acts on
Y over X, so that the properties described in the preceding corollary are fulfilled (see 3.3.15). O

Remark 3.3.40. The condition (iv) of theorem 3.3.36 can be reformulated in a more global way
as follows (this won’t be used in these notes, but this might be useful for the reader who might
want to formulate all this in terms of (pre-)algebraic derivators [Ayo07a, Def. 2.4.13]). Given a
qfh-distinguished square (3.3.14.1) of group G, we can form a functor % from category I = I
(3.3.10.1) to the category of diagrams of S-schemes corresponding to the diagram of diagrams of
S-schemes

(h,lg)

(7,G) —= (#,Q)
Z

in which .7 and % correspond to T anf Y respectively, seen as functor from G to .#/X. The
construction of 3.1.22 gives a diagram of X-schemes ([.%,Iz) which can be described explicitely
as follows. The category I# is the cofibred category over I associated to the functor from ™ to
the category of small categories defined by the diagram

GgG
e

in which e stands for the terminal category, and G for the category with one object associated to
G. Tt has thus three objects a, b, ¢ (see (3.3.10.1)), and the morphisms are determined by
* iy =g
Homy, (z,y) = @ ifx#yand xz=b,c;
G otherwise.

The functor & sends a, b, c to T,Y, Z respectively, and simply encodes the fact that the diagram

7>y

|

Z
is G-equivariant, the action on Z being trivial. Now, by propositions 3.1.23 and 3.3.30, if
v (Z,Iz) — (X,) denotes the canonical map, for any object M of Ho(.#)(X), the ob-
ject Ry, Lp* (M) is the functor from | = °P to .#(X) corresponding to the diagram below (of
course, this is well defined only in the homotopy category of the category of functors from _I to

A (X)).
(Rf. Lf*(M))C

|

Ri. Li*(M) — (Ra, La*(M))®

As a consequence, if ¢ : ([#,1z) — X denotes the structural map, the object R, Lyp*(M) is
simply the homotopy homotopy limit of the diagram of .#(X) above, so that condition (iv) of
theorem 3.3.36 can now be reformulated by saying that the map

M — Rep, Lo (M)
is an isomorphism, i.e. that the functor

Lo : Ho(#)(X) — Ho(.#) ([, 1)
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is fully faithful.

4. BASIC HOMOTOPY COMMUTATIVE ALGEBRA

4.1. Rings.

Definition 4.1.1. A symmetric monoidal model category ¥ satisfies the monoid axiom if, for
any trivial cofibration A — B and any object X, the smallest class of maps of ¥ which contains
the map X ® A — X ® B and is stable by pushouts and transfinite compositions is contained in
the class of weak equivalences.

4.1.2. Let ¥ be a symmetric monoidal category. We denote by Mon(¥') the category of monoids
in 7. If ¥ has small colimits, the forgetful functor

U:Mon(V)—V

has a left adjoint
F:¥ — Mon(V).

Theorem 4.1.3. Let ¥ a symmetric monoidal combinatorial model category which satisfies the
monoid aziom. The category of monoids Mon(¥') is endowed with the structure of a combinatorial
model category whose weak equivalences (resp. fibrations) are the morphisms of commutative
monoids which are weak equivalences (resp. fibrations) in V. In particular, the forgetful functor
U : Mon(¥) — ¥ is a right Quillen functor. Moreover, if the unit object of ¥ is cofibrant, then
any cofibrant object of Mon(¥') is cofibrant as an object of ¥V .

Proof. This is very a particular case of the third assertion of [SS00, Theorem 4.1] (the fact that
Mon(¥) is combinatorial whenever ¥ is so comes for instance from [Bek00, Proposition 2.3]). O

Definition 4.1.4. A symmetric monoidal model category ¥ is strongly Q-linear if the underlying
category of ¥ is additive and Q-linear (i.e. all the objects of ¥ are uniquely divisible).

Remark 4.1.5. If ¥ is a strongly Q-linear stable model category, then it is Q-linear in the sense
of 3.2.14.

Lemma 4.1.6. Let ¥ be a strongly Q-linear model category, G a finite group, and v : E — F
an equivariant morphism of representations of G in V. Then, if u is a cofibration in ¥, so is the
induced map Eq — Fg (where the subscript G denotes the coinvariants under the action of the
group G).

Proof. The map Eg — Fg is easily seen to be a direct factor (retract) of the cofibration E —
F. O

4.1.7. If ¥ is a symmetric monoidal category, we denote by Comm/(¥') the category of commu-
tative monoids in . If ¥ has small colimits, the forgetful functor

U: Comm(¥V)— YV

has a left adjoint
F:¥ — Comm(Y).

Theorem 4.1.8. Let ¥ a symmetric monoidal combinatorial model category. Assume that ¥ is
left proper and tractable, satisfies the monoid axiom, and is strongly Q-linear. Then the category of
commutative monoids Comm(¥) is endowed with the structure of a combinatorial model category
whose weak equivalences (resp. fibrations) are the morphisms of commutative monoids which are
weak equivalences (resp. fibrations) in ¥ . In particular, the forgetful functor U : Comm(¥) — ¥
is a right Quillen functor.

If moreover the unit object of ¥ is cofibrant, then any cofibrant object of Comm/(¥) is cofibrant
as an object of V.
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Proof. The preceding lemma implies immediately that ¥ is freely powered in the sense of [Lur09,
Definition 4.3.17], so that the existence of this model category structure follows from a general
result of Lurie [Lur09, Proposition 4.3.21]. The second assertion is then true by definition. The
last assertion is proved by a careful analysis of pushouts by free maps in Comm/(¥") as follows.
For two cofibrations u: A — B and v : C — D in ¥, write u A v for the map

uNv: AR Dllygc B&C — B® D

(which is a cofibration by definition of monoidal model categories). By iterating this construction,
we get, for a cofibration u: A — B in ¥, a cofibration

A"(u) =u A Aw:O"(u) — BO".
n times
Note that the symmetric group &,, acts naturally on B®™ and (0" (u). We define
Sym™(B) = (B™)s, and Sym"(B, A) = "(u)s,
By virtue of Lemma 4.1.6, we get a cofibration of ¥:
o™(u) : Sym™ (B, A) — Sym"(B).
Consider now the free map F(u) : F(A) — F(B) can be filtered by F(A)-modules as follows.

Define Dy = F(A). As A = Sym' (B, A), we have a natural morphism F(A)®Sym' (B, A) — F(A).
The objects D,, are then defined by induction with the pushouts below.

n

lray®on (u)

F(A) ® Sym™(B, A) F(A) ® Sym™(B)

| |

anl Dn

We get natural maps D,, — F(B) which induce an isomorphism
lim D,, ~ F(B)
—
n>0
in such a way that the morphism F'(u) correspond to the canonical map
F(A) =Dy — lim D, .
n>0
Hence, if F(A) is cofibrant, all the maps D,,_y — D,, are cofibrations, so that the map F(A) —
F(B) is a cofibration in ¥. In the particular case where A is the initial object of ¥, we see that
for any cofibrant object B of ¥/, the free commutative monoid F(B) is cofibrant as an object of
¥ (because the initial object of Comm(¥') is the unit object of ¥'). This also implies that, if v is
a cofibration between cofibrant objects, the map F'(u) is a cofibration in 7.
This description of F(u) also allows to compute the pushouts of F(u) in Comm(¥) in ¥ as
follows. Consider a pushout

in Comm(¥'). For n > 0, define R,, by the pushouts of ¥
F(A)——= D,
R——— Rn

We then have an isomorphism
lim R, ~S.
—
n>0
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In particular, if u is a cofibration between cofibrant objects, the morphism of commutative monoids
v : R — Sis then a cofibration in #. As the forgetful functor U preserves filtered colimits, conclude
easily from there (with the small object argument [Hov99, Theorem 2.1.14]) that any cofibration of
Comm(¥) is a cofibration of ¥. Using again that the unit object of ¥ is cofibrant in ¥ (i.e. that
the initial object of Comm/(¥) is cofibrant in ¥") this proves the last assertion of the theorem. O

Corollary 4.1.9. Let ¥ a symmetric monoidal combinatorial model category. Assume that ¥
is left proper and tractable, satisfies the monoid azxiom, and is strongly Q-linear. Consider a
small set H of maps of ¥, and denote by Ly the left Bousfield localization of ¥ by H; see
[Bar09, Theorem 4.7]. Define the class of H-equivalences in Ho(¥') to be the class of maps which
become invertible in Ho(Ly ). If H-equivalences are stable by (derived) tensor product in Ho(¥'),
then Ly is a symmetric monoidal combinatorial model category (which is again left proper and
tractable, satisfies the monoid aziom, and is strongly Q-linear).

In particular, under these assumtions, there exists a morphism of commutative monoids 1 — R
in ¥V which is a weak equivalence of Ly ¥, with R a cofibrant and fibrant object of Ly V' .

Proof. The first assertion is a triviality. The last assertion follows immediately: the map 1 — R is
simply obtained as a fibrant replacement of 1 in the model category Comm(Lg V") obtained from
Theorem 4.1.8 applied to Ly ¥ O

4.1.10. Consider now a category ., as well as a closed symmetric monoidal bifibred category .#
over .. We shall also assume that the fibers of .# admit limits and colimits.

Then the categories Mon(.# (X)) (resp. Comm(.#(X))) define a bifibred category over .7 as
follows. Given a morphism f: X — Y, the functor

[ (Y) = (X
is symmetric monoidal, so that it preserves monoids (resp. commutative monoids) as well as
morphisms between them. It thus induces a functor
[ Mon(A#(Y)) — Mon( (X))

(resp. f*: Comm (A (Y)) — Comm(A#(X))).
As f* . M (Y) — #(X) is symmetric monoidal, its right adjoint f, is lax monoidal: there is a
natural morphism

(4.1.10.1)

(4.1.10.2) ly — fu(lx) = fu [*(1y),
and, for any objects A and B of .#(X), there is a natural morphism
(4.1.10.3) £.(A) @y f.(B) — f.(A®x B)

which corresponds by adjunction to the map
fr(f(A) @y fu(B)) = f* fi(A) @ [ fo(B) - A® B.

Hence the functor f, preserves also monoids (resp. commutative monoids) as well as morphisms
between them, so that we get a functor

fu: Mon( (X)) — Mon(#(Y))
(resp. fy : Comm (M (X)) — Comm(A(Y))).

By construction, the functor f* of (4.1.10.1) is a left adjoint ot the functor f, of (4.1.10.4). These
constructions extend to morphisms of .-diagrams in a similar way.

(4.1.10.4)

Proposition 4.1.11. Let .# be a symmetric monoidal combinatorial fibred model category over
. Assume that, for any object X of 7, the model category #(X) satisfies the monoid axiom
(resp. is left proper and tractable, satisfies the monoid axiom, and is strongly Q-linear).

(a) For any object X of .7, the category Mon(.#)(X) (resp. Comm(4)(X)) of monoids
(resp. of commutative monoids) in A (X) is a combinatorial model category structure
whose weak equivalences (resp. fibrations) are the morphisms of commutative monoids
which are weak equivalences (resp. fibrations) in #(X). This turns Mon(.#) (resp.
Comm(.A)) into a combinatorial fibred model category over ..
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(b) For any morphism of #-diagrams ¢ : (Z,I) — (Y, J), the adjunction
0" Mon( MY, J) = Mon(M)(Z, 1) : .
(resp. ¢ : Comm(A)Y ,J) = Comm (M) (X 1) : @)

is a Quillen adjunction (where the categories of monoids Mon(#)(Z ,I) (resp. of commu-
tative monoids Comm(#) (X', 1)) are endowed with the injective model category structure
obtained from Proposition 3.1.7 applied to Mon(.#) (resp. to Comm(.A)).

(d) If moreover, for any object X of 7, the unit 1x is cofibrant in A (X), then, for morphism
of S -diagrams ¢ : (2", 1) — (Y, J), the square

Ho(Mon(4))( , J) —£ > Ho(Mon(.4))(2, T)
(4.1.11.1) Ul lU
Ho( )W, J) —~ Ho(.a)( 2, 1)

1s essentially commutative. Similarly, in the respective case, the square

Ho(Comm()) (@, J) —=5"> Ho( Comm (.4))(2,1)
(4.1.11.2) Ul iU
Ho(. ) (W, ]) —~ ~ Ho(.u)(2,1)

18 essentially commutative.

Proof. Assertion (a) is an immediate consequence of Theorem 4.1.3 (resp. of Theorem 4.1.8), and
assertion (b) is a particular case of Proposition 3.1.11 (beware that the injective model category
structure on Comm(.#)(Z ,I) does not necessarily coincide with the model category structure
given by Theorem 4.1.3 (resp. of Theorem 4.1.8) applied to the injective model structure on
AM(Z,1)). For assertion (d), we see by the second assertion of Proposition 3.1.6 that it is sufficient
to prove it when ¢ : X — Y is simply a morphism of .. In this case, by construction of the total
left derived functor of a left Quillen functor, this follows from the fact that ¢* commutes with the
forgetful functor and from the fact that, by virtue of the last assertion of Theorem 4.1.3 (resp. of
Theorem 4.1.8), the forgetful functor U preserves weak equivalences and cofibrant objects. O

Remark 4.1.12. The main application of the preceding corollary will come from assertion (d): it
says that, given a monoid (resp. a commutative monoid) R in .#(Y) and a morphism f: X — Y,
the image of R by the functor

Lf* : Ho(.#)(Y) — Ho(.#)(X)

is canonically endowed with a structure of monoid (resp. of commutative monoid) in the strongest
sense possible. Under the assumptions of assertion (c¢) of Proposition 4.1.11, we shall often make
the abuse of saying that Lf*(R) is a monoid (resp. a commutative monoid) in .#(X) without
refereeing explicitely to the model category structure on Mon(.#)(X) (resp. on Comm(.#)(X)).
Similarly, for any monoid (resp. commutative monoid) R in .Z(X), Rf.(R) will be canonically
endowed with a structure of a monoid (resp. a commutative monoid) in .#(Y"). In particular, for
any monoid (resp. commutative monoid) R in .#(Y), the adjunction map

R—Rf. Lf*(R)

is a morphism of monoids (i.e. is a map in the homotopy category Ho(Mon(.#))(X) (resp.
Ho(Comm/(#))(X))), and, for any monoid (resp. commutative monoid) R in .#(X), the adjunc-
tion map

Li*Rf.(R) — R
is a morphism of monoids (i.e. is a map in the homotopy category Ho(Mon(.#))(Y) (resp.
Ho(Comm/(4))(Y))).
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Remark 4.1.13. In order to get a good homotopy theory of commutative monoids wihout the
strongly Q-linear assumption, we should replace commutative monoids by E-algebras (i.e. ob-
jects endowed with a structure of commutative monoid up to a bunch of coherent homotopies).
More generally, we should prove the analog of Theorem 4.1.3 and of Theorem 4.1.8 by replacing
Mon(¥) by the category of algebras of some ‘well behaved’ operad, and then get as a consequence
the analog of Proposition 4.1.11. All this should be a consequence of the general constructions
and results of [Spi01, BM03, BMO0S].

However, in the case we are interested in the homotopy theory of commutative monoids in
some category of spectra 7, it seems that some version of Shipley’s positive stable model structure
(¢f. [Shi04, Proposition 3.1]) would provide a good model category for commutative monoids,
which, by Lurie’s strictification theorem [Lur09, Theorem 4.3.22], would be equivalent to the
homotopy theory of F,-algebras in #. This kind of technics should certainly be available in the
context of stable homotopy theory of schemes, which would provide the good setting to speak
of motivic commutative ring spectra: with these positive stable model structures, Theorem 4.1.8
and Proposition 4.1.11 should be true for genuine commutative monoids wihout any Q-linearity
assumption (in general, given a nice enough combinatorial symmetric monoidal model category
¥ with unit 1, the ‘positive stable model category of symmetric 1-spectra’ should provide a
combinatorial symmetric model category which should be Quillen equivalent to ¥, and in which
commutative monoids are models for F..,-algebras in ¥’; this would provide an alternative to the
point of view of S-modules of Elmendorf, Kriz, Mandell, May, and Spitzweck [EKMM97, Spi01]).

4.2. Modules.

4.2.1. Given a monoid R in a symmetric monoidal category ¥, we shall write R-mod(¥") for the
category of (left) R-modules. The forgetful functor

U:R-mod(¥)— 7V
is a left adjoint to the free R-module functor
R®(—=):¥ — R-mod(¥).

If ¥ has enough small colimits, and if R is a commutative monoid, the category R-mod(¥) is
endowed with a unique symmetric monoidal structure such that the functor R ® (—) is naturally
symmetric monoidal. We shall denote by ® g the tensor product of R-mod(¥).

Theorem 4.2.2. Let ¥ be a combinatorial symmetric model category which satisfies the monoid
aziom.

(i) For any monoid R in ¥, the category of right (resp. left) R-modules is a combinatorial
model category with weak equivalences (resp. fibrations) the morphisms of R-modules which
are weak equivalences (resp. fibrations) in V.

(i) For any commutative monoid R in ¥, the model category of R-modules given by (i) is a
combinatorial symmetric monoidal model category which satisfies the monoid axiom.

Proof. Assertions (i) and (ii) are particular cases of the first two assertions of [SS00, Theorem
4.1]. O

Definition 4.2.3. A symmetric monoidal model category ¥ is perfect if it has the following
properties.

(a) ¥ is combinatorial and tractable (3.1.27);

(b) ¥ satisfies the monoid axiom;

(¢) For any weak equivalence of monoids R — S, the functor M — S ®g M is a left Quillen
equivalence from the category of left R-modules to the category of left S-modules.

(d) weak equivalences are stable by small sums in ¥

Remark 4.2.4. If ¥ is a perfect symmetric monoidal model category, then, for any commutative
monoid R, the symmetric monoidal model category of R-modules in ¥ given by Theorem 4.2.2 (ii)
is also perfect: condition (c) is quite obvious, and condition (d) comes from the fact that the
forgetful functor U : R-mod — ¥ commutes with small sums, while it preserves and detects weak
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equivalences. Note that condition (d) implies that the functor U : Ho(R- mod) — Ho(¥') preserves
small sums.

Remark 4.2.5. If 7 is a stable symmetric monoidal model category which satisfies the monoid
axiom, then for any monoid R of ¥, the model category of (left) R-modules given by Theorem
4.2.2 is stable as well: the suspension functor of Ho(R- mod) is given by the derived tensor product
by the R-bimodule R[1], which is clearly invertible with inverse R[—1].

Proposition 4.2.6. Let ¥ be a stable perfect symmetric monoidal model category. Assume fur-
thermore that Ho(¥') admits a small family G of compact generators (as a triangulated category).
For any monoid R in ¥, the triangulated category Ho(R-mod(¥)) admits the set {RRVE | E € G}
as a family of compact generators.

Proof. We have a derived adjunction
R&" (=) : Ho(¥) 2 Ho(R-mod(¥)) : U .

As the functor U preserves small sums the functor R ®¥ (—) preserves compact objects. But U is
also conservative, so that {R®@Y E | E € G} is a family of compact generators of Ho(R-mod(7)).
O

Remark 4.2.7. If ¥ is a combinatorial symmetric model category which satisfies the monoid
axiom, then there are two ways to derive the tensor product. The first one consists to derive the
left Quillen bifunctor (—) ® (—), which gives the usual derived tensor product

(=) @ (=) : Ho(¥) x Ho(¥#) — Ho(¥).

Remember that, by construction, A ®“ B = A’ ® B’, where A’ and B’ are cofibrant replacements
of A and B respectively. On the other hand, the monoid axiom gives that, for any object A of 7,
the functor A ® (—) preserves weak equivalences between cofibrant objects, which implies that it
has also a total left derived functor

A" (=) :Ho(¥) — Ho(¥).

Despite the fact we have adopted very similar (not to say identical) notations for these two derived
functor, there is no reason they would coincide in general: by construction, the second one is defined
by A®Y B = A® B’, where B’ is some cofibrant replacement of B. However, they coincide quite
often in practice (e.g. for simplicial sets, for the good reason that all of them are cofibrant, or for
symmetric S'-spectra, or for complexes of quasi-coherent Ox-modules over a quasi-compact and
quasi-separated scheme X).

Proposition 4.2.8. Let ¥ be a stable combinatorial symmetric monoidal model category which
satisfies the monoid axiom. Assume furthermore that, for any cofibrant object A of V', the functor
A® (—) preserve weak equivalences (in other words, that the two ways to derive the tensor product
explained in Remark 4.2.7 coincide), and that weak equivalences are stable by small sums in V.
Then the symmetric monoidal model category ¥V is perfect.

Proof. We just have to check condition (c) of Definition 4.2.3. Consider a weak equivalence of
monoids R — S. We then get a derived adjunction

S @% (=) : Ho(R-mod(¥)) = Ho(S-mod(¥)) : U,
where S @¥% (—) is the left derived functor of the functor M +— S ®gr M. We have to prove that,
for any left R-module M, the map

M — Se% M

is an isomorphism in Ho(?"). As this is a morphism of triangulated functors which commutes with
sums, and as Ho(R-mod(¥)) is well generated in the sense of Neeman [Nee01] (as the localization
of a stable combinatorial model category), it is sufficient to check this when M runs over a small
family of generators of Ho(R-mod(¥')). Let us chose is a small family of generators G of Ho(¥"). As
the forgetful functor from Ho(R- mod(7)) to Ho(?) is conservative, we see that {R@YE | E € G}
is a small generating family of Ho(R- mod(%')). We are thus reduced to prove that the map

RE - S@% (Re¥"FE)~ SV E
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is an isomorphism for any object F in G. For this, we can assume that E is cofibrant, and this
follows then from the fact that the functor (—)® E preserves weak equivalences by assumption. O

4.2.9. Let . be a category endowed with an admissible class of morphisms &, and .# a symmetric
monoidal Z-fibred category. Consider a monoid R in the symmetric monoidal category . (1.s,.7)
(i.e. a section of the fibred category Mon(.#) over .#). In other words, R consists of the data of
a monoid Rx for each object X of ., and of a morphism of monoids ay : f*(Ry) — Rx for each
map f: X — Y in ¥, subject to coherence relations; see 3.1.2.

For an object X of ., we shall write R-mod(X) for the category of (left) Rx-modules in
AM(X), ie.

R-mod(X) = Rx-mod(Z(X)).

This defines a fibred category R-mod over .# as follows.

For a morphism f: X — Y, the inverse image functor

(4.2.9.1) f*: R-mod(Y) — R-mod(X)
is defined by

(where, on the right hand side, f* stands for the inverse image functor in .#). The functor
(4.2.9.1) has a right adjoint
(4.2.9.3) fx« i R-mod(X) — R-mod(Y)

which is simply the functor induced by f. : #(X) — .#(Y) (as the latter sends Rx-modules to
f+«(Rx)-modules, which are themselves Ry-modules via the map ay).

If the map f is a &-morphism, then, for any Rx-module M, the object fy(M) has a natural
structure of Ry-module: using the map ay, M has a natural structure of f*(Ry )-module

[f(Ry)®x M — M,
and applying f;, we get by the Z-projection formula (1.1.25) a morphism
Ry ® fy(M) ~ fy(f*(Ry) © M) — f;(M)
which defines a natural Ry-module structure on fy(M). For a &-morphism f : X — Y, we define
a functor
(4.2.9.4) fy : R-mod(X) — R-mod(Y)

as the functor induced by f; : #(X) — #(Y). Note that the functor (4.2.9.4) is a left adjoint to
the functor (4.2.9.1) whenever the map ay : f*(Ry) — Rx is an isomorphism in .Z(X).

We shall say that R is a cartesian monoid in A4 over ./ if R is a monoid of .# (14, %) such
that all the structural maps f*(Ry) — Rx are isomorphisms (i.e. if R is a cartesian section of
the fibred category Mon(.#) over %)

If R is a cartesian monoid in .# over ., then R-mod is a &-fibred category over .: to see
this, it remains to prove that, for any pullback square of .

XI#X

1
Y’ W Y
in which f is a &Z-morphism, and for any Ryx-module M, the base change map
fig7 (M) — ™ fy(M)
is an isomorphism, which follows immediately from the analogous formula for .Z.
Similarly, we see that whenever R is a commutative monoid of .# (14, %) (i.e. Rx is a com-

mutative monoid in .#(X) for all X in .), then R-mod is a symmetric monoidal Z?-fibred
category.
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Proposition 4.2.10. Let .# be a combinatorial symmetric monoidal &-fibred model category
over . which satisfies the monoid axiom, and R a monoid in M (1w, ) (resp. a cartesian
monoid in M over /). Then 4.2.2 (i) applied termwise turns R-mod into combinatorial fibred
model category (resp. a combinatorial P-fibred model category).

If moreover R is commutative, then R-mod is a combinatorial symmetric monoidal fibred model
category (resp. a combinatorial symmetric monoidal &-fibred model category).

Proof. Choose, for each object X of ., two small sets of maps Ix and Jx which generate the
class of cofibrations and the class of trivial cofibrations in .# (X) respectively. Then Rx ®x Ix
and Rx ®x Jx generate the class of cofibrations and the class of trivial cofibrations in R- mod(X)
respectively. For a map f: X — Y in .7, we see from formula (4.2.9.2) that the functor (4.2.9.1)
sends these generating cofibrations and trivial cofibrations to cofibrations and trivial cofibrations
respectively, from which we deduce that the functor (4.2.9.1) is a left Quillen functor. In the
respective case, if f is a Z-morphism, then we deduce similarly from the projection formula
(1.1.25) in . that the functor (4.2.9.4) sends generating cofibrations and trivial cofibrations to
cofibrations and trivial cofibrations respectively. The last assertion follows easily by applying
4.2.2 (ii) termwise. U

Proposition 4.2.11. Let .# be a perfect symmetric monoidal &2 -fibred model category over .Z,
and consider a homotopy cartesian monoid R in A over . (i.e. a homotopy cartesian section of
Mon(A) (5.1.26)). Then Ho(R-mod) is a &-fibred category over ., and

R@Y (—) : Ho(.#) — Ho(R-mod)

is a morphism of P-fibred categories. In the case where R is commutative, Ho(R-mod) is even a
symmetric monoidal &P-fibred category.
Moreover, for any weak equivalence between homotopy cartesian monoids R — S over ., the
Quillen morphism
S®g (—): R-mod — S-mod
induces an equivalence of P-fibred categories over ./
S @% (-) : Ho(R-mod) — Ho(S-mod).

Proof. Tt is sufficient to prove these asertions by restricting everything over .#/S, where S runs
over all the objects of .. In particular, we may (and shall) assume that . has a terminal object
S. As . is perfect, it follows from condition (c) of Definition 4.2.3 that we can replace R by any
of its homotopy cartesian resolution (see Proposition 3.1.29). In particular, we may assume that
Ry is a cofibrant object of Mon(.#)(S). We can thus define a termwise cofibrant cartesian monoid
R’ as the family of monoids f*(Rg), where f : X — S runs over all the objects of ¥ ~ .#/S.
There is a canonical morphism of homotopy cartesian monoids R’ — R which is a termwise weak
equivalence. We thus get, by condition (c) of Definition 4.2.3, an equivalence of fibred categories

R®%, (—) : Ho(R'-mod) — Ho(R-mod).

We can thus replace R by R’, which just means that we can assume that R is cartesian and
termwise cofibrant. The first assertion follows then easily from Proposition 4.2.10. In the case
where R is commutative, we prove that Ho(R- mod) is a &-fibred symmetric monoidal category
as follows. Let f : X — Y a morphism of .. We would like to prove that, for any object M in
Ho(R-mod)(X) and any object N in Ho(R-mod)(Y), the canonical map

(4.2.11.1) Lfy(M @% f*(N)) — Lfy(M) @% N

is an isomorphism. By adjunction, this is equivalent to prove that, for any objects N and F in
Ho(R-mod)(Y), the map

(4.2.11.2) f*RHompg(N,E) — RHompg(f*(N), f*(E))

is an isomorphism in Ho(R- mod)(X) (where RHompg stands for the internal Hom of Ho(R- mod)).

But the forgetful functors
U : Ho(R-mod)(X) — Ho(#)(X)
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are conservative, commute with f* for any &-morphism f, and commute with internal Hom: by
adjunction, this follows immediately from the fact that the functors

R®" (=) : Ho(.#)(X) — Ho(R-mod)(X) ~ Ho(R'-mod)(X)

are symmetric monoidal and define a morphism of Z-fibred categories (and thus, in particular,
commute with f; for any &-morphism f). Hence, to prove that (4.2.11.2) is an isomorphism, it
is sufficient to prove that its analog in Ho(.#) is so, which follows immediately from the fact that
the analog of (4.2.11.1) is an isomorphism in Ho(.#') by assumption.

For the last assertion, we are also reduced to the case where R and S are cartesian and termwise
cofibrant, in which case this follows easily again from condition (c) of Definition 4.2.3. O

Proposition 4.2.12. Let .# be a combinatorial symmetric monoidal model category over &
which satisfies the monoid axiom. Then, for any cartesian monoid R in .# over . we have a
Quillen morphism

R®(-): # — R-mod .
If, for any object X of .7, the unit object 1x is cofibrant in .4 (X) and the monoid Rx is cofibrant
in Mon(#)(X), then the forgetful functors also define a Quillen morphism

U:R-mod — 4 .

Proof. The first assertion is obvious. For the second one, note that, for any object X of ., the
monoid Ry is also cofibrant as an object of .#(X); see Theorem 4.1.3. This implies that the
forgetful functor

U:Rx-mod — #(X)
is a left Quillen functor: by the small object argument and by by definition of the model category
structure of Theorem 4.2.2 (i), this follows from the trivial fact that the endofunctor

Rx @ (=) : M(X)— M(X)
is a left Quillen functor itself whenever Ry is cofibrant in .# (X). O

Remark 4.2.13. The results of the preceding proposition (as well as their proofs) are also true in
terms of P.+-fibred categories (3.1.21) over the category of ./S-diagrams for any object S of
< (whence over all .#-diagrams whenever . has a terminal object).

4.2.14. Consider now a noetherian scheme S of finite Krull dimension. We choose a full subcate-
gory of the category of separated noetherian S-schemes of finite Krull dimension which is stable by
finite limits, contains separated S-schemes of finite type, and such that, for any étale S-morphism
Y - X,if X isin /S, so is Y. We denote by .#/S this chosen category of S-schemes.

We also fix an admissible class &2 of morphisms of ./S which contains the class of étale
morphisms.

Definition 4.2.15. A property P of Ho(.#), for .# a stable combinatorial &?-fibred model
category over /S, is homotopy linear if the following implications are true.
(a) If v : A — A’ is a Quillen equivalence (i.e. a Quillen morphism which is termwise a
Quillen equivalence) between stable combinatorial &-fibred model category over /S,
then .# has property P is and only if .#" has property P.
(b) If A is a stable combinatorial symmetric monoidal &-model category which satisfies the
monoid axiom, and such that the unit 1x of .#(X) is cofibrant, then, for any cartesian
and termwise cofibrant monoid R in .# over ./S, R-mod has property P.

Proposition 4.2.16. The following properties are homotopy linear: A'-homotopy invariance,
Pl-stability, the localization property, the property of proper transversality, separability, semvi-
separability, t-descent (for a given Grothendieck topology t on #/S).

Proof. Property (a) of the definition above is obvious. Property (b) comes from the fact that the
forgetful functors

U : Ho(R-mod) — Ho(.#)



92 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

are conservative and commute with all the operations: Lf* and R f, for any morphism f, as well
as Lfy for any &-morphism (by Proposition 4.2.12). Hence any property formulated in terms of
equations involving only these operations is homotopy linear. U

Part 2. Construction of fibred categories
5. FIBRED DERIVED CATEGORIES

5.0. In this entire section, we fix a full subcategory % of the category of noetherian S-schemes
satisfying the following properties:

(a) .7 is closed under finite sums and pullback along morphisms of finite type.
(b) For any scheme S in ., any quasi-projective S-scheme belongs to .%.

We fix an admissible class of morphisms &2 of .. All our £-premotivic categories (¢f. definition
1.4.2) are defined over .. Moreover, for any abelian £-premotivic category &7 in this section,
we assume the following:

(¢) o is a Grothendieck abelian &-premotivic category (see definition 1.3.8 and the recall
below).
(d) & is given with a generating set of twists 7. We sometimes refer to it as the twists of <.
(e) We will denote by Mg(X, /), or simply by Mg(X), the geometric section over a &-scheme
X/S.
Without precision, any scheme will be assumed to be an object of ..
In section 5.2, except possibly for 5.2.a, we assume further:
(f) & contains the class of smooth finite type morphisms.
In section 5.3, we assume (f) and instead of (d) above.
5.0.17. We will refer sometimes to the canonical dg-structure of the category of complexes C()
over an abelian category /. Recall that to any complexes K and L over &/, we associate a
complex of abelian groups Hom$, (K, L) whose component in degree n € Z is

[ Hom., (K7, L)
pEZ
and whose differential in degree n € Z is defined by the formula:

(folvez = (dro fp = (=1)".fp410dK)) oz

In other words, this is the image of the bicomplex Homg (K, L) by the Tot-product functor
which we denote by Tot™. Of course, the associated homotopy category is the category K()
of complexes up to chain homotopy equivalence.

5.1. From abelian premotives to triangulated premotives.

5.1.a. Abelian premotives: recall and examples. Consider an abelian &-premotivic category <.
According to the convention of 5.0, for any scheme S, @7s is a Grothendieck abelian closed sym-
metric monoidal category. Moreover, if 7 denotes the twists of 7, the essentially small family

<MS(X){i})X69/S,ieT

is a family of generators of 275 in the sense of [Gro57].

Ezample 5.1.1. Consider a fixed ring A. Let PSh(£/S, A) be the category of A-presheaves (i.e.
presheaves of A-modules) on &2/S. For any &?-scheme X/S, we let Ag(X) be the free A-presheaf
on &/8 represented by X. Then PSh(42/5, A) is a Grothendieck abelian category generated by
the essentially small family (AS(X))Xeﬂ/S'

There is a unique symmetric closed monoidal structure on PSh(42/S, A) such that
As(X) @s As(Y) = Ag(X x5 Y).
Finally the existence of functors f*, f. and, in the case when f is a -morphism, of f;, follows

from general sheaf theory (c¢f. [AGVT3]).
Thus, PSh(Z2, A) defines an abelian &Z-premotivic category.
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5.1.2. Consider an abstract abelian &-premotivic category <. To any premotive M of <75, we
can associate a presheaf of abelian groups

X — HOIIIL(ZgS (Ms(X),M)

which we denote by 7. (M).
This defines a functor v, : &5 — PSh(42/S,Z). It admits the following left adjoint:

v :PSW(2/S,Z) — ofs , F s lim Ms(X, o)
X/F

where the colimit runs over the category of representable presheaves over F'.
It is now easy to check we have defined a morphism of (complete) abelian &?-premotivic cate-
gories:

(5.1.2.1) v* :PSh(L,Z) = A : ..

Moreover PSh(22,Z) appears as the initial abelian &-premotivic category.
Remark that the functor v, : & — PSh(S,Z) is conservative if the set of twists 7 of & is
trivial.

Definition 5.1.3. A Z-admissible topology ¢ is a Grothendieck pretopology t on the category
¢, such that any t-covering family consists of &-morphisms.

Note that, for any scheme S in ., such a topology ¢ induces a pretopology on &?/S (which we
denote by the same letter). For any morphism (resp. £2-morphism) f : T — S, the functor f*
(resp. fy) preserves t-covering families.

As & is fixed in all this section, we will simply say admissible for &?-admissible.

Ezample 5.1.4. Let t be an admissible topology. We denote by Sh;(Z/S,A) the category of
t-sheaves of A-modules on £/S. Given a P-scheme X/S, we let AL(X) be the free A-linear tg-
sheaf represented by X. Then, Shy(£?/S, A) is an abelian Grothendieck category with generators
(A (X)X csms.

As in the preceding example, the category Sh;(Z?/S,A) admits a unique closed symmetric
monoidal structure such that AL (X) ®s AL(Y) = AL(X xgY). Finally, for any morphism f :
T — S of schemes, the existence of functors f*, f. (resp. fy when f is a &7-morphism) follows from
the general theory of sheaves (see again [AGV73]: according to our assumption on t and [AGV73,
III, 1.6], the functors f*: #/S — &£ /T and fy : /T — £/S (for f in &) are continuous).

Thus, Shy (22, A) defines an abelian &?-premotivic category (with trivial set of twists).

The associated t-sheaf functor induces a morphism

(5.1.4.1) al : PSh(2,A) = Shy(2,A) : ay....

Remark 5.1.5. Recall the abelian category Shy (£ /S,Z) is a localization of the category PSh(S, Z)
in the sense of Gabriel-Zisman. In particular, given an abstract abelian &2-premotivic category
o/, the canonical morphism

v :PSh(P/S,Z) = s : .
induces a unique morphism
Shy(Z#/S,Z) = s
if and only if for any presheaf of abelian groups F' on /S such that a;(F) = F; = 0, one has
! (‘5\2 l_ea?v.e to the reader the exercise which consists to formulate the universal property of the
abelian Z-premotivic category Shy (42, Z).2°

20We will formulate a derived version in the paragraph on descent properties for derived premotives (cf. 5.2.9).
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5.1.b. The t-descent model category structure.

5.1.6. Consider an abelian &2-premotivic category &7 with set of twists 7.

We let C(7) be the P-fibered abelian category over . whose fibers over a scheme S is the
category C(«s) of (unbounded) complexes in &7s. For any scheme S, we let 15 : &g — C(s)
the embedding which sends an object of &5 to the corresponding complex concentrated in degree
7ero.

If of is T-twisted, then the category C(Zs) is obviously (Z x 7)-twisted. The following lemma
is straightforward :

Lemma 5.1.7. With the notations above, there is a unique structure of abelian &2-premotivic
category on C(&) such that the functor v : &/ — C() is a morphism of abelian P -premotivic
categories.

5.1.8. For a scheme S, let #2/S™ be the category introduced in 3.2.1. The functor Mg(—) can
be extended to 22/S™ by associating to a family (X;)s;c; of Z-schemes over S the premotive

P Ms(x5).
iel
If X is a simplicial object of &22/S", we denote by Mg(X) the complex associated with the
simplicial object of s obtained by applying degreewise the above extension of Mg(—).
Definition 5.1.9. Let o7 be an abelian &?-premotivic category and ¢ be an admissible topology.
Let S be a scheme and C be an object of C(s) :

(1) The complex C is said to be local (with respect to the geometric section) if, for any
P-scheme X/S and any pair (n,i) € Z X 7, the canonical morphism

HomK(,Q{S) (Ms(X){Z}[TL], C) — HOHID(,Q{S) (Ms(X){Z}[TL], C)

is an isomorphism.
(2) The complex C' is said to be t-flasque if for any t-hypercover X — X in £/S, for any
(n,i) € Z x 7, the canonical morphism

Homg (o) (Ms(X){i}[n], C) — Homy (o) (Mg (X){i}[n], C)
is an isomorphism.
We say the abelian &2-premotivic category «f satifies cohomological t-descent if for any t-hypercover
X — X of a P-scheme X/S, and for any i € 7, the map

Mg(X){i} — Ms(X){i}
is a quasi-isomorphism (or equivalently, if any local complex is ¢t-flasque).

We say that o is compatible with t if o/ satisfies cohomological t-descent, and if, for any scheme
S, any t-flasque complex of <75 is local.

Ezample 5.1.10. Consider the notations of 5.1.4.
Consider the canonical dg-structure on C(Sh:(Z?/S,A)) (see 5.1.1). By definition, for any
complexes D and C of sheaves, we get an equality:

Homg sn,(#/s,1)) (D, C) = H’(Hom?, (D, C)) = H°(Tot™ Hom (D, C)).

In the case where D = AL(X) (resp. D = AL(X)) for a P-scheme X/S (resp. a simplicial
P-scheme over S) we obtain the following identification:

Homy (sn,(2/5,0)) (As(X),C) = H(C(X)).
(resp. Homg sn,(2/s,4))(A5(X),C) = H*(Tot™ C(X)) ).
Thus, we get the following equivalences:
C is local < for any -scheme X/S, H{'(X,C) ~ H"(C(X)).
C is t-flasque < for any t-hypercover X — X, H"(C(X)) ~ H"(Tot™ C(X)).
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According to the computation of cohomology with hypercovers (c¢f. [Bro74]), if the complex C'is
t-flasque, it is local. In other words, we have the expected property that the abelian &-premotivic
category Shy (42, A) is compatible with ¢.

5.1.11. Consider an abelian &-premotivic category 7 and an admissible topology t.

Fix a base scheme S. A morphism p: C — D of complexes on g is called a t-fibration if its
kernel is a t-flasque complex and if for any #-scheme X/S, any i € 7 and any integer n € Z, the
map of abelian groups

Hom gy, (Mg(X){i},C") — Homy, (Ms(X){i}, D™)

is surjective.

For any object A of /s, we let S A (resp. D™A) be the complex with only one non trivial
term (resp. two non trivial terms) equal to A in degree n (resp. in degree n and n + 1, with the
identity as only non trivial differential). We define the class of cofibrations as the smallest class
of morphisms of C(«Zs) which :

(1) contains the map S""*Mg(X){i} — D"Mg(X){i} for any P-scheme X/S, any i € T,
and any integer n;
(2) is stable by pushout, transfinite composition and retract.

A complex C' is said to be cofibrant if the canonical map 0 — C' is a cofibration. For instance, for
any &-scheme X/S and any i € 7, the complex Mg(X){i}[n] is cofibrant.

Let Gs be the essentially small family made of premotives Mg(X){i} for a #-scheme X/S and
a twist ¢ € 7, and Hg be the family of complexes of the form Cone(Mg(X){i} — Mg(X){i})
for any t-hypercover X — X and any twist ¢ € 7. By the very definition, as &/ is compatible
with ¢ (definition 5.1.9), (Gs,Hs) is a descent structure on 7 in the sense of [CDO09, def. 2.2].
Moreover, it is weakly flat in the sense of [CD09, par. 3.1]. Thus the following proposition is a
particular case of [CD09, theorem 2.5, proposition 3.2, and corollary 5.5] :

Proposition 5.1.12. Let o/ be an abelian &2 -premotivic category, which we assume to be compat-
ible with an admissible topology t. Then for any scheme S, the category C(2s) with the preceding
definition of fibrations and cofibrations, with quasi-isomorphisms as weak equivalences is a proper
symmetric monoidal model category.

5.1.13. We will call this model structure on C(Zs) the t-descent model category structure (over
S). Note that, for any &?-scheme X/S and any twist ¢ € 7, the complex Mg(X){i} concentrated
in degree 0 is cofibrant by definition, as well as any of its suspensions and twists. They form a
family of generators for the triangulated category D(Ag).

Observe also that the fibrant objects for the ¢-descent model category structure are exactly the
t-flasque complexes in /5. Moreover, essentially by definition, a complex of 75 is local if and
only if it is ¢t-flasque (see [CD09, 2.5]).

5.1.14. Consider again the notations and hypothesis of 5.1.11.
Consider a morphism of schemes f : T — S. Then the functor

f* . C(JZ{S) — C(JZ{T)

sends Gg in G, and Hg in Hp because the topology t is admissible. This means it satisfies
descent according to the definition of [CDO09, 2.4]. Applying theorem 2.14 of op. cit., the functor
f* preserves cofibrations and trivial cofibrations, i.e. the pair of functors (f*, fi) is a Quillen
adjunction with respect to the t-descent model category structures.

Assume that f is a #-morphism. Then, similarly, the functor

fy: Cler) — C(s)
sends Gg (resp. Hg) in Gr (resp. Hr) so that it f; also satisfies descent in the sense of op. cit.
Therefore, it preserves cofibrations and trivial cofibrations, and the pair of adjoint functors (fy, f*)

is a Quillen adjunction for the ¢-descent model category structures.
In other words, we have obtained the following result.
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Corollary 5.1.15. Let o/ be an abelian & -premotivic category compatible with an admissible
topology t. The P-fibred category C(f) with the t-descent model category structure defined in
5.1.12 is a symmetric monoidal &2-fibred model category. Moreover, it is stable, proper and com-
binatorial.

5.1.16. Recall the following consequences of this corollary (see also 1.3.22 for the general theory).
Consider a morphism f : T" — S of schemes. Then the pair of adjoint functors (f*, f,) admits
total left /right derived functors

Lf*:D(os) = D(er) : Rf..

More precisely, f. (resp. f*) preserves t-local (resp. cofibrant) complexes. For any complex K
on s, Rf«(K) = fu(K') (resp. Lf*(K) = f*(K")) where K’ — K (resp. K — K") is a t-local
(resp. cofibrant) resolution of K .2

When f is a £Z-morphism, the functor f* is even exact and thus preserves quasi-isomorphisms.
This implies that Lf* = f*. The functor f; admits a total left derived functor

Lf; : D(a/r) = D(os) : Rf.
defined by the formula Lf;(K) = f;(K") for a complex K on </ and a cofibrant resolution
K'"— K.
Note also that the tensor product (resp. internal Hom) of C(%Z) admits a total left derived

functor (resp. total right derived functor). For any complexes K and L on g, this derived
functors are defined by the formula:

K®§ L — K// ®S L/l
RHomg(K,L) = Homg(K", L")

where K — K” and L — L” are cofibrant resolutions and L’ — L is a t-local resolution.
It is now easy to check that these functors define a triangulated &2-premotivic category D(«7),
which is 7-generated according to 5.1.13.

Definition 5.1.17. Let &/ be an abelian &?-premotivic category compatible with an admissible
topology t.

The triangulated &?-premotivic category D(.«7) defined above is called the derived &7 -premotivic
category associated with o7 .22

The geometric section of a &-scheme X/S in the category D(&) is the complex concentrated
in degree 0 equal to the object Mg(X). The triangulated Z-fibred category is T-generated and
well generated in the sense of 1.3.13. This means that D(/s) is equal to the following localizing?®
subcategory generated by the family

(5.1.17.1) {Mg(X){i}; X/S P-scheme,i € 7}

Ezample 5.1.18. Given any admissible topology ¢, the abelian &2-premotivic category Shy (2, A)
introduced in example 5.1.4 is compatible with ¢ (¢f. 5.1.10) and defines the derived &2-premotivic
category D(Sh(Z, A)).

Remark also that the abelian Z-premotivic category PSh(42, A) introduced in example 5.1.1 is
compatible with the coarse topology and gives the derived &2-premotivic category D(PSh(Z2, A)).

Remark 5.1.19. Recall from 5.0.17 the canonical dg-structure on C(«s). Then we can define a
derived dg-structure by defining for any complexes K and L of @75, the complex of morphisms:

RHom, (K, L) = Hom}, (Q(K), R(L))

where R and @ are respectively some fibrant and cofibrant (functorial) resolutions for the ¢-descent
model structure. The homotopy category associated with this new dg-structure on C(Zs) is the
derived category D(#Z). Moreover, for any morphism (resp. Z?-morphism) of schemes f, the

21Recall also that fibrant/cofibrant resolutions can be made functorially, because our model categories are
cofibrantely generated, so that the left or right derived functors are in fact defined at the level of complexes.

22Remark indeed that D(+/) does not depend on the topology t.

2. triangulated and stable by sums.
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pair (Lf*,Rf.) (resp. (Lfy, f*)) is a dg-adjunction. The same is true for the pair of bifunctors
(®@%, RHomg).

5.1.20. Consider an abelian &-premotivic category &/ compatible with a topology t. According
to section 3.1.b, the 2-functor D(%7) can be extended to the category of .#-diagrams: to any
diagram of schemes 2" : I — . indexed by a small category I, we can associate a symmetric
monoidal closed triangulated category D(<)(Z",I) which coincides with D(&/)(X) when I = e,
Z = X for a scheme X.
Let us be more specific. The fibred category &/ admits an extension to .-diagrams: a section
of &7 over a diagram of schemes 2 : I — ., indexed by a small category I, is the following data:
(1) A family (A;);es such that A; is an object of @x;.
(2) A family (ay)ueri(ry such that for any arrow w : i — jin I, a, : u*(A;) — A; is a
morphism in @x, and this family of morphisms satisfies a cocyle condition (see paragraph
3.1.1).

Then, D(27)(2", 1) is the derived category of the abelian category <7 (2", I). In particular, objects
of D() (X ,I) are complexes of sections of o7 over (27, I) (or, what amount to the same thing,
families of complexes (K;);c; with transition maps (a,) as above, relative to the fibred category

Recall that a morphism of .#-diagrams ¢ : (2°,I) — (#/,J) is given by a functor f : [ — J
and a natural transformation ¢ : 2~ — % o f. We say that ¢ is a &-morphism if for any i € I,
@i+ Xy — W3y is a P-morphism. For any morphism (resp. &-morphism) ¢, we have defined in
3.1.3 adjunctions of (abelian) categories:

O (W, T) =2 A (L) o
resp. @y A (X, 1) 2 A (Y, J): p*

which extends the adjunctions we had on trivial diagrams.

According to proposition 3.1.11, these respective adjunctions admits left /right derived functors
as follows:
(5.1.20.1) Lo : D()(%,J) = D(Z)(Z,1) : Rp.
(5.1.20.2) resp. Ly : D() (2, 1) = D()(¥,J) : Lp" = ¢*
Again, these adjunctions coincide on trivial diagrams with the map we already had.

Note also that the symmetric closed monoidal structure on C(«/(2",1)) can be derived and
induces a symmetric monoidal structure on D(=/)(2", I) (see proposition 3.1.24).%4

Recall from 3.2.5 and 3.2.7 that, given a topology t' (not necessarily admissible) over ., we
say that D(7) satisfies t’-descent if for any ¢'-hypercover p: & — X (here £ is considered as a
#-diagram), the functor
(5.1.20.3) Lp* : D(«/)(X) — D()(Z)
is fully faithful (see corollary 3.2.7).
Proposition 5.1.21. Consider the notations and hypothesis introduced above. Let t' be an ad-
missible topology on .. Then the following conditions are equivalent:

(i) D() satisfies t'-descent.
(i) o satisfies cohomological t'-descent.
Proof. We prove (i) implies (ii). Consider a ¢'-hypercover p : & — X in Hg. This is a P-
morphism. Thus, by the fully faithfulness of (5.1.20.3), the counit map Lp;p* — 1 is an isomor-
phism. By applying the latter to the unit object 1x of D(7x ), we thus obtain that
MX(%) — ]]-X

is an isomorphism in D(@x). If 7 : X — S is the structural £2-morphism, by applying the functor
Lmy to this isomorphism, we obtain that

Ms(2') — Ms(X)

24In fact, D(«) is then a monoidal Z.-fibred category over the category of .#-diagrams (remark 3.1.21).
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is an isomorphism in D(7s) and this concludes.

Reciprocally, to prove (i), we can restrict to ¢’-hypercovers p : 2 — X which are &Z-morphisms
because ¢’ is admissible. Because Rp* = p* admits a left adjoint Lpy, we have to prove that the
counit

Lpup* — 1

is an isomorphism. This is a natural transformation between triangulated functors which commutes
with small sums. Thus, according to (5.1.17.1), we have only to check this is an isomorphism
when evaluated at a complex of the form Mx (Y){i} for a F-scheme Y/X and a twist ¢ € 7.
But the resulting morphism is then Mx (2" xx Y){i} — Mx(Y){i} and we can conclude because
Z xxY — Y is a t'-hypercover in £/S (again because t’' is admissible). O

5.1.22. Consider the situation of 5.1.20 Let S be a scheme. An interesting particular case is given
for constant .#-diagrams over S; for a small category I, we let Is be the constant .#-diagram
I - i — Su+— lg. Then the adjunctions (5.1.20.1) for this kind of diagrams define a
Grothendieck derivator

I—D()(Ig).

Recall that, if f : I — e is the canonical functor to the terminal category and p = fx : Ix — X
the corresponding morphism of .-diagrams, for any I-diagram K, = (K;);es of complexes over
s, we get right derived limits and left derived colimits:
Ry, (K.) = Rlim K.
icl
Lyy(K,) = Llim K;.
iel
5.1.23. The associated derived &-premotivic category is functorial in the following sense.
Consider an adjunction
p: A =B
of abelian &-premotivic categories. Let 7 (resp. 7') be the set of twists of &7 (resp. £), and
recall that ¢ induces a morphisms of monoid 7 — 7’ still denoted by ¢. Consider two topologies
t and t' such that ¢’ is finer than t. Suppose & (resp. %) is compatible with ¢ (resp. t') and let
(GZ ,HEZ) (resp. (GZ,HZ)) be the descent structure on /s (resp. Hg) defined in 5.1.11.
For any scheme S, consider the evident extensions

¢s : C(s) = C(%s) : s

of the above adjoint functors to complexes. Recall that for any &?-scheme X/S and any twist
i€, ps(Ms(X,a){i}) = Ms(X, B){p(i)} by definition. Thus, s sends G& to GZ. Because '
is finer than ¢, it sends also Hg‘/ to H? . In other words, it satifies descent in the sense of [CD09,
par. 2.4] so that the pair (¢g,1s) is a Quillen adjunction with respect to the respective t-descent
and t’-descent model structure on C(«Zs) and C(Hs).

Considering the derived functors, it is now easy to check we have obtained a -premotivic
adjunction?®®

Ly :D(«/) 2 D(%) : Ry.

Example 5.1.24. Let t be an admissible topology. Consider an abelian &-premotivic category &/
compatible with ¢. Then the morphism of abelian Z7-premotivic categories (5.1.2.1) induces a
morphism of triangulated £-premotivic categories:

(5.1.24.1) L~y : D(PSh(2,Z)) = D(«7) : Ry,

25Remark also that this adjunction extends on .-diagrams considering the situation described in 5.1.20: for
any diagram X : [ — ./, we get an adjunction

Loy : D(#/)(X) = D(£)(X) : Ryx

and this defines a morphism of triangulated monoidal Z..,¢-fibred categories over the .-diagrams (cf. proposition
3.1.32).
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Similarly, the morphism (5.1.4.1) induces a morphism of triangulated &?-premotivic categories
(5.1.24.2) a; : D(PSh(Z2,A)) 2 D(Shy (22, A)) : Ray ..
Note that af = Laj on objects, because the functor a] is exact.

The following result can be used to check the compatibility to a given admissible topology:

Proposition 5.1.25. Let t be an admissible topology. Consider a morphism of abelian -
premotivic categories

p: A =By
such that:

(a) For any scheme S, g is exact.
(b) The morphism ¢ induces an isomorphism of the underlying set of twists of & and A.

According to the last property, we identify the set of twists of &/ and % to a monoid T in such a
way that ¢ acts on T by the identity.
Assume that o/ is compatible with t. Then the following conditions are equivalent:

(i) B is compatible with t.
(ii) B satisfies cohomological t-descent,

Proof. The fact (¢) implies (¢7) is clear from the definition and we prove the converse using the
following lemma :

Lemma 5.1.26. Consider a morphism of &2-premotivic abelian categories
A 2B

satisfying conditions (a) and (b) of the above proposition and a base scheme S.
Given a simplicial &-scheme X over S, a twist i € T and a complex C over Bg, we denote by

ex,i,c : Home(gy) (Ms(X, B){i},C) — Homg(u) (Ms (X, o) {i}, ¢s(C))

the adjunction isomorphism obtained for the adjoint pair (pg,¥s).
Then there exists a unique isomorphism EIX,i,C making the following diagram commutative:

€x,i,C

HOmc(@S) (Ms(.)(, <%)){Z}, C) Homc(ﬂs) (Ms(.)(, JZ%){Z}, ’lﬁs(C))
Homg ) (Ms(X, B){i},C) _Sxwo Homg () (Ms(X, 27){i}, ¥s(C)).

Assume moreover that B satisfies cohomological t-descent.
Then there exists an isomorphism 6/)/(,1',0 making the following diagram commutative:

’

Hom (s (Ms (X, B){i}, C) — "> Homp(urs) (Ms (X, &/){i}, 15(C))
(5.1.26.1) w%’i’cl J{wff,i,c
e Homp (o) (Ms(X, 7 ){i}, s(C)),

where ﬂf’i’c and W%’i’c are induced by the obvious localization functors.

Homp ) (MS(X7 #){i}, C)

The existence and unicity of isomorphism 6/X7i7c follows from the fact that the functors g
and s are additive. Indeed, this implies that the isomorphism ey ; ¢ is compatible with chain
homotopies.

Consider the injective model structure on C(fs) and C(As) (see for example [CD09, 1.2] for
the definition). We first treat the case when C' is fibrant for this model structure on C(Zs).
Because the premotive Mg (X, %){i} is cofibrant for the injective model structure, we obtain that
the canonical map 77?1-70 is an isomorphism. This implies there exists a unique map e’/{ai’C making
diagram (5.1.26.1) commutative. On the other hand, the isomorphism €/ ; » obtained previously
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is obviously functorial in X. Thus, because & satisfies t-descent, we obtain that ¥g(C) is t-
flasque. Because <7 is compatible with ¢, this implies 15(C) is ¢-local, and because Mg(X, %){i}
is cofibrant for the ¢-descent model structure on C(<7s), this implies T?yi_’c is an isomorphism.
Thus finally, 612{?,1‘,0 is an isomorphism as required.

To treat the general case, we consider a fibrant resolution C' — D for the injective model
structure on C(%gs). Because 1)g is exact, it preserves isomorphisms. Using the previous case, We
define 5//‘@,1‘,0 by the following commutative diagram:

"

Homp g, (Ms (X, 2){i},C) e Homp (o) (Ms(X, 7 ){i},¢s(C))

Ni lw
"
€x,i,D

Homp g (Ms (X, #){i}, D) ——— Homp(uy) (Ms(X, &){i},s(D)).
The required property for 6/;(.’,1',0 then follows easily and the lemma is proved.

To finish the proof that (ii) implies (i), we note the lemma immediately implies, under (ii), that
the following two conditions are equivalent :
e (C is t-flasque (resp. t-local) in C(As);
o s(C) is t-flasque (resp. t-local) in C(s).
This concludes. g

5.1.c. Compacity and geometric triangulated premotives.

Definition 5.1.27. Let &/ be an abelian &?-premotivic category compatible with an admissible
topology t. We will say that ¢ is bounded in < if for any scheme S, there exists an essentially
small family N{ of bounded complexes which are direct factors of finite sums of objects of type
Mg (X, o/){i} in each degree, such that, for any complex C' of &5, the following conditions are
equivalent.

(i) C is t-local.

(ii) For any H in N§, the abelian group Hom () (H, C) vanishes.

In this case, we say the family N is a bounded generating family for t-hypercoverings in <.

Ezxample 5.1.28. (1) Assume & contains the open immersions so that the Zariski topology is
admissible. Let M Vg to be the family of complexes of the form

As(UNV) 2255 A(U) @ Ag(V) 225 Ag(X)

for any open cover X = U UV, where 4,5,k,l denotes the obvious open immersions. It
follows then from [BG73] that MV is a bounded generating family of Zariski hypercovers
in Shz.,. (£/S, A).

(2) Assume & contains the étale morphisms so that the Nisnevich topology is admissible. We
let BGs be the family of complexes of the form

w—la jo - f
As(W) £ As(U) & As(V) 255 Ag(X)
for a Nisnevich distinguished square in . (¢f. 2.1.15)
W=V

oV
J
U—X.
Then, by applying 3.3.2, we see that BGg is a bounded generating family for Nisnevich
hypercovers in Shyis(22/5, A).
(3) Assume that &2 = .#f is the class of morphisms of finite type in .. We let PCDHg be
the family of complexes of the form

As(T) 275 Ag(2) @ Ag(Y) 25 Ag(X)
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for a cdh-distinguished square in . (¢f. 2.1.15)

Tty

SR

Z—>X.
Then, by virtue of 3.3.7, CDHg = BGs U PCDHg is a bounded generating family for
cdh-hypercovers in Shean (#71/S, A).

(4) The étale topology is not bounded in Shg;(Sm, A) for an arbitray ring A. However, if
A = Q, it is bounded: by virtue of theorem 3.3.22, a bounded generating family for
étale hypercoverings in Shg(Sm, Q)g is just BGs (to be more precise, we should add the
complexes of the form Qg(Y)s — Qs(X) for any Galois cover Y — X of group G, but
these are contractible (because Y/G ~ X), so that we can just drop them).

(5) As in the case of étale topology, the gfh-topology is not bounded in general, but it is with
rational coefficients. Let PQF Hg be the family of complexes of the form

Qs(T)a gehe, Qs(Z2)® Qs(Y)a Lthe, Qs(X)

for a qfh-distinguished square of group G in % (¢f. 3.3.14)

Tty
o
Z—>X.
Then, by virtue of theorem 3.3.24, QF Hs = PQFHg U BGg is a bounded generating
family for qfh-hypercoverings in Shqm, (5” ft/8, Q).
(6) Similarly, by theorem 3.3.29, H¢ = CDHg U QFHg is a bounded generating family for
h-hypercoverings in Sh, (#7/S, Q).

Proposition 5.1.29. Let o/ be an abelian P -premotivic category compatible with an admissible
topology t. We make the following assumptions:

(a) t is bounded in o ;
(b) for any Z-morphism X — S and any n € 7, the functor Hom g, (Mg(X){n}, —) preserves
filtered colimits.

Then t-local complexes are stable by filtering colimits.

Proof. Let N& is a bounded generating family for ¢-hypercovers in /5. Then a complex C' of @75
is t-flasque if and only if for any H € N, the abelian group Hom g (o) (H, C) is trivial. Hence it
is sufficient to prove that the functor

C [ HOHlK(dS)(H, C))
preserves filtering colimits of complexes. This will follow from the fact that the functor
Cr HomC(.Qfs)(Ha O))

preserves filtering colimits. As H a is bounded complex that is degreewise compact, this latter
property is obvious. O

5.1.30. Consider an abelian &-premotivic category &/ compatible with an admissible topology t,
with generating set of twists 7. Assume that ¢ is bounded in &7 and consider a bounded generating
family ¢ for t-hypercovers in <.

Let M(£2/S, <) be the full subcategory of 7 spanned by direct factors of finite sums of
premotives of shape Mg(X){i} for a &-scheme X/S and a twist ¢ € 7. This category is additive
and we can associate to it its category of complexes up to chain homotopy. We get an obvious
triangulated functor

(5.1.30.1) K" (M(2/S, 7)) — D(ds).
Then the previous functor induces a triangulated functor

KM (M(2/5, /) /N — D(afs)
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where the left hand side stands for the Verdier quotient of K?(M(22/S, <)) by the thick subcat-
egory generated by NE.

The category K® (M (2)S, o )) JN& may not be pseudo-abelian while the aim of the previous
functor is. Thus we can consider its pseudo-abelian envelope and the induced functor

i
(5.1.30.2) (Kb(M(@/S, d))//\@) . D(s).
Following definitions, the image of this functor is made of geometric premotives of the triangulated
P-premotivic category D(es).
Then the following proposition is a corollary of [CD09, theorem 6.2] :
Proposition 5.1.31. Consider thef hypothesis and notations above.

If o is compactly T-generated then D(<7) is compactly T-generated. Moreover, the functor
(5.1.30.2) is fully faithful.

Recall from definition 1.4.7 that the category D.(«7) of T-constructible premotives in D(/s) is
the thick triangulated subcategory generated by premotives of shape Mg(X){i}.

Corollary 5.1.32. Consider the situation of 5.1.30, and assume that <7 is compactly T-generated.
For any premotive M in D(s), the following conditions are equivalent:

(i) M is compact.

(i) M is T-geometric.
Moreover, the functor (5.1.30.2) induces an equivalence of categories:

(Kb(M(QZ/S, o)) //\/5)h — De(as).

Example 5.1.33. According to example 5.1.28, we get the following examples:
(1) Let A(Sm/S) = M(Sm/S, &) for & = Shnis(Sm/S, A). We obtain a fully faithful functor

(Kb(A(s /S)) /BG )h D (Shy;
m s)] — (SthS(Sm/S,A)).

which is essentially surjective on compact objects.
(2) Let A(Ygt) = M(Sm/S, ) for & = Shean (-#7!/S,A). We obtain a fully faithful functor

(Kb (A(#71/8))/BGs U CDHS)h —D (Shcdh(yft /S, A) )

which is essentially surjective on compact objects.
(3) Let Qe (Sm/S) = M(Sm/S, o) for of = Shg(Sm/S, Q). We obtain a fully faithful
functor

(K (Qua($m/9)) /BGs)" — D (Shet(5m/S.Q)).
which is essentially surjective on compact objects.
5.2. The A'-derived premotivic category.
5.2.a. Localization of triangulated premotivic categories.

5.2.1. Let & be an abelian &-premotivic category compatible with an admissible topology ¢ and
D(&) be the associated derived &-premotivic category.

Suppose given an essentially small family of morphisms # in C(&/) which is stable by the
operations f*, fy (in other words, # is a sub-Z-fibred category of C(</)). Remark that the
localizing subcategory 7 of D(«7) generated by the cones of arrows in # is again stable by these
operations. Moreover, as for any Z7-morphism f : X — S we have fyf* = Mg(X) ®g (—), the
category 7 is stable by tensor product with a geometric section.

We will say that a complex K over &g is # -local if for any object T' of 7 and any integer
n € Z, Homp ) (T, K[n]) = 0. A morphism of complexes p : C' — D over /s is a # -equivalence
if for any # -local complex K over &g, the induced map

HOHID(%S)(D, K) d HOmD(WS)(C, K)
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is bijective.
A morphism of complexes over 75 is called a # -fibration if it is a t-fibration with a % -local
kernel. A complex over 75 will be called # -fibrant if it is t-local and # -local.

As consequence of [CD09, 4.3, 4.11 and 5.6], we obtain :

Proposition 5.2.2. Let &/ be an abelian &2-premotivic category compatible with an admissible

topology t and W be an essentially small family of morphisms in C(&7) stable by f* and fy.
Then the category C(ls) is a proper closed symmetric monoidal category with the # -fibrations

as fibrations, the cofibrations as defined in 5.1.11, and the W -equivalences as weak equivalences.

The homotopy category associated with this model category will be denoted by D(cﬁafs)[ng].
Ti can be described as the Verdier quotient D(Zs)/7s.

In fact, the # -local model category on C(Zs) is nothing else than the left Bousfield localization
of the t-local model category structure. As a consequence, we obtain an adjunction of triangulated
categories:

(5.2.2.1) Ts : D(els) = D(os) [ #5 '] : Os

such that Og is fully faithful with essential image the % -local complexes. In fact, the model
structure gives a functorial # -fibrant resolution 1 — Ry

Ry : C(s) — C(es),

which induces Og.

Note that the triangulated category D(</s)[#4 '] is generated by the complexes concentrated in
degree 0 of the form Mg(X){i} — or, equivalently, the #-local complexes Ry (Mg(X){i}) — for a
Z-scheme X and a twist ¢ € 7.

Remark 5.2.3. Another very useful property is that # -equivalences are stable by filtering colimits;
see [CD09, prop. 3.8].

5.2.4. Recall from 5.1.14 that for any morphism (resp. &?-morphism) f : T — S, the functor f*
(resp. fy) satisfies descent; as it also preserves #/, it follows from [CD09, 4.9] that the adjunction

[T C(ds) — Clam) : fs
(resp. fy: C(s) — Clar) = [7)

is a Quillen adjunction with respect to the # -local model structures. This gives the following
corollary.

Corollary 5.2.5. The Z-fibred category C(<f) with the # -local model structure on its fibers
defined above is a monoidal P-fibred model category, which is moreover stable, proper and combi-
natorial.

We will denote by D(&/)[# ~!] the triangulated Z-premotivic category whose fiber over a
scheme S is the homotopy category of the #s-local model category C(«%). The adjunction
(5.2.2.1) readily defines an adjuntion of triangulated &?-premotivic categories

(5.2.5.1) 7:D() = D)WY 0.
The Z-fibred categories D(&) and D(&)[# ~!] are both 7-generated (and this adjunction is

compatible with 7-twists in a strong sense).

Remark 5.2.6. For any scheme S, the category D(ﬁfs)[yﬂs_l] is well generated and has a canonical
dg-structure (see also 5.1.19).

5.2.7. With the notations above, let us put .7 = D(&)[# ~1] to clarify the following notations.
As in 5.1.20, the fibred category 7 has a canonical extension to diagram of schemes 2" : [ — ..

If we define #4 as the class of morphisms (f;);c; in C(&/ (2", 1)) such that for any object i,
fi is a # -equivalence, then .7 (X) is the triangulated category D(</ (2", I))[#«].
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Again, this triangulated category is symmetric monoidal closed and for any morphism (resp.
P-morphism) ¢ : (Z7,1) — (#,J), we get (derived) adjunctions as in 5.1.20:
(5.2.7.1) Lo*: (%, J)= T(Z,I): Ry,
(5.2.7.2) (resp. Ly : T(Z', 1) = T(¥,J) : Lp* = ¢")
In fact, .7 is then a complete monoidal Z.,,-fibred category over the category of diagrams of

schemes and the adjunction (5.2.5.1) extends to an adjunction of complete monoidal &,,.-fibred
categories.

Ezxample 5.2.8. Suppose we are under the hypothesis of example 5.1.24.2.

Let #;,s denote the family of maps which are of the form Ag(X) — Ag(X) for a t-hypercovering
X — X in &2/S. Then ¥, is obviously stable by f* and f;.

Recall now that a complex of t-sheaves on #?/S is local if and only if its t-hypercohomology
and its hypercohomology computed in the coarse topology agree (c¢f. 5.1.10).

This readily implies the adjunction considered in example 5.1.24.2

a;y : D(PSh(Z2,A)) 2 D(Sh (£, A)) : Ray ..
induces an equivalence of triangulated &Z-premotivic categories
D(PSh(2, A))[#, "] = D(Sh (2, A)).
Recall Ray . is fully faithful and identifies D(Sh; (.S, A)) with the full subcategory of D(PSh(S, A))
made by t-local complexes.

5.2.9. A triangulated Z2-premotivic category (7, M) such that there exists:

(1) an abelian Z-premotivic category 7 compatible with an admissible topology ¢y on Sm.
(2) an essentially small family % of morphisms in C(4/) stable by f* and f;
(3) an adjunction of triangulated &-premotivic categories D(&)[# ~1]| ~ T
will be called for short a derived & -premotivic category. According to convention 5.0(d) and from
the above construction, .7 is T-generated for some set of twists 7. 26
Let us denote simply by Mg (X) the geometric sections of & . In this case, using the morphisms
(5.1.24.1) and (5.2.5.1), we get a canonical morphism of triangulated &7-premotivic categories:

(5.2.9.1) ¢* :D(PSh(L,Z)) = T : p,.

By definition, for any premotive M, any scheme X and any integer n € Z, we get a canonical
identification:

(5.29.2) Hom (s (M (X), Mn]) = H'T(X, . (M)).
Given any simplicial scheme X, we put Mg(X) = ¢* (ZS(X)), so that we also obtain:
(5.2.9.3) Homg(s) (Ms(X), M[TLD =H" ( Tot™ T'(X, Ry, (M)))

Proposition 5.2.10. Consider the above notations and t an admissible topology. The following
conditions are equivalent.
(i) For any t-hypercovering X — X in Z2/S, the induced map Mg(X) — Mg(X) is an
isomorphism in I (S).
() For any t-hypercovering p : X — X in P2/S, the induced functor Lp* : 7 (X) — T(X) is
Sfully faithful.
(") T satisfies t-descent.

26We will formulate in some remarks below universal properties of some derived &-premotivic categories. When
doing so, we will restrict to morphisms of derived &?-premotivic categories which can be written as

Lo : D(e4)[#; '] — D(e) #5 ]

for a morphism ¢ : @/ — % of abelian &-premotivic categories compatible with suitable topologies. More natural
universal properties could be obtained if one considers the framework of dg-categories or triangulated derivator.
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(i) There exists an essentially unique map oy : D(She(£/S,Z)) — T (S) making the following
diagram essentially commutative:

*

D(PSh(22/S,Z)) ——= 7(S)

“) /

D(Sh;(2/5,Z))

(i) For any complex C € C(PSh(22/S,Z)) such that a;(C) =0, p*(C) = 0.

(") For any map f : C — D in C(PSh(Z/S,Z)) such that a,(f) is an isomorphism, ©*(f) is
an isomorphism.

(iii) There exists an essentially unique map @ : T (S) — D(Shy (L /S, Z)) making the follow-
ing diagram essentially commutative:

D(PSh(2/8,Z)) <2— 7(S)
ro, |
D(Shy(2/8,Z))

Ptx

(iti' ) For any premotive M in T (S), the complex p.(M) is local.
(i1d") For any premotive M in T (S), any P-scheme X/S and any integer n € Z,

Hom - s) (Ms(X), Mln]) = H} (X, . (M)).

When these conditions are fulfilled for any scheme S, the functors appearing in (ii) and (iii) induce
a morphism of triangulated 22-premotivic categories:

Proof. The equivalence between conditions (z), (i') and (i”) is clear (we proceed as in the proof
of 5.1.21). The equivalences (ii) < (it') < (it") and (iii) < (i4i') follows from example 5.2.8
and the definition of a localization. The equivalence (i) < (i) follows again from loc. cit. The
equivalences (i) & (ii') < (iid”) follows finally from (5.2.9.2), (5.2.9.3), and the characterisation
of a local complex of sheaves (¢f. 5.1.10). O

Remark 5.2.11. The preceding proposition express the fact that the category D(Sh; (<2, Z)) is the
universal derived &-premotivic category satisfying ¢t-descent.

5.2.12. We end this section by making explicit two particular cases of the descent property for
derived &7-premotivic categories.

Consider a derived &2-premotivic category 7 with geometric sections M. Considering any
diagram X : I — /S of P-schemes over S, with projection p : X — S, we can associate a
premotive in J7:

Ms(X) = Lpu(]].s) = Lli)nMs(Af})
iel
In particular, when I is the category e — e, we associate to every S-morphism f : Y — X of
P-schemes over S a canonical®” bivariant premotive

Mg(X L v).

When f is an immersion, we will also write Mg(Y/X) for this premotive. Note that in any case,
there is a canonical distinguished triangle in .7 (S):
Ms(X) 5 Mo(v) 75 Ms(x £ v) 25 Mg (x0)[1].

27In fact, if 7 = D(«/)[# 1] for an abelian Z-premotivic category </, then we can define Mg(X — Y) as the
cone of the morphism of complexes (concentrated in degree 0) Mg (X) ELN Ms(Y).
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This triangle is functorial in the arrow f — with respect to commutative squares.
Given a commutative square of &-schemes over S

’

B—>Y
(5.2.12.1) gl f
A e

we will say that the image square in 7 (S)

is homotopy cartesian®® if the premotive associated with diagram 5.2.12.1 is zero.

Proposition 5.2.13. Consider a derived & -premotivic category 7. We assume that & contains
the étale morphisms (resp. & = .#Tt). Then, with the above definitions, the following conditions
are equivalent:
(i) 7 satisfies Nisnevich (resp. proper cdh descent.)
(ii) For any scheme S and any Nisnevich (resp. proper cdh) distinguished square Q of S-
schemes, the square Mg(Q) is homotopy cartesian in J(S).
(#ii) For any Nisnevich (resp. proper cdh) distinguished square of shape (5.2.12.1), the canon-

ical map Mg(Y/B) Yia.,

Moreover, under these conditions, to any Nisnevich (resp. proper cdh) distinguished square Q of
shape (5.2.12.1), we associate a map

Mg(X/A) is an isomorphism.

Te Flact Der
Do : Ms(X) 7 Ms(x/A) L2 hig(v)/B) 20 Ms(v)[1]
which defines a distinguished triangle in 7 (S):

Ms(B) (), Mz(Y) @ Ms(A) L0 vg(x) 22 Mg(V)[1).

Proof. The equivalence of (i) and (ii) follows from the theorem of Morel-Voevodsky 3.3.2 (resp.
the theorem of Voevodsky 3.3.7). To prove the equivalence of (ii) and (iii), we assume .J =
C()[# ~1]. Then, the homotopy colimit of a square of shape 5.2.12.1 is given by the complex

Cone(Cone(Mg(B) — Mg (Y)) — Cone(Mg(A) — Mgs(X))).
This readily proves the needed equivalence, together with the remaining assertion. O

Remark 5.2.14. In the first of the respective cases of the proposition, condition (ii) is what we
usually called the Brown-Gersten property (BG) for .7, whereas condition (iii) can be called the
excision property. In the second respective case, condition (ii) will be called the proper cdh property
for the generalized premotivic category 7. We say also that  satisfies the (cdh) property if it
satisfies condition (ii) with respect to any cdh distinguished square Q.

5.2.b. The homotopy relation.

5.2.15. Let &/ be an abelian &-premotivic category compatible with an admissible topology t.
We consider #a:1 to be the family of morphisms Mg(AL){i} — Mg(X){i} for a F-scheme
X/S and an element i of I. The family #/: is obviously stable by f* and f;.

Definition 5.2.16. Let & be an abelian &2-premotivic category compatible with an admissible
topology t. With the notation above, we define DZ@(%) = D(o)[#4:'] and refer to it as the
(effective) P-premotivic At-derived category with coefficients in .o7.

281 7 = D(&/)[# ~1], this amount to say that the diagram obtained of complexes by applying the functor
Mg (—) if homotopy cartesian in the #'-local model category C(«).
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By definition, the category ng () satisfies the homotopy property (Htp) (see 2.1.3).

Ezxample 5.2.17. We can divide our examples into two types:
1) Assume & = Sm:

Consider the admissible topology t = Nis. Following F. Morel, we define the (effective) Al-
derived category over S to be Dzﬁi (S,A) = Dzﬁi (Shyis(Smg, A)). We indeed get a triangulated
premotivic category (see also the construction of [Ayo07b]):

(5.2.17.1) D\ =D (Shxis(Sm, 7).
We shall also write its fibres

(5.2.17.2) DS, A) =D\ (9)
for a scheme S. For A = Z, we shall often write simply
(5.2.17.3) DS := DY (Shyis(Sm, Z)) .

Another interesting case is when ¢ = ét; we get a triangulated premotivic category of effective

étale premotives:
D (Shet (Sm, A)) .

In each of these cases, we denote by A%(X) the premotive associated with a smooth S-scheme
X.
2) Assume & = /It

Consider the admissible topology ¢t = qfh (resp. ¢ = h). Following V. Voeovdsky [Voe96], we
define the category of effective t-motives over S as:

(5.2.17.4) DM (S,A) =D (Shy (#71,4) /S).

We will denote simply by Afg (X) the corresponding premotive associated with X in DM teﬁ (S,A).

Another interesting case is obtained when t = cdh. We get an A'-derived generalized premotivic
category Dzﬁi (Shcdh (5” ft, A)) whose premotives are simply denoted by Agdh (X) for any finite type
S-scheme X.

5.2.18. Let C be a complex with coefficients in 7. According to the general case, we say that
C is Al-local if for any P-scheme X/S and any (i,n) € I x Z, the map induced by the canonical
projection
Homp () (Ms(X){i}[n], C) — Hompuy) (Ms(A%){i}[n], C)
is an isomorphism. The adjunction (5.2.2.1) defines a morphism of triangulated Z?-premotivic
categories
D(«/) = D ()

such that for any scheme S, Dzﬁf (#s) is identified with the full subcategory of D(%Z) made of
Allocal complexes.

Fibrant objects for the model category structure on C(&/) appearing in proposition 5.2.2
relatively to #a1, simply called A'-fibrant objects, are the t-flasque and A'-local complexes.

We say a morphism f : C — D of complexes of @75 is an A'-equivalence if it becomes an
isomorphism in DZ@(MS). Considering moreover two morphisms f,g : C — D of complexes of
g, we say they are Al-homotopic if there exists a morphism of complexes

H:Ms(As)®@5C — D
such that H o (s ® 1¢) = f and H o (51 ® 1¢) = g, where so and s; are respectively induced
by the zero and the unit section of AL/S. When f and g are A'-homotopic, they are equal as
morphisms of ng(,cfg). We say the morphism p : C — D is a strong A'-equivalence if there
exists a morphism ¢ : D — C such that the morphisms p o ¢ and g o p are A'-homotopic to the

identity. A complex C is Al-contractible if the map C' — 0 is a strong A '-equivalence.
As an example, for any integer n € N, and any Z?-scheme X/SS, the map

pxt Ms(A%) — Ms(X)
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induced by the canonical projection is a strong A'-equivalence with inverse the zero section s , :
Ms(X) — Mg(A%).

5.2.19. The category Dzﬁi () is functorial in <.

Let ¢ : o &= % : 1 be an adjunction of abelian Z-premotivic categories. Consider two
topologies t and ¢’ such that ¢’ is finer than ¢. Suppose &7 (resp. ) is compatible with ¢ (resp.
).

For any scheme S, consider the evident extensions g : C(s) = C(Hs) : 1s of the above
adjoint functors to complexes. We easily check that the functor g preserves A'-local complexes.
Thus, applying 5.1.23, the pair (pg,1s) is a Quillen adjunction for the respective Al-localized
model structure on C(Zs) and C(Ag); see [CD09, 3.11]. Considering the derived functors, it is
now easy to check we have obtained an adjunction

Ly : D () 2 D (8) : Ry
of triangulated &2-premotivic categories.

Example 5.2.20. Consider the notations of 5.2.17. In the case where & = Sm, we get from the
adjunction of (5.1.24.2) the following adjunction of triangulated premotivic categories

af, : DY, = DY (Shat(Sm, A)) : Rag. ..

Example 5.2.21. Let 7 be a derived &-premotivic category as in 5.2.9. If .7 satisfies the property
(Htp), then the canonical morphism (5.2.9.1) induces a morphism

DY (PSh(2,Z)) = 7.
If moreover 7 satisfies t-descent for an admissible topology ¢, we further obtain as in 5.2.10 a
morphism

D (Shy(2,Z)) = 7.
Particularly interesting cases are given by Dzﬁi (resp. Dzﬁi (Shcdh (ﬂ ft, Z))) which is the univer-
sal derived premotivic category (resp. generalized premotivic category), i.e. initial premotivic
category satisfying Nisnevich descent (resp. cdh descent) and the homotopy property.

We remark the following useful property.

Proposition 5.2.22. Consider a morphism

O A 2B,
of abelian & -premotivic categories such that &/ (resp. B) is compatible with an admissible topology
t (resp. t'). Assumet' is finer than t.

Let S be a base scheme. Assume that p. s commutes with colimits®®. Then ¢, respects Al-
equivalences.

In other words, the right derived functor R, : Dzﬁ; (Bs) — Dzﬁ;(ds) satisfies the relation
Ry, = ¢..
Proof. In this proof, we write o, for ¢, s. We first prove that ¢, preserves strong A!-equivalences
(see 5.2.18).

Consider two maps u,v : K — L in C(%s). To give an A'-homotopy H : Mgs(AYL, B)@sK — L
between u and v is equivalent by adjunction to give a map H' : K — Homgy(Ms(AY, %), L)
which fits into the following commutative diagram:

K
H/

.
S1

LE—— Homu, (Ms(AL, #),1) —=>
So

29This amounts to ask that ©,5 is exact and commutes with direct sums.
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where sp and s; are the respective zero and unit section of AL /S.

Because Mg(AL, #) = p5(Ms(AY, o)), we get a canonical isomorphism (see paragraph 1.2.9)

(p*(HomggS (MS(A}S’ %)7 L)) ~ Homgg (MS(A}S" %)7 W*(L))'

Thus, applying ¢, to the previous commutative diagram and using this identification, we obtain
that . (u) is Al-homotopic to @ (v).

As a consequence, for any &?-scheme X over S, and any %-twist i, the map

s (Ms(Ak, B){i}) — ¢« (Ms(X, B){i})

induced by the canonical projection is a strong Al-equivalence, thus an A'-equivalence.

The functor ¢, : Bs — s commutes with colimits. Thus it admits a right adjoint that we
will denote by ¢'. Consider the injective model structure on C(Ag) and C(%s) (see [CD09, 2.1]).
Because @, is exact, it is a left Quillen functor for these model structures. Thus, the right derived

functor R¢' is well defined. From the result we just get, we see that R¢' preserves A'-local
objects, and this readily implies L, = ¢, preserves A'l-equivalences. O

5.2.23. To relate the category ng (S) with the homotopy category of schemes of Morel and
Voevodsky [MV99], we have to consider the category of simplicial Nisnevich sheaves of sets denoted
by A° Sh(Smg). Considering the free abelian sheaf functor, we obtain an adjunction of categories

AP Sh(Smg) = C(Sh(Sms, Z)).
If we consider Blander’s projective Al-model structure [Bla03] on the category A°P Sh(Smg), we
can easily see that this is a Quillen pair, so that we obtain a &-premotivic adjunction of simple
Z-premotivic categories
N:# =D K.
Note that the functor N sends cofiber sequences in 7°(S) to distinguished triangles in D;ﬁ; (S).
5.2.c. Explicit A'-resolution.

5.2.24. Consider an abelian &-premotivic category o/ compatible with an admissible topology
t.
Consider the canonically split exact sequence

O*)]]_SS—(])MS(AE()—)U*)O

where the map so : 1s — Mg(AYL) is induced by the zero section of A!. The section corresponding
to 1 in A' defines another map
S1 ¢ ]]-S — MS(Aﬁ()
which does not factor through sg, so that we get canonically a non trivial map u : 1¢ — U. This
defines for any complex C of o/s a map, called the evaluation at 1,
Hom(U,C) = 15 ®5 Hom(U,C) “£5 U @ Hom(U, C) <% C.
We define the complex REAB (C) to be
Rgz (C) = Cone(Hom(U,C) — C).
We have by construction a map
ro:C — RX)(C).
This defines a morphism of functors from the identity functor to Rgz. For an integer n > 1, we
define by induction a complex
RET(C) = RY(RRI(©O)).
and a map
n n+1
"R RSAB(C) - REAIJF )
We finaly define a complex Ra1(C) by the formula
Ra:(C) = lim R{Y(O).

n
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We have a functorial map
C — Ra1(0).

Lemma 5.2.25. With the above hypothesis and notations, the map C — Ra1(C) is an Al-
equivalence.

Proof. For any closed symmetric monoidal category 4 and any objects A, B, C and I in €, we
have
Hom(I ® Hom(B,C), Hom(A,C)) = Hom(Hom(B,C), Hom(I, Hom(A,C)))
= Hom(Hom(B,C), Hom(I @ A,C)).

Hence any map I ® A — B induces a map I ® Hom(B,C) — Hom(A, B) for any object C. If
we apply this to ¢ = C(s) and I = Mg(A'), we see immediately that the functor Hom(—,C)
preserves strong A'-homotopy equivalences. In particular, for any complex C, the map C —
Hom(Mg(AL),C) is a strong Al-homotopy equivalence. This implies that Hom(U,C) — 0 is an
Al-equivalence, so that the map r¢ is an Al-equivalence as well. As A'-equivalences are stable
by filtering colimits, this implies our result. O

Proposition 5.2.26. Consider the above notations and hypothesis, and assume that t is bounded
in o .

For any t-flasque complex C of /s, the complex Ra1(C) is t-flasque and A'-local. Moreover,
the morphism C — Ra1(C) is an Al-equivalence. If furthermore C' is t-flasque, so is Ra1(C).

Proof. The last assertion is a particular case of Lemma 5.2.25. The functor Rg preserves t-flasque

complexes. By virtue of 5.1.29, the functor Ra: has the same gentle property. It thus remains
to prove that the functor Ra: sends ¢-flasque complexes on Al-local ones. We shall use that the
derived category D(«Zs) is compactly generated; see 5.1.29.

Let C be a t-flasque complex of @75. To prove Ra1(C) is Al-local, we are reduced to prove
that the map

RAl (C) — HO’ITL(Ms(A‘lX), RAl (C))

is a quasi-isomorphism, or, equivalently, that the complex Hom (U, Ra1(C)) is acyclic. As U is a
direct factor of Mg(AY, ), for any &2-scheme X over S and any i in I, the object Zg(X; & ){i}®s
U is compact. This implies that the canonical map

lim Hom(U, R} (C)) — Hom(U, Ra:(C))

is an isomorphism of complexes. As filtering colimits preserve quasi-isomorphisms, the complex
Hom(U, Ra1(C)) (resp. Ra1(C)) can be considered as the homotopy colimit of the complexes

Hom(U, REZ)(C)) (resp. RXZ (C)). In particular, for any compact object K of D(/s), the canonical
morphisms

lim Hom (K, Hom (U, Ry (C'))) — Hom(K, Hom(U, Ra1(C)))

n

lim Hom (K, R (C)) — Hom(K, Ra:(C))
are bijective.
By construction, we have distinguished triangles

Hom(U, Ry (C)) — RY1(C) — R (C) — Hom(U, R (O))[1].
This implies that the evaluation at 1 morphism
evy : Hom(U, Ra1(C)) — Ra1(C)
induces the zero map
Homp o) (K, Hom(U, Ra1(C))) — Homp () (K, Ra1(C))
for any compact object K of D(«Z). Hence the induced map
a = Hom(U, evy) : Hom(U, Hom(U, Ra1(C))) — Hom(U, Ra1(C))
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has the same property: for any compact object K, the map
Homp (o) (K, Hom(U, Hom(U, Ra1(C)))) — Homp g (K, Hom(U, Ra:(C)))
is zero.
The multiplication map A' x A’ — A! induces a map
pw:U®sU—U
such that the composition of
" Hom(U, Ra1(C)) — Hom(U ®g U, Ra1(C)) = Hom(U, Hom (U, Ra1(C)))
with a is the identity of Hom (U, Ra1(C)). As D(«fs) is compactly generated, this implies that
Hom (U, Ra1(C)) = 0 in the derived category D(%s). O

Remark 5.2.27. Consider a t-flasque resolution functor (i.e. a fibrant resolution for the t-local
model structure) R; : C(/s) — C(s), 1 — R;. As a corollary of the proposition, the composite
functor Ra1 o R; is a resolution functor by t-local and A'-local complexes.

Example 5.2.28. Consider an admissible topology ¢t and the &-premotivic A'-derived category
D = Dzjjf (Sht (22, A)). Suppose that ¢ is bounded for abelian ¢-sheaves (for example, this is the
case for the Zariski and the Nisnevich topologies, see 5.1.28).
Let C be a complex of abelian t-sheaves on &/S. If C is Al-local, then
Homp(g)(A5(X), C) = HY (X;O)

(this is true without any condition on t).
Consider a t-local resolution Cy of C'in C (Sh(£/S,A)). Then we get the following formula:

Homp(s) (As(X), Clnl) = H"(T(X, Rar (Cy))).-
Corollary 5.2.29. Consider a morphism of abelian &2 -premotivic categories
oA =B Y
Suppose there are admissible topologies t and t', with t finer than t, such that the following

conditions are verified.

(i) o is compatible with t and B is compatible with t'.
(ii) P and D(RB) are compactly T-generated.
(iti) For any scheme S, the functor vg : Bs — s preserves filtering colimits.

Then, vgs : C(Bs) — C(s) preserves Al-equivalences between t'-flasque objects. If moreover g
is exact, the functor s preserves A'-equivalences.

Proof. We already know that g is a right Quillen functor, so that it preserves local objects
and A'-fibrant objects. This implies also that 1)y preserves A'-equivalences between A'-fibrant
objects (this is Ken Brown’s lemma [Hov99, 1.1.12]). Let D be a t'-flasque complex of Zg. Then
s(D) is a t-flasque complex of 7. It follows from proposition 5.2.26 that Ra1(D) is Al-local
and that D — Ra1(D) is an Al-equivalence. Lemma 5.2.25 implies the map

¥s(D) — Rar(s(D)) = ¢s(Rar (D))
is a an Al-equivalence. This implies the first assertion.

The last assertion is a direct consequence of the first one. O

5.2.30. Consider the usual cosimplicial scheme A® defined by
A"™ = Spec (Z[to, ..., tn]/(t1 + -+t — 1)) ~ A"

(see [MV99]). For any scheme S, we get a cosimplicial object of /g, namely Mg(AY). For a
complex C of o/, we put

C*(C) = Tot® Hom(Ms(AY),C),
where Hom(Mg(AY),C) is considered as a bicomplex by the Dold-Kan correspondence. The
canonical map Mg(A%) — 1g induces a map

C — C(0).
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Lemma 5.2.31. For any complex C' of <5, the map
C*(C) — Hom(Ms(A%),C"(C) = C*(Hom(Ms(A%),C))
s a chain homotopy equivalence.

Proof. The composite morphism
sop: Ms(A! x AY) — Mg(A! x AY),

where sq is the map induced by the zero section, and p is the map induced by the obvious projection
of A' on its base, is chain homotopic to the identity. Indeed, the homotopy relation is given by

the formula .

sn= (=1)".(1®g ;) : Ms(A' x ALH!) — Mg(A' x A%)
i=0
where 1 is the identity of Mg(AL), and 1; is induced by the map Ag“ — Al x A% which sends
the j-th vertex vjn41 to either 0 X v;,, if 5 <4, or to 1 X vj_1, otherwise. This implies the
lemma. 0

Lemma 5.2.32. For any t-flasque complex C of s, we have a canonical isomorphism
C*(C) ~ Llim RHom(Ms(Ag),C)

mn D(ﬁs).
This is a variation on the Dold-Kan correspondence. As a direct consequence, we get:
Lemma 5.2.33. For any complex C of /s, the map C — C*(C) is an A'-equivalence.

Proposition 5.2.34. If t is bounded in <, then, for any t-flasque complex C of s, C*(C) is
Al-local.

Proof. Using the first premotivic adjunction of example 5.2.21 and the fact that D(«) is compactly
generated (5.1.29), we can reduce the proposition to the case where 75 is the category of presheaves
of abelian groups over &?/S, in which case this is well known. O

5.2.d. Geometric A'-local premotives.

5.2.35. Consider an abelian &-premotivic category o/ compatible with an admissible topology ¢,
with generating set of twists 7. Assume that t is bounded in &7 and consider a bounded generating
family ¢ for t-hypercovers in <.

Let Ta1 be the family of complexes of C(#s) of shape

Ms(Ax){i} — Ms(X){i}

for a &-scheme X over S and a twist ¢ € I. Then the functor (5.1.30.1) obviously induces the
following functor

(5.2.35.1) (Kb(M(ﬂ/S, o)) /NEU TAg>h — DY (os),

where the category on the left is the pseudo-abelian category associated to the Verdier quotient
of K*(M(2/S,4)) by the thick subcategory generated by N U Tay- Applying Thomason’s
localization theorem [Nee01], we get from proposition 5.1.31 the following result:

Proposition 5.2.36. Consider the previous hypothesis and notations. Assume furthermore that,
for any P-morphism X — S, and any n € 7, the object Ms(X){n} is of finite presentation in
s (by which we mean that the functor Hom g, (Mg(X){n}, —) preserves filtered colimits). Then

ng(%) is compactly T-generated. Moreover, the functor (5.2.35.1) is fully faithful.

Corollary 5.2.37. Under the assumptions of 5.2.36, for any premotive M in ng(ds), the
following conditions are equivalent:

(i) M is compact;

(i) M is T-constructible.
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Moreover, the functor (5.2.35.1) induces an equivalence of categories:
(Kb (M(2/8,4)) /N U TAIS)h — D (os).
Example 5.2.38. With the notations of 5.1.33, we get the following equivalences of categories:
(K" (A(Sms) /(BGs UTay)) = DL (5. ).
(Kb (A(ygt)) /CDHg U TAls)h —- 4, (Shcdh(ysft, A) )
This statement is the analog of the embedding theorem [VSF00, chap. 5, 3.2.6].

5.3. The stable A'-derived premotivic category.

5.3.a. Modules. Let & be an abelian &2-premotivic category with generating set of twists 7.

A cartesian commutative monoid R of <7 is a cartesian section of the fibred category <7 over .
such that for any scheme S, Rg has a commutative monoid structure in &/(S) and for any mor-
phism of schemes f : T'— S, the structural transition maps ¢ : f*(Rgs) — Rr are isomorphisms
of monoids.

Let us fix a cartesian commutative monoid R of <7

Consider a base scheme S. We denote by Rg-mod the category of modules in the monoidal
category @ over the monoid Rg. For any &-scheme X/S and any twist i € 7, we put

Rs(X){i} = Rg ®s Mg(X){i}

endowed with its canonical Rg-module structure. The category Rg- mod is a Grothendieck abelian
category such that the forgetful functor Ug : Rg- mod — 75 is exact and conservative. A family
of generators for Rg-mod is given by the modules Rg(X){i} for a &-scheme X/S and a twist
i € 7. As Ag is commutative, Rg- mod has a unique symmetric monoidal structure such that the
free Rg-module functor is symmetric monoidal. We denote by ®pg this tensor product. Note that
Rs(X)®r Rs(Y) = Rs(X xgY). Finally the categories of modules Rg-mod form a symmetric
monoidal £-fibred category, such that the following proposition holds (see 4.2.9).

Proposition 5.3.1. Let &7 be a T-generated abelian &2 -premotivic category and R be a cartesian
commutative monoid of < .

Then the category R-mod equipped with the structures introduced above is a T-generated abelian
P -premotivic category.

Moreover, we have an adjunction of abelian &-premotivic categories:

(5.3.1.1) Rs®(—): o 2 R-mod:U.

Remark 5.3.2. With the hypothesis of the preceding proposition, for any morphism of schemes
f: T — S, the exchange transformation f*Ug — Upf* is an isomorphism by construction of
R-mod (4.2.9).

Proposition 5.3.3. Let & be a T-generated abelian P -premotivic category compatible with an
admissible topology t. Consider a cartesian commutative monoid R of o/ such that for any scheme
S, tensoring quasi-isomorphisms between cofibrant complexes by Rg gives quasi-isomorphisms (e.g.
Rg might be cofibrant (as a complex concentrated in degree zero), or flat). Then the abelian &-
premotivic category R-mod is compatible with t.

Proof. In view of proposition 5.1.25, we have only to show that R-mod satisfies cohomological
t-descent. Consider a t-hypercover p : X — X in &/S. We prove that the map p, : Rg(X) —
Rg(X) is a quasi-isomorphism in C(Rg-mod). The functor Ug is conservative, and Ug(p.) is
equal to the map:

Rs ®s Ms(X) — Rs @5 Ms(X).

But this is a quasi-isomorphism in C(47) by assumption on Rg. (]
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Remark 5.3.4. According to lemma 5.1.26, for any simplicial &-scheme X over S, any twist i € T
and any Rg-module C, we get canonical isomorphisms:

(5341) HOHIK(RS_ mod) (Rs(X){Z}, C) ~ HomK(MS) (MS(X){’L}, C)
(5342) HOHID(RS_ mod)(RS (./Y){Z}, C) ~ HOInD(eQ{S)(MS (X){Z}, C)
5.3.b. Symmetric sequences. Let & be an abelian category.

Let G be a group. An action of G on an object A € &g is a morphism of groups G —
Auty(A), g — ’ygA. We say that A is a G-object of &/. A G-equivariant morphism A L B of
G-objects of 7 is a morphism f in &/ such that 'yf of=fo 'y;;‘.

If E is any object of o/, we put G x E = FE considered as a G-object via the permutation
isomorphisms of the summands.

If H is a subgroup of G, and F is an H-object, G x E has two actions of H : the first one,
say 7, is obtained via the inclusion H C G, and the second one denoted by 7/, is obtained using

the structural action of H on E. We define G x gy F as the equalizer of the family of morphisms
(Yo — 7} )oecm, and consider it equipped with its induced action of G.

geG

Definition 5.3.5. Let & be an abelian category.

A symmetric sequence of & is a sequence (A4, ),en such that for each n € N, E,, is a &,,-object
of o/. A morphism of symmetric sequences of & is a collection of &,-equivariant morphism
(fn : An - Bn)nEN

We let @7® be the category of symmetric sequences of .27

It is straightforward to check «/® is abelian. For any integer n € N, we define the n-th
evaluation functor as follows:
evn : A® — o A, — A,
Any object A of &7 can be considered as the trivial symmetric sequence (A,0,...). The functor
io: A (A,0,...) is obviously left adjoint to evy and we obtain an adjunction

(5.3.5.1) ig: o = % : ev.
Remark 7 is also right adjoint to evg. Thus ¢ preserves every limits and colimits.
For any integer ¢ € N and any symmetric sequence A, of <7, we put

Sm xs,, , An—n ifm>n

(5.3.5.2) Ad-n}=mr— { 0 otherwise.

This define an endofunctor on .«/®, and we have A.{-n}{-m} = A.{—n — m} (through a
canonical isomorphism). Remark finally that for any integer n € N, the functor

in o — A, A (ig(A){—n}
is left adjoint to ev,.

Remark 5.3.6. Let & be the category of finite sets with bijective maps as morphisms. Then the
category of symmetric sequences is canonically equivalent to the category of functors & — 7.
This presentation is useful to define a tensor product on 7.

Definition 5.3.7. Let o/ be a symmetric closed monoidal abelian category.
Given two functors A,, B, : & — &, we put:

ERPF:6 —
N — @A:PUQE(P)@)F(Q).

If 1, is the unit object of the monoidal category <7, the category «/© is then a symmetric
closed monoidal category with unit object ig(1y).

5.3.8. Let A be an object of /. Then the n-th tensor power A®™ of A is endowed with a canonical
action of the group &,, through the structural permutation isomorphism of the symmetric structure
on «/. Thus the sequence Sym(A) = (A®"),eN is a symmetric sequence.

Moreover, the isomorphism A®" ®, A®™ — A®"T™M i5 &, x &,,-equivariant. Thus it induces
a morphism u : Sym(A) ®S, Sym(A) — Sym(A) of symmetric sequences. We also consider the
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obvious morphism 7 : ig(1y) = ig(A®%) — Sym(A). One can check easily that Sym(A) equipped
with the multiplication p and the unit 1 is a commutative monoid in the monoidal category 7.

Definition 5.3.9. Let &/ be an abelian symmetric monoidal category. The commutative monoid
Sym(A) of &7® defined above will be called the symmetric monoid generated by A.

Remark 5.3.10. One can describe Sym(A) by a universal property: given a commutative monoid
R in &%, to give a morphism of commutative monoids Sym(A) — R is equivalent to give a
morphism A — Ry in &7,

5.3.11. Consider an abelian &?-premotivic category 7.

Consider a base scheme S. According to the previous paragraph, the category 427’56 is an abelian
category, endowed with a symmetric tensor product ®g. For any &7-scheme X/S and any integer
n € N, using (5.3.5.2), we put

Ms(X, o) {~n} = io(Ms(X, o/)){-n}.

It is immediate that the class of symmetric sequences of the form Mg(X,.«/®){—n} for a smooth
S-scheme X and an integer n > 0 is a generating family for the abelian category /& which is
therefore a Grothendieck abelian category. It is clear that for any &?-scheme X and Y over S,

Ms(X, /9){—n} ©F Ms(Y, s/ ®){-n} = Ms(X x5 Y,/ "){-n}.

Given a morphism (resp. Z?-morphism) of schemes f : T — S and a symmetric sequence
A, of dg, we put fE(A) = (f*An)nen (resp. fﬁG(A*) = (fgAn)nen). This defines a functor
f& - AE — AP (resp. fﬁ@ : AR — &/§) which is obviously right exact. Thus the functor f&
admits a right adjoint which we denote by f©. When f is in 2, we check easily the functor fﬁe

is left adjoint to f§.
From criterion 1.1.41 and lemma 1.2.13, we check easily the following proposition:

Proposition 5.3.12. Consider the previous hypothesis and notations.

The association S — § together with the structures introduced above defines an N x 7-
generated abelian &2 -premotivic category.

Moreover, the different adjunctions of the form (5.3.5.1) other each fibers over a scheme S
define an adjunction of &-premotivic categories:

(5.3.12.1) ig o = % :evg
Indeed, i is trivially compatible with twists.

Proposition 5.3.13. Let o/ be an abelian & -premotivic category, andt be an admissible topology.
If of is compatible with t then o/© is compatible with t.

Proof. This is based on the following lemma (see [CD09, 7.5, 7.6]):

Lemma 5.3.14. Assume that </ is compatible with t. Then for any complex C of ofs, any complex
E of 42%56 and any integer n > 0, there are canonical isomorphisms:

(5.3.14.1) HomK(dSe)(io(C’){—n}, E) ~ Homg () (C, Ey)

(5.3.14.2) Homp ¢\ (io(C){—n}, E) ~ Homp () (C, Ey)

The lemma implies that E is local (resp. t-flasque) if and only if for any n > 0, E,, is local
(resp. t-flasque). This concludes. O

5.3.c. Symmetric Tate spectra.

5.3.15. Consider an abelian &-premotivic category <7.

For any scheme S, the unit point of G,, s defines a split monomorphism of .z7-premotives
ls — Mg(Gy,,s). We denote by 1g{1} the cokernel of this monomorphism and call it the
suspended Tate S-premotive with coefficients in 7. The collection of these objects for any scheme
S is a cartesian section of &7 denoted by 1{1}. For any integer n > 0, we denote by 1{n} its
n-the tensor power.
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With the notations of 5.3.9, we define the symmetric Tate spectrum over S as the symmetric
sequence 1g{*} = Sym(1g{1}) in #§. The corresponding collection defines a cartesian commu-
tative monoid of the fibred category «7®, called the absolute Tate spectrum.

Definition 5.3.16. Consider an abelian &Z-premotivic category 7.
We denote by Sp(«) the abelian &-premotivic category of modules over 1{x} in the category
«/®. The objects of Sp(7) are called the abelian (symmetric) Tate spectra.3®

The category Sp(&7) is N x 7-generated. Composing the adjunctions (5.3.1.1) and (5.3.12.1),
we get an adjuntion
(5.3.16.1) Yo 2 Sp(): Q™
of abelian &-premotivic categories.
Let us explicit the definitions. An abelian Tate spectrum (FE, o) is the data of :
(1) for any n € N, an object E,, of /s endowed with an action of &,
(2) for any n € N, a morphism o, : B, {1} — E,, 11 in @
such that the composite map

B} 0 g -1y L T g

is 6,, X &,,-equivariant with respect to the canonical action of &,, on 1g{n} and the structural
action of &, on E,,. By definition, w(F) = Ey. Recall that w is exact.

Given an object A of «7g, the abelian Tate spectrum 3*° A is defined such that (X A),, = A{n}
with the action of &,, given by its action on 1g{n} by permutations of the factors.

Be careful we consider the category Sp(«Zs) as N-twisted by negative twists. For any abelian
Tate spectrum E., (E.{—n})m = 6, Xs,,_, Em_n for n > m.

m—n

5.3.17. Consider a morphism

p:d — B
of abelian Z-premotivic categories. Then as ¢(Z“{1}) = Z#{1}, ¢ can be extended to abelian
Tate spectra in such a way that the following diagram commutes:

A
Efjl lzz;
Sp(«) Sp(#).

(Of course the obvious diagram for the corresponding right adjoints also commutes.)

Sp()

Definition 5.3.18. For any scheme .S, a complex of abelian Tate spectra over S will be called
simply a Tate spectrum over S.

A Tate spectrum E is a bigraded object. In the notation E]", the index m corresponds to the
(cochain) complex structure and the index n to the symmetric sequence structure.

From propositions 5.3.3 and 5.3.13, we get the following;:

Proposition 5.3.19. Let &7 be an abelian &2-premotivic category compatible with an admissible
topology t. Then Sp(&) is compatible with t.

Note also that remark 5.3.4 and lemma 5.3.14 implies that for any simplicial &-scheme X over
S, any integer n € N, and any Tate spectrum E, we have canonical isomorphisms:

(53191) HomK(sp(ﬂs))(ZmMS(é\,’, sz){—n}, E) ~ HomK(ﬂs)(ZmMs(X, 527), En)
(53192) HOmD(Sp(dS))(EOOMs(X, %){777,}, E) ~ HOIHD(MS) (EOOMs(X, JZ{), En)
According to the proposition, the category C(Sp(#Zs)) of Tate spectra over S has a t-descent model

structure. The previous isomorphisms allow to describe this structure as follows:

30As we will almost never consider non symmetric spectra, we will cancel the word ”symmetric” in our
terminology.
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(1) For any simplicial &?-scheme X over S, and any integer n > 0, the Tate spectrum
Yo Mg (X, /){—n} is cofibrant.

(2) A Tate spectrum E over S is fibrant if and only if for any integer n > 0, the complex E,,
over /s is local (i.e. t-flasque).

(3) Let f : E — F be a morphism of Tate spectra over S. Then f is a fibration (resp.
quasi-isomorphism) if and only if for any integer n > 0, the morphism f, : E, — F,, of
complexes over &5 is a fibration (resp. quasi-isomorphism).

Note that properties (2) and (3) follows from (5.3.4.1) and (5.3.14.1).

5.3.20. We can also introduce the Al-localization of this model structure. The corresponding
homotopy category is the Al-derived &-premotivic category DZ@(Sp(% )) introduced in 5.2.16.
The isomorphism (5.3.19.2) gives the following assertion: From the above, a Tate spectrum FE is
Al-local if and only if for any integer n > 0, E,, is Al-local.
(1) A Tate spectrum E over S is Al-local if and only if for any integer n > 0, the complex
E,, over 75 is Al-local.
(2) Let f : E — F be a morphism of Tate spectra over S. Then f is a Al-local fibration (resp.
weak Al-equivalence) if and only if for any integer n > 0, the morphism f,, : E,, — F}, of
complexes over /s is a Al-local fibration (resp. weak Al-equivalence).

As a consequence, the isomorphism (5.3.19.2) induces an isomorphism

(5.3.20.1) Homefl(Sp(g{s))(EocMS(X’ A){—n}, E) ~ HomDEAﬁl(dS)(EOOMS(X, ), Ey).
Similarly, the adjunction (5.3.16.1) induces an adjunction of triangulated &?-premotivic categories
(5.3.20.2) LY> : DY (o) = D (Sp(«7)) : RQ™.

5.3.d. Symmetric Tate Q-spectra.

5.3.21. The final step is to localize further the category DZﬁI(Sp(,Qf)). The aim is to relate
the positive twists on Dzﬁi (/) obtained by tensoring with 1g{1} and the negative twists on

ng(Sp(JA/ )) induced by the consideration of symmetric sequences.
Let X be a &-scheme over S. From the definition of 3°°, there is a canonical morphism of
abelian Tate spectra:

(2 (1s{1})[{-1} = =%1s.
Tensoring this map by X Mg(X, o/){—n} for any &-scheme X over S and any integer n € N,
we obtain a family of morphisms of Tate spectra concentrated in cohomological degree 0:
[EOO (MS(X, %){1})]{771 —1} = X Mg(X, o ){—n}.
We denote by #q this family and put #g a1 = #ao U #a1. Obviously, #q a1 is stable by the
operations f* and fj.
Definition 5.3.22. Let &/ be an abelian &?-premotivic category compatible with an admissible

topology t. With the notations introduced above, we define the stable Al-derived 2-premotivic
category with coefficients in </ as the derived &-premotivic category

Dax(/) = D(Sp())[# & a1l

defined in corollary 5.2.5.
Note that Obviously Dai(#/) = DZﬁI(Sp(d N[#5 '], Using the left Bousfield localization of

the Al-local model structure on C(Sp(<7)), we thus obtain a canonical adjunction of triangulated
P-fibred premotivic categories

D (Sp()) = DL (Sp()[#4!)
which allows to describe D1(#7s) as the full subcategory of ng(Sp(dS)) made of Tate spectra

which are #-local in ng (Sp(#%s)). Recall a Tate spectrum F is a sequence of complexes (Ey,)neN
over /s together with suspension maps in C(s)

on:1s{l} @ B, — Epiq.
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From this, we deduce a canonical morphism 1g{1} ®* E,, — E,; in Dzﬁ; («7) whose adjoint
morphism we denote by

(5.3.22.1) tn 2 By — RHomp ) ({1}, Bnt)

According to (5.3.20.1), the condition that F is #q-local in ng(Sp(d)) is equivalent to ask that
for any integer n > 0, the map (5.3.22.1) is an isomorphism in DZﬁ;(Sp(ﬂf)).

Considering the adjunction (5.3.20.2), we obtain finally an adjunction of triangulated £-fibred
categories:

%> : DY (o) 2 DY (Sp()) 2 Dar(e7) : Q.

Note that tautologically, the Tate spectrum X°°(1g{1}) has a tensor inverse (L*°1g){—1} in
Da1(“Zs). This means that the triangulated &7-premotivic category Da1(27) satisfies the stability
property (we have M{1} = M (1)[1] for any object M of Da1()).

Definition 5.3.23. Consider the assumptions of definition 5.3.22.
For any scheme S, we say that a Tate spectrum FE over S is a Tate Q-spectrum if the following
conditions are fulfilled:
(a) For any integer n > 0, E,, is t-flasque and Al-local.
(b) For any integer n > 0, the adjoint of the structural suspension map

En — Homc(&gs)(ls{l},En+1)

is a quasi-isomorphism.

In particular, a Tate Q-spectrum is #g-local in DZ@(Sp(szfs)). In fact, it is also #q a1-local in
the category D(Sp(#7s)) so that the category Da1(«7) is also equivalent to the full subcategory of
D(Sp(#s)) spanned by Tate Q-spectra.

Fibrant objects of the #q a1-local model category on C(Sp(%/)) obtained in definition 5.3.22
are exactly the Tate (-spectra.

Essentially by definition, we have:

Proposition 5.3.24. Let &/ be as definition 5.3.22. Then Dai() is a P-premotivic category
which satisifies t-descent, the homotopy property, and the stability property.

Proposition 5.3.25. Consider the above notations. Let S be a base scheme.
(1) If the endofunctor

Dzﬁi(%s) N ng(gfs)7 C— RHomefl(ds)(]lS{l}’ C)

is conservative, then the functor QF is conservative.

(2) If the Tate twist E — E(1) is fully faithful in Dzﬁi (27s), then £F° is fully faithful.

(3) If the Tate twist E — E(1) induces an auto-equivalence of Dzﬁf(ds), then (22°,0%) are
adjoint equivalences of categories.

Remark 5.3.26. Similar statements can be obtained for the derived categories rather than the
Al-derived categories. We left their formulation and proof to the reader.

Proof. Consider point (1). We have to prove that for any #o-local Tate spectrum E in Dzﬁi (Sp(#%s)),
if RO>®(E) =0, then E = 0. But RQ>®(F) = Q> (E) = Ej (see 5.3.20). Because for any integer
n > 0, the map (5.3.22.1) is an Al-equivalence, we deduce that for any integer n € Z, the complex
E,, is (weakly) Al-acyclic. According to (5.3.20.1), this implies E = 0 — because Da1(#s) is
N-generated.

Consider point (2). We want to prove that for any complex C over s, the counit map
C — RO®LY>*(C) is an isomorphism. It is enough to treat the case where C' is cofibrant.

Considering the left adjoint L3 of (5.3.20.2), we first prove that LX>°(C) is #q-local. Because
C is cofibrant, this Tate spectrum is equal in degree n to the complex C'{n} (with its natural action
of &,). Moreover, the suspension map is given by the isomorphism (in the monoidal category
C(s))

on: 1s{l} ®s C{n} — C{n+1}.
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In particular, the corresponding map in Dzﬁi (s)
ol 1g{1} ®% C{n} — C{n +1}.

is canonically isomorphic to
1s{1} ®§ C{n} = 15{1} ®§ C{n}.

Thus, because the Tate twist is fully faithful in D‘Zﬁ; (es), the adjoint map to o/, is an Al-
equivalence. In other words, LY. (C) is #g-local. But then, as C' is cofibrant, C' = Q*°X>*°(C) =
ROQ>LX>(C), and this concludes.

Point (3) is then a consequence of (1) and (2). O

Remark 5.3.27. (1) The construction of the triangulated category Da:(</) can also be ob-
tained using the more general construction of [CD09, §7] — see also [Hov01, 7.11] and
[Ayo07b, chap. 4] for even more general accounts. Here, we exploit the simplification
arising from the fact that we invert a complex concentrated in degree 0: this allowed us
to describe Da1(«?) simply as a Verdier quotient of the derived category of an abelian
category. However, we can also consider the category of symmetric spectra in C(as)
with respect to one of the complexes 15(1)[2] or 1g(1) and this leads to the equivalent
categories; see [Hov01, 8.3].

(2) Point (3) of proposition 5.3.25 is a particular case of [Hov01, 8.1].

5.3.28. Consider a morphism of abelian &-premotivic categories
A 2B

such that o (resp. %) is compatible with a system of topology ¢ (resp. ¢'). Suppose t’ is finer
than t. According to 5.3.17, we obtain an adjunction of abelian &-premotivic categories

¢ : C(Sp(#)) = C(Sp(ZX)) : .

The pair (¢g,%s) is a Quillen adjunction for the stable model structures (apply again [CD09,
prop. 3.11]). Thus we obtain a morphism of triangulated &-premotivic categories:

Remark 5.3.29. Under the light of Proposition 5.3.25, the category Da1(2) might be considered
as the universal derived &-premotivic category 7 with a morphism D(«/) — 7, and such that
T satisfies the homotopy and the stability property. This can be made precise in the setting of
algebraic derivators or of dg-categories (or any other kind of stable co-categories).

Proposition 5.3.30. Assume that & contains the class of smooth morphisms of finite type. Let o
be an abelian P -premotivic category. Assume that Dzﬁi(d) s compactly generated by its geometric
sections Mg(X), and satisfies Nisnevich descent. Then, for any scheme S, for any compact object
C of ng(fds) and for any Tate spectrum E in @/g, we have a canonical isomorphisms

lim Homy,r ) (Cla+ 1)), B, i) = Homp, o) (LS (C) {a}, E[i])
r>>0 A

for any integers a and 1.

Proof. The permutation o = (123) acts as the identity on 1g{1}®? = 15{3} in D‘Zﬁl(ﬁfs): using
example 5.2.21, it is sufficient to prove this in D1 z(S), which is well known; see [Ayo07b, 4.5.65].
This proposition is then a direct consequence of [Ayo07b, theorems 4.3.61 and 4.3.79]. (]

Corollary 5.3.31. Under the assumptions of the preceding proposition, the triangulated category
Dai(s) is compactly generated. More precisely, if ng(&fg)c denotes the category of compact

objects in Dzﬁi (2s), then the category of compact objects in Da1(2fs) is canonically equivalent to
the pseudo-abelian completion of the category obtained as the 2-colimit of the following diagram.

®R1s{1} ®1s{1} ®Ls{1}
— — . D —

D ().

D (ets), DY (s
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Proposition 5.3.32. Let t and t' be two admissible topologies, with t' finer than t. Then
D1 (Shy (2, A)) is canonically equivalent to the the full subcategory of D1 (Shy (£, A)) spanned
by the objects which satisfy t'-descent.

Proof. Tt is sufficient to prove this proposition in the case where t is the coarse topology. We
deduce from [Ayo07b, 4.4.42] that, for any scheme S in ., we have
Das (Shy (2/8, A)) = D (PSh(2 /S, A)) [# 7],
with W = W U War U W, where #;: is the set of maps of shape
£ Mo () {n}li] — %M (X){n} ],

for any t’-hypercovering X — X and any integers n < 0 and ¢. The assertion is then a particular
case of the description of the homotopy category of a left Bousfield localization. O

Proposition 5.3.33. Let t be an admissible topology. Then, for any scheme S in .77, the sym-
metric monoidal model structure on C(Sp(Shy(Z2/S, A))) underlying D1 (She(22/S, A)) is perfect
(see 4.2.3).

Proof. The generating family of Shy(#g, A) is flat in the sense of [CD09, 3.1], so that, by virtue
of [CD09, prop. 7.22 and cor. 7.24], the assumptions of proposition 4.2.8 are fulfilled. O

Example 5.3.34. We have the stable versions of the &-premotivic categories introduced in example
5.2.17:

1) Consider the admissible topology t = Nis. Following F. Morel, we define the stable Al-derived
premotivic category as (see also the construction of [Ayo07b]):

(5.3.34.1) Daia :=Dai1(Shyis(Sm,A))  and  Daip :=Da1 (Shee (777, A)).
We shall also write sometimes
(53342) DAl(S, A) = DAl,A(S) and QAl(S, A) = DAl,A(S)

for a scheme S.
In the case when t = ét, we get the triangulated premotivic categories of étale premotives:

Da1(Shet(Sm,A))  and  Das (Shet (771, A)).

In each of these cases, we denote by X°°A%(X) the premotive associated with a smooth S-scheme
X.
From the adjunction (5.1.24.2), we get an adjunction of triangulated premotivic categories:

gt - DAHA = DAl (Shét(Sm,A)) : ROét.

2) Assume & = ./t

Consider the admissible topology ¢t = gfh (resp. ¢ = h). Extending the construction of Vo-
evodsky ([Voe96]), we define the category of (non effective) qfh-motives (resp. h-motives) over S
as:

(5.3.34.3) DM, (S, A) = Das (Sh (71, A)) .

For an S-scheme of finite type X, we will denote simply by EOOAgth(X) (resp L°AL(X)) the
corresponding premotive associated with X in DM, (S, A). We shall write sometimes DM, , (S)
instead of DM, (S, A). The h-sheafification functor induces a premotivic adjunction

(5.3.34.4) DM, o = DM, , .

We define DM, (S, A) as the localizing subcategory of DM, (S, A) generated by objects of shape
YAL(X)(p)[q] for any smooth S-scheme of finite type X and any integers p and ¢g. These define
an Sm-premotivic triangulated category, and the inclusions

(5.3.34.5) DM,(S,A) — DM, (S, A)

form a premotivic morphism (the existence of right adjoints is ensured by the Brown representabil-
ity theorem). As before, we shall write sometimes DM, 4 (S) instead of DM, (S, A).
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Proposition 5.3.35. Fort = qth,h, the premotivic category DM, a satisfies t-descent.
Proof. This is true for DM, , by construction, which implies formally the assertion for DM; o. [

Remark 5.3.36. According to proposition 5.2.10 and remark 5.3.29, for any admissible topology t,
Da1(She (22, A)) is the universal derived &2-premotivic category satisfying t-descent as well as the
homotopy and stability properties.

A crucial example for us: the stable A!-derived premotivic category D a1 is the universal derived
premotivic category satisfying the properties of homotopy, of stability and of Nisnevich descent.

5.3.37. We assume & = Sm.
Let She(Sm) be the category of pointed Nisnevich sheaves of sets. Consider the pointed version
of the adjunction of &-premotivic categories

N : A% Sh,(Sm) = C(Shyis(Sm, A)) : K

constructed in 5.2.23.

If we consider on the left hand side the A'-model category defined by Blander [Bla03], (Ng, Ks)
is a Quillen adjunction for any scheme S.

We consider (G,,,1) as a constant pointed simplicial sheaf. The construction of symmetric
G.,,-spectra respectively to the model category A° She(Sm) can now be carried out following
[Jar00] or [Ayo07b] and yields a symmetric monoidal model category whose homotopy category is
the stable homotopy category of Morel and Voevodsky SH(S).

Using the functoriality statements [Hov01, th. 8.3 and 8.4], we finally obtain a &?-premotivic
adjunction

N:SH&=Dar: K.

The functor K is the analog of the Eilenberg-Mac Lane functor in algebraic topology; in fact,
this adjunction is actually induced by the Eilenberg-MacLane functor (see [Ayo07b, chap. 4]).
In particular, as the rational model category of topological (symmetric) S!-spectra is Quillen
equivalent to the model category of complexes of Q-vector spaces, we have a natural equivalence
of premotivic categories

SHq = Da1 q,
(where SHq(.S) denotes the Verdier quotient of SH(.S) by the localizing subcategory generated by
compact torsion objects).

6. LOCALIZATION AND THE UNIVERSAL DERIVED EXAMPLE

6.0. In this section, . is an adequate category of S-schemes as in 2.0. In sections 6.2 and 6.3,
we assume in addition that the schemes in . are finite dimensional.
We will apply the definitions of the preceding section to the admissible class made of morphisms
of finite type (resp. smooth morphisms of finite type) in .#, denoted by .7/t (resp. Sm).
Recall the general convention of section 1.4:
e premotivic means Sm-premotivic.
e generalized premotivic means . f*-premotivic.

6.1. Generalized derived premotivic categories.

Ezample 6.1.1. Let t be a system of topologies on .#7*. For a scheme S, we denote by Sh, (th, A)

the category of sheaves of abelian groups on Yg ! for the topology tg. For an S-scheme of finite
type X, we let AI‘S(X ) be the free t-sheaf of A-modules represented by X. Recall Sh, (5” It A) is
a generalized abelian premotivic category (see 5.1.4).

Let p: Smg — .#t/S be the obvious inclusion functor. Then it induces (cf. [AGVT3, IV, 4.10])
a sequence of adjoint functors

Pt
Shy(Sm/S, ) <——p—— Sh, (#7t/S, A)
P



122 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

and we checked easily that this induces an enlargement of abelian premotivic categories:
(6.1.1.1) ps : Shy(Sm, A) = Shy (F71,A) : p*.
Remark 6.1.2. Note that for any scheme S, the abelian category Shy(Sm/S,A) can be described
as the Gabriel quotient of the abelian category Shy (y ft/s, A) with respect to the sheaves F over
1t/ such that p*(F) = 0.

An example of such a sheaf in the case where ¢ = Nis and dim(S) > 0 is the Nisnevich sheaf

As(Z) on Yg * represented by a nowhere dense closed subscheme Z of S is zero when restricted
to Smg.

6.1.3. Consider an abelian premotivic category &/ compatible with an admissible topology ¢ on
Sm and a generalized abelian premotivic category .« compatible with an admissible topology '
on .. We denote by M (resp. M) the geometric sections of &7 (resp. o). We assume that ¢’ is
finer that ¢, and consider an adjunction of abelian premotivic categories:
py A = A ph
Let S be a scheme in .. The functors py and p* induce a derived adjunction (see 5.2.19):
Lp; : D (o/5) = DI (ots) : Rp”
(where &7 is considered as an Sm-fibred category).

Proposition 6.1.4. Consider the previous hypothesis, and fix a scheme S. Assume furthermore
that we have the following properties.

(1) The functor py : os — s is fully faithful.

(i) The functor p* : ols — s commutes with small colimits.
Then, the following conditions hold :

(a) The induced functor

p": C(s) — C(s)
preserves Al-equivalences.

(b) The A'-derived functor Lpy : Dzﬁi (s) — qu(gs) is fully faithful.

Proof. Point (a) follows from proposition 5.2.22. To prove (b), we have to prove that the unit map

M — p*Lps(M)

is an isomorphism for any object M of Dzﬁi (). For this purpose, we may assume that M is
cofibrant, so that we have

M == p*py(M) = p*Lp; (M)
(where the first isomorphism holds already in C(/s)). O

Corollary 6.1.5. Consider the hypothesis of the previous proposition. Then the family of ad-
Junctions Lpy : Dfﬁ(dg) — sz{(gs) : Rp* indezed by a scheme S induces an enlargement of
triangulated premotivic categories

Lp; : Dl (o) — DY (&) : Rp".
Ezample 6.1.6. Considering the situation of 6.1.1, we will be particularly interested in the case

of the Nisnevich topology. We denote by Dzﬁi , the generalized Al-derived premotivic category
associated with Sh (5” ft A). The preceding corollary gives a canonical enlargement:

(6.1.6.1) Dy =Dy,

6.1.7. Consider again the hypothesis of 6.1.3. We denote simply by M (resp. M) the geometric
sections of the premotivic triangulated category Dai(%7) (resp. Dai(.#)).

Recall from 5.3.15 that we have defined 1g{1} (resp. 1g{1}) as the cokernel of the canonical
map lg — Mg(Gp,s) (resp. 1lg — Mg(Gy, ). Thus, it is obvious that we get a canonical
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identification py(1s{1}) = Lg{1}. Therefore, the enlargement p; can be extended canonically to
an enlargement

py 2 Sp(/) = Sp( L) : p*
of abelian premotivic categories in such a way that for any scheme S, the following diagram

commutes:

Ay — > s

zg;l lzmﬂ

Sp(as) ——> Sp(.Ls).
According to proposition 5.3.13, Sp(«&) (resp. Sp(.#)) is compatible with ¢ (resp. t'), and we
obtain an adjoint pair of functors (5.3.28):

Lpﬁ . DAl(ds) = DAI(%) : Rp*.
From the preceding commutative square, we get the identification:

(6.1.7.1) Lpyo X7 = %%, o Lpy
As in the non effective case, we get the following result:

Proposition 6.1.8. Keep the assumptions of proposition 6.1.4, and suppose furthermore that

both D‘Zﬁf (o) and Dzﬁi () are compactly generated by their geometric sections. Then the derived
functor Lpy : Da1(eZs) — Dar(s) is fully faithful.

Proof. We have to prove that for any Tate spectrum E of Da1(2), the adjunction morphism
E — Lp"Rp;(E)

is an isomorphism. According to proposition 1.3.18, the functor Rp* admits a right adjoint. Thus,
applying lemma 1.1.42, it is sufficient to consider the case where E = Mg(X){i}[n] for a smooth
S-scheme X, and a couple (n,i) € Z x Z.

Moreover, it is sufficient to prove that for another smooth S-scheme Y and an integer j € Z,
the induced morphism

Hom (5% Mg (Y){j}, 5% Ms(X){i}[n]) — Hom(E*Mg(Y)j}, 85 Mg(X)i}[n])

is an isomorphism. Using the identification (6.1.7.1), propositions 5.3.30 and 6.1.4 allows to
conclude. O

Corollary 6.1.9. If the assumptions of proposition 6.1.8 hold for any scheme S in .7, then we
obtain an enlargement of triangulated premotivic categories

Lpﬁ : DAl(.;Z/) = DAI(LZ/) : Rp*.

Ezxample 6.1.10. Considering again the situation of 6.1.1, in the case of the Nisnevich topol-
ogy. We denote by Da1 o the generalized stable A'l-derived premotivic category associated with
Sh (5’ ft A). The preceding corollary gives a canonical enlargement:

(6.1.10.1) Lpﬁ : DAlyA = DAI’A : Rp*
which is compatible with the enlargement (6.1.6.1) in the sense that the following diagram is
essentially commutative:

eff eff
DAl,A DAl,A

|

DA17A HDA%A

Proposition 6.1.11. Consider a Grothendieck topology t on our category of schemes .. Let S
be a scheme in .7, and M an object of Da1 A(S). Then M satisfies t-descent in Da1 A (S) if and
only if Lpy(M) satisfies t-descent in Dar A (S).
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Proof. Let f: 2 — S be a diagram of S-schemes of finite type. Define
HY(Z,M(p)) = Homp,, , (s)(Aa, Lf*(M)(p)la])
HY (2, M(p)) = Homp ,, ,(s)(A g Lf* Lpg(M)(p)lq])

for any integers p and ¢. The fully faithfulness of Lp; ensures that the comparison map
HY(Z, M(p)) — H' (2", M(p))

is always bijective. This proposition follows then from the fact that M (resp. Lpy(M)) satisfies
t-descent if and only if, for any integers p and ¢, for any S-scheme of finite type X, and any
t-hypercovering 2~ — X, the induced map

Hq(X,M(p)) - Hq(%,M(p)) (resp. ﬂq(X,M(p)) - ﬂq(%’M(p)))
is bijective. g

6.2. The fundamental example. Recall from [Ayo07b] the following theorem of Morel and
Voevodsky:

Theorem 6.2.1. The triangulated premotivic categories DEAﬁI A and Dax o satisfy the localization
property.

Corollary 6.2.2. (1) The premotivic category Dax 5 is a motivic category.
(2) Suppose that T is a derived premotivic category (see 5.2.9) which is a motivic category.
Then there exists a canonical morphism of derived premotivic categories:

DAI,Z — 7.

Proof. The first assertion follows from the previous theorem and remark 2.4.3. The second asser-
tion follows from proposition 3.3.5 and example 5.3.36. O

Remark 6.2.3. Thus, theorem 2.4.21 can be applied to Da1 . In particular, for any separated
morphism of finite type f : T — S, there exists a pair of adjoint functors

fi: DaraA(T) = Dara(S) : f*
as in the theorem loc. cit. so that we have removed the quasi-projective assumption in [Ayo07a].

6.2.4. Because the cdh topology is finer than the Nisnevich topology, we get a morphism of
generalized premotivic categories:

aZay : Dara 2 Dar (Shean (777, A)) : Ratcan, -
Corollary 6.2.5. For any scheme S, the composite functor

Dai(S,A) — Da1(S,A) 24 Dy, (Shcdh (yg t A))

is fully faithful.
Moreover, it induces an enlargement of premotivic categories:
(6.2.5.1) Da:a & Da1 (Shean (#7771, A))

Remark 6.2.6. This corollary is a generalisation in our derived setting of the main theorem of
[Voe00b]. Note that if dim(S) > 0, there is no hope that the above composite functor is essentially
surjective because as soon as Z is a nowhere dense closed subscheme of S, the premotive M gdh( Z,N)
does not belong to its image (¢f. remark 6.1.2).

Proof. According to corollary 6.2.2 and proposition 3.3.9, any Tate spectrum E of D1 (S, A)
satisfies cdh-descent in the derived premotivic category D a1 A, and this implies the first assertion
by 5.3.32 and 6.1.11. The second one then follows from the fact the forgetful functor

Das (Shcdh (ysft,A)) — Da1(S,A).

commutes with direct sums (its left adjoint preserves compact objects). O
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6.3. Nearly Nisnevich sheaves.

6.0. In all this section, we fix an abelian premotivic category &/ and we consider the canonical
premotivic adjunction (5.1.2.1) associated with 7.
We assume &7 satisfies the following properties.

(i) &/ is compatible with Nisnevich topology, so that we have from (5.1.2.1) a premotivic
adjunction:
(6.3.0.1) ~v* : Shnis(Sm, Z) 2 o ..

(ii) & is geometrically generated and the geometric sections are of finite presentation (i.e. the
functors Hom g, (Mg(X), —) preserve filtered colimits and form a conservative family).

(iii) For any scheme S, and for any open immersion U — X of smooth S-schemes, the map
Mg(U) — Mg(X) is a monomorphism.

(iv) For any scheme S, the functor 7, : &5 — Shyis(Sm/S,Z) is exact.

Note that the functor 7, : & — Shyis(Sm/S,Z) is exact and conservative. As it also preserves
filtered colimits, this functor preserves in facts small colimits.

Observe also that, according to these assumption, the abelian premotivic category of Tate
spectra Sp(«7) is compatible with Nisnevich topology, N-generated. Moreover, we get a canonical
premotivic adjunction

(6.3.0.2) ~* : Sp(Shyis (Sm, Z)) = Sp(&) : 7
such that ~, is conservative and preserves small colimits.
In the following, we show how one can deduce properties of the premotivic triangulated cate-
gories D‘Zﬁ; (/) and Da1() from the good properties of DZ@ 5 and Da1 7.
6.3.a. Support property (effective case).

Proposition 6.3.1. For any scheme S, the functor v, : C(4s) — C(Shnis(Sms,Z)) preserves
and detects A'-equivalences.

Proof. Tt follows immediately from corollary 5.2.29 that 7, preserves Al-equivalences. The fact it
detects them can be rephrased by saying that the induced functor

Yo : D () = DG 4(9)

is conservative. This is obviously true once we noticed that its left adjoint is essentially surjective
on generators. O

Corollary 6.3.2. The right derived functor
Ry, =7 : Dl (5) — DY ,(9)
18 conservative.
Proposition 6.3.3. Let f: S" — S be a finite morphism of schemes. Then the induced functor
fe: C(ds) — C(s)
preserves colimits and Al -equivalences.

Proof. We first prove f, preserves colimits. We know the functors -, preserve colimits and are
conservative. As we have the identification . fx = fiys, it is sufficient to prove the property for
& = Shyis(Sm, Z). Let X be a smooth S-scheme. It is sufficient to prove that, for any point = of
X, if X! denotes the henselianization of X at z, the functor

Shyis(Smsi, Z) — /b, Fis fo (F)(X!) = F(S' xs XM

commutes to colimits. Moreover the scheme S’ x g X is finite over X", so that we have S’ x 5 X! =
I1,Y;, where the Y;’s are a finite family of henselian local schemes over S’ x g X". Hence we have
to check that the functor F' — @, F'(Y;) preserves colimits. As colimits commute to sums, it is
thus sufficient to prove that the functors F — F(Y;) commute to colimits. This follows from the
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fact that the local henselian schemes Y; are points of the topos of sheaves over the small Nisnevich
site of X.

We are left to prove that the functor f. : C(e/s) — C(</s) respects Al-equivalences. For this,
we shall study the behaviour of f, with respect to the A'-resolution functor constructed in 5.2.24.
Note that f, commutes to limits because it has a left adjoint. In particular, we know that f,
is exact. Moreover, one checks easily that f*Rxll) = f*RxLl). As f. commutes to colimits, this
gives the formula f,Ra1 = Ra1f.. Let C be a complex of Nisnevich sheaves of abelian groups on
Sm/S’. Choose a quasi-isomorphism C' — C’ with C” a Nis-flasque complex. Applying proposition
5.2.26, we know that R1(C’) is Al-fibrant and that we get a canonical Al-equivalence

f:(C) = f(C) = f(Rar(C)) = Ras (f(C")).
Hence we are reduced to prove that f, preserves Al'-equivalences between Al-fibrant objects.

But such A'-equivalences are quasi-isomorphisms, so that we can conclude using the exactness of
I O
-

Proposition 6.3.4. For any open immersion of schemes j : U — S, the exchange natural trans-
formation jyy. — Y. jy is an isomorphism of functors.

Proof. Let X be a scheme, and F' a Nisnevich sheaf of abelian groups on Smyx. Define the
category %r as follows. The objects are the couples (Y,s), where Y is a smooth scheme over
X, and s is a section of F over Y. The arrows (Y,s) — (Y’,s’) are the morphisms f €
Homgpy,(sm/x,2)(Zx(Y),Zx(Y")) such that f*(s’) = s. We have a canonical functor

PF ch — ShNis(Sm/X, Z)
defined by ¢r(Y,s) = Zx(Y), and one checks easily that the canonical map

Cr (Y,s)e€r

is an isomorphism in Shyis(Sm/X, Z) (this is essentially a reformulation of the Yoneda lemma).
Consider now an object F' in the category ;. We get two categories ¢, (r) and €, (j,(r))-
There is a functor
1) = ()
which is defined by the formula i(Y, s) = (Y, jy(s)). To explain our notations, let us say that we see
s as a morphism from Mg (U, <) to F, so that jy(s) is a morphism from Mg(Y, /) = jyMg(U, <)
to jy(F'). This functor ¢ has right adjoint

G Gy (F)) = Cra(r)

defined by i'(Y,s) = (Yu,sv), where Yy = Y xg U, and sy is the section of ~.(F) over Yu
that corresponds to the section j*(s) of j*jyv«(F') over Yy under the canonical isomorphism
Y (F) =~ j%jsv«(F) (here, we use strongly the fact the functor j; is fully faithful). The existence
of a right adjoint implies 7 is cofinal. This latter property is sufficient for the canonical morphism

m g, Gy ot —  Hm g g, = 7%(54(F))
Cru () Gy GGy (F))
to be an isomorphism. But the functor ¢, (j,(r)) ¢ is exactly the composition of the functor jy
with ¢, (py. As the functor j; commutes to colimits, we have
i oy, Gy 00 = M Jyoy,my = Jp I oy, (m) = Gy (3 ()
Cra(r) Cra(r) Cora(r)

Hence we obtain a canonical isomorphism jy(v«(F)) =~ v (jg(F)). It is easily seen that the
corresponding map v (F) — j*(v(js(F))) = v jg(F)) is the image by . of the unit map
F — j*j3(F). This shows the isomorphism we have constructed is the exchange morphism. O

Corollary 6.3.5. For any open immersion of schemes j : U — S, the functor jy : @y — s is
exact. Moreover, the induced functor

Ji : C(ey) — C(s)
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preserves A'-equivalences.

Proof. Using the fact ~, is exact and conservative, and propositions 6.3.1 and 6.3.4, it is sufficient
to prove this corollary when &/ = Shyis(Sm,Z). It is straightforward to prove exactness using
Nisnevich points. The fact jy preserves A'-equivalences follows from the exactness property and
from the obvious fact it preserves strong A'-equivalences. O

Corollary 6.3.6. Let j : U — S be an open immersion of schemes. For any object M ofDZﬁi ()
the exchange morphism

(6.36.1) Ljy (R (M)) — R (Ljs (M)
is an isomorphism in Dig(S, Z).
Corollary 6.3.7. The triangulated premotivic category Dzﬁi(,d) satisfies the support property.

Proof. According to corollary 6.3.2, the functor Rry, is conservative. Thus, by virtue of the
preceding corollary, to prove the support property in the case of Dzﬁi () it is sufficient to prove
it in the case where &/ = Shyis(Sm, Z). This follows from theorems 6.2.1 and 2.4.12. O

6.3.b. Support property (stable case).

6.3.8. Recall from 5.3.17 that the premotivic adjunction (7*,v.) induces a canonical adjunction
of abelian premotivic categories that we denote by:

% : Sp(Shnis(Sm, Z)) = Sp(s) : F«
Proposition 6.3.9. For any scheme S, the functor induced functor
. £ C (Sp(efs)) = C (Sp(Shwis(Sms, 2)))
preserves and detects stable A'-equivalences.

Proof. Using the equivalence between symmetric Tate spectra and non symmetric Tate spectra, we
are reduced to prove this for complexes of non symmetric Tate spectra. Consider a non symmetric
Tate spectrum (E,),en with suspension maps o, : E,{1} — E,4+1. The non symmetric Tate
spectrum 7, (F) is equal to v«(E,) in degree n € Z, and the suspension map is given by the
composite:

15{1} @5 7 (Bn) = 107" (1s{1}) @5 En) = 7. (Ea{1}) 25 By,
Thus, propositions 6.3.1 and 5.3.31 allows to conclude. (]
Corollary 6.3.10. The right derived functor
R’Y* = Vx - DAl(qus) — DAl,Z(S)
is conservative.

Proposition 6.3.11. Let j : U — X be an open immersion of schemes. For any object M of
Dai(ey), the exchange morphism

Ljs(Ryx(M)) — Ry, (Lyjs(M))
is an isomorphism in Da1 z(X).

Proof. From corollary 6.3.5 and the Z?-base change formula for the open immersion j, one de-
duces easily that jy preserves stable Al-equivalences of (non symmetric) Tate spectra. Moreover,
proposition 6.3.4 shows that jyv. = v.js at the level of Tate spectra. This concludes. O

One deduces the following corollary as in the effective case (see 6.3.7).

Corollary 6.3.12. The triangulated premotivic category Dai(/) satisfies the support property.
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6.3.c. Localization for smooth schemes.

Lemma 6.3.13. Leti: Z — S be a closed immersion which admits a smooth retractionp : S — Z.
Then the exchange transformation

Lv*Ri, — Ri . Ly*
is an isomorphism in Dig(&{s) (resp. Dar(s)).
Proof. We first remark that for any object C of C(#7z) (resp. C(Sp(«Zz))) the canonical sequence
J¢(p7)*(C) — p*(C) — i.(C)

is a cofiber sequence in Dzﬁi (s) (resp. Dar(e)s)). Indeed, we can check this after applying the
exact conservative functor v,. The sequence we obtain is canonically isomorphic through exchange
transformations to

J83"P" (1:C) = p*(1:C) — ixi"p* (1:0)
using corollary 6.3.6, the commutation of ~, with j*, p* and 4, (recall it is the right adjoint of

a premotivic adjunction) and the relation pi = 1. But this last sequence is a cofiber sequence in
Dzﬁi z(S) (resp. Da1 z(S)) because it satisfies the localization property (see 6.2.1).

Using exchange transformations, we obtain a morphism of distinguished triangles in DM;ﬁ (S)
Vs P (C) — " (C) —=7"i.(C) —"jsi"p" (C)[1]
| | VEa(y" i) I
Je3*p* (7" C) —p* (77 C) — i (v*C) — g p" (" C)[1]
The first two vertical arrows are isomorphisms as v* is the left adjoint of a premotivic adjunction;
thus the morphism Ex(v*,4,) is also an isomorphism. D

Proposition 6.3.14. Leti: Z — S be a closed immersion. If i admits a smooth retraction, then
ng () satisfies localization with respect to i.

Proof. This follows from proposition 2.3.23 and the preceding lemma. U

Corollary 6.3.15. Let S be a scheme. Then the premotivic category Dzﬁi(d) (resp. Dai(e))
satisfies localization with respect to any closed immersion between smooth S-schemes.

Proof. Let i : Z — X be closed immersion between smooth S-schemes. We want to prove that
DZ@ () (resp. Da1(7)) satisfies localization with respect to i. According to 2.3.18, it is sufficient
to prove that for any smooth S-scheme S, the canonical map

Me(X/X — Xz) = i.Mz(Xz)
is an isomorphism where we use the notation of loc. cit. and M(., <) denotes the geometric

sections of sz{(d) (resp. Dai(7)). But the premotivic triangulated category category Da1()

(resp. D;ﬁ:(% )) satisfies the Nisnevich separation property and the Sm-base change property.
Thus, we can argue locally in S for the Nisnevich topology. Thus, the statement is reduced to the
preceding proposition as ¢ admits locally for the Nisnevich topology a smooth retraction (see for
example [Dég07, 4.5.11]). O

Part 3. Motivic complexes and relative cycles
7. RELATIVE CYCLES

7.0. In this entire section, . is the category of noetherian schemes; any scheme is assumed to be
noetherian. We fix a subring A C Q which will be the ring of coefficients of the algebraic cycles
considered in the following section.

7.1. Definitions.
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7.1.a. Category of cycles.

7.1.1. Let X be a scheme. As usual, an element of the underlying set of X will be called a
point and a morphism Spec (k) — X where k is a field will be called a geometric point. We often
identify a point € X with the corresponding geometric point Spec (k) — X. However, the
explicit expression ”the point Spec (k) — X” always refers to a geometric point.

As our schemes are assumed to be noetherian, any immersion f : X — Y is quasi-compact.
Thus, according to [GD60, 9.5.10], the schematic closure X of X in Y exists which gives a unique
factorization of f into

xLxiy
such that i is a closed immersion and j is an open immersion with dense image3!. Note that

when Y is reduced, Y coincide with the topological closure of Y in X with its induced reduced
subscheme structure. In this case, we simply call Y the closure of Y in X.

Definition 7.1.2. A A-cycle is a couple (X, ) such that X is a scheme and « is a A-linear
combination of points of X. A generic point of (X, ) is a point which appears in the A-linear
combination « with a non zero coefficient. The support Supp(«) of « is the closure of the generic
points of a.

A morphism of A-cycles (Y,3) — (X,a) is a morphism of scheme f : ¥ — X such that

f(Supp(B)) C Supp(a).

When considering such a pair (X, «), we will denote it simply by a and refer to X as the domain
of a. We also use the notation o C X to mean the domain of the cycle « is the scheme X.

The category of A-cycle is functorial in A with respect to morphisms of integral rings. In what
follows, cycles are assumed to have coefficients in A unless explicitly stated.

7.1.3. Given a property (P) of morphisms of schemes, we will say that a morphism f: 8 — « of
cycles satisfies property (P) if the induced morphism f \gﬁgggg; satisfies property (P). A morphism

f:Y — X will be said to be pseudo-dominant if any irreducible component of Y dominates an

irreducible component of X. Thus a morphism of cycles > e My-Y; ER > icr Mi-wi is pseudo-
dominant if and only if for any j € J there exist ¢ € I such that f(y;) = ;.

Definition 7.1.4. Let X be a scheme. We denote by X(© the set of generic points of X. We
define as usual the cycle associated with X as the cycle with domain X :

(X) = Z lg(Ox o).z

zeX ()

The integer 1g(Ox ), length of an artinian local ring, is called the geometric multiplicity of = in
X.

When no confusion is possible, we usually omit the delimiters in the notation (X). As an
example, we say that « is a cycle over X to mean the existence of a structural morphism of cycles
a— (X).

7.1.5. When Z is a closed subscheme of a scheme X, we denote by (Z)x the cycle (Z) considered
as a cycle with domain X.

Consider a cycle a with domain X. Let (Z;);er be the irreducible components of Supp(«). Then
we can write a uniquely as a = ), ;n;.(Z;)x. We call this writing the standard form of a for
short.

Definition 7.1.6. Let a = ), _; n;.z; be a cycle with domain X and f : X — Y be any morphism.
For any i € I, put y; = f(z;). Then f induces an extension field x(z;)/k(y;) between the
residue fields. We let d; be the degree of this extension field in case it is finite and 0 otherwise.

31Recall the scheme X is characterized by the property of being the smallest sub-scheme of Y with the existence
of such a factorization.
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We define the pushout of a by f as the cycle with domain Y

fela) = nid;. f ().

icl

Thus, when f is an immersion, f.(«) is the same cycle as o but seen as a cycle with domain
X. Remark also that we obtain the following equality

(7.1.6.1) £ (X)) = (X)y

where X is the schematic closure of X in Y (indeed X is a dense open subscheme in X). When
f is clear, we sometimes abusively put: (X)y := f.((X)).

We always have a canonical morphism o — f.(«). In case we have a morphism of cycles a — =y
with domain the morphism p : X — S, any commutative diagram of schemes

!

X—Y

Y
s

induces a unique commutative diagram of cycles

o — fi(a).
\7 /

By transitivity of degrees, we obviously have f.g. = (fg)« for a composable pair of morphisms

(f.9)-

Definition 7.1.7. Let a = ), ; n;.z; be a cycle over a scheme S with domain f: X — S and
U C S be an open subscheme. Let I’ = {i € I | f(z;) € U}. We define the restriction of « over U
as the cycle a|y = ZieI’ n;.x; with domain X xg U considered as a cycle over U.

If a =3 c;ni(Zi)x, then obviously aly = > ,c;n:i(Z; x5 U)x,. We state the following
obvious lemma for convenience :

Lemma 7.1.8. Let S be a scheme, U C S an open subscheme and X be an S-scheme. Let
7 : Xy — X be the obvious open immersion.

(i) For any cycle o/ C Xy, (j.(a))|v = «'.

(ii) Assume U = S. For any cycle a C X, j.(a ) = a.

7.1.b. Hilbert cycles.

7.1.9. Recall that a finite dimensional scheme X is equidimensional — we will also say absolutely
equidimensional — if its irreducible components have all the same dimension.

Recall a flat morphism f : X — S is equidimensional if it is of finite type and for any generic
points 7, n of the same connected component of S, the fibers X,,, X,  are absolutely equidimen-
sional of the same dimension.

Definition 7.1.10. Let S be a scheme.
Let « be a cycle over S with domain X. We say that « is a Hilbert cycle over S if there exists a
finite family (Z;);er of closed subschemes of X which are flat equidimensional over S and a finite

family (n;)ier € A! such that
o = an<Zl>X

Ezample 7.1.11. Any cycle over a field k is a Hilbert cycle over Spec (k). Let S be the spectrum
of a discrete valuation ring. A cycle a = ), ; n;.x; over S is a Hilbert cycle if and only if each
point x; lies over the generic point of S. Indeed, an integral S-scheme is flat if and only if it is
dominant.
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Consider a Hilbert S-cycle « C X and a morphism of schemes f: S5 — S. Put X' = X x5 5.
We choose finite families (Z;);cr of flat S-schemes and (n;);er € A! such that a = e il Zi)x.
Then proposition 3.2.2 of [SV00b] says exactly the cycle

Z ’I’L1<Zl Xs S/>X’
il
depends only on « and not on the chosen families.

Definition 7.1.12. Adopting the previous notations and hypothesis, we define the pullback cycle
of a along the morphism f : S — S as the cycle with domain X’

o ®E)g S = an<Zz Xg SI>X/.
iel
In this setting the following lemma is obvious :
Lemma 7.1.13. Let « be a Hilbert cycle over S, and S” — S’ — S be morphisms of schemes.
Then (a ®% S') @%, 8" = a®% S".
We will use another important computation from [SV0OOb] (it is a particular case of loc. cit.,
3.6.1).

Proposition 7.1.14. Let R be a discrete valuation ring with residue field k.
Let a C X be a Hilbert cycle over Spec (R) and f : X — Y a morphism over Spec (R). We denote
by ' X' =Y’ the pullback of f over Spec (k).

Suppose that the support of « is proper with respect to f.

Then f.(a) is a Hilbert cycle over R and the following equality of cycles holds in X':

Flla @y k) = fu(a) @ k.
Let us introduce the following classical definition:
Definition 7.1.15. Let p: S — S be a birational morphism. Let C' be the minimal closed subset
of S such that p induces an isomorphism (S — S xg C) — (S - C).
Consider a = ), n:.(Z;) x a cycle over S written in standard form.
We define the strict transform Z; of the closed subscheme Z; in X along p is the schematic
closure of (Z; — Z; xs C) xg S in X xg.S. We define the strict transform of « along p as the cycle

over S R
&= nilZi)xyss
iel
As in [SV00b], we remark that a corollary of the platification theorem of Gruson-Raynaud is
the following :

Lemma 7.1.16. Let S be a reduced scheme and « be a pseudo-dominant cycle over S.
Then there exists a dominant blow-up p : S — S such that the strict transform & of a along p
is a Hilbert cycle over S.

We conclude this part by recalling an elementary lemma about cycles and Galois descent which
will be used extensively in the next sections :

Lemma 7.1.17. Let L/K be an extension of fields and X be a K-scheme. We put X, = X X
Spec (L) and consider the faithfully flat morphism f: X — X.
Denote by Cycl(X) (resp. Cycl(Xyr)) the cycles with domain X (resp. Xp ).
(1) The morphism f* : Cycl(X) — Cycl(Xy), 8 — B &% L is a monomorphism.
(2) Suppose L/ K is finite. For any K-cycle § € Cycl(X),
[ (B L) = [L: K].6.
(8) Suppose L/ K is finite normal with Galois group G.
The image of f* consists of cycles invariant under the action of G. For any cycle
B € Cycl(X1)Y, there exists a unique cycle B € Cycl(X) such that

Br @ L=[L:K];.8
where [L : K]; is the inseparable degree of L/K.
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7.1.c. Specialization. The aim of this section is to give conditions on cycles so that one can define
a relative tensor product on them.

Definition 7.1.18. Consider two cycles a = >, ;n;.5; and § = Zje, m;.xj. Let S be the
support of a.

A morphism (3 I o of cycles is said to be pre-special if it is of finite type and for any j € J,
there exists ¢ € I such that f(z;) = s; and n;|m; in A. We define the reduction of 3/c as the

cycle over S
Mo
ﬁo = Z 7'-7.3':]’.
GES f(zy)=si
Ezxample 7.1.19. Let S be a scheme and « a Hilbert S-cycle. Then the canonical morphism of

cycles a — (S) is pre-special. If S is the spectrum of a discrete valuation ring, an S-cycle « is
pre-special if and only if it is a Hilbert S-cycle.

Definition 7.1.20. Let « be a cycle.

A point (resp. dash) of o will be a morphism Spec (k) = a (resp. Spec (R) - ) such that k
is a field (resp. R is a discrete valuation ring). We simply say that = (resp. 7) is dominant if the
image of the generic point in the domain of « is a generic point of a.

Let = : Spec (ko) — « be a point. An extension of 2 will be a point y on « of the form Spec (k) —
Spec (ko) = a.
A fat point of o will be morphisms

Spec (k) = Spec (R) = «

such that 7 is a dominant dash and the image of s is the closed point of Spec (R).
Given a point z : Spec (k) — «, a fat point over z is a factorization of x through a dominant dash
as above.

In the situation of the last definition, we denote simply by (R, k) a fat point over x, without
indicating in the notation the morphisms s and 7.

Remark 7.1.21. With our choice of terminology, a point of « is in general an extension of a
specialization of a generic point of a. As a further example, a dominant point of « is an extension
of a generic point of a.

Lemma 7.1.22. For any cycle a and any non dominant point x : Spec (ko) — «, there exists an
extension y : Spec (k) — « of x and a fat point (R, k) over y.

Proof. Replacing « by its support S, we can assume « = (S). Let s be the image of = in S, &
its residue field. We can assume S is reduced, irreducible by taking one irreducible component
containing s, and local with closed point s. Let S = Spec (4), K = Frac(A). According to [GD61,
7.1.7], there exists a discrete valuation ring R such that A C R C K, and R/A is an extension of

local rings. Then any composite extension k/k of kg and the residue field of R over k gives the
desired fat point (R, k). O

Definition 7.1.23. Let 8 — a be a pre-special morphism of cycles. Consider S the support of
o and X the domain of 8. Let By = >_,c; m;.(Z;)x be the reduction of 3/a written in standard
form.

(1) Let Spec (K) — a be a dominant point. We define the following cycle over Spec (K) with
domain Xx = X xg Spec (K) :
ﬁK = ZmJ<ZJ Xs Spec (K)>XK-
jeJ
(2) Let Spec (R) = S be a dominant dash, K be the fraction field of R and j : X5 — X be
the canonical open immersion. We define the following cycle over R with domain Xp :
Br = j(BK)-
According to example 7.1.11, g is a Hilbert cycle over R.
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(3) Let x : Spec (k) — a be a point on « and (R, k) be a fat point over x.
We define the specialization of § along the fat point (R, k) as the cycle

Bry = Br @ k

using the above notation and definition 7.1.12. It is a cycle over Spec (k) with domain
X = X xg Spec (k).

Remark 7.1.24. Let 8 C X be an S-cycle, = : Spec (K) — S be a dominant point and U be an
open neighbourhood of x in S.

Then if 3 is pre-special over S, 8|y is pre-special over U and Sk = (B|v) k-

If 7 : Spec(R) — S (resp. (R,k)) is a dash (resp. fat point) with generic point z, we also get
Br = (Blu)r (resp. Brx = (Blv)r.k)-

7.1.25. Let S be a reduced scheme, and = ), _; n;.w; be an S-cycle with domain X. For any
index ¢ € I, let k; be the residue field of x;.

Consider a dominant point x : Spec (K) — S. Let s be its image in S and F' be the residue
field of s. We put I' = {i € I | f(z;) = s} where f : X — S is the structural morphism. With
these notations, we get

Br = Zni~<spec (ki ®F K)) X
iel’
and for a dominant dash Spec (R) — S with generic point z,
(71251) Br = Zni.(Spec(m RF K))XR,
iel’
where Spec (k; @ K) is seen as a subscheme of X (resp. Xg).
Consider a fat point (R, k) with generic point x and write § = >, .; n;.(Z;) x in standard form
(i.e. Z; is the closure of {z;} in X). Then according to (7.1.6.1), we obtain?
5R,k = Z ;. <Zi,K XR Spec (k)>Xk
il
where Z; x = Z; xg Spec (K) is considered as a subscheme of Xk and the schematic closure is
taken in Xg.
Considering the description of the schematic closure for the generic fiber of an R-scheme (cf.

[GD67, 2.8.5]), we obtain the following way to compute Bg ;. By definition, R is an F-algebra.
For i € I, let A; be the image of the canonical morphism

ki @ R — Kk @ K.
It is an R-algebra without R-torsion. Moreover, the factorization
Spec (k; @ K) — Spec (4;) — Spec (k; @F R)
defines Spec (4;) as the schematic closure of the left hand side in the right hand side (¢f. [GD67,
2.8.5]). In particular, we get an immersion Spec (4; ®g k) — X, and the nice formula :
Brk = Z n;. (Spec (A; ®r k))x, -
el

Definition 7.1.26. Consider a morphism of cycles f : 3 — a and a point z : Spec (ko) — a.

We say that f is special at x if it is pre-special and for any extension y : Spec (k) — « of x, for
any fat points (R, k) and (R', k) over y, the equality Br i = g/ x holds in Xj. Equivalently, we
say that 8/« is special at s.

We say that f is special (or that 3 is special over «) if it is special at every point of a.

Remark 7.1.27. (1) Trivially, f is special at every dominant point of a.

32This shows that our definition coincide with the one given in [SVOOb] (p. 23, paragraph preceding 3.1.3) in
the case where o = (S), S reduced.
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(2) Given an extension y of z, it is equivalent for f to be special at = or at y (use lemma
7.1.17(1)). Thus, in the case where oo = (S), we can restrict our attention to the points
seSs.

(3) According to 7.1.24, the property that /S is special at s € S depends only on an open
neighbourhood U of s in S. More precisely, the following conditions are equivalent :

(i) B is special at s over S.
(ii) B|v is special at s over U.

Ezxample 7.1.28. Let S be a scheme and 3 be a Hilbert cycle over S. We have already seen that
B — (S) is pre-special. The next lemma shows this morphism is in fact special.

Lemma 7.1.29. Let S be a scheme and (8 be a Hilbert cycle over S. Consider a point x :
Spec (k) — S and a fat point (R, k) over x.
Then Bry = 3 @% k.

Proof. According to the preceding definition and lemma 7.1.13 it is sufficient to prove g = 3 ®'§R.
As the two sides of this equation are unchanged when replacing § by the reduction gy of 3/S,
we can assume that S is reduced. By additivity, we are reduced to the case where § = (X) is
the fundamental cycle associated with a flat S-scheme X. According to 7.1.6.1, fr = <X7K>XR.

Applying now [GD67, 2.8.5], X is the unique closed subscheme Z of X such that Z is flat over
Spec (R) and Z x g Spec (K) = Xf. Thus, as Xg is flat over Spec (R), we get X = Xg and this
concludes. O

Lemma 7.1.30. Let p: S — S be a birational morphism and consider a commutative diagram

=S
Spec (k) — Spec (R) W
\ S

such that (R, k) is a fat point of S and S.
Consider a pre-special cycle 3 over S and 3 its strict transform along p. Then, (3 is pre-special
and Brk = BRk-

Proof. Using 7.1.24, we reduce to the case where p is an isomorphism which is trivial. O

Lemma 7.1.31. Let S be a reduced scheme, x : Spec (ko) — S be a point and « be a pre-special
cycle over S. Letp: S — S be a dominant blow-up such that the strict transform & of o along p
is a Hilbert cycle over S. Then the following conditions are equivalent :
(i) « is special at x.
(ii) for every points x1, x5 : Spec (k) — S such that poxy = poxy and po xy is an extension
of x, d®b§x1 :d®%x2.

Proof. The case where z is a dominant point follows from the definitions and the fact p is an
isomorphism at the generic point. We thus assume z is non dominant.
(i) = (i1) : Applying lemma 7.1.22 to z;, i = 1,2, we can find an extension z/, : Spec (k;) — S of
x; and a fat point (R;, k;) over x}. Taking a composite extension L of k; and ko over k, we can
further assume L = k1 = ko and po x) = pox). Then for i = 1,2, we get

(6% ;) ®) L2 6 o 22 ap, , 22X og, 1,
and this concludes according to 7.1.17(1).
(#4) = (i) : Consider an extension y : Spec (k) — « over x and two fat point (Ry, k), (Rz, k) over
y. Fix ¢ € {1,2}. As p is proper birational, the dash Spec (R;) on S can be extended (uniquely)
to S. Let z; : Spec (k) — Spec (R;) — S be the induced point. Then the following computation
allows to conclude :

7.1.30 ~ 7.1.29
QR k == AR,k == a ®" 2, O
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7.1.d. Relative product.

7.1.32. In this part, we construct a relative product which generalizes the pullback defined by
Suslin et Voevodsky in [SV0Ob, 3.3.1]. Consider the situation of a diagram of cycles

B X
I« |
o —a S —— 3

where the diagram on the right is the support of the one on the left. Let n be exponential
characteristic of o/.

The relative product of 8 and o’ over a will be a A[1/n]-cycle which fits into the following
commutative diagram of cycles

ﬁ®aa’—>6 XXSS/%X
N
of ——«a S —5

where the right commutative square is again the support of the left one.

It will be defined under an assumption on 3/a and is therefore non symmetric33. This assump-
tion will imply that 3/« is pre-special, and the first property of § ®, o’ is that it is pre-special
over o,

We define this product in three steps in which the following properties®* will be a guideline :

(P1) Let Sp be the support of a and 3y be the reduction of 3/« as an Sp-cycle. Consider the

canonical factorization o/ — Sy — a.
Then, f ®q & = [y ®g, .
(P2) Consider a commutative diagram

Spec (E) — Spec (R’) — Spec (R)

bow

of —«

such that (R, E) (resp. (R, E)) is a fat point on « (resp. o).
Then, (8 ®a & )r g = Or,E-
Assume o — a = (5" — 5).

(P3) If 3 is a Hilbert cycle over S, 3 ®g S’ = 3®% S'.

(P4) Consider a factorization S’ — U %> S such that j is an open immersion. Then 3 ®g S’ =
Blu ®u 5"

(P5) Consider a factorization S" — S 2, S such that p is a birational morphism. Then f®gS’ =
154 g S’

Lemma 7.1.33. Consider the hypothesis of 7.1.32 in the case where o' = Spec (k) is a point x of
a.

We suppose that f is special at x.

Then the pre-special A[1/n]-cycle 8 ®q k exists and is uniquely determined by property (P2)
above. We also put B := B Q4 k.

The properties (P1) to (P5) are fulfilled and in addition :
(P6) For any extension fields L/k, Br, = B, @, L.

Proof. According to lemma 7.1.22 there always exists a fat point (R, E) over an extension of x.
Thus the unicity statement follows from 7.1.17(1).

33See further 7.2.3 for this question.
34A1] these properties except (P3) will be particular cases of the associativity of the exterior product.
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For the existence, we first consider the case where @ = (S) is a reduced scheme. Applying
lemma 7.1.16, there exists a blow-up p: S — S such that the strict transform B of 3 along p is a
Hilbert cycle over S.

As p is surjective, the fiber S, is a non empty algebraic k-scheme. Thus, it admits a closed
point given by a finite extension k{ of k. Let k'/k be a normal closure of k{/k and G be its Galois
group. As (/S is special at x by hypothesis, lemma 7.1.31 implies that 8 ®g k' is G-invariant.
Thus, applying lemma 7.1.17, there exists a unique cycle 8y C X with coefficients in A[1/p] such
that B @} k' = B &% k',

We prove (P2). Given a diagram (%) with o/ = Spec (k), we first remark that (8y)p g = Bk @}, E.
As p is proper birational, the dominant dash Spec (R) — S lifts to a dominant dash Spec (R) — S,
Let E'/k be a composite extension of k'/k and E/k. With these notations, we get the following
computation :

Br.E ® E/“:ﬁoBR,E o B2 ®% B3 %K) @ B — B @), E,
so that we can conclude by applying 7.1.17(1).

In the general case, we consider he support S of o abd 3y/S the reduction of 3/a. According to
(P1), we are led to put Sy := (8o)x with the help of the preceding case. Considering the definition
of specialization along fat points, we easily check this cycle satisfies property (P2).

Finally, property (P6) (resp. (P3), (P5)) follows from the unicity statement applying lemmas
7.1.22, 7.1.17(1) (resp. and moreover lemma 7.1.29, 7.1.30). O

Remark 7.1.34. In the case where x is a dominant point, the cycle 5y defined in the previous
proposition agrees with the one defined in 7.1.23(1).

Lemma 7.1.35. Consider the hypothesis of 7.1.32 in the case where o/ = Spec (0) is a dash of
«a. Let K be the fraction field of O and x the corresponding point on c.

We suppose that f is special at x.

Then the pre-special A[1/n]-cycle 8 ®, O exists and is uniquely defined by the property (8 Q4
0) ®b0 K = Bk with the notations of the preceding lemma. We also put o := 0 Q4 O.

The properties (P1) to (P5) are fulfilled and in addition :
(P6°) For any extension O' /O of discrete valuation rings, Bor = Bo ®%, O'.

Proof. Remark that, with the notation of definition 7.1.7, 8o ®bo K = Bolspec(k)- For the first
statement, we simply apply lemma 7.1.8 and put 8o = j.(8k) where j : X — X is the canonical
open immersion.

Then properties (P1), (P3), (P4), (P5) and (P6’) of the case considered in this lemma follows
easily from the uniqueness statement and the corresponding properties in the preceding lemma
(applying again 7.1.8).

It remains to prove (P2). According to (P1), we reduce to the case o = (S) for a reduced

scheme S. We choose a birational morphism p : S — S such that the proper transform [3 is a
Hilbert S-cycles. Consider a diagram of the form (*) in this case. According to property (P3), we
can assume R’ = O.
Remark the dash Spec (R) — S admits an extension Spec (R) — S as p is proper. The point z
admits an extension K’/K which lifts to a point 2’ : Spec (K’) — S — again Sk is a non empty
algebraic scheme. The discrete valuation corresponding to O C K extends to a discrete valuation
on K’ as K'/K is finite. Let O’ C K’ be the corresponding valuation ring. The corresponding dash
Spec (O') — S thus admits a lifting to S corresponding to the point 2’ as p is proper. Considering
a composite extension E'/K of K'/K and E/K, we have obtained a commutative diagram

Spec (E’) — Spec (O') — Spec (R)
I v
Spec (0') ——= §

which lifts our original diagram (). Let z1 (resp. #3) be the point Spec (E)" — S corresponding
to the the composite through the upper way (resp. lower way) in the preceding diagram.
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Then, Br .k Q% E' = sz Moreover, we get

7.1. (P5)+(P6")  ~ (P3) ~
(B®s 0)o.p &% E'=2 (B 0) @) B =——= (f 05 0') @%, E' == f,,.

By hypothesis, 5/« is special at Spec (K') — S. Thus lemma 7.1.31 concludes. O

Theorem 7.1.36. Consider the hypothesis of 7.1.32.
Assume f is special at the generic points of o’.
Then the pre-special A[1/n]-cycle B ®, o exists and is uniquely determined by property (P2).
It satisfies all the properties (P1) to (P5).

Proof. According to lemma 7.1.22, for any point s of S’ with residue field &, there exists an
extension E/k and a fat point (R, E) (resp. (R',E)) of a (resp. ') over Spec (FE) — « (resp.
Spec (E) — ). The uniqueness statement follows by applying lemma 7.1.17(1).

For the existence, we write o/ =) ,.;n;.(Z;)s in standard form.

For any i € I, let K; be the function field of Z; and consider the canonical morphism Spec (K;) —
a. Let Bk, C Xk, be the A[1/n]-cycle defined in lemma 7.1.33. Let j; : Xx, — X’ be the canonical
immersion and put :

(7.1.36.1) B&ad = niji(Bx,).
icl

Then properties (P1), (P3), (P4) and (P5) are direct consequences of this definition and of the
corresponding properties of lemma 7.1.33.

We check property (P2). Given a diagram of the form (x), there exists a unique i € I such that
Spec (R’) dominates Z;. Thus we get for this choice of ¢ € I that (8 ®a &' )r/ g = (ji*(ﬂKi))R/7E'
Let K’ be the fraction field of R’ and consider the open immersion j' : Xx: — Xpg/. The following
computation then concludes :

. g 7.1.24. 7.1.35 7.1.35(P2
G+ (B)) g = 52 (e (B i) @y E=2"50(Bic) @y E'== By @y B

R,E-
O

Definition 7.1.37. In the situation of the previous theorem, we call the A[1/n]-cycle 8 ®, o the
pullback of 3/a by «'.

7.1.38. By construction, the cycle 8 ®, « is bilinear with respect to addition of cycles in the
following sense:
(P7) Consider the hypothesis of 7.1.32. Let o}, a} be cycles with domain S” such that a =
oy +ab. If B/« is special at the generic points of a; and ag, then the following cycles are
equal in X xg 5”:
B ®a (a1 +05) = 88 ) + @0 af.
(P7’) Consider the hypothesis of 7.1.32. Let (31, B2 be cycles with domain X such that 8 =
B1 + Pe. If 81 and B, are special over a at the generic points of o/, then 3/« is special at
the generic points of o’ and the following cycles are equal in X xg S’
(51 + 52) Qe al - 51 Ra O/ + 62 Ra O/~
In the theorem above, we can assume that X (resp. S, S’) is the support of 8 (resp. «, ).
Thus the support of 8 ®, o is included in X xg S’. More precisely:
Lemma 7.1.39. Consider the hypothesis of 7.1.32 and assume that X (resp. S, S’) is the support
of B (resp. o, ). Then, if B/« is special at the generic points of o, we obtain:
(i) Let (X x58")©) be the generic points of X xg S'. Then, we can write
BRaa = Z My T
2€(Xx55")©
(i) For any generic point x of X xg S', if my # 0, the image of x in S’ is a generic point s
and the multiplicity of s’ in o divides m,, in A[1/n].
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Proof. Point (ii) is just a traduction that 0 ®, o’ is pre-special over «/. For point (i), we reduce
easily to the case where « is the scheme S and S is reduced. We can also assume that o’ is the
spectrum of a field k. It is sufficient to check point (i) after an extension of k. Thus we can apply
lemma 7.1.16 to reduce to that case where ( is a Hilbert cycle over S. This case is obvious. [

Definition 7.1.40. In the situation of the previous lemma, we put
mV (2; 6 @4 ) :=my, € A[1/n]
and we call them the Suslin-Voevodsky’s multiplicities (in the operation of relative product).

Remark 7.1.41. Consider the notations of the previous lemma:

(1) Assume that « is the spectrum of a field k. Then the product § ®j o is always defined
and agrees with the classical exterior product (according to (P3)).

(2) According to the previous lemma, the irreducible components of X x g S” which does not
dominate an irreducible component of S’ have multiplicity 0: they correspond to the "non
proper components” with respect to the operation 3 ®, .

(3) Assume o/ — a = (8’ 5 8), 5 = > i1 Mi-xi. Let y be a generic point of X x g5’ lying over
a generic point s’ of S’. Let S{ be the irreductible component of S” corresponding to s'.
Consider any irreductible component Sy of S which contains p(s’) and let 8o = >, n;.x;
where the sums runs over the indexes i such that z; lies over Sy. Then, according to
(7.1.36.1),

m(y; B @s (5')) = mly; Bo Ds, (S).
This is a key property of the Suslin-Voevodsky’s multiplicities which explains why we have
to consider the property that 5/« is special at s’ (see 7.3.24 for a refined statement).

Lemma 7.1.42. Consider a morphism of cycles o' — « and a pre-special morphism [ : 3 — «
which is special at the generic points of a. Consider a commutative square

’
x

Spec (k') — o/
v |
Spec (k) =«
such that k and k' are fields. Then the following conditions are equivalent :
(i) f is special at x.
(ii) B Ry — o is special at «’.
Proof. This follows easily from lemma 7.1.22 and property (P2). O

Corollary 7.1.43. Let f: 8 — « be a special morphism.
Then for any morphism o — «a, B ®, o' — o is special.

Definition 7.1.44. Let f : 8 — « be a morphism of cycles and z : Spec (k) — « be a point.
We say that f is A-universal at «x if it is special at « and the cycle f ®,, k has coefficients in A.

In the situation of this definition, let s be the image of x in the support of «, and ks be its
residue field. Then according to (P6), Br = 0., ®';5 k. Thus f is A-universal at z if and only if it
is A-universal at s. Furthermore, the following lemma follows easily :

Lemma 7.1.45. Let f : 8 — « be a morphism of cycles. The following conditions are equivalent :

(i) For any point s € &, f is A-universal at s.
(i) For any point x : Spec (k) — «, f is A-universal at x.
(11i) For any morphism of cycles &' — a, B ®4 &' has coefficients in A.

Definition 7.1.46. We say that a morphism of cycles f is A-universal if it satisfies the equivalent
properties of the preceding lemma.

Of course, A-universal morphisms are stable by base change.

7.2. Intersection theoretic properties.
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7.2.a. Commutativity.

Lemma 7.2.1. Consider morphisms of cycles with support in the left diagram

B X
| C %
o T4Q>S

Y —

such that /o is pre-special and v/« is pseudo-dominant.

Assume
o= Zni.5i7 0= ij.xj7 v = Zpl.tl

iel jeJ leA

and denote by ks, (Tesp. kg, , ky,) the residue field of s; (resp. x;, t;) in S (resp. X, T). Consider-
ing (i, j,1) € IxJxA such that f(z;) = g(t;) = s;, we denote by v;,; : Spec ("%j R, “tz) — XxgT
the canonical immersion.

Then the followin assertion holds :

(i) B is special at the generic points of ~.
(i) The cycle B Q4 v has coefficients in A.
(iii) The following equality of cycles holds

s
B@ay=> —Epivy i ((Spec (ky; @i, K2)))
igl "
where the sum runs over (i, j,1) € I x J x A such that f(x;) = g(t;) = si.

Proof. Assertion (i) is in fact the first point of 7.1.27. Assertion (ii) follows from assertion (iii),
which is a consequence of the defining formula (7.1.36.1) and remark 7.1.34. 0

Corollary 7.2.2. Let g : T — S be a flat morphism and [ = ZjeJ m;.(Z;)x be a pre-special
S-cycle written in standard form.
Then (/S is pre-special at the generic points of T and

ﬁ &g <T> = ZmJ<ZJ X5 T>
jed
The external product is by nature non commutative. The previous lemma implies it is commu-
tative whenever it makes sense :

Corollary 7.2.3. Consider pre-special morphisms of cycles 3 — « and v — «.
Then (B (resp. ) is special at the generic points of v (resp. ) and the following equality holds:
B ®a 7 =7 Qa B.

7.2.b. Associativity.

Proposition 7.2.4. Consider morphism of cycles 3 ER a, o' — o — « such that f is special at
the generic points of o and of o. Let n be the exponential characteristic of o’ .
Then the following assertions hold:
(i) The relative cycle B ®,, o/’ is special at the generic points of .
(i) The cycle (8 ®q &) ®qr & has coefficients in A[1/n].
(117) (B8 ®n ) Qo & = B R4 .
Proof. Assertion (i) is a corollary of lemma 7.1.42. Assertion (ii) is in fact a corollary of assertion

(iii), which in turn follows easily from the uniqueness statement in theorem 7.1.36. O

Lemma 7.2.5. Let~ ENG} L, o be two pre-special morphisms of cycles with domainsY — X — S.
Consider a fat point (R, k) over o such that /(3 is special at the generic points of Br.k-
Then v/« is pre-special and the following equality of cycles holds in Yy,:

Yrk =7 @3 (Br.K)-
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Proof. The first statement is obvious.

We first prove: vgr =7 ®3 Or.
Remark that Sr — 3 is pseudo-dominant. Thus /0 is special at the generic points of S and the
right hand side of the preceding equality is well defined. Moreover, according to lemma 7.2.1, we
can restrict to the case where o = s, f = = and v = y, with multiplicity 1. Let s, Kz, £y be the
corresponding respective residue fields, and K be the fraction field of R.
Then, according to (7.1.25.1), ygr = (ky @k, K)v, and g = (kg @k, K)x,. But lemma 7.2.1
implies that v ®g fr = (ky @, (ke @k, K))x,. Thus the associativity of the tensor product of
fields allows to conclude.

From this equality and proposition 7.2.4, we deduce that:

YR ®8x Brk = (Y ®8 BR) @pr BrE = Y ©8 BR kK-

Thus, the equality we have to prove can be written v ®‘}% k= vr ®3, (Br ®3% k) and we are
reduced to the case a = Spec (R).
In this case, we can assume 3 = (X) with X integral. Let us consider a blow-up X & X such
that the proper transform 4 of  along p is a Hilbert cycle over X (7.1.16). We easily get (from
(P3) and 7.1.13) that

Yo = ®@x (Xk)-
Let Y (resp. }7) be the support of v (resp. 7), ¢ : Y — Y the canonical projection. We consider
the cartesian square obtained by pullback along Spec (k) — Spec (R):

v, Ik Yy

|,

X, 2> X,

As Xj, C X (resp. Yy CY) is purely of codimension 1, the proper morphism pj, (resp. gx) is still
birational. As a consequence, qx«(%) = . Let y be a point in ?k(o) ~ Yk(o) which lies above a point
x in X',io) o~ X}go) Then, according to (P5) and using the notations of 7.1.40, we get
m(y; 7 @5 (Xi) = m(y;y @x (Xi))-

This readily implies g (7 ® 5 (Xi)) =7 ®x (Xj) and allows us to conclude. O

As a corollary of this lemma using the uniqueness statement in theorem 7.1.36, we obtained :
Corollary 7.2.6. Let v % 3 s o be pre-special morphisms of cycles.

Let z : Spec (k) — « be a point. If B/« is special at x and v/ is special at the generic points
of Bk, then v/« is special at x.

Let o — a be any morphism of cycles with domain S’ — S and n be the exponential charac-
teristic of o. Then, whenever it is well defined, the following equality of A[1/n]-cycles holds:

Y ®g (B ®a O‘/) =7 Qa o
A consequence of the transitivity formulas is the associativity of our exterior product :

Corollary 7.2.7. Suppose given the following morphisms of cycles
« 3 Y
NN\
) o

such that f and g are pre-specials.
Then, whenever it is well defined, the following equality of cycles hold:

Y R (ﬂ®5a):(7®oﬂ)®5a

Proof. Indeed, by the transitivity formulas 7.2.4 and 7.2.6, both members of the equation are
equal to (v ®, 0) ®p (8 Qs ). -
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7.2.c. Projection formulas.

Proposition 7.2.8. Consider morphisms of cycles with support in the left diagram

B X
| < .Y
O/H-O{ S’HS

such that §/a is special at the generic points of .
Consider a factorization ' & T — S.
Then [/« is special at the generic points of hy(a) and the following equality of cycles holds in
X Xg T:
B @ g*(a/) = (Ix x5 9)+(B ®a a/)'

Proof. The first assuption is obvious. By linearity, we can assume S’ is integral and o’ is the
generic point s of S’ with multiplicity 1. Let L (resp. E) be the residue field of s (resp. g(s)).

Consider the pullback square Xz, —* . x g where ¢ and j are the natural immersions.

j\b 9x ¢/Z
X X5 S =X Xg T
Let d be the degree of L/E if it is finite and 0 otherwise. We are reduced to prove the equality
9x+(J«(BL)) = d.ix(BE). Using the functoriality of pushout and property (P6), it is sufficient to
prove the equality go« (B ®5E L) =d.fg. If d =0, the morphism gy induces an infinite extension
of fields on any point of X, which concludes. If L/E is finite, g¢ is finite flat and Sg ®bE L is the
usual pullback by go. Then the needed equality follows easily (see [Ful98, 1.7.4]). O

Lemma 7.2.9. Let 8 — « be a pre-special morphism of cycles with domain X 2, S. Let (R, k) a

fat point over a and X Ly ~Sbea factorization of p. Let fi be the pullback of f over Spec (k).
Suppose that the support of B is proper with respect to f. Then f.(B) is pre-special over o and

the equality of cycles (f*(ﬁ))R w = Jkx(Brk) holds in Y.

Proof. As usual, considering the support S of «, we reduce to the case where a = (S). Let K be
the fraction field of R. As Spec (K) maps to a generic point of S, we can assume S is integral. Let
F be its function field. We can assume by linearity that § is a point  in X with multiplicity 1.

Let L (resp. E) be the residue field of = (resp. y = f(z)). Let d be the degree of L/E if it is
finite and 0 otherwise. Consider the following pullback square

Spec (L ®p K) —2> X x5 Spec (R) = Xn
foy 4 \fr
Spec (E @ K) —Y xg Spec (R) = Yg.
According to the formula (7.1.25.1), we obtain:

We are finally reduced to the case S = Spec (R) and S is a Hilbert cycle over Spec (R). Note
that f.(5) is still a Hilbert cycle over Spec (R). As Brir = 0 ®3?, k, the result follows now from
proposition 7.1.14. O

Corollary 7.2.10. Consider morphisms of cycles with support in the left diagram

B X
| < v
o —«a S —=8

such that 8/« is special at the generic points of ' (resp. A-universal).

Consider a factorization X Ly s of p.
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Suppose that the support of 5 is proper with respect to f. Then f.(83)/« is special at the generic
points of o (resp. A-universal) and the following equality of cycles holds in X xg S’ :

(f xXs 15’)*(5 Ba O/) = (f*(ﬁ)) Xa o'
7.3. Geometric properties.

7.3.1. We introduce a notation which will come often in the next section. Let S be a scheme and
a = ,crni-(Zi)x an S-cycle written in standard form.

Let s be a point of S and Spec (k) = S be a geometric point of S with k separably closed. Let
S’ be one of the following local schemes: the localization of S at s, the Hensel localization of S at
s, the strict localization of S at 3.

We then define the cycle with coefficients in A and domain X xg 5’ as:

als =Y ni(Z; x5 ) xxss-
il

Remark 7.3.2. The canonical morphism S’ — S is flat. In particular, o/ is special at the generic
points of §" and we easily get: alsr = a ®g 5.
7.3.a. Constructibility.
Definition 7.3.3. Let S be a scheme and s € S a point. We say that a pre-special S-cycle « is
trivial at s if it is special at s and a ®g s = 0.

Naturally, we say that « is trivial if it is zero. Thus « is trivial if and only if it is trivial at the
generic points of S.

Recall from [GD67, 1.9.6] that an ind-constructible subset of a noetherian scheme X is a union
of locally closed subset of X.

Lemma 7.3.4. Let S be a noetherian scheme, and «/S be a pre-special cycle. Then the set

T = {s € S| a/S is special (resp. trivial, A-universal) at s}
is ind-constructible in S.
Proof. Let s be a point of T', and Z be its closure in S with its reduced subscheme structure. Put
ayz = a ®g Z, defined because « is special at the generic point of Z. Given any point t of Z, we
know that «/S is special at ¢ if and only if az/Z is special at ¢ (¢f. 7.1.42). But there exists
a dense open subset Us of Z such that az|y, is a Hilbert cycle over Uz. Thus, /S is special

at each point of Us and Us; C T. This concludes and the same argument proves the respective
statements. O

7.3.5. Let I be a left filtering category and (S;);cs be a projective system of noetherian schemes
with affine transition morphisms. We let S be the projective limit of (S;) and we assume the
followings:

(1) S is noetherian.

(2) There exists an index ¢ € I such that the canonical projection S P4, 8; is dominant.
In this case, there exists an index j/i such that for any k/j, the map py induces an isomorphism
SO S,(CO) on the generic points (¢f. [GD67, 8.4.1]). Thus, replacing I by I/j, we can assume
that this property is satisfied for all index ¢ € I. As a consequence, the following properties are
consequences of the previous ones:

(3) Foranyi € I, p; : S — S; is pseudo-dominant and p; induces an isomorphism S(©) — SZ-(O).

(4) For any arrow j — i of I, pj; : S; — S; is pseudo-dominant and pj; induces an isomorphism

SO — 5.
Proposition 7.3.6. Consider the notations and hypothesis above. Assume we are given a pro-
jective system of cycles (a;)ier such that o is a pre-special cycle over S; and for any j — 1,
aj = a; ®g, 5. Put o= a; ®g, S for an index i € 13
The following conditions are equivalent:

35The external product is well defined because of point (3) and (4) of the hypothesis above.
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(i) /S is special (resp. trivial, A-universal).
(i) There exists i € I such that o;/S; is special (resp. trivial, A-universal).
(iii) There exists i € I such that for all j/i, o;/S; is special (resp. trivial, A-universal).
Let s be point of S and s; its image in S;. Then the following conditions are equivalent:
(i) «/S is special (resp. trivial, A-universal) at s.
(ii) There exists i € I such that a;/S; is special (resp. trivial, A-universal) at s;.
(111) There exists i € I such that for all j/i, o;/S; is special (resp. trivial, A-universal) at s;.

Proof. Let P be one of the respective properties: “special”, “trivial”, “A-universal”. Using the
fact that being P at s is an ind-constructible property (from lemma 7.3.4), it is sufficient to apply
[GD67, th. 8.3.2] to the following family of sets:

F,={s; € S; | «; satsifies P at s;}, F ={s€ S| « satsifies P at s}.

To get the two sets of equivalent conditions of the statement from op. cit. we have to prove the
following relations:

(1) ¥(j — i) € FUT), £, (Fy) C F,
(2): F = Uierf71(F).
We consider the case where P is the property “special”. For relation (1), we apply 7.1.42 which
implies the stronger relation fj_il(Fi) = F}. For relation (2), another application of 7.1.42 gives in
fact the stronger relation F = f; ' (F;) for any i € I.
Consider a point s; € S and put s; = f;;(s;). Assume «; is special at s;. Then, applying 7.2.4
and (P3), we get:

(7.3.6.1) a; ®s; 85 = (i ®s; 5i) ®b/1(si) K(s5)-
Similarly, given s € S;, s; = f;(s), and assuming «; is special at s;, we get:
(7.3.6.2) a®g s = (; ®s, 8i) Dy, K(5)-

We consider now the case where P is the property “trivial”. Then relation (1) follows from
(7.3.6.1). Relation (2) follows from (7.3.6.1) and 7.1.17(1).

We finally consider the case P is the property “A-universal”’. Relation (1) in this case is again a
consequence of (7.3.6.1). According to (7.3.6.2), we get the inclusion U;crf; ' (F;) C F. We have
to prove the reciprocal inclusion.

Consider a point s € S with residue field &k such that /S is A-universal at s. For any i € I, we
put s; = f;(s) and denote by k; its residue field. It is sufficient to find an index 7 € I such that
a; ®g, s; has coefficients in A. Thus we are reduced to the following lemma:

Lemma 7.3.7. Let (k;)icror be an ind-field, k = h_n)lielop k;.
Consider a family (B;)icr such that B; is a ki-cycle of finite type with coefficients in Q and for
any j/i, B = Bi @4, kj.

If for an index i € I, 5; ®|,’€1_ k has coefficients in A, then there exists j/i such that [5; has
coefficients in A.

We can assume that for any j/i, 5; has positive coefficients. Let X (resp. X) be the support
of 3; (resp. [3). We obtain a pro-scheme (X});,; such that X = liiniel X,;. The transition maps
of (X;),/; are dominant. Thus, by enlarging i, we can assume that for any j/i, the induced map
mo(X;) — mo(X;) is a bijection. Thus we can consider each element of my(X) separately and
assume that all the X; are integrals: for any j/i, 5; = n;.(X;) for a positive element n; € Q.
Arguing generically, we can further assume X; = Spec (L;) for a field extension of finite type L;
of k;. By assumption now, for any j/i, L, @, k; is an Artinian ring whose reduction is the field
L;. Moreover, nj = n;.1g(L; ®y, k;j) and we know that n := n;.1g(L; ®x, k) belongs to A.

Let p be a prime not invertible in A such that v,(n;) < 0 where v, denotes the p-adic valuation
on Q. It is sufficient to find an index j/i such that v,(n;) > 0. Let L = (L; ®k, k)req- Remark
that L = @ie s L;. Tt is a field extension of finite type of k. Consider elements ay, ..., a,

op
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algebraically independant over k such that L is a finite extension of k(ay, ..., a,). By enlarging i,
we can assume that aq, ..., a,, belongs to L;. Thus L, is a finite extension of k;(a1, ..., a,): replacing
k; by ki(a1,...,a,), we can assume that L;/k; is finite.

Let L' be the subextension of L over k generated by the p-th roots of elements of k. As L/k is
finite, L' /k is finite, generated by elements by, ...,b,. € L. consider an index j/i such that by, ..., b,
belongs to L;. It follows that v,(lg(L; @&, k;)) = vp(1g(L; ®k, k)). Thus v,(n,;) = vp(n) > 0 and
we are done. O

Corollary 7.3.8. Let S be a scheme and « be a pre-special S-cycle.
Let 5 be a geometric point of S, with image s in S, and S’ be the strict localization of S at 3.
Then the following conditions are equivalent:

(i) a/S is special at s.
(i’) «/S is special at 3.
(ii) (a|s/)/S’ is special at § (notation of 7.3.1).
(i1i) There exists an étale neighbourhood V- of 5 in S such that (« ®s V') /V is special at §.

Proof. The equivalence of (i) and (i’) follows trivially from definition (¢f. 7.1.27). Recall from
7.3.1 that a|sr = a ®g S’. Thus (i/) = (i7) is easy (see 7.1.42). Moreover, (it) = (iii) is a
consequence of the previous proposition applied to the pro-scheme of étale neighbourhood of s.
Finally, (i¢4) = (i) follows from lemma 7.1.42. O

Proposition 7.3.9. Consider the notations and hypothesis of 7.3.5. Assume that S and S; are
reduced for any i € I.

Suppose given a projective system (X;)icror of Si-schemes of finite type such that for any j/i,
X; =Xi xg, S;. Welet X be the projective limit of (X;).

Then for any pre-special (resp. special, A-universal) S-cycle o C X, there exists i € I and a
pre-special (resp. special, A-universal) S;-cycle a; C X; such that a = a; ®g, S .36

Proof. Using proposition 7.3.6, we are reduced to consider the first of the respective cases of the
proposition. Write o = > g nr.(Z,)x in standard form.

Consider r € ©. As X is noetherian, there exists an index ¢ € I and a closed subscheme Z,.; C X;
such that Z, = Z,; x5, S. Moreover, replacing Z,; by the reduced closure of the image of the

canonical map Z, O, Z,;, we can assume that the map (x) is dominant. For any j € I/i, we

put Z,; = Z,; xs, S;. The limit of the pro-scheme (Z,.;);ecr/ior is the integral scheme Z,.. Thus,
applying [GD67, 8.2.2], we see that by enlarging i, we can assume that for any j € I/i, Z,; is
irreducible (but not necessarily reduced).

We repeat this construction for every r € ©, enlarging ¢ at each step. Fix now an element j € I/i.
The scheme Z, ; may not be reduced. However, its reduction Z7’n7 ; 1s an integral scheme such that

Z{ij xgs;, S = Z,. We put
aj; = ZnT<Z;,j>XJ
re®
Let z, j be the generic point of Z;. j»and s, ; be its image in S;. It is a generic point and corresponds
uniquely to a generic point s, of S according to the point (3) of the hypothesis 7.3.5. Thus «;/S;
is pre-special. Moreover, we get from the above that k(2 ;) ®x(s, ;) £(sr) = k(2:) where z, is the
generic point of Z,.. Thus the relation a; ®s, S = a follows from lemma 7.2.1. (]

7.3.b. Samuel’s multiplicities.

7.3.10. We give some recall on Samuel’s multiplicities, following as a general reference [Bou93,
VIIL§7].
Let A be a noetherian local ring with maximal ideal m. Let M # 0 be a A-module of finite type

36This external product is defined in any case because of point (3) of the hypothesis above.



TRIANGULATED CATEGORIES OF MIXED MOTIVES 145

and q C m an ideal of A such that M/qM has finite length. Let d be the dimension of the support
of M. Recall from loc. cit. that Samuel’s multiplicity of M at q is defined as the integer:

el (M) := lim (:j(!llgA(M/q"M)>

n—00

In the case M = A, we simply put eq(A) := eg‘(A) and e(A) 1= e2A(A).

We will use the following properties of these multiplicities that we recall for the convenience of
the reader; let A be a local noetherian ring with maximal ideal m:

Let @ be the generic points p of Spec (A) such that dim(A/pA) = dim A. Then according to
proposition 3 of loc. cit.:

(S1) cq(A) =Y 1g(Ap).cq(A/p).

ped

Let B be a local flat A-algebra such that B/mB has finite length over B. Then according to
proposition 4 of loc. cit.:

emB(B)
e(4)

Let B be a local flat A-algebra such that mB is the maximal ideal of B. Let ¢ C A be an ideal
such that A/qA has finite length. Then according to the corollary of proposition 4 in loc. cit.:

(83) ean(B) = eg( A).

Assume A is integral with fraction field K. Let B be a finite local A-algebra such that B D A.
Let kp/ka be the extension of the residue fields of B/A. Then, according to proposition 5 and
point b) of the corollary of proposition 4 in loc. cit.,

emB(B) . dlmK(B Ra K)
e(A) kB : kal

Definition 7.3.11. (i) Let S = Spec (A) be a local scheme, s = m the closed point of S.

Let Z be an S-scheme of finite type with special fiber Z,. For any generic point z of Zg,
denoting by B the local ring of Z at z, we define the Samuel multiplicity of Z at z over S as the
rational integer:

(52) =lgg(B/mB).

(54)

ems (B)
e(4)
In the case where Z is integral, we define the Samuel specialization of the S-cycle (Z) at s as
the cycle with rational coefficients and domain Z,:

(Z)®%s= Z mS(z,2/8).z.
z€Z§O>

mS(z,2/8) =

Consider an S-cycle of finite type oo =, ; n;.(Z;) x written in standard form. We define the
Samuel specialization of the S-cycle v at s as the cycle with domain Xg:

a®ss= an<Zl> ®3% s.
i€l
(ii) Let S be a scheme. For any point s of S, we let S(,) be the localized scheme of S at s.

Let f: Z — S be an S-scheme of finite type, and z a point of Z which is generic in its fiber.
Put s = f(z). We define the Samuel multiplicity of Z/S at z as the integer

mS(Z,Z/S) = mS(Z,Z X5 S(S)/S(S))

Consider an S-cycle of finite type « with domain X and a point s of S. We define the Samuel
relative product of o and s over S as the cycle with rational coefficients:

o ®§ 5§ = (a|5(5)) ®§(5) s.
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Lemma 7.3.12. Let S be a scheme, andp : Z' — Z an S-morphism which is a birational universal
homeomorphism. Then for any point s € S,

(2')®3s=(Z)®5s
in (Z;)T’Cd = (Zs)'r'ed-

Proof. By hypothesis, p induces an isomorphism Z(?) ~ Z(©) between the generic points. Given
any irreducible component T’ of Z’ corresponding to the irreducible component T of Z, we get by
hypothesis:

T}eq ~ Treq (as schemes), lg (Oz 1) =1g (Oz1r).

Thus, we easily concludes from the definition. O

7.3.13. Let Z 5 S be a morphism of finite type and a z a point of Z, s = f(z). Assume z is a
generic point of Z;. We introduce the following condition:

. J For any irreducible component 7" of Z,),
D(2,2/9) : { T, =0 or dim(T) = dim(Z.)).

Remark 7.3.14. This condition is in particular satisfied if Z(.) is absolutely equidimensional (and
a fortiori if Z is absolutely equidimensional).
An immediate translation of (S1) gives:

Lemma 7.3.15. Let S be a local scheme with closed point s and Z be an S-scheme of finite type
such that Zs is irreducible with generic point z.
If the condition D(z,Z/S) is satisfied, then (Z) @5 s =mS(z,Z/9).z.

We get directly from (S§2) the following lemma:

Lemma 7.3.16. Let S be a scheme, s be a point of S, and o = ), ;ni.(Z;)x be an S-cycle in
standard form such that Z; is a flat S-scheme of finite type.
Then « is a Hilbert S-cycle and « ®‘§ s=a« ®% S.

With the notations of 7.3.1, we get from (S3):

Lemma 7.3.17. Let S be a scheme, s a point of S with residue field k and o an S-cycle of finite
type.

(i) Let 8" be the Hensel localization of S at s. Then, a ®F s = (a|s/) @3 s.

(ii) Let k a separable closure corresponding and 5 the corresponding geometric point of S. Let
S(s) be the strict localization of S at 5. Then,

S b T _ S &
(a @3 S) ® k= (Oz|s(§)) ®S(§) S
Let us recall from [GD67, 13.3.2] the following definition:

Definition 7.3.18. Let f : X — S be a morphism of finite type between noetherian schemes,
and x a point of X.

We say f is equidimensional at x if there exists an open neighbourhood U of z in X and a
quasi-finite pseudo-dominant S-morphism U — A% for d € N.

We say f is equidimensional if it is equidimensional at every point of X.

Remark 7.3.19. A quasi-finite morphism is equidimensional if and only if it is pseudo-dominant.
Note finally that a direct translation of (S4) gives:

Lemma 7.3.20. Let S = Spec(A) be an integral local scheme with closed point s and fraction
field K. Let Z be a finite equidimensional scheme and z a generic point of Zs. Let B be the local
ring of Z at z.

Then,
dimg (B ®4 K)

(w(@) : 5(s)]

The following lemma is the most important computation of this subsection.

m®(z,2/8) =
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Lemma 7.3.21. Consider a cartesian square

7% 7
s
S >
and a point 8" of S’, s = g(s'). Let k (resp. k') be the residue field of s (resp. s'). We assume
the following conditions:
(1) S (resp. S’) is geometrically unibranch at s (resp. s').
(2) f and f' are equidimensional of dimension n.
(3) For any generic point z of Zs (resp. z' of Zs) the condition D(z,Z/S) (resp. D(z',Z'/S"))
1s satisfied.

Then, the following equality holds in Zg :
(2) @5 s' = ((Z) @§ 5) D K.
Proof. According to lemma 7.3.15, we have to prove the equality:

(7.3.21.1) Z mS(,2']8").2' = Z m®(z,2/S).(Spec (k(2) @k k') 7., -

zez) 2€2®

As f is equidimensional of dimension n, we can assume according to we can assume according to
7.3.18 that there exists a quasi-finite pseudo-dominant S-morphism p : Z — A%. For any generic
point z of Zs, t = p(z) is the generic point of A”. Thus applying (S3), we get:

mS(z,2/8) =mS(z, Z/AR).

Consider the S” morphism p’ : Z' — A%, obtained by base change. It is quasi-finite. As Z’/S’
is equidimensional of dimension n, p’ must be pseudo-dominant. For any generic point 2’ of Z,,
t' = p'(2’) is the generic point of A7, and as in the preceding paragraph, we get

m®(¢',2']S") =mS (<, Z'JA%).

Moreover, the residue field x; of t (resp. ky of t') is k(t1,...,t,) (resp. K'(t1,...,t,) and this
implies Spec (k(2) ®y, £+ ) is homeomorphic to Spec (k(z) ®j k') and has the same geometric mul-
tiplicities. Putting this and the two preceding relations in (7.3.21.1), we get reduced to the case
n = 0 — indeed, according to [GD67, 14.4.1.1], A% (resp. A%,) is geometrically unibranch at ¢
(resp. t').

Assume now n = 0, so that f and I are quasi-finite pseudo-dominant. B
Let k be a separable closure of k and k' a separable closure of a composite of k and K. It
is sufficient to prove relation (7.3.21.1) after extension to k' (lemma 7.1.17). Thus according to

7.3.17 and hypothesis (3), we can assume S and S are integral strictly local schemes.

(0)

For any z € Z{”, the extension k(z)/k is totally inseparable. Moreover, z corresponds to a

) and we have to prove for any z € Z():

mS (2, 2']S") =mS (2, 2/8).1g(k(z) @ k).

Let S = Spec(A), K = Frac(A) and B = Oz, (resp. S’ = Spec(A’), K’ = Frac(4’) and
B’ = Oy ). As B is quasi-finite dominant over A and A is henselian, B/A is necessarily finite
dominant. The same is true for B’/A’ and (S4) gives the formulas:
dimK(B Xa K)7 mS(ZI,ZI/S/)Z dimK/(B/ ®Ra K/)

[k(2) : K] [k(2') : K]
As B'®4 K' = (B®a K)®k K’', the numerator of these two rationals are the same. To conclude,
we are reduced to the easy relation

[W(2") £ ). Ig(k(2) @4 k) = [(2) : k]

. . (©
unique point 2’ € Z,

m®(z,2/8) =
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Definition 7.3.22. Let S be a scheme and o = ;. ; n;.(Z;) x be an S-cycle in standard form.
We say «/S is pseudo-equidimensional over s if it is pre-special and for any i € I, the structual
map Z; — S is equidimensional at the generic points of the fiber Z; ;.

Lemma 7.3.23. Let S be a strictly local integral scheme with closed point s and residue field k
and « be an S-cycle pseudo-equidimensional over s.
Then for any extension Spec (k') 2= S of s and any fat point (R, k") of S over s', the following
relation holds:
QR = (a ®§ S) ®Z K.

Proof. We put S’ = Spec (R) and denote by s’ its closed point.

Reductions.— By additivity, we reduce to the case o = (Z), Z is integral and the structural
morphism f : Z — S is equidimensional at the generic points of Z;. Any generic points of S,
dominantes a generic point of Z so that we can argue locally at each generic point x of Z,. Thus
we can assume Z is irreducible with generic point x. Moreover, as Z is equidimensional at z, we
can assume according to 7.3.18 there exists a quasi-finite pseudo-dominant S-morphism

(7.3.23.1) Z L AL

Note that S is geometrically unibranch at s. Thus, applying [GD67, 14.4.1] (”critére de Cheval-
ley”), f is universally open at x. As S’ is a dash whose close point goes to s in .S, it follows from
[GD67, 14.3.7] that the base change f': Z' — S’ of f along S’/S is pseudo-dominant.

Let T be an irreducible component of Z’, with special fiber T, and generic fiber Tk over S’.
Then T — S’ is a dominant morphism of finite type. Thus, according to [GD67, 14.3.10], either
Ty = 0 or dim(Ty) = dim(Tx/). Moreover, the dimension of T}, is equal to the transcendantal
degree of the function field of T over K’, which is equal to the transcendental degree of Z over
K. This is n according to (7.3.23.1). Thus, in any case, T' is equidimensional of dimension n over
S’ and this implies Z’ is equidimensional of dimension n over S’. Moreover, either Ty, = () or
dim(T) = n+ 1 = dim(Z’). Note this implies that for any generic point 2z’ of Z,, the condition
D(2',Z'/8") is satisfied.

Middle step.— We prove: ap = (Z') @3, s'.
According to lemma 7.3.16,

apy = (Zi) @p k' = (Zj) ®% s
But the canonical map @ — 7' is a birational universal homeomorphism so that we conclude
this step by lemma 7.3.12.

Final step.— We have only to point out that the conditions of the preceding lemma are fulfilled for
the obvious square, and this is precisely what we need. O

Corollary 7.3.24. Let S be a reduced scheme, s a point of S and a an S-cycle pseudo-equidimensional
over s.

Let 5 be a geometric point of S with image s in S and S’ be the strict localization of S at 5.
We let 8" = Uxea Sy be the irreducible components of S" and ax = a®g Sy be the restriction of «
over S).

Then the following conditions are equivalent:

(i) oS is special at s.

(ii) the cycle ay ®‘§; 5 does not depend on A € A.

Moreover, when these conditions are fulfilled, o ®g § = a ®‘§, S.
A

Proof. According to corollary 7.3.8, we reduce to the case S = S’. Then it follows directly from
the preceding lemma. O

Corollary 7.3.25. Let S be a reduced scheme, geometrically unibranch at a point s € S, and «
an S-cycle. The following conditions are equivalent:
(i) o/S is pseudo-equidimensional over s.
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(i) /S is special at s.
Under these conditions, a Qg s = « ®§ s.

Remark 7.3.26. In particular, over a reduced geometrically unibranch scheme S, every cycle whose
support is equidimensional over S is special.

Corollary 7.3.27. Let S be a reduced scheme and s € S a point such that S is geometrically
unibranch at s and e(Ogs) = 1. Then for any S-cycle «, the following conditions are equivalent:
(i) a/S is pseudo-equidimensional over s.
(it) /S is A-universal at s.

Remark 7.3.28. In particular, over a regular scheme S, every cycle whose support is equidimen-
sional over S is A-universal. Remark also the following theorem:

Theorem 7.3.29. Let S be an excellent scheme, s € S a point. The following conditions are
equivalent:
(i) S is regular at s.

(ii) S is geometrically unibranch at s and e(Og s) = 1.

(111) S is unibranch at s and e(Og ) = 1.
Indication of proof. We can assume S is the spectrum of a regular local ring A with closed point s.
The implication (i) = (i¢) follows from the fact that a normal local ring is geometrically unibranch
(at its closed point) and from [Bou93, AC.VIIL.§7, prop. 2]. (i) = (i) is trivial. For the last
implication, let A be the completion of the local ring A. We know from [Bou93, AC.VIIIL.108, ex.
24] that when e(A) = 1 and A is integral, A is regular. But according to [GD67, 7.8.3, (vii)], the
second condition is equivalent to the fact A is unibranch.

Finally, we get the following theorem of Suslin and Voevodsky:

Theorem 7.3.30. Let S be a scheme and s a point with residue field ks such that the local ring
A of S at s is reqular. Then for any equidimensional S-scheme Z and any generic point z of Z,

mV (2,(Z) ®g s) = Z(—l)ilgATorf‘(Ozyz, Ks).
Proof. We reduce to the case S = Spec(A). Then Z is absolutely equidimensional and we can

apply lemma 7.3.15 together with corollary 7.3.25 to get that m®V (z,(Z) ®g s) = mS(z, Z/9).
Then the result follows from the theorem of Serre [Ser58, IV.12, th. 1J. O

Remark 7.3.31. Let S be a regular scheme, X a smooth S-scheme and @ C X an S-cycle whose
support is equidimensional over S. Let s be a point of S and ¢ : X; — X the closed immersion of
the fiber of X at s. Then the cycle i*(«) of [Ser58, V-28, par. 7] is well defined and we get:

a®gs=1i"(a).
8. FINITE CORRESPONDENCES

8.0. In this section, .7 is the category of all noetherian schemes, We fix an admissible class &2 of
morphisms in . and assume in addition that &2 is contained in the class of separated morphisms
of finite type.

Consider two S-schemes X and Y. To clarify certain formulas, we will denote X X g Y simply
by XY and let p%y : XY — X be the canonical projection morphism.

We fix a ring of coefficients A C Q.

8.1. Definition and composition.

8.1.1. Let S be a base scheme. For any Z-scheme X/S, we let ¢o(X/S,A) be the A-module
made of the finite and A-universal S-cycles with domain X.?” Consider a morphism f:Y — X
of #-schemes over S. Then the pushout of cycles induces a well defined morphism:

feico(Y/S,A) = co(X/S,A).

37TWith the notations of [SV00b], co(X/S, Z) = Cequi(X/S,0) when S is reduced.
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Indeed, consider a cycle a € ¢o(Y/S). Let us denote by Z its support in Y and by f(Z) C X
image of the latter by f. We consider these subsets as reduced subschemes. Note that f(Z) is
separated and of finite type over S because X/S is noetherian, separated, and of finite type, by
assumption 8.0. Because Z/S is proper, [GD61, 5.4.3(ii)] shows that f(Z) is indeed proper over
S. Thus, the cycle f.(«) is A-universal according to corollary 7.2.10. Finally, Z/S is finite, we
deduce that f(Z) is quasi-finite, thus finite, over S. This implies the result.

Definition 8.1.2. Let X and Y be two &?-schemes over S.
A finite S-correspondence from X to Y with coefficients in A is an element of

cs (X,Y), =co(X xg Y/X).
We denote such a correspondence by the symbol X e~ Y.

In the case A = Z, we simply put cg (X,Y) :=cg(X,Y),. Through the rest of this section,
any cycle and any finite S-correspondence are assumed to have coefficients in A.

Remark 8.1.3. (1) According to properties (P7) and (P7’) (¢f. 7.1.38) of the relative exterior
product, cg (X,Y), commutes with finite sums in X and Y.
(2) Consider a € ¢g (X,Y),. Let Z be the support of a. Then, Z is finite pseudo-dominant
over X (by definition 7.1.18). This means that Z is finite equidimensional over X.
When X is regular (resp. X is reduced geometrically unibranch and char(X) C AX),
any cycle « C X xg Y whose support is finite equidimensional over X defines a finite
S-correspondence — cf. 7.3.28 (resp. 7.3.26).
Moreover, in each respective case, cg(X,Y ) is the free A-module generated by the
closed integral subschemes Z of X xg Y which are finite equidimensional over X.
(3) Recall that in general, there is only an inclusion

cs (X,)Y)®z A Cecg (X,Y)A.
This inclusion is an equality if X is regular (¢f. 7.3.28) or char(X) C A*.38

Ezample 8.1.4. (1) Let f: X — Y be a morphism in &7/S.
Because X/S is separated (assumption 8.0), the graph I'y of f is a closed subscheme of
X xg Y. The canonical projection I'y — X is an isomorphism. Thus <Ff>Xy is a Hilbert
cycle over X. In particular, it is A-universal and also finite over X, thus it defines a finite
S-correspondence from X to Y.

(2) Let f: Y — X be finite S-morphism which is A-universal (as a morphism of the associated
cycles). Then the graph I'y of f is closed in X xg Y and the projection I'y — X is
isomorphic to f. Thus the cycle (I'f) xy is a finite A-universal cycle over X which therefore
define a finite S-correspondence 'f : Xeo— Y.

Suppose we are given finite S-correspondences X o vel Z. Consider the following diagram
of cycles :

BRy a=fp=7.
\ \
a—Y
]

X

The pullback cycle is well defined and has coefficients in A as (3 is A-universal over Y. Moreover,
according to the definition of pullback (¢f. 7.1.36) and corollary 7.2.6, 8®y « is a finite A-universal
cycle over X with domain XY Z. Note finally that according to 8.1.1, the pushout of this latter
cycle by pXZ, is an element of cg (X, Z),.

Definition 8.1.5. Using the preceding notations, we define the composition product of 5 and «
as the finite S-correspondence
Boa=pXZ, (BRya): Xe— Z.

38Recall indeed that the Suslin-Voeodsky’s multiplicities of a cycle over a scheme X can only have denominators
whose prime factors divide the residue characteristics of X according to 7.1.36.
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8.1.6. In the case where S is regular and X, Y, Z are smooth over .S, the composition product
defined above agree with the one defined in [Dég07, 4.1.16] in terms of the Tor-formula of Serre. In
fact, this is a direct consequence of 7.3.30 after reduction to the case where e and 3 are represented
by closed integral subschemes (see also point (2) of remark 8.1.3).

We sum up the main properties of the composition for finite correspondences in the following
proposition :

Proposition 8.1.7. Let X, Y, Z be &2-schemes over S.

(1) For any finite S-correspondences X% Yoﬂ Ze T, we have
(yepB)oa=vo(Boa).
(2) For any Xe&Y L Z (T))yzoa = (1x x5 g)«(a).
(3) For any X L v Z, Bo(Ty)xy = B @y (X).
Moreover, if f is flat, Bo (U'f)xy = (f x5 12)*(B) considering the flat pullback of cycles
in the classical sense.
(4) For any X L vy 7 such that f is finite A-universal,
Bolf=(fxs1z):(B)
(5) For any Xe%'Y <& Z such that g is finite A-universal,
tgoa=(Z)®y a.
If we suppose that g is finite flat, then tgoa = (1x x5 g)*().
Proof. (1) Using respectively the projection formulas 7.2.10 and 7.2.8, we obtain
(voB)oa=pxyzr.((v®z f) @y a)
vo(Boa)=pXyzr. (@2 (B@y a)).

Thus this formula is a direct consequence of the associativity 7.2.7.

(2) Lete: T’y — Y and p§1§g : XI'y — X Z be the canonical projections. As e is an isomorphism,
we have tautologically (Y) = €,((I'g)). We conclude by the following computation :

(Ix x5 g)«(a) = (1x x5 9):((Y) ®y @) = (1x X5 g)«(e(I'y) Oy )

2 (1x x5 9)-(1x x5 O)(({Ty) Oy a) = p¥Z ,((Ty) @y @)

—

Q)
= pxvz.((Lg)vz ®y @)
The equalities labeled () follow from the projection formula of 7.2.10.
(3) The first assertion follows from projection formula of 7.2.8 and the fact that I'y is isomorphic
to X :
Bo(Ls)xy =pxvz.(8®y (Lr)xy) = B0y pXy.(L)xy) = @y (X)
The second assertion follows from corollary 7.2.2.
(4) and (5): The proof of these assertions is strictly similar to that of (2) and (3) instead that
we use the projection formula of 7.2.8 (and do not need the commutativity 7.2.3). O

As a corollary, we obtain that the composition of S-morphisms coincide with the composition of
the associated graph considered as finite S-correspondences. For any S-morphism f: X — Y, we
will still denote by f : Xe— Y the finite S-correspondence equal to (I'y) xy. Note moreover that
for any &-scheme X/S, the identity morphism of X is the neutral element for the composition of
finite S-correspondences.

Definition 8.1.8. We let &§% be the category of &-schemes over S with morphisms the finite
S-correspondences and the composition product of definition 8.1.5.

An object of Z5% will be denoted by [X]. The category &7{% is additive, and the direct sum
is given by the disjoint union of &?-schemes over S. We have a canonical faithful functor

(8.1.8.1) v PIS — P

which is the identity on objects and the graph on morphisms.
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8.1.9. Given two S-morphisms f:Y — X and ¢ : X’ — X such that g is finite A-universal, we
get from the previous proposition the equality of cycles in Y X':

fgo f=(X")ex (Y)vx
where Y is seen as a closed subscheme of Y X through the graph of f.
In particular, when either f or g is flat, we get (use property (P3) of 7.1.32 or corollary 7.2.2):
fgof=(X"xxY)yx
To state the next formulas (the generalized degree formulas), we introduce the following notion:

Definition 8.1.10. Let f: X’ — X be a finite equidimensional morphism.
For any generic point x of X, we define the degree of f at x as the integer:

deg,(f) = Z[’iz’ )

z'[x
where the sums run over the generic points of X’ lying above z.

Proposition 8.1.11. Let X be a connected S-scheme and f : X' — X be a finite S-morphism.
Then, if f is A-universal, there exists an integer d € IN* such that for any generic point x of
X, deg,(f) =d.
Moreover, folf =d.1x.

Proof. Let A’ be the diagonal of X’/S. For any generic point « of X, we let A, be the diagonal
of the corresponding irreducible component of X, seen as a closed subscheme of X. According to
proposition 8.1.7, and the definition of pushout, we get

ai=folf=(fxs((A)xx)= D deg,(f)-(As)xx.

ze X (0)

Considering generic points x, y of X, we prove deg,(f) = deg,(f). By induction, we can reduce
to the case where x and y have a common specialisation s in X. Then, as «/X is special, we get
by definition of the relative product (see more precisely 7.1.41)

o B s = dog, (f).s = deg, (f).s

as required. The remaining assertion then follows. O

The previous proposition applies in particular when f is finite flat. Assuming X is connected,
we call d the degree of f.

Proposition 8.1.12. Let f : X' — X be an S-morphism which is finite, radicial and A-universal.
Assume X is connected, and let d be the degree of f.
Then tfo f =d.1x:. In particular, if d is invertible in A, f is an isomorphism in :@f\‘?g

Proof. According to 8.1.9, {fo f = (X") @ x (X') as cycles in X’ X’. Let = be the generic point of
X and k be its residue field. Let {x},7 € I} be the set of generic points of X, and for any ¢ € I,
k! be the residue field of z}. According to 7.2.1, we thus obtain:

‘fof= > (Spec (k] @kk}))x:x

(4.5)el?

The result now follows by the definition of the degree and the fact that for any i € I, k}/k is
radicial. 0

8.2. Monoidal structure. Fix a base scheme S. Let X, X' Y, Y’ be &-schemes over S.

Consider finite S-correspondences o : Xe— Y and 5 : X'e— Y’. Then aX’ := a®x (XX') and
o' X = o’®@x/ (X X') are both finite A-universal cycles over X X’. Using stability by composition of
finite A-universal morphisms (cf. corollary 7.2.6), the cycle (aX’) @ xx+ (o/ X) is finite A-universal
over X X'.
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Definition 8.2.1. Using the above notation, we define the tensor product of o and o’ over S as
the finite S-correspondence

a®%ad =(aX)@xx (X)) : XX o= YY'.

Let us first remark that this tensor product is commutative (use commutativity of the exte-
rior product 7.2.3) and associative (use associativity of exterior product 7.2.7). Moreover, it is
compatible with composition :

Lemma 8.2.2. Suppose given finite S-correspondences :
a: XY, 8:Y—>Z o : X' =Y, 3:Y —Z. Then

(Boa)®Y (B od)= (B85 F)o(a®y a).

Proof. Weput aX' = a®x(XX"), ' X = /@x (X X'y and BY' = By (YY"), 8'Y = /@y (YY").
We can compute the right hand side of the above equation as follows :

p§))g:)Z/}Z//’ZZ’* ((ﬁyl Qyy ﬁ/Y> Ryyr (CYX/ K x X7 a'X))
1 ’ 7

(:) p§§/1Z/}Z”ZZ/* ((ﬂyl Qyy’ ﬂ,Y) Ryy: (O/X Rxx’ OéX’))
2) ’ ’

e PXXTY 22 (ﬁyl Ryy: (BY @yy ' X) @x x aX’))

® xx'zz
= p))gﬁ’XZ/%’ZZ’* ((6Y/ ®YY/ OéXl) ®XX’ (ﬁ/Y ®yy/ O/X))) .

Equality (1) follows from commutativity 7.2.3, equality (2) from associativity 7.2.7 and equality
(3) by both commutativity and associativity.

For the left hand side, we note that using the projection formula 7.2.10, the left hand side is
equal to

PXXE 22 (((Boy ) @x (XX') @xx (8 @y o)) @x0 (XX))).
We are left to remark that
By o) @x (XX') = ((BY) @yyr a) @x (XX') = Y Qyy a X',

using transitivity 7.2.4 and associativity 7.2.7. We thus conclude by symmetry of the other part

in the left hand side. O
Definition 8.2.3. We define a symmetric monoidal structure on the category @ﬁog by putting
[(X] ®@% [Y] = [X xg Y] on objects and using the tensor product of the previous definition for
morphisms.

8.2.4. Note that the functor v: #/S — 2§ is monoidal for the cartesian structure on the left
hand category. Indeed, this is a consequence of property (P3) of the relative product (see 7.1.32)
and the remark that for any morphisms f : X — Y and f': X' = V', (I'y x5 X") xxx' (I'; x5 X) =
Lixsyr-

8.3. Functoriality. Fix a morphism of schemes f : T — S. For any #-scheme X/S, we put

X7 =X xgT. For a pair of #-schemes over S (resp. T-schemes) (X,Y), we put XY = X xgV
(resp. XYT =X XT Y)

8.3.a. Base change. Consider a finite S-correspondence «: Xe— Y. The cycle a ® x (Xr1) defines
a finite T-correspondence from X7 to Y denoted by ar.

Lemma 8.3.1. Consider finite S-correspondences X o= vel y.
Then (B o a)r = fr o ar.
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Proof. This follows easily using the projection formula 7.2.10, the associativity formula 7.2.7 and
the transitivity formula 7.2.4 :

PX? 2. (B®y ) ®x (X7) = iy, ((B®y ) @x (X71))
= 3%, (B®y (a®x (X1))) = pxi%, (B @y (Y1) @y, (@ ®x (X7))).
O

Definition 8.3.2. Let f : T — S be a morphism of schemes. Using the preceding lemma, we
define the base change functor
;s - 2
(X/S] —  [Xp/T]
cs(X,)Y)y2a — ar.

We sum up the basic properties of the base change for correspondences in the following lemma.

Lemma 8.3.3. Take the notation and hypothesis of the previous definition.

(1) The functor f* is symmetric monoidal.
(2) Let f5: P2/S — P/T be the classical base change functor on &P2-schemes over S. Then
the following diagram is commutative:

Vs
P|S —= PR%

3 VI

P|T > P55

(8) Leto : T" — T be a morphism of schemes. Through the canonical isomorphisms (X1)p: ~
X1/, equality (f oo)* = c* o f* holds.

Proof. (1) This point follows easily using the associativity formula 7.2.7 and the transitivity for-
mulas 7.2.4, 7.2.6.

(2) This point follows from the fact that for any S-morphism f : X — Y, there is a canonical
isomorphism I'y,, — 'y xg T

(3) This point is a direct application of the transitivity 7.2.4. O

Lemma 8.3.4. Let f: T — S be a universal homeomorphism.
Then f*: 5% — P is fully faithful.

Proof. Let X and Y be &-schemes over S. Then X7 — X is a universal homeomorphism. Any
generic point x of X corresponds uniquely to a generic point of Xr. Let m, (resp. m.,) be the
geometric multiplicity of 2 in X (resp. Xr). Consider a finite S-correspondence o = ), n;.2;.
For each ¢ € I, let x; be the generic point of X dominated by z;. Then we get by definition:

* _ o T )
f (a) - Zmzl mx,; -2

icl

and the lemma is clear. O

8.3.b. Restriction. Consider a &-morphism p : T — S. For any pair of T-schemes (X,Y), we
denote by dxy : X X7 Y — X XgY the canonical closed immersion deduced by base change from
the diagonal immersion of 7'/S.

Consider a finite T-correspondence « : Xe— Y. The cycle dxy,(«) is the cycle a considered as
a cycle in X xg Y. It defines a finite S-correspondence from X to Y.

Lemma 8.3.5. Let X, Y and Z be T-schemes. The following relations are true :

(1) For any T-morphism f: X =Y, 5Xy*(<Ff>XyT) =({Ty)xy.
(2) Foralla € cp (X,Y), and B € cr (Y, 2),,

dxz«(Boa)=(0yz.(0))o (Oxy.(a)).



TRIANGULATED CATEGORIES OF MIXED MOTIVES 155

Proof. The first assertion is obvious.
The second assertion is a consequence of the projection formulas 7.2.8 and 7.2.10, and the
functoriality of pushout :

Oy z+(B)) © (6xv () = PxY 7, (Fy 2. (B) @y Sxv . (@)

= pXZ 2.0xy 2:(B ®y @) = dx 20335, (B ®y a).

Definition 8.3.6. Let p: T — S be a #-morphism.
Using the preceding lemma, we define a functor
P P = PG
X -1 +— [X—>T£>S]
cr (X,Y)y2a — dxy«(a).
This functor enjoy the following properties:

Lemma 8.3.7. Letp:T — S be a &-morphism.
(1) The functor py is left adjoint to the functor p*.
(2) For any composable Z-morphisms Z 5T % 8, (P@)s = pras-
(8) Let pg : PIT — P8 be the functor induced by composition with p. Then the following
diagram is commutative:
2T s P50,

pN VPt
2|8 s P

Proof. For point (1), we have to construct for schemes X/T and Y/S a natural isomorphism
cs (peX,Y), ~cr (X,p*Y),. It is induced by the canonical isomorphism of schemes (ps X ) x g} ~
X xp (p*Y).

Point (2) follows from the associativity of the pushout functor on cycles. Note also that this
identification is compatible with the transposition of the identification of 8.3.3(3) according to the
adjunction property just obtained.

Point (3) is a reformulation of 8.3.5(2). O

8.3.c. A finiteness property.

8.3.8. We assume here that &2 is the class of all separated morphisms of finite type in .%.

Let I be a left filtering category and (X;);cs be a projective system of separated S-schemes of
finite type with affine dominant transition morphisms. We let X’ be the projective limit of (X;);
and assume that X is Noetherian over S.

Proposition 8.3.9. Let Y be a &-scheme of finite type over S. Then the canonical morphism
P lim cs (X, V), — co(X x5 Y/X,A).
ielop
is an isomorphism.
Proof. Note that according to [AGV73, IV, 8.3.8(i)], we can assume the conditions (2) of 7.3.5 is

verified for (X;);cr. Thus conditions (1) to (4) of loc. cit. are verified. Then the surjectivity of ¢
follows from 7.3.9 and the injectivity from 7.3.6. O

8.4. The fibred category of correspondences. We can summarize the preceding construc-

tions:

Proposition 8.4.1. The 2-functor
S P

equipped with the pullback defined in 8.3.2 and with the tensor product of 8.2.3 is a monoidal
P-fibred category such that the functor

v P — P
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(see (8.1.8.1)) is a morphism of monoidal &-fibred category.

Proof. According to lemma 8.3.7, for any & morphisms p, p* admits a left adjoint p;. We have
checked that 7 is symmetric monoidal and commutes with f* and py (see respectively 8.2.4, 8.3.3
and 8.3.7). But « is essentially surjective. Thus, to prove the properties (£-BC) and (£-PF)
for the fibred category 275°", we are reduced to the case of case of & which is easy (see example
1.1.27). This concludes. O

Remark 8.4.2. Consider the definition above.

cor

(1) The category &§°" is A-linear. For any scheme S, Z§° is additive. For any finite family
of schemes (5;);e; which admits a sum S in .#, the canonical map

cor cor
@A,s - @ QA,Si
iel

is an isomorphism.
(2) The functor v : & — Z75°" is nothing else than the canonical geometric sections of Z5°"
(see definition 1.1.34).

We will apply these definitions in the particular cases & = Sm (resp. & = .#f) the class of
smooth separated (resp. separated) morphisms of finite type. Note that we get a commutative
square

ol
Sm — = Smer

l |

Pt . y[(t,cor
where the vertical maps are the obvious embeddings of monoidal Sm-fibred categories.
Remark 8.4.3. Let S be a regular scheme. We have already seen in remark 8.1.3 that
P\s = P75 @z L.

Moreover, remark 8.1.6 implies that the category .mZz’ defined here coincide with the one
introduced in [Dég07]. Finally, using again the computation of Suslin-Voevodsky’s multiplicities
in term of the Tor-formula (¢f. 7.3.30), we can check that the operations 7, 74, and ®"" defined
here coincide with that of [Dég07].

9. SHEAVES WITH TRANSFERS

9.0. The category . is the category of noetherian schemes of finite dimension. We fix an admis-
sible class & of morphisms in . satisfying the following assumptions:

(a) Any morphism in & is separated of finite type.
(b) Any étale separated morphism of finite type is in .

We fix a topology t on . which is &-admissible and such that:

(¢) For any scheme S, there is a class of covers £ of the form (p : W — S) with p a &-
morphism such that ¢ is the topology generated by £ and the covers of the form (U —
UUuV,V - UUYV) for any schemes U and V in .¥.

We fix a ring of coefficients A C Q.
Note that in sections 9.4 and 9.5, we will apply the conventions of section 1.4 by replacing the

class of smooth morphisms of finite type (resp. morphisms of finite type) there by the class of
smooth separated morphisms of finite type (resp. separated morphisms of finite type).
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9.1. Presheaves with transfers. We consider the additive category @f\og of definition 8.1.8 and
the graph functor v : #/S — 2% of (8.1.8.1).

Definition 9.1.1. A presheaf with transfers F' over S is an additive presheaf of abelian groups
cor

over Z{%. We denote by PSh ((@f\"g) the corresponding category.
If X is a #-scheme over S, we denote by A% (X) the presheaf with transfers represented by X.
We denote by 4. the functor

(9.1.1.1) PSh (@KOE) — PSh(Z2/S,A), F — Fo~.

Note that PSh (@Kog) is obviously a Grothendieck abelian category generated by the objects
AT (X) for a P-scheme X/S. Moreover, the following proposition is straightforward:

Proposition 9.1.2. There is an essentially unique Grothendieck abelian &2-premotivic cate-
gory PSh (25°") which is geometrically generated (cf. 1.1.40), whose fiber over a scheme S is
PSh (@f\og) and such that the functor AY induces a morphism of additive monoidal P-fibred
categories.

(9.1.2.1) P — PSh (225°7) .

Moreover, the functor (9.1.1.1) induces a morphism of abelian &-premotivic categories
A* : PSh(£2, A) = PSh (£25°7) : A..

Proof. To help the reader, we recall the following consequence of Yoneda’s lemma:

Lemma 9.1.3. Let I': (Z{°%)° — A-mod be a presheaf with transfers. Let T be the category of
representables preshaves with transfers over F. Then the canonical map
AU (X)—F

s an isomorphism. The limit is taken in PSh (Wﬁog) and runs over L.

This lemma allows to define the structural left adjoint of PSh (Pmorc) (recall f*, py for p a &2-
morphism and the tensor product) because they are indeed determined by (9.1.2.1). The existence
of the structural right adjoints is formal.

The same lemma allows to get the adjunction (§*,9.). O

Remark 9.1.4. Note that for any presheaf with transfers F' over S, and any morphism f: 7 — S
(resp. &-morphism p : S — 5’), we get as usual f,.F' = fo f* (resp. p*F = F opy) where the
functor f* (resp. py) on the right hand side is taken with respect to the &?-fibred category &7§°".

9.2. Sheaves with transfers.

Definition 9.2.1. A t¢-sheaf with transfers over S is a presheaf with transfers F' such that the
functor F o yg is a t-sheaf. We denote by Sht(gaf\?g) the full subcategory of PSh(gZK?g, ) of
sheaves with transfers.

According to this definition, we get a canonical faithful functor
Yo 0 Shy (P8%) — She(P/S,A) , F — For.

Example 9.2.2. A particularly important case for us is the case when ¢ = Nis is the Nisnevich
topology. According to the original definition of Voevodsky, a Nisnevich sheaf with transfers will
be called simply a sheaf with transfers.

Remark 9.2.3. Later on, in the case & = 7t we will use the notation A% (X) to denote the

presheaf on the big site .7, I{fécor.

Proposition 9.2.4. Let X be an &?-scheme over S.

(1) The presheaf A% (X) is an étale sheaf with transfers.
(2) If char(X) C A*, A¥(X) is a gfh-sheaf with transfers.
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Proof. For point (1), we follow the proof of [Dég07, 4.2.4]: the computation of the pullback by
an étale map is given in our context by point (3) of proposition 8.1.7. Moreover, the property for

a cycle a/Y to be A-universal is étale-local on Y according to 7.3.8. For point (2), we refer to
[SVOODb, 4.2.7]. O

We can actually describe explicitely representable presheaves with transfers in the following
case:

Proposition 9.2.5. Let S be a scheme and X be a finite étale S-scheme. Then for any & -scheme
Y over S,

DY, A (X)) = mo(Y x5 X).A.
This readily follows from the following lemma:

Lemma 9.2.6. Let f : X — S be an étale separated morphism of finite type. Let ﬂ'gimte(X/S) be
the set of connected components V' of X such that f(V) is equal to a connected component of S
(i.e. f is finite over V).

Then co(X/S,A) = 7l ™" (X/S).A.

Proof. We can assume that S is reduced and connected.

We first treat the case where V' = S. Consider a finite A-universal S-cycle a with domain S.
Write a = ), 1i.(Z;)s in standard form. By definition, Z; dominates an irreducible component
of S thus Z; is equal to that irreducible component.

Consider Sy an irreducible component of S and an index ¢ € I such that Sy N Z; is not empty.
Consider a point s € Sy N Z;. We have obviously as; = n;.(Spec (x(s))) # 0. Thus there exists
a component of o which dominates Sy i.e. 3j € I such that Z; = Sy. Moreover, computing o
using alternatively Z; and Z; gives n; = n;.
As S is noetherian, we see inductively {Z;|i € I} is the set of irreducible components of S and for
any ¢,j € I, n; =n;. Thus ¢o(S/S,A) =Z.

Consider now the case of an étale S-scheme X. By additivity of ¢y, we can assume that X is

connected. Consider the following canonical map:

co(X/S,A) = co(X x5 X/X,A),a— a @y X.

Note that considering the projection p : X xg X — X, by definition, « ®'g X =p*(a).
Consider the diagonal § : X — X xg¢ X of X/S. Because X/S is étale and separated, ¢ is a direct
factor of X xg X and we can write X xg X = X U U. Because ¢q is additive,

co(X x5 X/X,A) = co(X/X,A) @ co(U/ X, A).

Moreover, the projection on the first factor is induced by the map §* on cycles. Because §*p* = 1,
we deduce that ¢o(X/S,A) is a direct factor of ¢o(X/X,A). According to the preceding case, this
latter group is the free group generated by the cycle (X). This latter cycle is A-universal over S,
because X/S is flat. Thus, if X/S is finite, it is an element of ¢o(X/S, A) so that ¢o(X/S,A) = A.
Otherwise, not any of the A-linear combination of (X) belongs to co(X/S, A) so that ¢o(X/S,A) =
0. U

9.3. Associated sheaf with transfers.

9.3.1. Recall from 3.2.1 that we denote by (£?/S)! the category of I-diagrams of objects in &2/9
indexed by a discrete category I. Given any simplicial object X of (£2/S)!, we will consider
the complex AY(X) of PSh (275°) applying the definition of 5.1.8 to the Grothendieck Z#-fibred
category PSh (£2).

Consider a t-cover p : W — X in &2/X. We denote by Wg the n-fold product of W over
X (in the category &?/X). We denote by S(W/X) the Cech simplicial object of Z§°% such
that S,(W/X) = Wi, The canonical morphism S(W/X) — X is a t-hypercover according to
definition 3.2.1. We will call these particular type of t-hypercoverings the Cech t-hypercoverings
of X.
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Definition 9.3.2. We will say that the admissible topology ¢t on & is compatible with transfers
(resp. weakly compatible with transfers) if for any scheme S and any ¢-hypercover (resp. any Cech
t-hypercover) X — X in the site &2/S, the canonical morphism of complexes

(9.3.2.1) AT (X)) — AY(X)
induces a quasi-isomorphism of the associated t-sheaves on &2/S.

Obviously, if ¢ is compatible with transfers then it is weakly compatible with transfers.

Recall from 9.2.4 that, in the cases t = Nis, ét, (9.3.2.1) is actually a morphism of complexes
of t-sheaves with transfers. The following proposition is a generalisation of [Voe96, 3.1.3] but its
proof is in fact the same.

Proposition 9.3.3. The Nisnevich (resp étale) topology t on & is weakly compatible with trans-
fers.

Proof. We consider a t-cover p : W — X, the associated Cech hypercover X = S(W/X) of X and
we prove that the map (9.3.2.1) is a quasi-isomorphism of t-sheaves. Recall that a point of Pg for
the topology ¢ is given by an essentially affine pro-object (V;);es of &2/S. Moreover, its projective
limit V in the category of scheme is in particular a local henselian noetherian scheme.

It will be sufficient to check that the fiber of (9.3.2.1) at the point (V;);cs is a quasi-isomorphism.
Thus, according to proposition 8.3.9, we can assume that S = V is a local henselian scheme and
we are to reduce to prove that the complex of abelian groups

= co(W xx W/S,A) — co(W/S,A) £ co(X/S,A) — 0

is acyclic. We denote this complex by C.

Recall that the abelian group ¢o(X/S) is covariantly functorial in X with respect to separated
morphisms of finite type f : X’ — X (¢f. paragraph 8.1.1). Moreover, if f is an immersion, f is
obviously injective.

Let Fy be the set, ordered by inclusion, of closed subschemes Z of X such that Z/S is finite.
Given a closed subscheme Z in Fy, we let C'z be the complex of abelian groups

(9.3.3.1) o= oWy xg Wz /S, A) — co(Wz /S, A) 225 ¢o(Z/S,A) — 0

where pz is the ¢t-cover obtained by pullback along Z — X. From what we have just recalled, we
can identify C'z with a subcomplex of C. The set Fy can be ordered by inclusion, and C' is the
union of its subcomplexes C'z. If Fy is empty, then C' = 0 and the proposition is clear. Otherwise,
Fo is filtered and we can write:
Zg—o

Thus, it will be sufficient to prove that Cz is acyclic for any Z € Fj. Because S is henselian and
Z is finite over S, Z is indeed a finite sum of local henselian schemes. This implies that the ¢-cover
pz, which is in particular étale surjective, admits a splitting s : Z — W . Then the complex
(9.3.3.1) is contractible with contracting homotopy defined by the family

(S Xz 1wg)* : Co(Wg/S, A) — Co(V[/vg-"_l/S7 A)

9.3.4. Considering an additive abelian presheaf G on /S, the natural transformation
X — Hompgy(z/s)(3:A4 (X), G)

defines a presheaf with transfers over S.3° We will denote by G its restriction to the site &/S.
Note that this definition can be applied in the case where G is a t-sheaf on & /S, because under
the assumption 9.0 on ¢, it is in particular an additive presheaf.

Definition 9.3.5. We will say that ¢ is mildly compatible with transfers if for any scheme S and
any t-sheaf F' on &2/S, F; is a t-sheaf on &/S.

If ¢ is weakly compatible with transfers then is it mildly compatible with transfers.

39Actually, this defines a right adjoint to the functor .
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Remark 9.3.6. Assume t is mildly compatible with transfers. Then for any scheme S, any t-cover
p: W — X in &/S induces a morphism

pet AG(W) — AG(X)
which is an epimorphism of the associated t-sheaves on &7/S. This means that for any correspon-

dence a € cg (Y, X), there exists a t-cover ¢ : W' — Y and a correspondence o € cg (W', W)
making the following diagram commutative:

W/ .&ﬁ W
(9.3.6.1) ql ip

Y —> X
Lemma 9.3.7. Assume t is mildly compatible with transfers.

Let S be a scheme and P be a presheaf with transfers over S. We put P = P o as a
presheaf on P/S. We denote by F the t-sheaf associated with P and by n: P — F the canonical
natural transformation.

Then there exists a unique pair (F*" n'") such that:

(1) F* is a sheaf with transfers over S such that F'" oy = F.

(2) nt" . P — F' s q natural transformation of presheaves with transfers such that the
induced transformation

P=(P"oy) = (F"oy)=F
coincides with 7.

Proof. As a preliminary observation, we note that given a presheaf G on £2/S, the data of a
presheaf with transfers G such that G*" oy = G is equivalent to the data for any &?-schemes X
and Y of a bilinear product

(9.3.7.1) GX)®zcs (Y, X) = GY),p@a— (p,a)
such that:
(a) For any &-morphism f: Y’ =Y, f*(p,a) = (p,aoc f).
(b) For any Z-morphism f: X — X' if p = f*(p'), (f*(p'), ) = {p, f o a).
(¢) When X =Y, for any p € F(X), (p,1x) = p.
(d) For any correspondence 8 € c¢s (Z,Y), ((p,a), 8) = {p,a 0 B).

On the other hand, the data of products of the form (9.3.7.1) for any &?-schemes X and Y over S
which satisfy the conditions (a) and (b) above is equivalent to the data of a natural transformation

¢:G— G,

by putting (p, @)y = [ox (p)]y .
Applying this to the presheaf with transfers P", we obtain a canonical natural transformation

Y: P — Pr.

By assumption on t, F; is a t-sheaf. Thus there existe a unique natural transformation ¢ such
that the following diagram commutes:

P

—> P

=

FHFT

Thus we get products of the form 9.3.7.1 associated with ¢ which satisfies (a) and (b). The
commutativity of the above diagram asserts they are compatible with the ones corresponding
to P* and the unicity of the natural transformation ¢ implies the uniqueness statement of the
lemma.

To finish the proof of the existence, we must show (c) and (d) for the product (., ). Consider
a couple (p,a) € F(X) x cg (Y, X). Because F is the t-sheaf associated with P, there exists a
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t-cover p : W — X and a section p € P(W) such that p*(p) = aw(p). Moreover, according to
remark 9.3.6, we get a t-cover ¢ : W/ — Y and a correspondence & € cg (W', W) making the
diagram (9.3.6.1) commutative. Then we get using (a) and (b):

7" (p,)p = (P q)g = (p,pod)y = (p*p, &)y = (av (p), &)y = (P, A)y-

Because ¢* : F(X) — F(W) is injective, we deduce easily from this principle the properties (c)
and (d) and this concludes. O

9.3.8. Let us consider the canonical adjunction
ay : PSh(22/S,A) = Shy(L/S,A) : ay .

where a; . is the canonical forgetful functor.
We also denote by abuse a; . : PSh (2§%) — Sh;(275°%) the obvious forgetful functor. Triv-
ially, the following relation holds:

(9.3.8.1) Vi Ut = At 5 Ve

Proposition 9.3.9. Using the notations above, the following condition on the admissible topology
t are equivalent:

(i) t is mildly compatible with transfers.
(ii) For any scheme S, the functor O} admits a left adjoint a} : PSh (@f\og) — Sht(,@f\‘?g)
which is exact and such that the exchange transformation

(9.3.9.1) ay Y« = Vi @f
induced by the identification (9.3.8.1) is an isomorphism.

Under these conditions, the following properties hold for any scheme S':

(i) The category Sht(@f\‘:g) is a Grothendieck abelian category.
(iv) The functor v, commutes with every limits and colimits.

Proof. The fact (i) implies (ii) follows from the preceding lemma as we can put a!"(F) = F'" with
the notation of the lemma. The fact this defines a functor, as well as the properties stated in (ii),
follows from the uniqueness statement of loc. cit.

Let us assume (ii). Then (iii) follows formally because from (ii), from the existence, adjunction
property and exactness of a}, because PSh (gxog) is a Grothendieck abelian category. Moreover,
we deduce from the isomorphism (9.3.9.1) that 7« is exact: indeed, aj and 4, are exact. As 7.
commutes with arbitrary direct sums, we get (iv).

From this point, we deduce the existence of a right adjoint 7' to the functor 7,. Using again the
isomorphism (9.3.9.1), we obtain for any t-sheaves F on &/S and any &?-scheme X /S a canonical
isomorphism F,(X) = v'F(X). This proves (i). O

9.3.10. Under the assumption of the previous proposition, given any &?-scheme X/S, we will
put AZ(X): = al" A7 (X). The above proposition shows that the family AY (X), for 92-schemes
cor

X/S is a generating family in Sh, (,@m S). Moreover, we get easily the following corollary of the
preceding proposition and proposition 9.1.2:

Corollary 9.3.11. Assume that t is mildly compatible with transfers.

Then there exists an essentially unique Grothendieck abelian &7 -premotivic category Shy(225°")
which is geometrically generated, whose fiber over a scheme S is Shy (@f\"g) and such that the
t-sheafification functor induces an adjunction of abelian & -premotivic categories:

ay : PSh (25°") & Shy(225°7) : ay «.
Moreover, the functor v, induces an adjunction of abelian &2-premotivic categories:
(9.3.11.1) v : She (P, A) 2 Shy(Z5°7) : e

Remark 9.3.12. Notice moreover that v* a; = a; ™.
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Proof. In fact, using the exactness of aj, given any sheaf F' with transfers F' overS, we get a
canonical isomorphism
F= lm A§(X),
A (X)e—F

where the limit is taken in Shy (L@f\og) and runs over the representable ¢-sheaves with transfers over
F. As in the proof of 9.1.2, this allows to define uniquely the structural left adjoints of Sh,(Z75°").
The existence (and uniqueness) of the structural right adjoints then follows formally. The same
remark allows to construct the functor v*. O

9.3.13. Recall from definition 5.1.9 we say that the abelian &-premotivic category Shy(Z25°")
satisfies cohomological t-descent if for any scheme S, and any t-hypercover X — X in #/S, the

induced morphism of complexes in Shy (@f\og)

AG(X)e — AG(X):
is a quasi-isomorphism. The preceding corollary thus gives the following one:

Corollary 9.3.14. Assume t is mildly compatible with transfers.
Then the following conditions are equivalent:
(i) The topology t is compatible with transfers.
(i) The abelian & -premotivic category Shy(Z25°") satisfies cohomological t-descent.
(1ii) The abelian & -premotivic category Shy(P5°") is compatible with t (see 5.1.9).

Proof. The equivalence of (i) and (ii) follows easily from the isomorphism (9.3.9.1). The equiv-
alence of (ii) and (iii) is proposition 5.1.25 applied to the adjunction (9.3.11.1), in view of
9.3.9(iv). O

9.3.15. Recall (2.1.14) that a cd-structure P on . is the data of a family of commutative squares,
called P-distinguished, of the form

Bty
(9.3.15.1) sl @ s
A?X

which is stable by isomorphisms. Further, we will consider the following assumptions on P:
(a) P is complete, regular and bounded in the sense of [Voe0OOb].
(b) Any P-distinguished square as above is made of £-morphisms and k is an immersion.
(¢) Any square as above which is cartesian and such that X = AUY, i and f being the
obvious immersions, is P-distinguished.

Then the topology tp associated with P (see 2.1.14) is #?-admissible and satisfy assumption 9.0(c).
Moreover, according to [Voe00b, 2.9], we obtain the following properties:

(d) A presheaf F' on &/S is a tp-sheaf if and only if F'(@) = 0 and for any P-distinguished
square (9.3.15.1) in £2/S, the sequence

0— F(X) 0 p(yy e P(A) 22 F(B)
is exact.
(e) For any P-distinguished square (9.3.15.1) the sequence of representable pre-sheaves on
2/S

0 — Ag(B) 79 Ag(Y) @ As(A) L Ag(X) — 0
becomes exact on the associated tp-sheaves.
Corollary 9.3.16. Consider a cd-structure P satisfying properties (a) and (b) above and assume
that t = tp is the topology associated with P. Then the following conditions are equivalent:

(i) The topology t is compatible with transfers.
(i) The topology t is mildly compatible with transfers.
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(iti) For any scheme S and any P-distinguished square (9.3.15.1) in P/S, the short sequence
of presheaves with transfers over S

0 — A (B) 278 A (Y) @ AF(A) £ A (X) — 0
becomes exact on the associated t-sheaves on P/S.

Proof. The implication (i) = (ii) is obvious.

The implication (i) = (iii) follows from point (e) above and the following facts: ~+* is right
exact (corollary 9.3.11), v*a; = a{"4* (vemark 9.3.12), k, : A¥(B) — A% (Y) is a monomorphism
of presheaves with transfers (use 8.1.7(2) and the fact & is an immersion from assumption (b)).

Assume (iii). Then we obtain (ii) as a direct consequence of the point (d) above. Thus,
to prove (i), we have only to prove that the abelian Z2-premotivic category Shy(275°") satisfies
cohomological ¢t-descent according to 9.3.14.

Let S be a scheme. Recall that the category D(Sh(2?/S, A) has a canonical DG-structure (see
for example 5.0.17). The cohomological t-descent for Sht(QX?g) can be reformulated by saying
that for any complex K of t-sheaves on &2/S, and any t-hypercover X — X, the canonical map
of D(A-mod)

RHompshyz/s,0) (108 (X)e, K) — RHompshy2/5,0)) (1:AG (X)), K)

is an isomorphism. Recall also there is the injective model structure on C(Sh,(2?/S, A)) for which
every object is cofibrant and with quasi-isomorphisms as weak equivalences (recall are given in
[CD09, 2.1]). Replacing K by a fibrant resolution for the injective model structure, we get for any
simplicial objects X of &2/S™ that:

RHompsn2)s,0) (1A (X)1, K) = Hompsn /5,0 (A5 (X)¢, K).
Thus it is sufficient to prove that the presheaf
E: @/SOP — C(A- IIlOd)7 X — HomD(Sht(Q/S,A))('Y*Agn(X)fm K)

satisfies t-descent in the sense of 3.2.5.
We derive from (iii) that E sends a P-distinguished square to a homotopy cartesian square in
D(A-mod). Thus the assertion follows from the arguments on ¢t-descent from [Voe00Oa, Voe00b]. O

9.4. Examples.

9.4.1. Assume that ¢ is the Nisnevich topology. According to lemma 9.3.3 and corollary 9.3.16,
t is then compatible with transfers. With the notation of corollary 9.3.11, we get the following
definition:

Definition 9.4.2. We denote by
Sh'"(—, A), Sh”"(—, A)

the respective abelian premotivic and generalized abelian premotivic categories defined in corollary
9.3.11 in the respective cases & = .¥m, & = STt

From now on, the objects of Sh*" (S, A) (resp. Sh" (S, A)) are called the sheaves with transfers
over S (resp. generalized sheaves with transfers over S). Let X be a separated S-scheme finite
type. We let A% (X) be the generalized sheaf with transfers represented by X (c¢f. 9.2.4). If X is S-
smooth, we denote by A% (X) the t-sheaf with transfers represented by X. An important property
of sheaves with transfers is that the abelian premotivic category Sh*"(—, A) (resp. Sh*(—,A)) is
compatible with the Nisnevich topology on .#m (resp. S*) according to proposition 9.3.16. Note
moreover that it is compactly geometrically generated.

Remark 9.4.3. Consider an extension of rings Z C A C A’ C Q. Then, the canonical functor
PSh(2%,A) — PSh(Z5)"s, '), F — F @p A

induces a canonical functor

Sh'" (S, A) — Sh'"(S, A").
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This is evidently compatible with f*, py, and tensor product. Thus we have defined a morphism
of abelian premotivic categories:

(9.4.3.1) Sh'(—,A) = Sh'"(—, A').

9.4.4. We also have obtain an adjunction (resp. generalized adjunction) of premotivic abelian
categories

v* : Sh(Fm, A) = Sh'" (=, A) : 7.
7% : Sh(STH,A) = Sh" (-, A) : 7.
Note that in each case v, is conservative and exact according to 9.3.9(iv).

9.4.5. Let S be a scheme. Consider the inclusion functor ¢ : /m§ — Yffécor. It induces a
functor

¢* :Sh'(S,A) — Sh"(S,A),F > Fogp

which is obviously exact and commute to arbitrary direct sums. In particular, it commutes with
arbitrary colimits.

Lemma 9.4.6. With the notations above, the functor ¢* admits a left adjoint ¢ such that for
any smooth S-scheme X, p1(AZ (X)) = AZ(X). The functor ¢y is fully faithful.

In other words, we have defined an enlargement of premotivic abelian categories (cf. definition
1.4.8)

(9.4.6.1) @1 : Sh" (=, A) — Sh'"(—, A) : p*.

Proof. Let F be a sheaf with transfers. Let {X/F} be the category of representable sheaf AZ (X))
over I for a smooth S-scheme X. We put

p(F) = lim AZ(X).
{X/F}

The adjunction property of ¢ is immediate from the Yoneda lemma. We prove that for any sheaf
with transfers F', the unit adjunction morphism F — ¢*p(F) is an isomorphism. As already
remarked, ¢* commutes with colimits so that we are restricted to the case where F' = AY(X)
which follows by definition. O

9.4.7. Assume now that ¢ = cdh is the cdh-topology, and & = S'* is the class of separated
morphisms of finite type. In this case, we get the following result according to [SV00b, 4.3.3]
combined with [SVO00b, 4.2.9]:

Proposition 9.4.8. The admissible topology cdh on STt if mildly compatible with transfers.

As a corollary, we a generalized premotivic abelian category whose fiber over a scheme S
is the category Sh!T, (S, A) of cdh-sheaves with transfers on S/!. Moreover, the restriction of
aean to Sh(S, A) induces a morphism of generalized premotivic categories; we get the following
commutative diagram of such morphisms:

Sh(—,A) —"> Sh_g,(—, A)

o ‘/ l%*dh

Sh'"(—, A) —> b, (=, A)

9.5. Comparison results.
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9.5.a. Representable qfth-sheaves.

9.5.1. Let us denote by Shqm (S, A) the category of gth-sheaves of A-modules over Ygt. Remark
that for an S-scheme X, the A-presheaf represented by X is not a sheaf for the gfh-topology. We
denote the associated sheaf by Agfh(X ). We let aqm be the associated gfh-sheaf functor. Recall
that for any S-scheme X, the graph functor (9.4.4) induces a morphism of sheaves

As(X) 5 AZ(X).
We recall the following theorem of Suslin and Voevodsky (see [SV00b, 4.2.12]):

Theorem 9.5.2. Let S be a scheme such that char(S) C A*. Then, for any S-scheme X, the
application of aqm to vx/s gives an isomorphism in Shqm (S, A):

afh

AFH(X) =AY (X).

9.5.3. Using the previous theorem, we associate to any qfh-sheaf F' € Shys, (S, A) a presheaf with
transfers
p(F) : X — Homgy, ,(s.0)(AF (X), F).

We obviously get v*p(F) = F as a presheaf over Yg " so that p(F) is a sheaf with transfers and
we have defined a functor
p : Shym (S, A) — Sh"(S, A).

For any S-scheme X, p(A%"(X)) = A% (X) according to the previous proposition.

Corollary 9.5.4. Assume char(S) C A*. Let f: X' — X be an morphism of S-schemes.
If f is a universal homeomorphism, f : A% (X') — AY(X) is an isomorphism in Sh' (S, A).

Proof. Indeed, according to [Voe96, 3.2.5], A%fh(X') — Agﬂl(X) is an isomorphism in Shqem (S, A)
and we conclude by applying the functor p. O

9.5.b. gfh-sheaves and transfers.

Proposition 9.5.5. Assume char(S) C A*. Any qfh-sheaf of A-modules over the category of
S-schemes of finite type is naturally endowed with a unique structure of a sheaf with transfers,
and any morphism of such qth-sheaves is a morphism of sheaves with transfers.

In particular, the gfh-sheafification functor defines a left exact functor left adjoint to the forgetful
functor p : Shym (S, A) — Sh*" (S, A) introduced in 9.5.3.

Proof. Tt follows from theorem 9.5.2 that the category of A-linear finite correspondences is canon-
ically equivalent to the full subcategory of the category of gfh-sheaves of A-modules spanned by
the objects of shape Agﬂ“ (X) for X separated of finite type over S. The first assertion is thus an
immediate consequence of theorem 9.5.2 and of the (additive) Yoneda lemma. The fact that the
gfh-sheafification functor defines a left adjoint to the restriction functor p is then obvious, while
its left exactness is a consequence of the facts that it is left exact (at the level of sheaves without
transfers) and that forgetting transfers defines a conservative and exact functor from the category
of Nisnevich sheaves with transfers to the category of Nisnevich sheaves. O

Recall the following theorem:

Theorem 9.5.6. Let F' be an étale rational sheaf on fgt. Then for any S-scheme X, and any
integer i, the canonical map ' _

Hll\IiS(Xv F) - Hét(Xa F)
is an isomorphism.

Proof. Using the compatibility of étale cohomology with projective limits of schemes, we are
reduced to prove that HY (X,F) = 0 whenever X is henselian local and i > 0. Let k be the
residue field of X, G its absolute Galois group and Fy the restriction of F' to Spec (k). Then Fy is
a G-module and according to [AGV73, 8.6], H, (X, F) = H'(G, Fy). As G is profinite, this group
must be torsion so that it vanishes by assumption. O
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Remark 9.5.7. The preceding theorem also follows formally from theorem 3.3.22.

Proposition 9.5.8. Let F be a rational qth-sheaf on Ygt. Then for any geometrically unibranch
S-scheme of finite type X, and any integer i, the canonical map

is an isomorphism.

Proof. According to 9.5.6, Hi (X, F) = H} (X,F). Let p: X’ — X be the normalization of
X. As X is an excellent geometrically unibranch scheme, p is a finite universal homeomorphism.
It follows from [AGV73, VII, 1.1] that H (X, F) = H} (X', F) and from [Voe96, 3.2.5] that
Héfh(X, F)= Héfh(X/7 F). Thus we can assume that X is normal, and the result is now exactly
[Voe96, 3.4.1]. O

Corollary 9.5.9. Let S be an excellent scheme.
(1) Let X be a geometrically unibranch S-scheme of finite type. For any point x of X, the local
henselian scheme X! is a point for the category of sheaves Shem (S, Q) (i.e. evaluating at
X" defines an ezact functor).
(2) The family of points X! of the previous type is a conservative family for Shym (S, Q).

Proof. The first point follows from the previous proposition. For any excellent scheme X, the
normalization morphism X’ — X is a gfh-covering. Thus the category Shqm (S, Q) is equivalent
to the category of qfh-sheaves on the site made of geometrically unibranch S-schemes of finite
type. This implies the second assertion. O

9.5.10. Let S be a geometrically unibranch scheme. Considering the notations of 9.5.3 and 9.4.5,
we introduce the composite functor:

47 Shyn(S, Q) £ $h(5,Q) £ Sh7(S, Q).
Proposition 9.5.11. Considering the above notation, the following conditions are true :
(i) For any S-scheme X of finite type, 1* (ngh(X)) = QI (X).
(i) The functor ¥* admits a left adjoint 1.
(iii) For any smooth S-scheme X, 1 (Q% (X)) = ngh(X).

(iv) The functor ¢* is exact and preserves colimits.
(v) The functor v is fully faithful.

According to property (iii), the functor ¢y commutes with pullbacks. In other words, we have
defined an enlargement of abelian premotivic categories (c¢f. definition 1.4.8)

(9.5.11.1) G S (—, Q) 2 Shn(—, Q) : 4

Proof. Point (i) follows from the fact Q% (X) = Q" (X). Recall the enlargement of (9.4.6.1):
pr:Sh(—,Q) — Sh" (-, Q) : ™.

We define the functor v as the composite :

Sh'™(S,Q) 2+ Sh™" (8, Q) L Sh(S, Q) 2™ Shym (S, Q).

According to the properties of the functors in this composite, 1 is exact and preserves colimits.
Moreover, for any smooth S-scheme X, as Q% (X) is a gfh-sheaf over st t according to 9.2.4,
Y (QY (X)) = ngh (X)) which proves (iii). Property (ii) follows from (iii) and the fact ¢, commutes
with colimits, while the sheaves Q¥ (X) for X/S smooth generate Sh' (S, Q).

For any smooth S-scheme X, T'(X;¢*(F)) = F(X). Thus the exactness of ¢* follows from
corollary 9.5.9. As ¢* obviously preserves direct sums, we get (iv).

To check that for any sheaf with transfers F' the unit map F — ¢*¢(F) is an isomorphism, we
thus are reduced to the case where F = Q¥ (X) for a smooth S-scheme X which follows from (i)
and (iii). O
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10. NISNEVICH MOTIVIC COMPLEXES

10.0. In this section, .# is an adequate category of ¥-schemes (¢f. 2.0). Any scheme in .7 is
assumed to be of finite dimension.
We fix a ring of coefficients A C Q.

10.1. Definition. We can apply the general definition of section 5 to the abelian premotivic
category Sh"(—, A) constructed in 9.4.2:

Definition 10.1.1. We define the (A-linear) category of (Nisnevich) motivic complexes (resp.
stable motivic complexes) following definition 5.3.22 (resp. definition 5.2.16) as

DMy = Da: (Sh*(—,A))
resp. DM = Dzﬁi (Sh"(—,A)) .
Recall we have an adjunction of triangulated premotivic categories
%> : DM = DM, : 0.
Usually, we denote by A% (X) the effective motive of a smooth S-scheme X, as an object in

DM (S) and we put Mg(X) = A% (X) which is the motive of X. Similarly, we also denote
by 1g the unit of the monoidal category DMy (.5).

Remark 10.1.2. Consider an extension of rings Z C A € A’ C Q. Then we deduce from the
adjunction (9.4.3.1) of abelian premotivic categories an adjunction:

(10.1.2.1) DM, = DM,,.

10.1.3. Let S be a scheme. Consider the triangulated subcategory g of Kb(me\fg) generated
by complexes of one the following forms :

(1) for any distinguished square W £y of smooth S-schemes,

W
U—>X

W] 27 )@ (v

2) for any smooth S-scheme X, p: AL — X the canonical projection.
y p X proj

[A%] = [X].

Definition 10.1.4. We define the category DME{Z\(S ) of constructible effective motives over S as
the pseudo-abelian envelope of the triangulated category

K’ (Smis)/ Ts.
We define the category DM, A(S) of constructible motives over S as the triangulated category
obtained from DMfﬁc\ (S) by formally inverting the Tate complex

[Ps] — [S].

Remark 10.1.5. If S = Spec (k) is the spectrum of a field, then, essentially by definition, the cate-
gories DM,.(S) and DM (S) are respectively the categories DM, (k) and DM;JZ (k) introduced
by Voevodsky in [VSF00].

We can use proposition 5.2.36 and corollary 5.3.31 to obtain the following commutative diagram

DM (8) —DMgZ ()

v {=
DM, 4 (S) —= DM, (S)

where the horizontal maps are fully faithful, essentially surjective onto compact objects of the aim.
Moreover, the triangulated categories DMZﬁ (S) and DM4(S) are compactly generated.
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Remark 10.1.6. Recall that in fact, DM, A (resp. DMEJ?\) are Sm-fibred monoidal categories over
<, and that the horizontal maps in the preceding commutative diagram induce morphisms of
Sm-fibred monoidal categories.

10.1.7. To get a generalized category, we simply apply the definitions of section 5 to the generalized
abelian premotivic category Sh"(—, A) constructed in 9.4.2:

Definition 10.1.8. We define the (A-linear) category of generalized motivic complexes (resp.
stable motivic complexes) following definition 5.3.22 (resp. definition 5.2.16) as

DM = DY (sh™(—,A))
resp. DM, = Da: (&"(—7A)) .

Given any separated S-scheme X of finite type, we will simply denote by Mg (X) the generalized
premotive represented by X in DM, (.5).
According to 6.1.9, we obtain an enlargement of premotivic triangulated categories:

10.1.8.1 1 : DMy &= DM, : ©*.
¥ AP

Let S be a scheme, and X a smooth separated S-scheme of finite type. Recall that according to
loc. cit. the induced functor ¢y : DMA(S) — DM, (S) is fully faithful. Moreover, ¢1(Mg(X)) =
Ms(X). Recall also that ¢*(Ms(X)) = Ms(X).

Remark 10.1.9. The functor ¢* is far from being conservative. The following example was sug-
gested by V.Vologodsky: let Z be a nowhere dense closed subscheme of S. Then p*(Ms(Z)) = 0.

In fact, one can see that DMy (S) is a localization of the category DM, (S) with respect to the
objects .4 such that p*(.#) = 0.

Note also that this context also holds in the effective setting. More precisely, we have the
following essentially commutative diagram

DMST 27> DM,
(10.1.9.1) | o
Mf\ﬁ K) DM,

where the vertical maps are enlargement of triangulated premotivic categories induced by the
enlargement (9.4.6.1), and the horizontal maps are the natural morphisms of premotivic (resp.
generalized premotivic) triangulated categories.

10.2. Nisnevich motivic cohomology.

10.2.a. Definition and functoriality.

Definition 10.2.1. Let S be a scheme and (n,m) € Z? a couple of integer. We define the
Nisnevich motivic cohomology of S in degree n € Z and twist m € Z with coefficients in A as the
A-module

H %o (S, A) = Hompy, (s) (s, Ls(m)[n]).

Assuming m > 0, we define the unstable motivic cohomology of S in degree n € Z and twist
m € Z with coefficients in A as the A-module

H;wjf\ns,eff(& A) = HomDM;ﬁ(S) (Ag”", A (m) [n])
Motivic cohomology (resp. unstable motivic cohomology) is obviously contravariant with re-
spect to morphisms of schemes. The monoidal structure allows to define easily a cup-product

structure for this cohomology. According to proposition 5.3.30, we get

Hxﬁns(& A) = lim HOmDMf\ﬁ‘(S) (AZ(T),A‘E{(m + r)[n]).
r>>0
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Remark 10.2.2. Consider an extension of rings Z C A C A’ € Q. Then using the left adjoint of
the premotivic adjunction (10.1.2.1), we get a canonical morphism

HX;[’E\HS(S’ A) - H.’:\L/)lirll\fis(s’ Al)
It is obviously compatible with pullbacks and the product structure.

10.2.3. Consider a separated morphism p : X — S of finite type. Recall from the S7*-fibred
structure of DM, that Mg(X) = Lpyp*(1s). Using the adjunction property of the pair (Lpy, p*),
we easily get:
Hy (X, A) = Hompy, (x) (1x, Ix (m)[n]) = Hompy , (x) (1x, 1x (m)[n])

= HomDMA(S) (Ms(X), ]ls(m)[n])

In particular, given any finite S-correspondence o : Xe— Y between separated S-schemes of finite
type, we obtain a pullback

(10.2.3.1)

o H;\L/ﬁ\]is(Y, A) — Hj\%'f\]is(X, A)

which is, among other properties, functorial with respect to composition of finite S-correspondences
and extends the natural contravariant functoriality of motivic cohomology.
In particular, given any finite A-universal morphism f :Y — X, we obtain a pushout

e Hﬁ/ﬁ‘\“s(Y, A) — Hﬁ/ﬁ\]is(X, A)
by considering the transpose of the graph of f.

Proposition 10.2.4. Let f : Y — X be a finite A-universal morphism of scheme. Let d > 0 be
its degree (cf. 8.1.10). Then for any element x € H;L/’lt'f\“s(X, A), fof*(z) =d.x.

This is a simple application of proposition 8.1.11. We left to the reader the exercice to state
projection and base change formulas for this pushout.

Remark 10.2.5. Recall that, in the case X is regular, any finite morphism f : Y — X such that
any irreducible component of Y dominates an irreducible component of Y is A-universal.

Another important application of the generalized Voevodsky premotivic category is obtained
using the corollary 9.5.4:

Proposition 10.2.6. Let f : X' — X be a separated universal homeomorphism of finite type.
Assume that char(X) C A*. Then the pullback functor

H;\l;l%is(X7 A) - H;\l;ITPIL\TiS(XC A)
s an tsomorphism.
Remark 10.2.7. The preceding considerations hold similarly for the unstable motivic cohomology.

10.2.b. Motivic cohomology in weight 0 and 1. Let S be a scheme and X a smooth S-scheme. For
any subscheme Y of X, we denote by Z% (X/Y) the cokernel of the canonical morphism of sheaf
with transfers Z%(Y) — Z%(X). As this morphism is a monomorphism, we obtain a canonical
distinguished triangle in DM (S)

Zg(Y) = Z§ (X) — Z§ (X/Y) — Zg (X)[1].

10.2.8. We will consider the Tate complex of sheaves with transfers over a scheme .S to be defined
by the formula

Zg (V[1] = 25 (Gm/{1})-
In the category of complexes, we thus obtain the canonical decomposition

25 (Gm) = Z§ ® Zg (1)[1].
For any complex C' of sheaves with transfers, we will consider the complex C*(C) introduced in
5.2.30 in the abstract case.
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Proposition 10.2.9. Suppose S is a normal scheme.

Then there is a canonical isomorphism in DM%ﬁ(S)

G, = Zg (D[1].
Remark 10.2.10. Using lemma 5.2.33, this implies that for any smooth scheme X over S, we have
isomorphisms
Nis(X, Gin) = Hompyger () (2§ (X), Z§ i — 1]) = Hompyer (5 (25 (X), ZE (1)[1])
Proof. Let U be an open subscheme of A} and X be a smooth S-scheme. Note that X is normal
according to [GD67, 18.10.7]. Consider a cycle a of X xg U which is finite equidimensional over
X. Then it is a divisor in X xg U and according to [GD67, 21.14.3], it is flat over X as X is
normal. In particular, it is universal. As a consequence, we obtain the equality
HT(X;C*Z%(U)) = H*™M(X x5 U/X)

where the left hand side is the singular cohomology groups of Suslin (¢f. [SV00D]).
Suppose X and U are affine and let Z = P§ — U. According to a theorem of Suslin and
Voevodsky (cf. [SV00D]),
sin Pic(X x5 PL, X x5 Z) ifi=0
g _ 99
HZP(X x5 UfX) = { 0 otherwise.

This implies that C*(Z%[U]) is A'-local, so that using lemma 5.2.33, we get
H79(X x5 U/X) =~ Hompype (5 (25 (X), C*(ZE (U))) = Hompyper (s (2% (X), Z§ (U))
By definition, we have a distinguished triangle in DM;ﬁ (S)
Z5(Gp) — Z§ (Ag) — Z§(1)[2] — Z§ (G [1].
Thus when X is affine, we obtain
» . G (X) ifi=0
1+1 Watls A%s _ m
HTT(X; 0725 (1) = { 0 otherwise
using that the evident map Pic(X xg P§, Xo U Xoo) — Pic(X xg P4, Xp) is surjective and has
for kernel the group G, (Xo). O
Proposition 10.2.11. Let S be a scheme and n € Z an integer.
Then
(1) )
tr tr _ zZm Zf n=20
Hompye (5 (255 Zig [n]) = { 0 otherwise
(2) If S is normal,
O0s(8)* ifn=1
HomDMe/y(S)(ZtST7 Z7(1)[n]) =4 Pic(S) ifn=2
0 otherwise

Proof. The second case is a direct corollary of the previous proposition and the remark which
follows it. For the first case, according to proposition 9.2.5, the sheaf Z% is Nisnevich local and
Al-local as a complex of sheaves. It is obviously acyclic for the Nisnevich topology. Thus, we
conclude using again 9.2.5 in the case n = 0. O

The following is a (very) weak cancellation result in DM (S) over a normal base :

Proposition 10.2.12. Let S be a normal scheme. Then

R Hom(24 (1), 24 (1)) = Z1.

Moreover, if m =0 or m =1, for any integer n > m,

RHom(ZY% (n),Z% (m)) = 0.
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Proof. We consider the first assertion. Any smooth S-scheme is normal. Hence it is sufficient to
prove that for any connected normal scheme S, for any integer n € Z,

Z ifn=0
) tr tr —
Hompyes s, (25 (1), 25 ) = { & 5000
Using the exact triangle
(10.2.12.1) 717 (Gp) — ZH(AY) — Z(1)[2] 5

and the second case of the previous lemma, we obtain the following long exact sequence
. — Hom(Z (A"), Z4 (1)[n]) — Hom(Z} (Gom), 25 (1)[n])
— Hom (24 (1), Z (1)[n — 1]) — Hom(Z} (A"), Z5 ()fn + 1)) — - --
Then we conclude using the previous lemma and the fact
Pic(A' x S) = Pic(G,, x S)

whenever S is normal.
For the last assertion, we are reduced to prove that if S is a normal scheme, for any integers
n > 0 and 4,

HomDMeﬂ(S)(Zg(n>7 Zg‘ [i]) = 0.
This is obviously implied by the case n = 1.

Consider the distinguished triangle (10.2.12.1) again. Then the long exact sequence attached
to the cohomological functor Hom), » ( S)(—, ZY) and applied to this triangle together with the
z

first case of the previous lemma allows us to conclude. O

10.3. Orientation and purity. For any scheme S, we let PZ be the ind-scheme
S—>P}9—>---—>P§—>Pg+1—>
made of the obvious closed immersions. This ind-scheme has a comultiplication given by the Segre
embeddings
PP xs Py — P
Define Z5 (P>) = h_r)nZgT(P") Applying lemma 10.2.11 in the case S = Z, we obtain
HomDMeﬁ(Z)(ZtT(POO)7 Z"(1)[2]) = Pic(P),

which is a free ring of power series in one variable. Considering the canonical dual invertible sheaf
on P*° we obtain a canonical generator of the previous group which is a morphism of ind-objects
of DM (Z) denoted by

Z'"(P>) — Z'"(1)[2].
For any scheme S, considering the canonical projection f : S — Spec(Z), we obtain by pullback
along f a morphism of DM (S)

Z5(Py) — Z5(1)[2].
Applying the left adjoint of (10.1.2.1) in the case of the extension Z C A, we deduce a canonical
morphism

cs A (PE) — A (1)[2].

Consider G, as a sheaf of groups over Smg. Following [MV99, part 4], we introduce its clas-
sifying space BG,, as a simplicial sheaf over Smg. From proposition 1.16 of loc. cit., we
get Hom e (y(S4, BGy,) = Pic(S). Moreover, in J(S), we obtain a canonical isomorphism
BG,, = PZ of pointed simplicial sheaf (c¢f. loc. cit., prop. 3.7). Thus finally, we obtain a
canonical map of pointed sets

Pic(S) = Hom sz (5)(S+, BGp,) — Hom s, () (S+, P™)

- HomDMj-ﬁ'(s) (AG,AG (P> /%)) — HomDMj-ﬁ'(s) (AS, AS (P™)).
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Definition 10.3.1. Consider the above notations. We define the first motivic Chern class as the
following composite morphism

Pic(5) — Homyp,yer g (AS, A (PY)) e, HomDMZﬁ(S)(AZ,Ag(I)[Q])
— Hompag, () (Ls, Ls(1)[2]) = Hy i (S, A)
10.3.2. The first Chern class is evidently compatible with pullback. By definition, the morphism
¢1 : Pic(S) — HomDMZﬁ(S)(AZ, AZ(1)[2])

is the morphism of lemma 10.2.11 when S is normal. In particular, it is additive in this case. One
deduces (see below) that it is additive for any scheme S.

The triangulated category DMy (S) thus satisfies all the axioms of [Dég08, 2.1] (see also 2.3.1
of loc. cit. in the regular case). In particular, we derive from the main results of loc. cit. the
following facts:

(1) Let p: P — S be a projective bundle of rank n. Let ¢: 1g — 1g(1)[2] be the first Chern
class of the canonical line bundle on P. Then the map

Ms(P) Z225, gn 1(i)[2i)

is an isomorphism. This gives the projective bundle theorem in motivic cohomology for
any base scheme.

(2) Let i : Z — X be a closed immersion between smooth separated S-schemes of finite type.
Assume ¢ has pure codimension ¢ and let j be the complementary open immersion. Then
there is a canonical purity isomorphism:

pxz: Ms(X/X = Z) — Ms(Z)(c)[2d].

This defines in particular the Gysin triangle

Ms(X = 2) 25 Mg(X) £ Ms(Z)(e)[2¢] 22 Ms(X = 2)[1].
(3) Let f:Y — X be a projective morphism between smooth separated S-schemes of finite
type. Assume f has pure relative dimension n. Then there is a Gysin morphism
[T Ms(X) — Ms(Y)(n)[2n]

functorial in f. We refer the reader to loc. cit for various formulas involving the Gysin
morphism (projection formula, excess intersection,...)

(4) For any smooth projective S-scheme X, the premotive Mg(X) admits a strong dual. If X
has pure relative dimension d over S, the strong dual of Mg(X) is Mg(X)(—d)[—2d].

Remark 10.3.3. The last property implies in particular that for any smooth projective S-schemes
X and Y, if Y has pure relative dimension d over S,

Hompu, (s)(Ms(X), Ms(Y)) = Hag % (X x5 Y, A).

From this, one can deduce that the analog of the category of pure motives relative to the base
2d,d

S build with the cohomology H M)Nis(—, A) instead of the Chow groups, admits a full embedding
into the category DM, A (S), induced by the functor X/S — Mg(X).
10.4. Functoriality.

10.4.1. Note that according to definition 9.4.2 and paragraph 9.4.4, we have an adjunction of
abelian premotivic categories

7* 1 Sh(—,A) 2 Sh' (=, A) : 7.,
which induces, by 5.3.28, and adjunction of triangulated premotivic categories
L’}/* : DAl,A = DMA : R’)/* .

The abelian premotivic category Sh'"(—, A) satisfies the assumptions of 6.0. In particular, we
deduce from corollaries 6.3.12 and 6.3.15 the following theorem:
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Theorem 10.4.2. The premotivic triangulated category DMy satisfies the support property.
Moreover, for any scheme S and any closed immersion i : Z — X between smooth S-schemes,
DMy satisfies the localization with respect to i, (Loc;).

Thus we can apply corollary 2.2.12 to DM, ; recall in particular that for any separated morphism
f:Y — X of finite type, we get an adjunction

fi : DMA(Y) = DMy (X) : f'

such that fi = f. when f is proper and f' = f* when f is an open immersion. For further
properties of these adjoint functors, we refer the reader to loc. cit.

10.4.3. The gfh-sheafification functor (9.5.5) induces by 5.3.28 a premotivic adjunction
Q* : MQ = MqﬂhQ ca .

Theorem 10.4.4. If S is a geometrically unibranch excellent noetherian scheme of finite dimen-
sion then the qfh-sheafification functor induces a fully faithful functor

Proof. Note that DMfQﬁ(S) and DGA}Z(Shqfh (S,Q)) are compactly generated; see example 5.1.28
and proposition 5.2.36. Hence this corollary follows from propositions 9.5.11 and 6.1.8. O

Part 4. Beilinson motives and algebraic K-theory

11.0. In all this part, . is assumed to be the category of noetherian schemes of finite dimension,
except in the sections 14 and 16.

11. STABLE HOMOTOPY THEORY OF SCHEMES

11.1. Ring spectra. Consider a base scheme S.

Recall that a ring spectrum F over S is a monoid object in the monoidal category SH(S). We say
that F is commutative if it is commutative as a monoid in the symmetric monoidal category SH(.S).
In what follows, we will assume that all our ring spectra are commutative without mentioning it.
The premotivic category is Z2-graded where the first index refers to the simplicial sphere and
the second one to the Tate twist. According to our general convention, a cohomology theory
represented in SH is Z2-graded accordingly: given such a ring spectrum E, for any smooth S-
scheme X, and any integer (i,n) € Z2, we get a bigraded ring:

E™"(X) = Homgys) (5 X4, E(i)[n]).

When X is a pointed smooth S-scheme, it defines a pointed sheaf of sets still denoted by X and
we denote by E™(X) for the corresponding cohomology ring.

The coefficient ring associated with F is the cohomology of the base E** := E**(S). The ring
E**(X) (resp. E**(X)) is in fact an E**-algebra.

11.1.1. We say F is a strict ring spectrum if there exists a monoid in the category of symmetric
Tate spectra E' and an isomorphism of ring spectra £ ~ E’ in SH(S). In this case, a module
M over the monoid F in the monoidal category SH(S) will be said to be strict if there exists an
E’-module M’ in the category of symmetric Tate spectra, as well as an isomorphism of F-modules
M ~ M’ in SH(S).

11.2. Orientation.
11.2.1. Consider the infinite tower
P}gﬁpg_w.._)PTSl_)...

of schemes pointed by the infinity. We denote by P2 the limit of this tower as a pointed Nisnevich
sheaf of sets and by ¢ : P — P the induced inclusion. Recall the following definition, classically
translated from topology:
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Definition 11.2.2. Let F be a ring spectrum over S. An orientation of E is a cohomology class
¢ in E>(P¥) such that +*(c) is sent to the unit of the coefficient ring of E by the canonical
isomorphism E>!(PY) = E%0.

We then say that (E,¢) is an oriented ring spectrum. We shall say also that E is orientable if
there exists an orientation c.

According to [MV99, 1.16 and 3.7], we get a canonical map for any smooth S-scheme X
Pic(X) = H'(X,G,,) — Hom y, (g)(X4,P>) — Homgyy(g) (X7 X4, XP>)

(the first map is an isomorphism whenever S is regular (or even geometrically unibranch)). Given
this map, an orientation ¢ of a ring spectrum E defines a map of sets

c1,x ¢ Pie(X) — E*1(X)
which is natural in X (and from its construction in [MV99], one can check that ¢ = ¢1 pe (O(1))).

Usually, we put ¢; = ¢; x.

Ezxample 11.2.3. The original example of an oriented ring spectrum is the algebraic cobordism
spectrum MGL introduced by Voevodsky (cf. [Voe98]).

Remark 11.2.4. When FE is a strict ring spectrum, the category F-mod satisfies the axioms of
[Dég08, 2.1] (see example 2.12 of loc.cit.).
Recall the following result, which first appeared in [Vez01]:

Proposition 11.2.5 (Morel). Let (E,c) be an oriented ring spectrum.
Then:

E7(PT) = E7([c]]
E™(PY x PS) = E™[[z, 9]
where x (resp. y) is the pullback of ¢ along the first (resp. second) projection.

Remark 11.2.6. When FE is a strict ring spectrum, this is [Dég08, 3.2] according to remark 11.2.4.
The proof follows an argument of Morel ([Dég08, lemma 3.3]) and the arguments of op.cit., p.
634, can be easily used to obtain the proposition arguing directly for the cohomology functor
X — E**(X).
11.2.7. Recall the Segre embeddings

L x PY — pytmtnm
define a map

c: PP xPT — PZ.

It gives the structure of an H-group to Pg in the homotopy category #(S). Consider the
hypothesis of the previous proposition. Then the pullack along ¢ in E-cohomology induces a map
E*[[d] = E* [z, y]]
and following Quillen, we check that the formal power series o*(¢) defines a formal group law over

the ring E**.
Definition 11.2.8. Let (F,c) be an oriented ring spectrum and consider the previous notation.

The formal group law Fg(z,y) := o*(c) will be called the formal group law associated to (E, ¢).

Recall the formal group law has the form:
Felz,y)=z+y+ Y aj.a'y
i+j>0
with Q5 = Qj; in E~%—2h—1—J,
The coefficients a;; describe the failure of additivity of the first Chern class ¢;. Indeed, assuming
the previous definition, we get the following result:

Proposition 11.2.9. Let X be a smooth S-scheme.
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(1) For any line bundle L/ X, the class c¢1(L) is nilpotent in E**(X).
(2) Suppose X admits an ample line bundle. For any line bundles L, L' over X,

¢1(Ly ® Ly) = Fp(ei(L),e1 (L)) € E*'(X).

We refer to [Dég08, 3.8] in the case where E is strict; the proof is the same in the general case.
Recall the following theorem of Vezzosi (c¢f. [Vez01, 4.3]):

Theorem 11.2.10 (Vezzosi). Let (E,c) be an oriented spectra over S, with formal group law Fg.
Then there exists a bijection between the following sets:

(i) Orientation classes ¢’ of E.
(i1) Morphisms of ring spectra MGL — E in SH(S).
(iti) Couples (F, ) where F is a formal group law over E** and ¢ is a power series over E**
which defines an isomorphism of formal group law: ¢ is invertible as a power series and

Fr(p(x),o(y) = F(z,y).

11.3. Rational category. In what follows, we shall use frequently the equivalence of premotivic
categories (see 5.3.37)

SHq = Dai g,

and shall identify freely any rational spectrum over a scheme S with an object of D1 (S, A).

12. ALGEBRAIC K-THEORY

12.1. The K-theory spectrum. We consider the spectrum KGLg which represents homotopy
invariant K-theory in SH(S) according to Voevodsky (see [Voe98, 6.2], [Rio09, 5.2] and [PPRO7]).
It is characterized by the following properties:

(K1) For any morphism of schemes f : T'— S, there is an isomorphism f*KGLg ~ KGL7 in
SH(T).
(K2) For any regular scheme S and any integer n, there exist an isomorphism

HomSH(S) (]ls[n], KGLs) i Kn(S)

(where the right hand side is Quillen’s algebraic K-theory) such that, for any morphism
f:T — S of regular schemes, the following diagram is commutative:

Hom (1g[n], KGLs) — Hom (f*1g[n], f*KGLs) = Hom (17[n], KGLr)

|

- Ko (T)

Kn(S)

(where the lower horizontal map is the pullback in Quillen algebraic K-theory along the
morphism f and the upper horizontal map is obtained by using the functor f* : SH(S) —
SH(T') and the identification (K1)).

(K3) For any scheme S, there exists a unique structure of a commutative monoid on KGLg
which is compatible with base change — using the identification (K1) — and induces the
canonical ring structure on Ky (.5).

Thus, according to (K1) and (K3), the collection of the ring spectrum KGLg for any scheme S
form an absolute ring spectrum. As usual, when no confusion can arise, we will not indicate the
base in the notation KGL.

Note that (K1) implies formally that the isomorphism of (K2) can be extended for any smooth
S-scheme X (with S regular), giving a natural isomorphism:

Homgp sy (XX [n], KGL) — K, (X).
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12.2. Periodicity.
12.2.1. Recall from the construction the following property of the spectrum KGL:

(K4) the spectrum KGL is a Pl-periodic spectrum in the sense that there exists a canonical
isomorphism
KGL = RHom (S*Pg, KGL) = KGL(-1)[-2].
As usual, P} is pointed by the infinite point.

This isomorphism is characterized uniquely by the fact that its adjoint isomorphism (obtained by
tensoring with 1¢(1)[2]) is equal to the composite

(12.2.1.1) Yo : KGL(1)[2] 2% KGL A KGL 2 KGL.

where u : °P! — KGL corresponds to the class [O(1)] — 1 in Ko(P') through the isomorphism
(K2) and p is the structural map of monoid from (K3).

Using the isomorphism of (K4), the property (K1) can be extended as follows: for any smooth
S-scheme X and any integers (i,n) € Z2, there is a canonical isomorphism:

(12.2.1.2) KGL™ (X)) = Kyi_n(X).

Remark 12.2.2. The element w is invertible in the ring KGL**(S). Its inverse is the Bott element
B € KGL**(S). If the ring spectrum KGL is oriented (cf. 11.2.2) by the class

B.(0(1)] - 1) € KGL*' (P%),
the corresponding formal group law is the multiplicative formal group law:
F(z,y) =z +y+ 8 tay.
12.3. Modules over algebraic K-theory.

Theorem 12.3.1 (Rondigs, Spitzweck, Ostveer). The spectrum KGL can be represented canoni-
cally by a cartesian monoid KGL', as well as by a homotopy cartesian commutative monoid KGLP
in the fibred model category of symmetric P'-spectra, in such way that there exists a morphism of
monoids KGL' — KGLP which is a termwise stable Al-equivalence.

Proof. For any noetherian scheme of finite dimension S, one has a strict commutative ring spec-
trum KGLg which is canonically isomorphic to KGLg in SH(.S) as ring spectra; see [RS?09]. One
can check that the objects KGLg do form a commutative monoid over the diagram of all noe-
therian schemes of finite dimension (i.e. a commutative monoid in the category of sections of the
fibred category of P!-spectra over the category of noetherian schemes of finite dimension), either
by hand, by following the explicit construction of loc. cit., either by modifying its construction
very slightly as follows: one can perform mutatis mutandis the construction of loc. cit. in the P1-
stabilization of the Al-localization of the model category of Nisnevich simplicial sheaves over (any
essentially small adequate subcategory of) the category all noetherian schemes of finite dimension,
and get an object K GL”, whose restriction to each of the categories Sm/S is the object K GLg.
From this point of view, we clearly have canonical maps f *(KGL’Z) — K GL? for any morphism
of schemes f: T — S. The object K GLP is homotopy cartesian, as the composed map

Lf*(KGLs) ~ Lf*(KGLY) — f*(KGLY) — KGL? ~ KGLy
is an isomorphism in SH(T'). Consider now a cofibrant resolution

/ B
KGLSPEC(Z) — KGLSpeC(Z)

in the model category of monoids of the category of symmetric P!-spectra over Spec (Z); see
theorem 4.1.3. Then, we define, for each noetherian scheme of finite dimension S, the P'-spectrum
KGL as the pullback of KGL/SpeC(Z) along the map f : S — Spec(Z). As the functor f* is a left
Quillen functor, the object KGLY is cofibrant (both as a monoid and as a P-spectrum), so that
we get, by construction, a termwise cofibrant cartesian strict P'-ring spectrum KGL', as well as
a morphism KGL — K GLP which is a termwise stable Al-equivalence. O
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12.3.2. For each noetherian scheme of finite dimension S, one can consider the model categories
of modules over KGLy and K GLg respectively; see 4.2.2. The change of scalars functor along the
stable Al-equivalence KGLy — K GLg defines a left Quillen equivalence, whence an equivalence
of homotopy categories:

Ho(KGLy-mod) ~ Ho( KGL3- mod).
We put
Ho(KGL-mod)(S) = Ho(KGL3-mod)

and call this category the homotopy category of KGL-modules over S. By definition, for any
smooth S-scheme X, we have a canonical isomorphism

Homgy(s) (37°(X+), KGL[n]) ~ Homgkar(KGLs(X), KGL[n])

(where KGLs(X) = KGLgs A% (X ), while Hom ¢/, stands for Homyo(kGL- mod)(s))-
According to (K1) and (K3), for any regular scheme X, we thus get a canonical isomorphism:

(12.3.2.1) €5 : Homger(KGLg[n], KGLs) —— K, (9).

Using Bott periodicity (K4), and the compatibility with base change, this isomorphism can be
extended for any smooth S-scheme X and any pair (n,m) € Z?:

(12.3.2.2) ex/s : Homger(KGLg(X), KGLs(m)[n]) —— Kam—n(X).
Corollary 12.3.3. The categories Ho(KGL-mod)(S) form a motivic category, and the functors
SH(S) — Ho(KGL-mod)(S) , M — KGLAS% M
define a morphism of motivic categories
SH — Ho(KGL-mod)
over the category of noetherian schemes of finite dimension.

Proof. This follows from the preceding theorem and from 4.2.11 and 4.2.16. O

12.4. K-theory with support.

12.4.1. Consider a closed immersion i : Z — S with complementary open immersion j : U — S.
Assume S is regular.

We use the definition of [Gil81, 2.13] for the K-theory of S with support in Z denoted by KZ(S5).
In other words, we define K#(S) as the homotopy fiber of the restriction map

RI(S, KGLs) = K(S) — K(U) = RD(U, KGLs) ,

and put: KZ(S) = m,(K%(9)).
Applying the derived global section functor RI'(S, —) to the homotopy fiber sequence

(12.4.1.1) iyi' KGLs — KGLs — j, j*KGLg ,

we get a homotopy fiber sequence

(12.4.1.2) RI(S,ii' KGLs) — RI'(S, KGLs) — RI'(U, KGLs)

from which we deduce an isomorphism in the stable homotopy category of S!-spectra:
(12.4.1.3) RI'(Z,i'KGLs) = RI'(S,iyi' KGLs) ~ KZ(S).

We thus get the following property:

(K6) There is a canonical isomorphism
HomSH(S) (ls[n],igi!KGLs) — K,f(S)

which satisfies the following compatiblities:
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(K6a) the following diagram is commutative:

Hom(1[n + 1], j,j* KGLs) — Hom(1[n], ii' KGLs) - Hom(1[n], KGLg)

| | |

K1 (U) KZ(S) ——————= Ka(S)

where the upper horizontal arrows are induced by the localization sequence (12.4.1.1),
and the lower one is the canonical sequence of K-theory with support. The extreme
left and right vertical maps are the isomorphisms of (K2);

(K6b) for any morphism f : Y — S of regular schemes, k : T — Y the pullback of ¢ along
f, the following diagram is commutative:

Hom (1[n], i1i' KGLs) - Hom (f*1[n], f*i;i' KGLs) - Hom (1[n], kik' KGLy)

v \

KZ(S) I KT(Y)

where the lower horizontal map is given by the functoriality of relative K-theory
(induced by the funtoriality of K-theory) and the left one is obtained using the functor
f* of SH, the canonical exchange morphism f*iji' — kik'f* and the identification
(K1).
This property can be extended to the motivic category Ho(KGL- mod) and we get a canonical
isomorphism

(12.4.1.4) ¢; : Homgar(KGLs[n),ivi' KGLs) —— KZ(S)
satisfying the analog of (K6a) and (K6b).
12.5. Fundamental class.

12.5.1. Consider a cartesian square of regular schemes

7 —>g

R

77— sg
with 7 a closed immersion. We will say that this square is Tor-independant if Z and S’ are
Tor-independant over S in the sense of [BGI71, III, 1.5]: for any i > 0, Tor? (Oz, Og/) = 0.2
In this case, when we assume in addition that all the schemes in the previous square are regular
and that i is a closed immersion we get from [TT90, 3.18]*! the formula

[Hie =kag* : Ko(Z) — K. (5)

in Quillen K-theory. An important point for us is that there exists a canonical homotopy between
these morphisms at the level of the Waldhausen spectra.*? According to the localization theorem
of Quillen [Qui73, 3.1], we get:

Theorem 12.5.2 (Quillen). For any closed immersion i : Z — S between regqular schemes, there
exists a canonical isomorphism

9 KZ(S) — Kn(2).
Moreover, this isomorphism is functorial with respect to the Tor-independant squares as above,
with © a closed immersion and all the schemes regular.

4015p example, when ¢ is a regular closed immersion of codimension 1, this happens if and only if the above
square is transversal.

4lWhen all the schemes in the square admit ample line bundles, we can refer to [Qui73, 2.11].

421 the proof of Quillen, one can also trace back a canonical homotopy with the restriction mentioned in the
preceding footnote.
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Remark 12.5.3. In the condition of this theorem, the following diagram is commutative by con-
struction:

KE(S)
|
Ko(2)

where the non labelled map is the canonical one.

n
qi

Kn(S)

Definition 12.5.4. Let i : Z — S be a closed immersion between regular schemes.
We define the fundamental class associated with ¢ as the morphism of KGL-modules:

n; : Z*KGLZ — KGLS
defined by the image of the unit element 1 through the following morphism:

-1 -1
Ko(Z) 2o KZ(S) 2 Homger(KGLs, ivi' KGLs) = Homger(is KGLz, KGLs).
We also denote by 1/} : KGLy; — i' KGLs the morphism obtained by adjunction.

Remark 12.5.5. The fundamental class has the following functoriality properties.
(1) By definition, and applying remark 12.5.3, the composite map

KGLs — i,i*(KGLg) = i, KGL; 1 KGLg

corresponds via the isomorphism eg to i.(1) € Ko(S). According to [BGI71, Exp. VII,
2.7], this class is equal to A_1(N;) where N; is the conormal sheaf of the regular immersion
i.

(2) In the situation of a Tor-independant square as in 12.5.1, remark that f*n; = n; through
the canonical exchange isomorphism f*i, = k.g* — apply the functoriality of ¢; from
(K6b) and the one of g;.

(3) Using the identification i'i, = 1, we get N, = i'n;. Consider a cartesian square as in 12.5.1
and assume f is smooth. Then the square is Tor-independant and we get g*n; = 7, using
the exchange isomorphism ¢*i' = k' f*.

12.6. Absolute purity for K-theory.

Proposition 12.6.1. For any closed immersion i : Z — S between reqular schemes, the following
diagram is commutative:

HOmKGL(KGLz[TL], KGLz) L HOmKGL(KGLz[TL],i!KGLs)

ezl () iei
a '

Kn(Z) : KZ(S)

Proof. In this proof, we denote by [—, —] the bifunctor Homggr(—, —).
Step 1: We assume that ¢ : Z — S admits a retraction p: S — Z.
Consider a KGL-linear map o : KGLz[n] — KGLz. Then, n}(a) corresponds by adjunction to the
composition
ix ()

i KGLyz[n] =% i,KGL; ™ KGLg.
Applying the projection formula for the motivic category Ho(KGL- mod), we get:
ix(a) =i, (1 @7 p* () = i(1) ® p*(c).
Here 1 stands for the identity morphism of the KGL-module KGLz. This shows that 7}(«)
corresponds by adjunction to the composite map:
n; @ p*(a) 1 i, KGLz[n] = i, KGLz[n] ® KGLs — KGLs @ KGLg = KGLg

(the tensor product is the KGL-linear one). By assumption, i, : K.(Z) — K,.(S) admits a
retraction which implies the canonical map O; : KZ(S) — K,(S) admits a retraction (cf. remark
12.5.3). To check that the diagram (x) is commutative, we can thus compose with O;.
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Recall the first point of remark 12.5.5: applying property (K6a) and the fact the isomorphism
es : [KGLg[n], KGLg] — K, (S) is compatible with the algebra structures, we are finally reduced
to prove that

ix(@) = 1, (1).p" () € K, (9).
This follows from the projection formula in K-theory (see [Qui73, 2.10] and [TT90, 3.17]).
Step 2: We shall reduce the general case to Step 1. We consider the following deformation to the
normal cone diagram: let D be the blow-up of A} in the closed subscheme {0} x Z, P be the
projective completion of the normal bundle of Z in S and s be the canonical section of P/Z; we
get the following diagram of regular schemes:

72> AL<"7

(12.6.1.1) Zi i i

S—D<—P

where sg (resp. s1) is the zero (resp. unit) section of A} over Z. These squares are cartesian
and Tor-independant in the sense of 12.5.1. The maps sy and s; induce isomorphisms in K-theory
because Z is regular. Thus, the second point of remark 12.5.5 allows to reduce to the case of the
immersion s which was done in Step 1. O

12.6.2. Consider a cartesian square
T——X
l s
zZ—>5

such that S and Z are regular, ¢ is a closed immersion and f is smooth. In this case, the following
diagram is commutative

Hom g (KGLz(T)[n), KGLz) —-—> Homger(KGLz(T)[n], i KGLs)

H ’ H

HOIHKGL(KGLT[H], KGLT) L— H()IHK-GL([{GLT[n]7 k!KGLX)

using the adjunction (gy, g.), the exchange isomorphism g*i' ~ k' f* (which uses relative purity for
smooth morphisms) and the third point of remark 12.5.5. In particular, the preceding proposition
has the following consequences:

Theorem 12.6.3 (Absolute purity). For any closed immersion i : Z — S between regular
schemes, the map

n,: KGLy — i'KGLg
is an isomorphism in the category Ho(KGL-mod)(Z) (or in SH(Z)).

Corollary 12.6.4. Given a cartesian square as above, for any pair (n,m) € Z2, the following
diagram is commutative:

Hom(KGLg(X),i, KGLz(m)[n]) ——s Hom(KGLs(X), KGLg(m)[n])

HOI’Il(KGLz(T), KGLZ(m)[n]) ~|€x/S
eT/ZJ/N
ks
K2m7n (T) K2m7n (X)

where the vertical maps are the isomorphisms (12.3.2.2).
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12.7. Trace maps.
12.7.1. Let S be a regular scheme. Let Y be a smooth S-scheme. The canonical map

PiC(Y) — K(](Y) l> HOIHKGL(KGL_S'(Y), KGLs) ﬂ—*‘r HomKGL(KGLs(Y), KGLs(l)[Q])

defines representable Chern classes in the category Ho(KGL-mod)(S); they corresponds to the
orientation defined in remark 12.2.2.

Let p : P — S be a projective bundle of rank n. Let v = [O(1)] — 1 in Ky(P). It corresponds
to a map v : KGLs(P) — KGLs. According to [Dég08, 3.2] and our choice of Chern classes, the
following map

B0 Xp,
KGLs(P) =20, (N KGLs(i)]2i]
0<i<n
is an isomorphism. As f is invertible, it follows that the map

0'Xp,
(12.7.1.1) prys  KGLs(P) =220 (Y KGLs
0<i<n

is an isomorphism as well. Using this formula, the map Hom(ypp/s, KGLg) is equal to the isomor-
phism of Quillen’s projective bundle theorem in K-theory (cf. [Qui73, 4.3]):

fP/S@I(*(S)H ) SOa"' Zp
=0

Let py : Ki(P) — K.(S) be the pushout by the projective morphism p. According to the
projection formula, it is K, (S)-linear. In particular, it is determined by the n + 1-uple (aq, ..., ay)
where a; = p.(v') € Ko(S) through the isomorphism fp/s. Let a; : KGLs — KGLs be the map
corresponding to a;.

Definition 12.7.2. Consider the previous notations. We define the trace map associated to the
projection p : P — S as the morphism of KGL-modules

T p,(KGLp) = RHom(KGLs(P), KGLg) — by EBKGL (00 8) prarg.

From this definition, it follows that Tr, represents the pushout by p in K-theory:

TKGL
HomKGL(KGLS[ } p*KGLp)HHomKGL(KGLs[ ] KGLS)
|
HOI’HKGL(KGLP[TL],KGLP) Les
Gpv
Kn(P) = Kn(S)

Consider moreover a cartesian square:
4> P
Y . S

such that f is smooth. From the projective base change theorem, we get f*p.p* = q.¢*g*. Using
this identification, we easily obtain that f* TrfGL = Tr;(GL . Thus, we conclude that the map

KGL

Tr
Homgar(KGLs(Y)[n], p. KGLp) —— Homgar(KGLs(Y)[n], KGLg)
represents the usual pushout map

g Kn(Q) = Kn(Y)
through the canonical isomorphisms (12.3.2.2).
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12.7.3. Consider a projective morphism f : 7" — S between regular schemes and choose a factor-
ization ‘

T-PL%s
where i is a closed immersion and p is the projection of a projective bundle. Let us define a

morphism
KGL

) A Tr
(5% f.KGLy = p.i. KGLy =™ p, KGLp —— KGLs.

According to 12.6.4 and the previous paragraph, for any cartesian square
Yy —=X
|,k
f
T——S5

such that a is smooth, the following diagram is commutative.

KGL
T(p,i)*

Homger(KGLs(X), f« KGLr(m)[n]) ——— Homgar(KGLg(X), KGLs(m)[n])

(12.7.3.1) Hom g (KGLr(Y), KGLz(m)[n]) ~|ex/s
5Y/T\L2
Kmen(Y) > K2mfn(X)

Definition 12.7.4. Considering the above notations, we define the trace map associated to f as
the morphism
T = Tv()5) « f.f*KGLs — KGLs.

Remark 12.7.5. By definition, the trace map ’I‘r?GL is a morphism of KGL-modules. As a conse-
quence, the map obtained by adjuntion

ny : KGLy ~ f*KGLs — f'KGLg
is also a morphism of KGL-module. This implies that the morphism 77} (and thus also TrffGL) is
completely determined by the element

1} € Homgear(KGLy, f'KGLg) ~ Homgy (7 (17, f' KGLs) .

Moreover, as p is smooth, there is a canonical isomorphism p' KGLg ~ KGLp (by relative purity
for p and by periodicity; see [Rio09, lemma 6.1.3.3]). From there, we deduce from theorem 12.6.3
that we have a canonical isomorphism

['KGLg ~i'KGLp ~ KGLy .
This implies that we have an isomorphism:
Homgyy (7 (17, f' KGLs) ~ Ko(T).

Hence the map 77} is completely determined by a class in K(7"). The problem of the functoriality of
trace maps in the motivic category Ho(KGL- mod) is thus a matter of functoriality of this element
77;c in Ky, which can be translated faithfully to the problem of the functoriality of pushforwards
for K.

However, the only property of trace maps we shall use here is the following.

Proposition 12.7.6. Let f : T — S be a finite flat morphism of regular schemes such that the
Og-module f.Or is (globally) free of rank d. Then the following composite map
KGL

Tr
KGLs — f.f*KGLs —— KGLg
is equal to d.1ggrs i Ho(KGL-mod)(S) (whence in SH(S)).
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Proof. Let ¢ be the composite map of Ho(KGL- mod)(S5)

KGLs — f.f*KGLs —15 KGLs .
As ¢ is KGLg-linear by construction, it corresponds to an element
p e HOmKGL(KGLs, KGLs) >~ I{OIIISH(S)(]IS7 KGLs) ~ Ko(S) .

According to the commutative diagram (12.7.3.1), if we apply the functor Homgg s (1s, —) to ¢,
we obtain through the evident canonical isomorphisms the composition of the usual pullback and
pushforward by f in K-theory:

Ko(S) Lo Ko(T) L5 Ko(S).

With these notations, the element of K(S) corresponding to ¢ is the pushforward of 1y =
f*(1s) by f, while the element corresponding to the identity of KGLg is of course 1g. Under our
assumptions on f, it is obvious that we have the identity f.(lr) = d.1s € K(S). This means
that ¢ is d times the identity of KGLg. O

13. BEILINSON MOTIVES
13.1. The ~-filtration.

13.1.1. We denote by KGLq the Q-localization of the absolute ring spectrum KGL, considered
as a cartesian section of D1 q. From [Rio09, 5.3.10], this spectrum has the following property:

(K5) For any scheme S, there exists a canonical decomposition
KGLqs ~ P KGLY g
i€Z
compatible with base change and such that for any regular scheme S, the isomorphism of
(K2) induces an isomorphism:

Hom,, 5,q) (Qs (X)[n], KGLY s ) = K{)(S) i= Gri Ko (S)q
where the right hand side is the i-th graded piece of the y-filtration on K-theory groups.
We will denote by
7 KGLgs — KGLWg,
resp. (; : KGL(i)s — KGLq,s

the projection (resp. inclusion) defined by the decomposition (K3) and we put p; = ¢;p; for the
corresponding projector on KGLq,s.

Definition 13.1.2 (Riou). We define the Beilinson motivic cohomology spectrum as the rational
Tate spectrum Hp g = KGL(O)S.

Remark 13.1.3. Note that, by definition, for any morphism of schemes f : T — S, we have
f*HB,S ~ HB,T~

Lemma 13.1.4. The isomorphism v, of (12.2.1.1) is homogenous of degree +1 with respect to
the graduation (K5). In other words, for any integer i € Z, the following composite map is an
isomorphism

KGLW(1)[2] “ KGLg(1)[2) X KGLg = KGLUHY.
For any integer i € Z, we thus get a canonical isomorphism

(13.1.4.1) Hg (i)[2i] = KGLW.,
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Proof. 1t is sufficient to check that, for j # i+ 1,

Pj °Yuop; =0,
PjoYy opi=0

in Homp, , (5,q)(KGLq, KGLq). But according to [Rio09, 5.3.1 and 5.3.6], we have only to check
these equalities for the induced endomorphism of Ky (seen as a presheaf on the category of
smooth schemes over Spec (Z)). This follows then from the compatibility of the projective bundle
isomorphism with the v-filtration; see [BGIT1, Exp. VI, 5.6]. O

13.1.5. Recall from [NSQ08] that KGLq is canonically isomorphic (with respect to the orientation
12.2.2) to the universal oriented rational ring spectrum with multiplicative formal group law
introduced in [NSQ@08]. The isomorphism of the preceding corollary shows in particular that Hp
is obtained from KGLq by killing the elements 5" for n # 0. In particular, this shows that Hp
is canonically isomorphic to the spectrum denoted by LQ in [NS@08], which corresponds to the
universal additive formal group law over Q. This implies that Hp has a natural structure of a
(commutative) ring spectrum.

Proposition 13.1.6. The multiplication map
u: Hy ® Hp — Hgp
is an isomorphism.

This trivially implies that the following map is an isomorphism:
(13.1.6.1) 1®n: Hy — Hp ® Hg.

Proof. Tt is enough to treat the case S = Spec (Z). We will proove that the projector

¢ Hy @ Hy % Hy 28, Hy ® Hp
is an isomorphism (in which case it is in fact the identity). We do that for the isomorphic ring
spectrum LQ.

Let H°PQ be the topological spectrum representing rational singular cohomology. In the ter-

minology of [NS(08], LQ is a Tate spectrum representing the Landweber exact cohomology wich
corresponds to the Adams graded MU, algebra Q obtained by killing every generators of the
Lazard ring MU,. The corresponding topological spectrum is of course H*°PQ.
According to [NS(08, 9.2], the spectrum F = LQ®LQ is a Landweber exact spectrum correspond-
ing to the MU,-algebra Q ®ypy, Q = Q. In particular, the corresponding topological spectrum
is simply H®°PQ. Thus, according to [NS@08, 9.7], applied with F' = F = LQ ® LQ, we get an
isomorphism of Q-vector spaces

End(LQ ® LQ) = Homg(Q, E..) = Q.

Thus ¥ = A.Id for A € Q. But A = 0 is excluded because v is a projector on a non trivial factor,
so that we can conclude. (]

13.2. Localization with respect to rational K-theory.

Definition 13.2.1. Let S be any scheme.

We say that an object E of Da1(S, Q) is Hp-acyclic if Hs ® E =0 in Da1(S, Q). A morphism
of Da1(S, Q) is an Hp-equivalence if its cone is Hp-acyclic (or, equivalently, if its tensor product
with Hp is an isomorphism).

An object M of Da1(S,Q) is Hp-local if, for any Hg-acyclic object E, the group Hom(E, M)
vanishes.

We denote by DMp(S) the Verdier quotient of D1 (.S, Q) by the localizing subcategory made
of Hp-acyclic objects (i.e. the localization of D1 (.S, Q) by the class of Hp-equivalences).

The objects of DMg(.S) are called the Beilinson motives.

Proposition 13.2.2. An object E of Da1(S, Q) is Hg-acyclic if and only if we have KGLq®FE =
0.
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Proof. This follows immediately from property (K5) (see 13.1.1) and lemma 13.1.4. O

Proposition 13.2.3. The localization functor Da1(S, Q) — DMg(S) admits a fully faithful right
adjoint whose essential image in Da1(S, Q) is the full subcategory spanned by Hy-local objects.
More precisely, there is a left Bousfield localization of the stable model category of symmetric Tate
spectra Sp(S, Q) by a small set of maps whose homotopy category is precisely DM (S).

Proof. For each smooth S-scheme X and any integers n,: € Z, we have a functor with values in
the category of Q-vector spaces

FX,n,i = HOI?(IDA1 (S’Q)(Zoon(X)7 Hp ® (—)(’L)[?’L]) : Sp(S, Q) — Q- mod
which preserves filtered colimits. We define the class of Hp-weak equivalences as the class of
maps of Sp(S,Q) whose image by Fx . ; is an isomorphism for all X and n, i. By virtue of

[Bek00, Prop. 1.15 and 1.18], we can apply Smith’s theorem [Bek00, Theorem 1.7] (with the class
of cofibrations of Sp(.S, Q)), which implies the proposition. O

Remark 13.2.4. We shall often make the abuse of considering DMy (S) as a full subcategory in
Da1,q(S), with an implicit reference to the preceding proposition.

Note that Hp-acyclic objects are stable by the operations f* and f;, so that we obtain a
premotivic category DMy together with a premotivic adjunction:

ﬁ* ZDAl’Q = DMB 6*
Proposition 13.2.5. The spectrum Hgp is Hp-local and the unit map g, : 1 — Hp is an
Hp-equivalence in Da1(S, Q).

Proof. The unit map n: 1s — Hp s is an Hp-equivalence by 13.1.6.
Consider a rational spectrum FE such that F ® Hg = 0 and a map f : E — Hpg. It follows
trivially from the commutative diagram

E ! Hys

el el \

EF® Hp — Hy ® Hp —— Hp
that f = 0, which shows that Hy is Hg-local. O

Corollary 13.2.6. The family of ring spectra Hgp,s comes from a cofibrant cartesian commutative
monoid (4.2.9) of the symmetric monoidal fibred model category of Tate spectra over the category
of schemes.

Proof. By virtue of proposition 13.2.5 and of corollary 4.1.9, there exists a cofibrant commuta-
tive monoid in the model category of symmetric Tate spectra over Spec (Z) which is canonically
isomorphic to Hp z in Da1(Spec(Z),Q) (as commutative ring spectrum). For a morphism of
schemes f : S — Spec(Z), we can then define Hp g as the pullback of Hp z (at the level of the
model categories); using proposition 4.1.11, we see that this defines a cofibrant cartesian commu-
tative monoid on the fibred category of spectra which is isomorphic to Hp s as commutative ring
spectra in D1 (S, Q). O

13.2.7. From now on, we shall assume that Hy is given by a cofibrant cartesian commutative
monoid of the symmetric monoidal fibred model category of Tate spectra over the category of
schemes. By virtue of propositions 4.2.10 and 4.2.16), we get the motivic category Ho(Hp- mod)
of Hi-modules, together with a commutative diagram of morphisms of premotivic categories

Hp ®(—)

Darq Ho(Hg-mod)

(any Hp-acyclic object becomes null in the homotopy category of Hp-modules by definition, so
that Hp ® (—) factors uniquely through DMy by the universal property of localization).
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Proposition 13.2.8. The forgetful functor U : Ho(Hp-mod)(S) — Da1(S, Q) is fully faithful.
Proof. We have to prove that, for any Hp g-module M, the map
Hys®M — M

is an isomorphism in Da1 g (5). As this is a natural transformation between exact functors which
commute with small sums, and as Da1 g is a compactly generated triangulated category, it is
sufficient to check this for M = Hp ¢ ® E, with E a (compact) object of Da1 g (S) (see 4.2.6). In
this case, this follows immediately from the isomorphism (13.1.6.1). O

Theorem 13.2.9. The functor DMp(S) — Ho(Hp s-mod) is an equivalence of categories.

Proof. This follows formally from the preceding proposition by definition of DMy (see for instance
[GZ67, Chap. I, Prop. 1.3]). O

Remark 13.2.10. The preceding theorem shows that the premotivic category Ho(Hp-mod) as
well as the morphism Da1 g — Ho(Hp-mod) are completely independent of the choice of the
strictification of the (commutative) monoid structure on Hp given by corollary 13.2.6.

Corollary 13.2.11. DMy ~ Ho(Hp-mod) is a Q-linear motivic category.

Proof. This follows from proposition 4.2.16 and theorem 13.2.9 that DMy is pregeometric (because
Da: q is so, by 6.2.2). We conclude with corollary 2.4.18. U

Remark 13.2.12. One can prove also that DMy is motivic much more directly: this follows from the
fact that Da1 q is motivic and that the six Grothendieck operations preserve Hp-acyclic objects,
so that all the properties of D1 g induce their analogs on DMg by the 2-universal property of
localization (we leave this as an easy exercise for the reader).

Definition 13.2.13. For a scheme X, we define its Beilinson motivic cohomology by the formula
HY(X,Q(p)) = Hompn, (x)(1x, Ix(p)q]) -
We can now justify the terminology of Beilinson motives:
Corollary 13.2.14. For any regular scheme X, we have a canonical isomorphism
HY(X,Q(p)) ~ Grf Kyp—¢(X)q-
Note also the following nice description of Beilinson motives:

Corollary 13.2.15. Let E be a rational spectrum over S. The following conditions are equivalent:

(i) E is a Beilinson motive (i.e. is in the essential image of the right adjoint of the localization
functor D1 q — DMg);
(ii) E is Hp-local;
(iii) the map n® 1g : E — Hp ® E is an isomorphism;
(iv) E is an Hg-module in D1 q;
(v) E is admits a strict Hg-module structure.
If, in addition, E is a commutative ring spectrum, these conditions are equivalent to the following
ones:

(Ri) E is orientable;
(Rii) E is an Hp-algebra;
(Riii) E admits a unique structure of Hp-algebra;
And, if E is a strict commutative ring spectrum, these conditions are equivalent to the following
conditions:

(Riv) there exists a morphism of commutative monoids Hy — E in the stable model category of
Tate spectra;

(Rv) there exists a unique morphism Hp — E in the homotopy category of commutative monoids
of the category of Tate spectra.
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Proof. The equivalence between statements (i)—(v) follows immediately from 13.2.9. If E is a ring
spectrum, the equivalence with (Ri), (Rii) and R(iii) is a consequence of 11.2.10 and of the fact
that MGLq is Hp-local; see [NS@08, Cor. 10.6]. It remains to prove the equivalence with (Riv)
and (Rv). Then, E is Hp-local if and only if the map F — Hp ® E is an isomorphism. But this
map can be seen as a morphism of strict commutative ring spectra (using the model structure
of 4.1.8 applied to the model category of Tate spectra) whose target is clearly an Hp-algebra, so
that (Riv) is equivalent to (ii). It remains to check that there is at most one strict Hp-algebra
structure on E (up to homotopy), which follows from the fact that Hy is the initial object in the
homotopy category of commutative monoids of the model category given by theorem 4.1.8 applied
to the model structure of proposition 13.2.3. O

Corollary 13.2.16. One has the following properties.

(1) The ring structure on the spectrum Hy is given by the following structural maps (with the
notations of 13.1.1).

Hg © Hp 222 KGLq ® KGLq %% KGLg =% Hg,
Q ™%, KGLq ™ Hy.
(2) The map 1o : Hs — KGLq is compatible with the monoid structures.
(8) Let Hglt,t™'] = @,cq Hp(i)[2i] be the free Hg-algebra generated by one invertible gener-
ator t of bidegree (2,1). Then the section u : Q(1)[2] — KGLq induces an isomorphism

of Hg-algebras:
v s Hglt,t7' — KGLq.

Proof. Property (1) follows from properties (2) and (3). Property (2) is a trivial consequence of
the previous corollary. Using the isomorphisms (13.1.4.1) of lemma 13.1.4, we get a canonical
isomorphism

Hy st,t7'] = @ KGL™.

i€Z
Through this isomorphism, the map +, corresponds to the Adams decomposition (i.e. to the
isomorphism (K5) of 13.1.1) from which we deduce property (3). O

Remark 13.2.17. One deduces easily, from the preceding proposition and from 13.1.6, another
proof of the fact that KGLq is a strict commutative ring spectrum.

The isomorphism (3) is in fact compatible with the gradings of each term: the factor Hp.t* is
sent to the factor KGL". Recall also the parameter ¢ corresponds to the unit 4~! in KGL**.

Corollary 13.2.18. The Adams decomposition is compatible with the monoid structure on KGLq:
for any integer i, 3,1 such that | # i+ j, the following map is zero.

KGLY @ KGLY “2Y, KGLq ® KGLg ~~ KGLg —— KGLY
13.3. Motivic proper descent.

Proposition 13.3.1. The motivic category DMy is separated on the category of noetherian quasi-
excellent schemes.

Proof. According to 2.3.9, it is sufficient to check that, for any finite surjective morphism f : 7T —
S, the pullback functor
is conservative.

We proceed by noetherian induction on S. Using the localization property of DMp and the
induction hypothesis, we can replace S by any dense open subscheme U, and f by the finite
surjective morphism f xg U. Thus, as S is quasi-excellent, we can assume it is regular. As f is
finite surjective and T is quasi-excellent, we can even assume that T is regular. We can further
assume that S and T are reduced (c¢f. 2.3.6). As f is generically flat, we may assume that f is
flat. Reasonning on each connected component of T, we can even suppose that f is globally free
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of rank d — i.e. there exists an isomorphism of Og-modules f.Op ~ OdS. It is sufficient to prove
that, for any Beilinson motive E over S, the adjunction map

is a monomorphism in DMyg. Using the projection formula in DMy applied to the finite morphism
f (point (v) of theorem 2.4.21), this latter map is isomorphic to
(Hg — fof*(Hp)) ® 1.

We are finally reduced to prove that the map Hp s — f.f*Hp,s is a monomorphism in DMg
(any monomorphism of a triangulated category splits). As Hgp g is a direct factor of KGLq g, it
is sufficient to find a retraction of the adjunction map

KGLq,s — f«f"KGLq,s
which follows from proposition 12.7.6. U

According to theorem 3.3.36, we deduce from the preceding proposition the following result:

Theorem 13.3.2. The motivic category DMy satisfies h-descent over noetherian quasi-excellent
schemes of finite dimension: for any such scheme X, any h-hypercovering p : & — X, and for
any Beilinson motive E over X, the map

p* :RI(X,E) — RI(Z, E) = RlimRI(Z;,, E)

n

is an isomorphism in the derived category of the category of Q-vector spaces.
13.4. Motivic absolute purity.

Theorem 13.4.1. Leti: Z — S be a closed immersion between regular schemes. Assume i is of
pure codimension n.

Then, considering the notations of 13.1.1, definition 12.5.4, and the identification (13.1.4.1),
the composed map

Hg 7z “% KGLg 7z 5 i'KGLg s = i*Hg s(n)[2n]

is an isomorphism.
Proof. We have only to check that the above composition induces an isomorphism after applying
the functor Hom(Qg(X), —(a)[b]) for a smooth S-scheme X and a couple of integers (a,b) € Z>.

Using Remark 12.5.5(3), this composition is compatible with smooth base change and we can
assume X = S. Let us consider the projector

Pa: KZ(S)q = K (S/S — Z)q — Kn(S/S - Z)q
induced by m,0t, : KGLg — KGLq, and denote by ﬁa)(S/S—Z) (with r = 2a—b) its image. By
virtue of Propostion 12.6.1, we only have to check that the following composite is an isomorphism:
-1
pi K\9(2) 4% K (Z)g i K, (S/S — Z)q = K\“tM)(S/S — 7).

From 12.5.2, the morphism p; is functorial with respect to Tor-independant cartesian squares of
regular schemes (¢f. 12.5.1). Thus, using again the deformation diagram (12.6.1.1), we get a
commutative diagram

“(2) K“(AY) K“(2)

| | :

Kt(8/8 — 7) — K\“T(D/D — AL) <— K“t"(P/P — 7)

in which any of the horizontal maps is an isomorphism (as a direct factor of an isomorphism).
Thus, we are reduced to the case of the closed immersion s : Z — P, canonical section of the
projectivisation of a vector bundle E (where E is the normal bundle of the closed immersion ).
Moreover, as the assertion is local on Z, we may assume F is a trivial vector bundle.
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Let p : P — Z be the canonical projection, j : P—Z — P the obvious open immersion. Consider
the element v = [O(1)] — 1 € Ko(P). Because v has virtual rank 0, it belongs to K(()l)(P).
Recall that, according to the projective bundle formula, the horizontal lines in the following
commutative diagram are split short exact sequences:

0—> K, (P/P— Z)q —“> K.(P)q —> K.(P — Z)q — 0

: : :

0— K@ (p/p — 7) 2> K™ (p) — K™ (p — 7) —0.
By assumption on E, v™ lies in the kernel of j* and the diagram allows to identify the graded
piece K\ (P/P — Z) with the submodule of K*7"(P) of the form K" (Z).v".

On the other hand, j*s,. = 0: there exists a unique element € € Ky(Z) such that s.(1) = p*(e).v"
in Ko(P). From the relation p.s.(1) = 1, we obtain that € is a unit in Ky(Z), with inverse the
element p.(v™). By virtue of [BGI71, Exp. VI, Cor. 5.8], p.(v™) belongs to the 0-th v-graded part
of Ko(P)q so that the same holds for its inverse e. In the end, for any element z € K,.(Z), we get
the following expression:

$x(2) = 84 (1.8"p"(2)) = 8.(1).p*(2) = p*(e.2).0"™.

Thus, the commutative diagram

Kﬁa)(z) 4>KT(Z)Q q'4Q>I(T(P/P_ Z)Q HKr(*a+n)(P/P_ Z)

T b ¥

KM (P)

implies that the isomorphism q; ! preserves the y-filtrations (up to a shift by n). Hence it induces
an isomorphism on the graded pieces by functoriality. O

14. CONSTRUCTIBLE MOTIVES

14.0. Consider as in 2.0 a base scheme S and an adequate category . of S-schemes. In sections
14.1 and 14.3 we assume in addition:

(a) Any scheme in . is quasi-excellent.

We let as usual Sm be the adequate class of morphisms in .’ which are smooth of finite type, and
we fix a stable combinatorial Sm-fibred model category .# over .# such that:

(b) Ho(.#) is a motivic category over 7.

(¢) Ho(#) is T-generated where 7 is a set of twists which is stable under negative Tate twists.
As usual, the geometric section of Ho(.#') will be denoted by M.

This situation will be fixed in this entire section with a notable exception for paragraph 14.2.1

and proposition 14.2.2 which can be applied to an arbitrary category . endowed with an ad-
missible class of morphisms &, and to a cofibrantly generated &-fibred model category .# over

.

14.1. Finiteness theorems. The aim of this section is to define the notion of 7-constructibility
in Ho(.#) and to study its stability properties under six operations of Grothendieck.

Definition 14.1.1. For a scheme X in ., we denote by Ho(.#).(X) the sub category of 7-
constructible objects in Ho(.#)(X); see 1.4.7.

Proposition 14.1.2. Assume that, for any scheme X, the triangulated category Ho(.#)(X) ad-
mits finite sums and that, for any smooth X scheme Y and any n € T, the object Mx (Y ){n} is
compact. Then, an object of Ho(.#)(X) is T-constructible if and only if it is compact.

Proof. If 7 is any compactly generated triangulated category, then, for any small family C' of
compact generators, the thick triangulated category of .7 generated by C' consists exactly of the
compact objects of 7. O
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Example 14.1.3. If S is a noetherian scheme of finite dimension, then the constructible objects of
Da:(S,A) (resp. of DMg(S)) are precisely the compact objects.

Proposition 14.1.4. If M and N are T-constructible in Ho(.#)(X), so is M @% N.

Proof. For a fixed M, the full subcategory of Ho(.#)(X) spanned by objects such that M @% N
is 7-constructible is a thick triangulated subcategory of Ho(.#)(X). In the case M is of shape
Mx (Y){n} for Y smooth over X and n € 7, this proves that M ®% N is 7-constructible whenever
N is. By the same argument, using the symmetry of the tensor product, we get to the general
case. (]

Similarly, one has the following conservation property.
Proposition 14.1.5. For any morphism f : X — Y of schemes, the functor
Lf* :Ho(#)(Y) — Ho(.#)(X)
preserves T-constructible objects. If moreover f is smooth, the functor
L, : Ho(.#)(X) — Ho(.4/)(Y)
also preserves T-constructible objects.
Corollary 14.1.6. The categories Ho(# ).(X) form a thick triangulated monoidal Sm-fibred sub-
category of Ho(A).

Proposition 14.1.7. Let X a scheme, and X = |J;c; Ui a covering of X by open subschemes.
An object M of Ho( A )(X) is T-constructible if and only if its restriction to U; is T-constructible
in Ho(A)(U;) for allie 1.

Proof. This is a necessary condition by 14.1.5. For the converse, as X is noetherian, it is sufficient
to treat the case where I is finite. Proceeding by induction on the cardinal of I it is sufficient
to treat the case of a covering by two open subschemes X = U U V. For an open immersion
Jj: W — X, write My = Ljy 7*(M). If the restrictions of M to U and V are T-constructible, then
so is its restriction to U NV, and we have a distinguished triangle

Myny — My © My — M — Myny([l]
in which My is constructible for W = U, V,U NV (using 14.1.5 again), from which we deduce
that M is 7-constructible. O

Corollary 14.1.8. For any scheme X and any vector bundle E over X, the functors Th(E) and
Th(—E) preserve T-constructible objects in Ho(.4)(X).

Proof. To prove that Th(E) and Th(—FE) preserves 7T-constructible objects, by virtue of the
preceding proposition, we may assume that F is trivial of rank r. It is thus sufficient to prove that
M (r) is T-constructible whenever M is so for any integer r. For we may assume that M = 1x{n}
for some n € 7 (using 14.1.5), this is true by assumption on 7; see 14.0(c). O

Corollary 14.1.9. Let f: X — Y a morphism of finite type. The property that the functor
Rf.:Ho(#)(X) — Ho(#)(Y)
preserves T-constructible objects is local on'Y with respect to the Zariski topology.

Proof. Consider a finite Zariski covering {v; : Y; — Y };¢r, and write f; : X; — Y; for the pullback
of f along v; for each ¢ in /. Assume that the functors Rf; . preserves T-constructible objects; we
shall prove that R f, has the same property. Let M be a 7-constructible object in Ho(.#)(X).
Then for ¢ € I, using the smooth base change isomorphism (for open immersions), we see that the
restriction of Rf, (M) to Y; is isomorphic to the image by R f; . of the restriction of M to X;, hence
is T-constructible. The preceding proposition thus implies that R f.(M) is 7-constructible. O

Proposition 14.1.10. For any closed immersion i : Z — X, the functor
Ri, : Ho(#)(Z) — Ho(4)(X)

preserves T-constructible objects.
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Proof. By virtue of corollary 14.1.9, we may assume that X is affine. The category Ho(.#).(2)
is then the thick subcategory of Ho(.#)(Z) generated by the objects of shape Mz(Yy){n} for ¥
affine and smooth over Z, and n € 7. By virtue of [GD67, 18.1.1], for any affine and smooth
Z-scheme Yj, there exists a smooth and affine X-scheme Y whose pullback along ¢ is isomorphic
to Yy. Therefore, the category Ho(.#).(Z) is the the thick subcategory of Ho(.#Z)(Z) generated
by the objects of shape Li*(M), where M is a 7-constructible object in Ho(.#)(X). To prove
the proposition, it is thus sufficient to prove that the functor Ri, Li* preserves 7-constructible
objects. Let j : U — X be the complement open immersion. We then have distinguished triangles

Lj; j*(M) - M — Ri, Li* (M) — Lj 7*(M)[1] .
If M is T-constructible, then so is Ljy j*(M) by virtue of 14.1.5, which concludes. O

Corollary 14.1.11. Leti: Z — X be a closed immersion with open complement j : U — X. an
object M of Ho(A )(X) is T-constructible if and only if 7*(M) and Li*(M) are T-constructible in
Ho(#)(U) and Ho(.#)(Z) respectively.

Proof. We have a distinguished triangle
Lj; j*(M) — M — Ri, Li* (M) — Ljy j*(M)[1] .
Hence this assertion follows from propositions 14.1.5 and 14.1.10. O

Proposition 14.1.12. If f : X — Y is proper, then the functor
Rf. :Ho(#)(X) — Ho(#)(Y)
preserves T-constructible objects.

Proof. We shall first consider the case where f is projective. As this property is local on Y
(corollary 14.1.9), we may assume that f factors as a closed immersion i : X — P% followed by
the canonical projection p : P{ — Y. By virtue of proposition 14.1.10, we can assume that f = p.
In this case, the functor Rp, is isomorphic to Lp; composed with the quasi-inverse of the Thom
endofunctor associated to the cotangent bundle of p; see 2.4.21 (iii). Therefore, the functor Rp.
preserves T-constructible objects by virtue of proposition 14.1.5 and of corollary 14.1.8. The case
where f is proper follows easily from the projective case, using Chow’s lemma and cdh-descent
(the homotopy pullback squares (3.3.8.1)), by induction on the dimension of X. O

Corollary 14.1.13. If f : X — Y is separated of finite type, then the functor
fir:Ho(#)(X) — Ho(AZ)(Y)
preserves T-constructible objects.

Proof. Tt is sufficient to treat the case where f is either an open immersion, either a proper
morphism, which follows respectively from 14.1.5 and 14.1.12. O

Proposition 14.1.14. Let X be a scheme. The category of T-constructible objects in Ho(.#)(X)
is the smallest thick triangulated subcategory which contains the objects of shape Rf.(1x:/{n}),
where f: X' — X is a (strictly) projective morphism, and n € 7.

Proof. See [Ayo0T7a, lemma 2.2.23]. O

Theorem 14.1.15 (Gabber’s weak local uniformisation). Let X be a scheme, and Z C X a
nowhere dense closed subscheme. Then there exists a finite h-covering {f; : Y; — X }ier such that
for alliin I, f; is a morphism of finite type, the scheme Y; is regular, and fi_l(Z) 1s either empty
or the support of a strict normal crossing divisor in Y;.

See [Gab05, 11109] for a sketch of proof. A complete argument will be appear in [ILO]. Note
that, if we are only interested by schemes of finite type over Spec(R), for R either a field, a
complete discrete valuation ring, or a Dedekind domain whose field of functions is a global field,
this is an immediate consequence of de Jong’s resolution of singularities by alterations; see [dJ96].
One can also deduce the case of schemes of finite type over an excellent noetherian scheme of
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dimension lesser or equal to 2 from [dJ97]; see theorem 14.3.5 and corollary 14.3.6 below for a
precise statement.

Lemma 14.1.16. Let j : U — X be a dense open immersion in . Then, there exists the
following data:

(i) a finite h-covering {f; : Y; — X}icr such that for all i in I, f; is a morphism of finite
type, the scheme Y; is regular, and f;l(U) is either Y; itself or the complement of a strict
normal crossing divisor in Y;; we shall write

fy=J[v—-x

icl

for the induced global h-covering;
(ii) a commutative diagram

X/// 9 > Y

(14.1.16.1) ql if

X" —> X ——> X

in which: p is a proper birational morphism, X' is normal, u is a Nisnevich covering, and
q is a finite surjective morphism.

Let T (resp. T') be a closed subscheme of X (resp. X') and assume that for any irreducible
component Ty of T', the following inequality is satisfied:

(14.1.16.2) codimy/ (T") > codimx (Tp),

Then, possibly after shrinking X in an open neighbourhood of the generic points of T in X, one
can replace X" by an open cover and X" by its pullback along this cover, in such a way that we
have in addition the following properties:

(ii5) p(T") C T and the induced map T' — T is finite and pseudo-dominant;*3

(iv) if we write T" = u=*(T"), the induced map T" — T’ is an isomorphism.

Proof. The existence of f : Y — X as in (i) follows from Gabber’s weak uniformisation theorem,
while the commutative diagram (14.1.16.1) satisfying property (ii) is ensured by lemma 3.3.27.

Consider moreover closed subschemes T' C X and T" C X' satisfying (14.1.16.2).

We first show that, by shrinking X in an open neighbourhood of the generic points of T" and
by replacing the diagram (14.1.16.1) by its pullback over this neighbourhood, we can assume
that condition (iii) is satisfied. Note that shrinking X in this way does not change the condition
(14.1.16.2) because codimx (Tp) does not change and codimy-(7") can only increase.**

Note first that, by shrinking X, we can assume that any irreducible component Tj} of 77 dom-
inates an irreducible component Ty of T'. In fact, given an irreducible component Tj) which does
not satisfies this condition, p(7Y) is a closed subscheme of X disjoint from the set of generic points
of T and replacing X by X — f(7}), we can throw out T}.

Further, shrinking X again, we can assume that for any pair (73,7p) as in the preceding
paragraph, p(T}) C Tp. In fact, in any case, as p(T}) is closed we get that Ty C p(T}). Let Z be
the closure of p(T}) — Tp in X. Then Z does not contain any generic point of T' (because p(T}) is
irreducible), and p(T}) N (X — Z) C Tp. Thus it is sufficient to replace X by X — Z to ensure this
assumption.

43Recall from 7.1.3 that this means that any irreducible component of 7' dominates an irreducible component
of T.
44Remember that for any scheme X, codimx (@) = +oo.
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Consider again a pair (T(), To) as in the two preceding paragraphs and the induced commutative
square:

Té — X/
(14.1.16.3) PO\L lp
T() — X

We show that the map pq is generically finite. In fact, this will conclude the first step, because
if it is true for any irreducible component T} of T’, we can shrink X again so that the dominant
morphism pg : T} — Tp becomes finite.

Denote by ¢ (resp. ¢) the codimension of Tj in X (resp. Tj) in X'). Note that (14.1.16.2) gives
the inequality ¢’ > c¢. Let ty be the generic point of Ty, 2 the localization of X at tg and consider
the pullback of (14.1.16.3):

W/ > Q/
(14.1.16.4) qol iq
{to} —= Q.

We have to prove that dim(W’) = 0. Consider an irreducible component € of ' containing W’.
As g is still proper birational, €}, corresponds to a unique irreducible component 2y of € such that
¢q induces a proper birational map €y — €. According to [GD67, 5.6.6], we get the inequality

dim(€)) < dim(Q).
Thus, we obtain the following inequalities:
dim(W’') < dim(Qp) — codimg, (W) < dim(€g) — codimg, (W') < dim(2) — codimgy (W').
As this is true for any irreducible component €, of €', we finally obtain:
dim(W’) < dim(Q) — codimg, (W') < ¢ — ¢

and this concludes the first step.

Keeping 7" and T as above, as the map from T” to T” is a Nisnevich covering, it is a split
epimorphism in a neighbourhood of the generic points of 77 in X’. Hence, as the map X' — X
is proper and birational, we can find a neighbourhood of the generic points of 7" in X over which
the map 7" — T’ admits a section s : T — T”. Let S be a closed subset of X" such that
T" = s(T') 11 S (which exists because X" — X' is étale). The map (X" —T") 11 (X" - 85) — X'
is then a Nisnevich covering. Replacing X" by (X" —T")II (X" — S) (and X" by the pullback of
X" — X" along (X" —=T")II (X" - S) — X'), we may assume that the induced map 7" — T" is
an isomorphism, without modifying further the data f, p, T and T’. This gives property (iv) and
ends the proof the lemma. O

14.1.17. Let .7 be a full Open-fibred subcategory of Ho(.#') (where Open stands for the class of
open immersions). We assume that 7 has the following properties.

(a) for any scheme X in ./, 7 (X) is a thick subcategory of Ho(.#)(X) which contains the
objects 1x{n}, n € 7;

(b) for any separated morphism of finite type f: X — Y in .%, 7 is stable under fi;

(¢) for any dense open immersion j : U — X, with X regular, which is the complement of a
strict normal crossing divisor, Rj.(1y{n}) is in Z(U) for any n € 7.

Properties (a) and (b) have the following consequences: any 7-constructible object belongs to 7;
given a closed immersion ¢ : Z — X with complement open immersion j : U — X, an object M
of Ho(.#)(X) belongs to 7 (X) is and only if 7*(M) and Li*(M) belongs to .7 (U) and .7 (Z)
respectively; for any scheme X in .#, the condition that an object of Ho(.#)(X) belongs to .7 (X)
is local over X for the Zariski topology.
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Theorem 14.1.18. Under the assumptions of 14.1.17, if moreover Ho( ) is Q-linear and sep-
arated, then, given a morphism of finite type f : X — Y, for any 7-constructible object M of
Ho(.#)(X), the object Rf.(M) belongs to T (Y).

Proof. Tt is sufficient to prove that, for any dense open immersion j : U — X, and for any n € 7,
the object Rj.(1y{n}) is in . Indeed, assume this is known. We want to prove that R f. (M)
is in 7 (Y) whenever M is 7-constructible. We deduce from property (b) of 14.1.17 and from
proposition 14.1.14 that it is sufficient to consider the case where M = 1x{n}, with n € 7. Then,
as this property is assumed to be known for dense open immersions, by an easy Mayer-Vietoris
argument, we see that the condition that Rf.(1x{n}) belongs to .7 is local on X with respect to
the Zariski topology. Therefore, we may assume that f is separated. Consider a compactification
of f,i.e. a commutative diagram

Yy >y
|
!
X
with j a dense open immersion, and f proper. By property (b) of 14.1.17, we may assume that
f =7 is a dense open immersion.

Let j : U — X be a dense open immersion. We shall prove by induction on the dimension of
X that , for any n € 7, the object Rj.(1y{n}) is in 7. The case where X is of dimension < 0
follows from the fact the map j is then an isomorphism, which implies that Lj; ~ Rj., and allows
to conclude (because .7 is Open-fibred).

Assume that dim X > 0. Following an argument used by Gabber [Gab05] in the context of
{-adic sheaves, we shall prove by induction on ¢ > 0 that there exists a closed subscheme T' C X of
codimension > ¢ such that, for any n € 7, the restriction of Rj.(1y{n}) to X =T isin 7 (X —-T).
As X is of finite dimension, this will obviously prove theorem 14.1.18.

The case where ¢ = 0 is clear: we can choose T such that X — T = U. If ¢ > 0, we choose
a closed subscheme T of X, of codimension > ¢ — 1, such that the restriction of Rj.(1y{n}) to
X —Tisin 7. It is then sufficient to find a dense open subscheme V of X, which contains all
the generic points of T, and such that the restriction of Rj.(1y{n}) to V isin .7: for such a V,
we shall obtain that the restriction of Ryj.(1y{n}) to VU (X —T) is in .7, the complement of
V U (X — T) being the support of a closed subscheme of codimension > ¢ in X. In particular,
using the smooth base change isomorphism (for open immersions), we can always replace X by a
generic neighbourhood of T'. It is sufficient to prove that, possibly after shrinking X as above, the
pullback of Rj.(1y{n}) along T — X is in .7 (as we already know that its restriction to X — T
isin 7).

We may assume that T is purely of codimension ¢. We may assume that we have data as
in points (i) and (ii) of lemma 14.1.16. We let j/ : U’ — X’ denote the pullback of j along
p: X’ — X. Then, we can find, by induction on ¢, a closed subscheme T in X’, of codimension
> ¢ — 1, such that the restriction of Rj,(1y/{n}) to X’ —T" is in 7. By shrinking X, we may
assume that conditions (iii) and (iv) of lemma 14.1.16 are fulfilled as well.

For an X-scheme w : W — X and a closed subscheme Z C W, we shall write

©(W, Z) = Rw, Ri, Li* Rjw . jiy (Iw{n}),

where i : Z — W denotes the inclusion, and jw : Wy — W stands for the pullback of j along w.
This construction is functorial with respect to morphisms of pairs of X-schemes: if W’ — W is a
morphism of X-schemes, with Z’ and Z two closed subschemes of W’ and W respectively, such
that Z’ is sent to Z, then we get a natural map (W, Z) — (W', Z’). Remember that we want
to prove that (X, T) is in 7. This will be done via the following lemmas (which hold assuming
all the conditions stated in lemma 14.1.16 as well as our inductive assumptions).

Lemma 14.1.19. The cone of the map o(X,T) — (X', T") is in T.
The map ¢(X,T) — (X', T") factors as
P(X,T) = (X', p~ (1)) — (X', T").
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By the octahedral axiom, it is sufficient to prove that each of these two maps has a cone in 7.
We shall prove first that the cone of the map (X', p~}(T)) — (X', T’) is in Z. Given an
immersion a : § — X', we shall write

Ms = a La*(M) .
We then have distinguished triangles
Mp71(T),T/ — Mp—l(T) — MT/ — Mp—l(T),T/ [1] .

For M = Rj.(1y/{n}) (recall j' is the pullback of j along p) the image of this triangle by Rp.
gives a distinguished triangle

Rp, (M1 (7)—7/) = (X', p71(T)) = @(X', T") — Rp«(Mp-1(7)—7/)[1] .

As the restriction of M = Rj,(1y{n}) to X’ — T’ is in Z by assumption on T”, the object
My, (1y—1 is in 7 as well (by property (b) of 14.1.17 and because .7 is Open-fibred), from which
we deduce that Rp.(M,-1(py_7v) is in 7 (using the condition (iii) of lemma 14.1.16 and the
property (b) of 14.1.17).

Let V be a dense open subscheme of X such that p~1(V) — V is an isomorphism. We
may assume that V' C U, and write i : Z — U for the complement closed immersion. Let
py : U’ = p~1(U) — U be the pullback of p along j, and let Z be the reduced closure of Z in X.
We thus get the commutative squares of immersions below,

7

Z7—t=7z 7 —t 7

zl ll and 1\L lz’

U——=X U——X'
J i’

where the square on the right is obtained from the one on the left by pulling back along p : X’ — X.
As p is an isomorphism over V, we get by cdh-descent (proposition 3.3.9) the homotopy pullback
square below.

1y{n} Rpu «(1y/{n})

| |

Ri, Li*(1z{n}) — Ri. Li* Rpy..(1y-{n})

If a : T — X denotes the inclusion, applying the functor Ra, La* Rj, to the commutative square
above, we see from the proper base change formula and from the identification Rj, Ri, ~ Rl, Rk,
that we get a commutative square isomorphic to the following one

(X, T) o(X',p~(T))

| |

QD(Z?ZQT) H@(Z/apil(zmT))v

which is thus homotopy cartesian as well. It is sufficient to prove that the two objects ¢(Z, ZNT)
and p(Z',p~Y(ZNT)) are in 7. It follows from the proper base change formula that the object
©(Z,Z NT) is canonically isomorphic to the restriction to 7' of Rl, Rk.(1z{n}). As dimZ <
dim X, we know that the object Rk.(1z{n}) is in 7. By property (b) of 14.1.17, we obtain
that o(Z,ZNT) is in 7. Similarly, the object o(Z’,p~(Z NT)) is canonically isomorphic to
the restriction of Rp, RI.REK.(1z{n}) to T, and, as dimZ’ < dim X’ (because, p being an
isomorphism over the dense open subscheme V of X, Z’' does not contain any generic point of
X", Rk!(1z:{n}) is in 7. We deduce again from property (b) of 14.1.17 that ¢(Z’,p~1(ZNT))

is in .7 as well, which achieves the proof of the lemma.

Lemma 14.1.20. The map (X', T") — o(X",T") is an isomorphism in Ho(.#)(X).
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Condition (iv) of lemma 14.1.16 can be reformulated by saying that we have the Nisnevich distin-
guished square below.

X" 71" > X

X -T——X'

This lemma follows then by Nisnevich excision (proposition 3.3.4) and smooth base change (for
étale maps).

Lemma 14.1.21. Let T"" be the pullback of T along the finite surjective morphism X" — X",
The map (X", T") — (X", T") is a split monomorphism in Ho(.#)(X).

We have the following pullback squares

/11
T/I/ t > XII/ <‘7 U///

Lk

T id X" J U’

"

in which 7" and j” denote the pullback of j along pu and pug respectively, while s and t are the
inclusions. By the proper base change formula applied to the left hand square, we see that the
map (X", T") — (X", T"") is isomorphic to the image of the map

R (1 {n}) — Ra. Ry" R (Ly {n}) — Rao RG (L {n}).
by Rf. Ls*, where f : T” — T is the map induced by p (note that f is proper as 7" ~ T’ by
assumption). As Rg. Rj?” ~ Rj! Rqu,«, we are thus reduced to prove that the unit map
1yr{n} — Rqu«(Ly»{n})

is a split monomorphism. As X” is normal (because X’ is so by assumption, while X" — X' is
étale), this follows immediately from corollary 3.3.39.
Now, we can finish the proof of theorem 14.1.18. Consider the Verdier quotient

D = Ho(#)(X)/ T (X).

We want to prove that, under the conditions stated in lemma 14.1.16, we have ¢(X,T) ~ 0 in D.
Let m: T — T be the map induced by puq: X" — X. If a : T"" — Y denotes the map induced
by g : X" — Y, and jy : Yy — Y the pullback of j by f, we have the commutative diagram
below.

(X, T) o(X",T")

\/

R, La* Rjy . (1y, {n})

By virtue of lemmas 14.1.19, 14.1.21, and 14.1.20, the horizontal map is a split monomorphism
in D. It is thus sufficient to prove that this map vanishes in D, for which it will be sufficient
to prove that Rm, La* Rjy .« (1y,{n}) is in 7. The morphism = is finite (by construction, the
map 7" — T’ is an isomorphism, while the maps 7"/ — T" and T" — T are finite). Under this
condition, 7 is stable under the operations R, and La*. To finish the proof of the theorem,
it remains to check that Rjy,«(1y, {n}) is in 7, which follows from property (c) of 14.1.17 (and
additivity). O

Definition 14.1.22. We shall say that Ho(.#) is weakly 7-pure (or simply weakly pure) if it
satisfies the following two conditions.
(a) For any closed immersion i : Z — X between regular schemes in .7, the image of 1x{n},
n € 7, by the exceptional inverse image functor i' : Ho(.#)(X) — Ho(.#)(Z) is 7-
constructible.
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(b) For any scheme X, any n € 7, and any 7-constructible object M in Ho(.#)(X), the object
RHomx (1x{n}, M) is 7-constructible.

Remark 14.1.23. Condition (b) of the definition above will come essentially for free if the ob-
jects 1x{n} are ®-invertible with 7-constructible ®-quasi-inverse (which will hold in practice,
essentially by definition).

Ezxample 14.1.24. By virtue of theorem 13.4.1, the motivic category DMy is weakly pure.

Lemma 14.1.25. Assume that Ho(#) is weakly T-pure. Let i : Z — X a closed immersion, with
X regular, and Z the support of a strict normal crossing divisor. Then i'(1x{n}) is T-constructible
for anyn € 7. As a consequence, if j : U — X denotes the complement open immersion, then
Rj.(1y{n}) is T-constructible for any n € 7.

Proof. The first assertion follows easily by induction on the number of irreducible components of
Z, using proposition 14.1.7. The second assertion follows from the distinguished triangles

Ri, i'(M) — M — Rj, j*(M) — R, i'(M)[1]
and from lemma 14.1.10. O
Theorem 14.1.26. Assume that Ho(#) is Q-linear, separated, and weakly T-pure. Then, for
any morphism of finite type f: X — Y, the functor
RS, : Ho(.4/)(X) — Ho(.4)(Y)
preserves T-constructible objects.

Proof. By virtue of propositions 14.1.5 and 14.1.12 as well as of lemma 14.1.25, if Ho(.#) is weakly
T-pure, we can apply theorem 14.1.18, where 7 stands for the subcategory of T-constructible
objects. O

Corollary 14.1.27. Assume that Ho(.#) is Q-linear, weakly T-pure, and separated. For any
scheme X, and for any couple of T-constructible objects M and N in Ho(.#)(X), the object
RHomx (M, N) is T-constructible.

Proof. 1t is sufficient to treat the case where M = Lfj(1y{n}), forn € T and f : ¥ — X a
smooth morphism. But then, we have, by transposition of the Sm-projection formula, a natural
isomorphism:

RHomx(M,N) ~ Rf. RHom(1y{n}, f*(N)).

This corollary follows then immediately from proposition 14.1.5 and from theorem 14.1.26. O

Corollary 14.1.28. Assume that Ho(.#) is Q-linear, weakly T-pure, and separated. For any
closed immersion i : Z — X, the functor

i': Ho(#)(X) — Ho(.4)(Z)
preserves T-constructible objects.

Proof. Let j : U — X be the complement open immersion. For an object M of Ho(.Z)(X), we
have the following distinguished triangle.

Ri,i'(M) — M — Rj, j*(M) — Ri, i'(M)[1].

By virtue of proposition 14.1.7 and theorem 14.1.26, if M is 7-constructible, then Rj, j*(M) have
the same property, which allows to conclude. O

Lemma 14.1.29. Let f: X — Y be a separated morphism of finite type. The condition that the
functor f' preserves T-constructible objects in Ho(.#) is local over X and over Y for the Zariski
topology.
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Proof. If u : X’ — X is a Zariski covering, then we have, by definition, u* = ', so that, by
proposition 14.1.7, the condition that f' preserves T-constructibility is equivalent to the condition
that u* f' ~ (fu)' preserves T-constructibility. Let v : Y/ — Y be a Zariski covering, and consider
the following pullback square.

X’L>X

)b
Y —>Y

We then have a natural isomorphism u* f' ~ ¢' v*, and, as wu is still a Zariski covering, we deduce
again from proposition 14.1.7 that, if ¢' preserves 7-constructibility, so does f'. O

Proposition 14.1.30. Assume that Ho(#) is Q-linear, weakly T-pure, and separated. Then, for
any separated morphism of finite type f : X — Y, the functor

'+ Ho(.)(Y) — Ho(.4)(X)
preserves T-constructible objects.

Proof. By virtue of the preceding lemma, we may assume that f is affine. We can then factor f
as an immersion ¢ : X — AY followed by the canonical projection p : Ay, — Y. The case of an
immersion reduces to the case of an open immersion (14.1.5) and to the case of a closed immersion
(14.1.28). Thus we may assume that f = p, in which case p' ~ p*(—)(n)[2n], so that we conclude
by 14.1.5 and 14.1.10. O

In conclusion, we have proved:

Theorem 14.1.31. If Ho(#) is Q-linear, weakly T-pure, and separated, then T-constructible
objects of Ho(M) are closed under the siz operations of Grothendieck (induced by morphisms of
finite type). In particular, Ho(# ). is a motivic category.

14.2. Continuity.

14.2.1. Let {S,}aca be a pro-object in ., with transition maps in &, and such that S =
liinae s S, is representable in . (we assume that A is a partially ordered set to keep the notations
simple). For each index «, we denote by p,, : S — S, the canonical projection. Given an index
ap € A and an object E,, in .#(S,,), we write E, for the pullback of E,, along the map
So. — Sa, and put E = pi (E,).

For each index o € A, we choose a small set I, (resp. J,) of generating cofibrations (resp. of
generating trivial cofibration) in Ho(.#Z)(S,). We also choose a small set I (resp. J) of generating
cofibrations (resp. of generating trivial cofibration) in Ho(.#)(S).

Consider the following assumptions.

(a) We have I C |JyeqPh (o) and J C Uyeq i (Ja)-
(b) For any index oy, if Cy, and E,, are two objects of .4 (Sy, ), with Cy, either a source or
a target of a map in I, U J,,, the natural map
l.ig Hom/fl(Sa)(Com Ea) - Hom//l(S)(Ca E)
acA
is bijective.
Proposition 14.2.2. Under the assumptions of 14.2.1, for any index ag € A, the pullback functor
Dhy ¢ M (Sa,) — A(S) preserves fibrations and trivial fibrations. Moreover, given an index
ag € A, as well as two objects Coy and Eqy in M (Sa,), if Co, belongs to smallest full subcategory
of Ho(#)(Sa,) which is closed under finite homotopy colimits and which contains the source and
targets of 1., , then, the canonical map
lim Hompo(.)(5.)(Cas Ea) — Hompo(z)(s)(C, E)
acA
is bijective.
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Proof. We shall prove first that, for any index ag € A, the pullback functor p;, = preserves fibrations
and trivial fibrations. By assumption, for any a > «g, the pullback functor along the &-morphism
Sa — Sa, is both a left Quillen functor and a right Quillen functor. Let E,, — F,, be a trivial
fibration (resp. a fibration) of .#(S,,). Let i : C — D a generating cofibration (resp. a generating
trivial cofibration) in .Z(S). By condition (a) of 14.2.1, we may assume that there exists a; € A,
a cofibration (resp. a trivial cofibration) in, : Co, — Dy, such that i = p}, (ia,). We want to
prove that the map
Hom(D, E) — Hom(C, E) Xgom(c,ry Hom(D, F)

is surjective. But, by condition (b) of 14.2.1, this map is isomorphic to the filtered colimit of the
surjective maps

Hom(Dq, Ey) — Hom(Ca, Eo) XHom(Cy,Fy) Hom(Dq, Fi)

with « > sup(ag, 1), which proves the first assertion. To prove the second assertions, we may
assume that C,, is cofibrant and that E,, if fibrant. The set of maps from a cofibrant object
to a fibrant object in the homotopy category of a model category can be described as homotopy
classes of maps. Therefore, using the fact that p}, preserves cofibrations (and trivial cofibrations),
fibrations and trivial cofibrations, we see it is sufficient to prove that the map

h_H)l Hom/fl(Sa)(Cou Ea) - Hom(//l(S)(Cv E)

a€cA
is bijective for some nice cofibrant replacement of C,,. But the assumptions on C,, imply that
it is weakly equivalent to an object CY, such that the map @ — C/, belongs to the smallest
class of maps in #(S,,), which contains I,,, and which is closed under pushouts and (finite)
compositions. We may thus assume that Co, = C}, . In that case, Cy, is in particular contained
in the smallest full subcategory of .#(S,,) which is stable by finite colimits and which contains
the source and targets of I,,. As filtered colimits commute with finite limits in the category of
sets, we conclude by using again condition (a) of 14.2.1. O

Definition 14.2.3. We say that Ho(.#) is continuous if, given any scheme S in ., and any
projective system of schemes {S,} in ., with affine transition maps, such that S = @a Sq, for
any index «g, and for any object E,, in Ho(.#)(S,,), the map

lim Hompe(.z)(s,)(Ls.{n}; Ea) — Homuo(w)(s)(Ls{n}, £)

a>ap

is bijective for any n € 7.

The property of continuity allows to describe 7-constructible objects over S in terms of 7-
constructible objects over the S,’s as follows.

Proposition 14.2.4. Assume that Ho(#) is continuous. Consider a scheme S in ., as well as a
projective system of schemes {Sq} in . with affine transition maps, such that S = li_ma Sa- Then,
for any index ag, and for any objects Cy, and Eq, in Ho(A)(Sa,), if Cay is T-constructible, then
the canonical map
(14241) h_H)l HomHo(//l)(Sa)(Cou Ea) — HomHo((/ﬂ)(S)(Ca E)

a>ap
is bijective. Moreover, the canonical functor
(14.2.4.2) 2-lim Ho(4#)c(Sa) — Ho(A)c(S)

is an equivalence of monoidal triangulated categories.

Proof. To prove the first assertion, we may assume, without loss of generality, that C,, =
Ms,,, (Xa,){n} for some some smooth S,,-scheme of finite type X,,, and n € 7. Consider an
object E,, in Ho(#)(Sy,). For a > ag, write X, (resp. E,) for the pullback of X,, (resp. of
E,,) along the map S, — S,,. Similarly, write X (resp. FE) for the pullback of X,, (resp. of
E,,) along the map S — S,,. We shall also write E!, (resp. E’) for the pullback of E, (resp. E)
along the smooth map X, — S, (resp. X — S). Then, {X,} is a projective system of schemes
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in .7, with affine transition maps, such that X = lina X.. Therefore, by continuity, we have the
following natural isomorphism, which proves the first assertion.
lim Hompo(z)(s5.) (Ms, (Xa){n}, Ea) = lim Hompye(.z)(x,) (1x, {1}, Eg)
~Homyo(.z)(x)(1x {n}, E)
~Homyo(.z)(s5)(Ms(X){n}, E)

Note that the first assertion implies that the functor (14.2.4.2) is fully faithful. Note that pseudo-
abelian triangulated categories are stable by filtered 2-colimits. In particular, the source of the
functor (14.2.4.2) can be seen as a thick subcategory of Ho(.#Z)(S). The essential surjectivity
of (14.2.4.2) follows from the fact that, for any smooth S-scheme of finite type X, there exists
some index «, and some smooth S,-scheme X,,, such that X ~ S xg_ X,; see [GD67, 8.8.2 and
17.7.8]: this implies that the essential image of the fully faithful functor (14.2.4.2) contains all the
objects of shape Mg(X){n} for n € 7 and X smooth over S, so that it contains Ho(.#).(S), by
definition. O

An example:
Theorem 14.2.5. The motivic categories Da1 5 and DMg are continuous.

Proof. Tt is easy to check that, if Da1  is continuous (for A = Q), then Ho(Hg-mod) ~ DMy is
continuous as well. Hence it is sufficient to prove that D1 4 is continuous. We have fully faithul
functors
Da1A(S) — Dara(9)

(see 6.1.9), so that is is sufficient to prove that D1  is continuous. Using proposition 5.3.30, it
is even sufficient to prove that Dzﬁi A is continuous. Let Shy; (S, A) be the abelian category of
Nisnevich sheaves of A-modules over the category of affine S-schemes of finite type. We can see
DzﬁlyA(S) as the full subcategory of the derived category of D(Shy;s(S,A)) spanned by Al-local
complexes. As, for any morphism of schemes f : T — S, the pullback functor

f* : D(Shy;s (S, A)) — D(Shys(S, A))

preserves Al-local complexes, it is sufficient to prove the property of continuity, as stated in
definition 14.2.3, for the derived categories of Nisnevich sheaves. By Zariski descent, it is sufficient
to prove the property stated in definition 14.2.3 in the case where S is affine. Consider the descent
structure (G, H) on the category Shy;s(S,A) of Nisnevich sheaves over the category of affine S-
schemes of finite type (in the sense of [CD09, definition 2.2]), where G is the generating family made
of objects of shape Ag(X), for X affine of finite type over S, while H is made of the complexes of
shape

As(W) L5 Ag(U) @ As(V) Z555 Ag(X)
for any Nisnevich distinguished square made of affine S-schemes of finite type (c¢f. 2.1.15)

w—=v
NV
J
U— X.
This descent structure defines a model category structure on the category C(Shy;(S,A)), whose
weak equivalences are the quasi-isomorphisms; see [CD09, 2.5]. The explicit description of the

generating sets of cofibrations and of trivial cofibrations given by [CD09, 2.2 and 2.3] allow then
to apply directly proposition 14.2.2; thanks to [GD67, 17.7.9]. O

Lemma 14.2.6. Let a : X — Y be a morphism in .. Assume that X = lim X, where {Xq}
is a projective system of smooth affine Y -schemes. If Ho(.#) is continuous, then, for any objects
E and F in Ho(#)(Y), with E T-constructible, there is a canonical isomorphism

La*RHomy (E,F) ~ RHomx (La*(E),La™(F)) .
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Proof. We have
Ra. RHomx (La*(E),La*(F)) ~ RHomy (E,Ra, La*(F)),
so that the map F' — Ra, La*(F)) induces a map
RHomy (E,F) — Ra, RHomx (La*(E),La*(F)),
hence, by adjunction, a map
La*RHomy (E,F) — RHomx (La*(E),La"(F)).

We already know that the later is an isomorphism whenever a is smooth.

Let us write a, : Xo — Y for the structural maps. Let C be a 7-constructible object in
Ho(.#)(X). By proposition 14.2.4, we may assume that there exists an index ap, and a 7-
constructible object C,, in Ho(.#)(X,,), such that, if we write C,, for the pullback of Cy, along
the map X, — Xq, for a > g, we have isomorphisms:

Hom(C, La" RHomy (E, F)) ~lim Hom(Cq, La;, RHomy (E, F))
~lim Hom(Cq, RHomx (La, (E), Lag, (F)))
~lim Hom(C,, ©% L% (E), La,(F))
~Hom(C @% La*(E), La*(F))
~Hom(C,RHomx (La*(E),La*(F))) .
As 7-constructible objects generate Ho(.#)(X), this proves the lemma. O

14.2.7. Let X be a scheme in .. Assume that, for any point x of X, the corresponding morphism
iy @ Spec (ﬁ’}m) — X is in . (where ﬁ?{,m denotes the henselisation of Oy ). Consider at last a
scheme of finite type Y over X, and write

ag : Y, = Spec (ﬁ}z) XxxY =Y
for the morphism obtained by pullback. Finally, for an object FE of Ho(.#)(Y), let us write
E,=La}(FE).

Proposition 14.2.8. Under the assumptions of 14.2.7, if moreover Ho(.#) is continuous, then,
the family of functors

Ho(#)(Y) — Ho(#)(Y,), Er—E,, 2z€X,
18 conservative.

Proof. Let E be an object of Ho(.#)(Y) such that E, ~ 0 for any point x of X. For any 7-
constructible object C' of Ho(.#)(Y'), we have a presheaf of S'-spectra on the small Nisnevich site
of X:
F:Uv+— F(U)=RHom(My (U xx Y),RHomy (C, E)) .

It is sufficient to prove that F(X) is acyclic. As Ho(.#) satisfies Nisnevich descent (3.3.4), it is
sufficient to prove that F' is acyclic locally for the Nisnevich topology, i.e. that, for any point x
of X, the spectrum F(Spec (€% ) is acyclic. Writing Spec (€% ) as the projective limit of the
Nisnevich neighbourhoods of x in X, we see easily, using proposition 14.2.4 and lemma 14.2.6,
that, for any integer i, m;(F'(Spec (ﬁé@l)) ~ Hom(Cy, Ey[i]) ~ 0. O

Recall that a morphism of rings v : A — B is regular if it is flat, and if, for any prime ideal
p in A, with residue field k(p), the x(p)-algebra x(p) ® 4 B is geometrically regular (equivalently,
this means that, for any prime ideal q of B, the A-algebra By is formally smooth for the g-adic
topology). We recall the following great generalization of Neron’s desingularisation theorem:

Theorem 14.2.9 (Popescu). A morphism of noetherian rings u : A — B is regular if and only if
B is a filtered colimit of smooth A-algebras of finite type.

Proof. See [Pop85, Spi99). O
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Proposition 14.2.10. Let S be an excellent noetherian and henselian scheme. Write S for its
completion along its closed point, and assume that both S and S are in .. Consider an S-scheme
of finite type X, and write i : SxgX — X for the induced map. If Ho(A) is continuous, then
the pullback functor

Li* : Ho(.#)(X) — Ho(#)(S xg X)

18 conservative.

Proof. As S is excellent, the map S — Sis regular. By Popescu’s theorem, we can then write
S = liina S, where {S,} is a projective system of schemes with affine transition maps, and such

that each scheme S, is smooth over S. Moreover, as S and S have the same residue field, and as

S is henselian, each map S, has a section. Write X, = S, X X, so that we have X = @a Xa.

Consider a T-constructible object C' and an object E in Ho(.#)(X). Then, as the maps X, — X

have sections, it follows from the first assertion of proposition 14.2.4 that the map
Hompo(.z)(x)(C, E) = Homy o g5, x)(Li"(C), Li*(E))

is a monomorphism (as a filtered colimit of such things). Hence, if Li*(E) ~ 0, for any 7-
constructible object C' in Ho(.#)(X), we have Homyo(z)(x)(C, E) ~ 0. Therefore, as 7-construc-
tible objects generate Ho(.#)(X), we get E ~ 0. O

Proposition 14.2.11. Leta: X — Y be a regular morphism in . If Ho(.#) is continuous, then,
for any objects E and F in Ho(#)(Y), with E 7-constructible, there is a canonical isomorphism

La*RHomy (E,F) ~ RHomx (La*(E),La*(F)) .
Proof. We want to prove that the canonical map
La*RHomy (E,F) - RHomx (La*(E),La*(F))

is an isomorphism, while we already know it is so whenever a is smooth. Therefore, to prove the
general case, we see that the problem is local on X and on Y with respect to the Zariski topology.
In particular, we may assume that both X and Y are affine. By Pospecu’s theorem, we thus have
X = liina X, where {X,} is a projective system of smooth affine Y-schemes. We conclude by
lemma 14.2.6. (]

Proposition 14.2.12. Consider the following pullback square in .
X! 2. x

|

Y’ T> Y
Assume that  is separated of finite type and that b is reqular. Then, if Ho(.#) is continuous, for
any object E in Ho(.#)(Y), there is a canonical isomorphism in Ho(#)(X'):

La* fY(E) ~ ¢' Lb*(E).
Proof. We have a canonical map
f'(E) - Ra, ¢ Lb*(E) ~ f' Rb, Lb*(E) ,
which gives, by adjunction, a natural morphism
La* f(E) — ¢'Lb*(E).

The latter is invertible whenever b is smooth: this is obvious in the case of an open immersion, so
that, by Zariski descent, it is sufficient to treat the case where b is smooth with trivial cotangent
bundle of rank d; in this case, by relative purity (2.4.21 (iii)), this reduces to the canonical
isomorphism a'f' ~ ¢'b' evaluated at E(—d)[—2d]. To prove the general case, as the condition
is local on X and on Y for the Zariski topology, we may assume that f factors as an immersion
X — Py, followed by the canonical projection Py — Y. We deduce from there that it is sufficient
to treat the case where f is either a closed immersion, either a smooth morphism of finite type.
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The case where f (hence also g) is smooth follows by relative purity (2.4.21): we can then replace
f'and ¢' by f* and ¢* respectively, and the formula follows from the fact that La* f* ~ ¢*Lb*.
We may thus assume that f is a closed immersion. As g is a closed immersion as well, the functor
g1 is conservative (it is fully faithful). Therefore, it is sufficient to prove that the map

Lb* fi f/(E) ~ g La* f'(E) — g1 g' Lb*(E)
is invertible. Then, using proposition 14.2.11 (which makes sense because fi preserves T-construc-
tibility by 14.1.12), and the projection formula, we have
Lb* f f'(E) ~ Lb*RHomy (fi(1x), E)
~ RHomy:(Lb" fi(1x),Lb"(F))
~ RHomy: (gi(1x/),Lb*(E))

~ g gI Lb*(E),

which achieves the proof. O

Lemma 14.2.13. Let f : X — Y be a morphism in . Assume that X = @a Xy andY =
lim Yo, where {Xo} and {Ya} are projective systems fo schemes with affine transition maps, while
f is induced by a system of morphisms fo : Xo — Yo. Let ag be some index, Cy,, a T-constructible
object of Ho( M )(Ya,), and Ey, an object of Ho( M )(Xo,). If Ho(A) is continuous, then we have
a natural isomorphism of abelian groups

lim Hompo(.z)(v,)(Cas Rfa,x(Ea)) = Hompo(z)(v) (C, Rf<(E)) .

a>ap

Proof. By virtue of proposition 14.2.4, we have a natural isomorphism

lim Hompo(z)(x,)(Lfa(Ca): Ea) = Hompo( .z (v)(Lf(C), E) .

a>ap

The expected formula follows by adjunction. O
Proposition 14.2.14. Consider the following pullback square in .

X/*Q>X

| lf

YIT>Y

with b regular. If Ho(.#) is continuous, then, for any object E in Ho(.#)(X), there is a canonical
isomorphism in Ho(.#)(Y'):
Lb* Rf(F) ~ Rg. La"(F).

Proof. This proposition is true in the case where b is smooth (by definition of Sm-fibred categories),
from which we deduce, by Zariski separation, that this property is local on Y and on Y’ for the
Zariski topology. In particular, we may assume that both Y and Y are affine. Then, by Popescu’s
theorem 14.2.9, we may assume that Y’ = llna Y., where {Y.} is a projective system of smooth
Y-algebras. Then, using the preceding lemma as well as proposition 14.2.4, we reduce easily the
proposition to the case where b is smooth. O

Proposition 14.2.15. Assume that Ho(.#) is continuous, Q-linear and semi-separated, and
consider a field k, with inseparable closure k', such that both Spec (k) and Spec (k') are in 7.
Given a k-scheme X write X' = k' @, X, and f : X' — X for the canonical projection. Then the
functor

Lf* :Ho(#)(X) — Ho(4)(X")

is an equivalence of categories.
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Proof. Tt follows immediately from proposition 14.2.4 and from proposition 2.1.13 that the functor
Lf* :Ho(4).(X) — Ho(A).(X")

is an equivalence of categories. Similarly, for any objects C' and E in Ho(.Z)(X), if C is 7-
constructible, the map

Hompo(.z)(x)(C, E) — Hompo(z)(x) (Lf*(C), Lf*(E))
is bijective. As 7-constructible objects generate Ho(.#)(X), this implies that the functor
Lf* : Ho(.#)(X) — Ho(4)(X")

is fully faithful. As the latter is essentially surjective on a set of generators, this implies that it is
an equivalence of categories (see 1.3.19). O

Here is a slightly more general version of proposition 13.3.1.

Proposition 14.2.16. The motivic category DMpg is separated on moetherian schemes of finite
dimension.

Proof. As in the proof of 13.3.1, it is sufficient to prove that, given a finite surjective morphism
f: T — S, the pullback functor f* : DMp(S) — DMgp(T) is conservative. By virtue of proposition
14.2.8, we may assume that S is henselian. Using the localization property, we may even assume
(by induction on the dimension) that S is the spectrum of a field. Replacing T by its reduction,
we may thus assume that both S and T are regular. We can then conclude by a trace argument,
as in the proof of proposition 13.3.1. (]

Corollary 14.2.17. The motivic category DMy satisfies étale descent on noetherian schemes of
finite dimension.

Proof. This follows from the preceding proposition and from theorem 3.3.31. O

14.3. Duality. The aim of this section is to prove a local duality theorem in Ho(.#) (see 14.3.28
and 14.3.31).

14.3.1. Recall that an alteration is a proper surjective morphism p : X’ — X which is generically
finite, i.e. such that there exists a dense open subscheme U C X over which p is finite.

Definition 14.3.2 (de Jong). Let X be a noetherian scheme endowed with an action of a finite
group G. A Galois alteration of the couple (X, G) is the data of a finite group G’, of a surjective
morphism of groups G’ — G, of an alteration X’ — X, and of an action of G’ on X', such that:
(i) the map X’ — X is G'-equivariant;
(ii) for any irreducible component T' of X, there exists a unique irreducible component 7" of
X' over T, and the corresponding finite field extension

k(TS c k(T')%
is purely inseparable.
In practice, we shall keep the morphism of groups G’ — G implicit, and we shall say that (X’ —
X, @) is a Galois alteration of (X, G).
Given a noetherian scheme X, a Galois alteration of X is a Galois alteration (X' — X, Q)

of (X, e), where e denotes the trivial group. In this case, we shall say that X' — X is a Galois
alteration of X of group G.

Remark 14.3.3. If p : X’ — X is a Galois alteration of group G over X, then, if X and X’ are
normal, irreducible and quasi-excellent, p can be factored as a radicial finite surjective morphism
X" — X, followed by a Galois alteration X’ — X" of group G, such that k(X") = k(X")¢ (just
define X" as the normalization of X in k(X’)%). In other words, up to a radicial finite surjective
morphism, X is generically the quotient of X’ under the action of G.
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Definition 14.3.4. A noetherian scheme S admits canonical dominant resolution of singularities
up to quotient singularities if, for any Galois alteration S’ — S of group G, and for any G-
equivariant nowhere dense closed subscheme Z' C S’ there exists a Galois alteration (p : S” —
S, G") of (S',@G), such that S” is regular and projective over S, and such that the inverse image
of Z' in S” is contained in a G’-equivariant strict normal crossing divisor (i.e. a strict normal
crossing divisor whose irreducible components are stable under the action of G').

A noetherian scheme S admits admits canonical resolution of singularities up to quotient singu-
larities if any integral closed subscheme of S admits canonical dominant resolution of singularities
up to quotient singularities.

A noetherian scheme S admits wide resolution of singularities up to quotient singularities if,
for any separated S-scheme of finite type X, and any nowhere dense closed subscheme Z C X,
there exists a projective Galois alteration p : X’ — X of group G, with X’ regular, such that,
in each connected component of X', Z’/ = p~1(Z) is either empty, either the support of a strict
normal crossing divisor.

Theorem 14.3.5 (de Jong). If an excellent noetherian scheme of finite dimension S admits
canonical resolution of singularities up to quotient singularities, then any separated S-scheme of
finite type admits canonical resolution of singularities up to quotient singularities.

Proof. Let X be a integral separated S-scheme of finite type. There exists a finite morphism
S — S, with S’ integral, an integral dominant S’-scheme X’ and a radicial extension X’ — X
over S, such that X’ has a geometrically irreducible generic fiber over S’. It follows then from
(the proof of) [dJ97, theorem 5.13] that X’ admits canonical dominant resolution of singularities
up to quotient singularities, which implies that X has the same property. O

Corollary 14.3.6 (de Jong). Let S be an excellent noetherian scheme of dimension lesser or equal
to 2. Then any separated scheme of finite type over S admits canonical resolution of singularities
up to quotient singularities. In particular, S admits wide resolution of singularities up to quotient
singularities.

Proof. See [dJ97, corollary 5.15]. O

If we work with rational coefficients, resolution of singularities up to quotient singularities is
almost as good as classical resolution of singularities: we have the following replacement of the
blow-up formula.

Theorem 14.3.7. Assume that Ho(.#) is Q-linear and separated. Let X be a scheme in 7.
Consider a Galois alteration p : X' — X of group G, as well as a closed subscheme Z C X, such
that U = X — Z is normal, and such that the induced map py : U' = p~Y(U) — U is a finite
morphism. Then the pullback square

(14.3.7.1) ql ip

induces an homotopy pullback square
M ————— (Rp. Lp* (M))°
(14.3.7.2) l i
Ri, Li* (M) — (Ri,Rq. Lq* Li*(M))¢
for any object M of Ho(.#)(X).
Proof. We already know that, for any object N of Ho(.#)(U), the map
N — (Rpy,, Lpj; (N)©
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is an isomorphism (3.3.38). The proof is then similar to the proof of condition (iv) of theorem
3.3.36. 0

Remark 14.3.8. Under the assumptions of the preceding theorem, applying the total derived
functor RHomx (—, F) to the homotopy pullback square (14.3.7.2) for M = 1x, we obtain the
homotopy pushout square

(irq ¢'i'(E))e — (mp'(E))c
(14.3.8.1) l l

iyi'(E) E

for any object E of Ho(.#Z)(X) .

Corollary 14.3.9. Assume that Ho(.#') is Q-linear and separated. Let B be a scheme in .7,
admitting wide resolution of singularities up to quotient singularities. Consider a separated B-
scheme of finite type S, endowed with a closed subscheme T C S. The category of T-constructible
objects in Ho(A)(S) is the smallest thick triangulated subcategory which contains the objects of
shape Rf.(1x{n}) for n € 7, and for f : X — S a projective morphism, with X regular and
connected, such that f=*(T)eq is either empty, either X itself, either the support of a strict
normal crossing divisor.

Proof. Let Ho(.#')(S)’ be the smallest thick triangulated subcategory of Ho(.#)(.S) which contains
the objects of shape Rf.(1x{n}) forn € 7 and f : X — S a projective morphism with X regular
and connected, while f~1(T),cq is empty, or X itself, or the support of a strict normal crossing
divisor. We clearly have Ho(.#)(S) C Ho(.#).(S) (14.1.12). To prove the reverse inclusion,
by virtue of 14.1.14, it is sufficient to prove that, for any n € 7, and any projective morphism
f:X — S, the object Rf«(1x{n}) belongs to Ho(.#)(S)’. We shall proceed by induction on the
dimension of X. If X is of dimension < 0, we may replace it by its reduction, which is regular.
If X is of dimension > 0, by assumption on B, there exists a Galois alteration p : X’ — X of
group G, with X’ regular and projective over S (and in which T becomes either empty, either X’
itself, either the support of a strict normal crossing divisor, in each connected component of X”).
Choose a closed subscheme Z C X, such that U = X — Z is a normal dense open subscheme, and
such that the induced map r : U’ = p~}(U) — U is a finite morphism, and consider the pullback
square (14.3.7.1). As Z and Z’ = p~1(Z) are of dimension smaller than the dimension of X, we
conclude from the homotopy pullback square obtained by appyling the functor Rf. to (14.3.7.2)
for M = 1x{n},ner. O

Definition 14.3.10. Let S be a scheme in .. An object R of Ho(.#)(S) is 7-dualizing if it
satisfies the following conditions.

(i) The object R is T-constructible.
(ii) For any 7-constructible object M of Ho(.#)(S), the natural map

M — RHomg(RHomg(M, R), R)
is an isomorphism.

Remark 14.3.11. If Ho(.#) is weakly 7-pure, Q-linear and separated, then, in particular, the six
operations of Grothendieck preserve T-constructibility in Ho(.#) (14.1.31). Under this assumtion,
for any scheme X in ., and any ®-invertible object U in Ho(.#)(X) which is 7-constructible,
its quasi-inverse is 7-constructible: the quasi-inverse of U is simply its dual U = RHom(U, 1),
which is T-constructible by virtue of 14.1.27.

Proposition 14.3.12. Assume that Ho(.#) is weakly T-pure, Q-linear and separated, and con-
sider a scheme X in 7.

(i) Let R be a T-dualizing object, and U be a T-constructible ®-invertible object in Ho(.#)(X).
Then U ®§ R is T-dualizing.
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(i) Let R and R’ be two T-dualizing objects in Ho(.#)(X). Then the evaluation map
RHoms(R,R') @5 R — R’
is an isomorphism.
Proof. This follows immediately from [Ayo07a, 2.1.139). O

Proposition 14.3.13. Consider an open immersion j : U — X in .. If R is a T-dualizing object
in Ho(.#)(X), then j'(R) is T-dualizing in Ho(.#)(U).
Proof. If M is a T-constructible object in Ho(.#)(U), then ji(M) is 7-constructible, and the map
(14.3.13.1) Ji(M) — RHomx (RHomx (ji(M), R), R)
is an isomorphism. Using the isomorphisms of type

M ~ j* ji(M) =j'5(M) and j*RHomx(A,B)~RHomy(j*(A),5"(B)),
we see that the image of the map (14.3.13.1) by the functor j* = j' is isomorphic to the map
(14.3.13.2) M — RHomy(RHomy (M, 5 (R)),j'(R)),
which proves the proposition. O

Proposition 14.3.14. Let X be a scheme in .7, and R an object in Ho(. A4 )(X). Assume there
exists an open covering X = J;c; U; such that the restriction of R on each of the open subschemes
Ui is T-dualizing in Ho(.#)(U;). Then R is T-dualizing.

Proof. We already know that the property of 7-constructibility is local with respect to the Zariski

topology (14.1.7). Denote by j; : U; — X the corresponding open immersions, and put R; = j!(R).

Let M be a 7-constructible object in Ho(.#)(X). Then, for all i € I, the image by j; = j! of the

map

M — RHomx(RHomx (M, R),R)
is isomorphic to the map
]:(M) — RHomUi (RHomUi (j;k (M), Ri); RZ) .

This proposition thus follows from the property of separation with respect to the Zariski topology.
O

Corollary 14.3.15. Let f : X — Y be a separated morphism of finite type in . Given an object

R of Ho(.#)(Y), the property for f'(R) of being a T-dualizing object in Ho(.#)(X) is local over

X and over'Y for the Zariski topology.

Proposition 14.3.16. Assume that Ho(.#') is weakly T-pure. Leti: Z — X be a closed immer-

sion and R be a T-dualizing object in Ho(M)(X). Then i‘(R) is T-dualizing in Ho(M)(Z).

Proof. As Ho(.#) is weakly 7-pure, we already know that i'(R) is 7-constructible. For any objects
M and R of Ho(.#)(Z) and Ho(.# )(X) respectively, we have the identification:
iyRHomz(M,i'(R)) ~ RHomx (iy(M), R) .
Let 7 : U — X be the complement immersion. Then we have
j'RHomx (i1(M), R) ~ RHomy (% ir(M), j'(R)) ~ 0,

so that

RHomx (iy(M),R) ~ iy Li*RHomx (iy(M), R) .
As iy is fully faithful, this provides a canonical isomorphism

Li*RHomx (iy(M), R) ~ i'RHomx, (iy(M), R) .
Under this identification, we see easily that the map

iW(M) — RHomx (RHomx (iy(M), R), R)
is isomorphic to the image by 7, of the map
M — RHomyz(RHomz(M,i'(R)),i'(R)).
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As iy is fully faithful, it is conservative, and this ends the proof. O

Proposition 14.3.17. Assume that Ho(.#) is weakly T-pure, Q-linear and separated, and con-
sider a scheme B in . which admits wide resolution of singularities up to quotient singularities.
Consider a separated B-scheme of finite type S, and a T-constructible object R in Ho(.#)(S). The
following conditions are equivalent.

(i) For any separated morphism of finite type f : X — S, the object f'(R) is T-dualizing.
(ii) For any projective morphism f: X — S, the object f'(R) is T-dualizing.
(iii) For any projective morphism f : X — S, with X regular, the object f'(R) is T-dualizing.
(iv) For any projective morphism f: X — S, with X regular, and for any n € T, the map
(14.3.17.1) 1x{n} — RHomx(RHomx(1x{n}, f(R)), f'(R))
is an isomorphism in Ho(.#)(X).
If, furthermore, for any regular separated B-scheme of finite type X, and for any n € T, the object
1x{n} is ®-invertible, then these conditions are equivalent to the following one.
(v) For any projective morphism f: X — S, with X regular, the map

(14.3.17.2) Lx — RHomx(f'(R)), f'(R))
is an isomorphism in Ho(.#)(X).

Proof. Tt is clear that (i) implies (ii), which implies (iii), which implies (iv). Let us check that
condition (ii) also implies condition (i). Let f : X — S be a morphism of separated B-schemes
of finite type, with S regular. We want to prove that f'(lg) is 7-dualizing, while we already
know it is true whenever f is projective. In the general case, by virtue of corollary 14.3.15, we
may assume that f is quasi-projective, so that f = pj, where p is projective, and j is an open
immersion. As f' ~ j'p', we conclude with proposition 14.3.13. Under the additional assumption,
the equivalence between (iv) and (v) is obvious. It thus remains to prove that (iv) implies (ii). It
is in fact sufficient to prove that, under condition (iv), the object R itself is 7-dualizing. To prove
that the map

(14.3.17.3) M — RHomx(RHomx (M, R),R)
is an isomorphism for any 7-constructible object M of Ho(.#Z)(S), it is sufficient to consider the
case where M = Rf.(1x{n}) = fi(lx{n}), where n € 7 and f : X — S is a projective morphism
with X regular (14.3.9). For any object A of Ho(.#)(X), we have canonical isomorphisms
RHoms(fi(A),R) ~ Rf. RHomx (A, f'(R))
= fiRHomx (A, f'(R)),
from which we get a natural isomorphism:
R Homs(RHoms(fi(A), R), R) ~ fyRHomx (RHomx (A, f'(R)), f'(R)).

Under these identifications, the map (14.3.17.3) for M = fi(1x{n}) is the image of the map
(14.3.17.1) by the functor fi. As (14.3.17.1) is invertible by assumption, this proves that R is
T-dualizing. O

Lemma 14.3.18. Let X be a scheme in .7, and R be an object of Ho(.#)(X). The property for
R of being ®@-invertible is local over X with respect to the Zariski topology.

Proof. Let R® = RHom(R, 1x) be the dual of R. The object R is ®-invertible if and only if the
evaluation map
R oY R — 1y
is invertible. Let j : U — X be an open immersion. Then, for any objects M and N in Ho(.#Z)(X),
we have the identification
J*RHomx(M,N) ~ RHomy(j*(M),5*(N)).

In particular, we have j*(R") ~ j*(R)". As j* is monoidal, the lemma follows from the fact that
Ho(.#') has the property of separation with respect to the Zariski topology. O
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Definition 14.3.19. We shall say that Ho(.#) is T-pure (or simply pure) if it satisfies the following
conditions:
(1) Ho(A4) is weakly 7-pure (14.1.22);
(ii) for any closed immersion between regular schemes i : Z — S in .#, the object i'(1g) is
®-invertible (i.e. the functor i'(1g) ®% (—) is an equivalence of categories);
(ii) for any regular scheme X in ., and for any n € 7, the map

1x{n} - RHomx(RHomx(1x{n},1x),1x)
is an isomorphism.
Ezample 14.3.20. The motivic category DMy is pure over excellent noetherian schemes (13.4.1).

Remark 14.3.21. Note that, whenever the objects 1x{n} are ®-invertible (which will be the case
in practice), conditions (i) and (ii) of the preceding definition are equivalent to the condition that
i'(1x) is T-constructible and ®-invertible for any closed immersion i between regular separated
schemes in ., while condition (iii) is then automatic. This principle gives easily the property of
T-purity when . is made of schemes of finite type over some field:

Proposition 14.3.22. Assume that .# consists exactly of schemes of finite type over a field k,
and that one of the following conditions is satisfied:

(a) the field k is perfect;

(b) Ho(.A) is semi-separated (2.1.11).
If the objects 1{n} are ®-invertible in Ho(.# )(Spec (k)) for alln € 7, then Ho( &) is T-pure.
Proof. For any k-scheme of finite type f : X — Spec (k), as the functor L f* is symmetric monoidal,
the objects 1x{n} are ®-invertible in Ho(.#)(X) for all n € 7. Therefore, as stated in remark
14.3.21, we have only to prove that, for any closed immersion ¢ : Z — X between regular k-schemes
of finite type, the object i'(1x) is ®-invertible and 7-constructible. We may assume that X and
Z are smooth (under condition (a), this is clear, and under condition (b), by virtue of proposition
2.1.13, we may replace k by any of its finite extensions). Using 14.3.18 and 14.1.7, we may also
assume that X is quasi-projective and that Z is purely of codimension ¢ in X, while the normal
bundle of 7 is trivial. This proposition is then a consequence of relative purity (2.4.21), which
gives a canonical isomorphism i'(1x) ~ 1z(—c)[—2¢]. O

Proposition 14.3.23 (Poincaré duality). For any separated smooth morphism of finite type f :
Y — X, the object f'(lx) is @-invertible in Ho(.#)(Y), and we have an isomorphism

flix) @k £ = £
In particular, we have a canonical isomorphism
Mx(Y)~ fif (1x).
If moreover f is proper, then, for any object M of Ho(.#)(X), we have a natural isomorphism
RHomx (fif'(1x), M) ~Rf.(1y) @% M.
In other words, Mx(Y) ~ fif'(1x) is then a rigid object, with dual fi(1y) = Rf.(1y).

Proof. To prove the first assertion, by virtue of lemma 14.3.18, we may assume that f is strictly
quasi-projective, in which case, this follows from relative purity; see theorem 2.4.21 (iii). We have
a natural map

F1(1x) @y f(M) — f1(M)
defined as follows. Such a map corresponds by adjunction to a map
f(1x) — RHomy (Lf*(M), f'(M)) ~ f'RHomx (M, M).
The latter morphism is defined as the image by f' of the unit map
M — RHomx (M, M).
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The property that the map f'(1x)®% f*(M) — f'(M) is invertible is local for the Zariski topology
on X and on Y, so that we assume that f is strictly quasi-projective with trivial cotangent bundle.
We may then conclude again by relative purity.

Observe that, we also have:

Rf(f*(M)) =~ Rf.Homy (1y, M) ~ Rf.RHomy (f*(1x), [*(M)) ~ RHomx (fy(1y), M).
On the other hand:
RHomx (fif'(1x), M) ~ Rf.RHomy (f'(1x), f'(M)).
As, f'(lx) ®@% f*(M) ~ f/(M), and as f'(1x) is invertible, we have canonical isomorphisms
(M) = RHomy (Ly, f*(M)) = RHomy (' (1x), f'(M)),

from which we get:
RHomx (fi(1y), M) ~ RHomx (fif (1x), M).
By the (enriched) Yoneda lemma, we thus get: Mx (V) ~ fif'(1x).
Finally, if f is smooth and proper, we have f; ~ Rf,, so that we also have the following
canonical isomorphisms.

Rf.(1y) ®% M ~ fi(ly) @% M ~ fi(f*(M)) ~ Rf.(f*(M)) ~ RHomx (Mx(Y), M).
This achieves the proof. O

Corollary 14.3.24. Assume that . consists of schemes of finite type over a field k and that
Ho(.#) has the following properties:

(a) it is T-pure;

(b) for any n € 7, 1{n} is rigid;

(c) either k is perfect, either Ho(#) is continuous.
Then, any T-constructible object of Ho(.# ) (k) is rigid.

Proof. By 14.2.15, it is sufficient to treat the case where k is perfect. It is well known that rigid
objects form a thick subcategory of Ho(.#). Thus we conclude easily from corollary 14.3.9 and
proposition 14.3.23. O

Lemma 14.3.25. Assume that Ho(.#) is T-pure. Then, for any projective morphism f: X — S
between reqular schemes in .7, the object f'(1s) is ®-invertible and T-constructible.

Proof. As, for any open immersion j : U — X, one has j* = j', we deduce easily from lemma
14.3.18 (resp. proposition 14.1.7) that the property for f'(1g) of being ®-invertible (resp. 7-
constructible) is local on S for the Zariski topology. Therefore, we may assume that S is separated
over B and that f factors as a closed immersion i : X — P?% followed by the canonical projection
p: P% — S. Using relative purity for p, we have the following computations:

fl(ls) ~i'p(Ls) = i'(Lpy (n)[2n]) ~ i'(1pn)(n)[2n] .

As i is a closed immersion between regular schemes, the object i!<]lpg) is ®-invertible and 7-

constructible by assumption on Ho(.# ), which implies that f'(1g) is ®-invertible and 7-constructible
as well. O

Definition 14.3.26. Let B a scheme in .. We shall say that local duality holds over B in Ho(4)
if, for any separated morphism of finite type f : X — S, with S regular and of finite type over B,
the object f'(1g) is 7-dualizing in Ho(.#)(X).

Remark 14.3.27. By definition, if Ho(.#) is weakly 7-pure, and if local duality holds over B in
Ho(.#), then the restriction of Ho(.#Z) to the category of B-schemes of finite type is 7-pure. A
convenient sufficient condition for local duality to hold in Ho(.#) is the following (in particular,
using the result below as well as proposition 14.3.22, local duality holds almost systematically over

fields).
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Theorem 14.3.28. Assume that Ho(.#) is T-pure, Q-linear and separated, and consider a scheme
B in . which admits wide resolution of singularities up to quotient singularities (e.g. B might be
any scheme which is separated and of finite type over an excellent noetherian scheme of dimension
lesser or equal to 2 in .; see 14.3.6). Then local duality holds over B in Ho(. ).

Proof. Let S be a regular separated B-scheme of finite type. Then, for any separated morphism
of finite type f : X — S, the object f'(1g) is 7-dualizing: lemma 14.3.25 implies immediately
condition (iv) of proposition 14.3.17. The general case (without the separation assumption on S)
follows easily from corollary 14.3.14. O

Proposition 14.3.29. Consider a scheme B in .. Assume that Ho(.#) is T-pure, and that local
duality holds over B in Ho(.#). Consider a regular B-scheme of finite type S.
(i) An object of Ho(.#)(S) is T-dualizing if and only if it is T-constructible and ®-invertible.
(ii) For any separated morphism of S-schemes of finite type f : X — Y, and for any 7-
dualizing object R in Ho(.#)(Y), the object f'(R) is T-dualizing in Ho(.#)(X).

Proof. As the unit of Ho(.#)(S) is 7-dualizing by assumption, proposition 14.3.12 implies that an
object of Ho(.#)(9S) is 7-dualizing if and only if it is 7-constructible and ®-invertible.

Consider a regular B-scheme of finite type S, as well as a separated morphism of S-schemes of
finite type f : X — Y, as well as a 7-dualizing object R in Ho(.#)(Y). To prove that f'(R) is
7-dualizing, by virtue of corollary 14.3.14, we may assume that Y is separated over S. Denote by
u and v the structural maps from X and Y to S respectively. As we already know that v'(1g) is
7-dualizing, by virtue of proposition 14.3.12, there exists a T-constructible and ®-invertible object
U in Ho(.#)(Y) such that U @2 R ~ v'(1g). As the functor Lf* is symmetric monoidal, it
preserves ®-invertible objects and their duals, from which we deduce the following isomorphisms:

u'(Ls) =~ f'v'(Lg)
~ f'(U @} R)
~ f RHomy (U, R)
~ RHomx (Lf*(U"), f(R))
~ RHomx (Lf*(U)", f(R))
~Lf*(U) &% ['(R).

The object a'(1g) being 7-dualizing, while Lf*(U) is 7-constructible and invertible, we deduce
from proposition 14.3.12 that f'(R) is 7-dualizing as well. O

14.3.30. Assume that Ho(.#) is 7-pure, Q-linear and separated, and consider a scheme B in .7,
such that local duality holds over B in Ho(.#). Consider a fixed regular B-scheme of finite type
S, as well as a T-constructible and ®-invertible object R in Ho(.#)(S) (in the case S is of pure
dimension d, it might be wise to consider R = 1g(d)[2d], but an arbitrary R as above is eligible by
14.3.29). Then, for any separated S-scheme of finite type f : X — S, we define the local duality
functor
Dx : Ho(#)(X)" — Ho(4)(X)
by the formula
Dx (M) =RHomx (M, f'(R)).

This functor Dx is right adjoint to itself.

Corollary 14.3.31. Under the assumptions of 14.3.30, we have the following properties.

(a) For any separated S-scheme of finite type X, the functor Dx preserves T-constructible
objects.
(b) For any separated S-scheme of finite type X, the natural map

M — Dx(Dx(M))
is an isomorphism for any T-constructible object M in Ho(.#)(X).
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(c) For any separated S-scheme of finite type X, and for any objects M and N in Ho(.#)(X),
if N is T-constructible, then we have a canonical isomorphism

Dx (M ®% Dx(N)) ~ RHomx (M, N).

(d) For any morphism between separated S-schemes of finite type f : Y — X, we have natural

isomorphisms
Dy (f*(M)) = f{(Dx(M))
J*(Dx (M)) =~ Dy (f'(M))
Dx (fi(N)) = f«(Dy(N))
Dy (N)) ~ Dx (f+(N))

for any T-constructible objects M and N in Ho(.#)(X) and Ho(.Z)(Y) respectively.

Proof. Assertions (a) and (b) are only stated for the record®; see 14.1.27. To prove (c), we see
that we have an obvious isomorphism

Dx (M ®@% P) ~ RHomx (M, Dx(P))

for any objects M and P. If N is T-constructible, we may replace P by Dx(N) and get the
expected formula using (b). The identification Dy f* ~ f' Dx is a special case of the formula
!

RHomy (f*(A), f(B)) ~ f'RHomx (A, B).

Therefore, we also get:
f*Dx ~D? f*Dx ~ Dy f' D% ~ Dy f'.
The two other formulas of (d) follow by adjunction. O

15. COMPARISON THEOREMS
15.1. Comparison with Voevodsky motives.
15.1.1. We consider the premotivic adjunction of 10.4.1
(15.1.1.1) 7" :Da1,q & DMq : s

For a scheme S, v,(1g) is a (strict) commutative ring spectrum, and, for any object M of DMq(.S),
v« (M) is naturally endowed with a structure of 7. (1g)-module. On the other hand, as we have
the projective bundle formula in DMq(S) (10.3.2), v, (1s) is orientable (11.2.10), which implies
that, for any object M of DMq(S), 7«(M) is an Hp s-module, whence is Hg-local (13.2.15). As
consequence, we get a canonical factorization of (15.1.1.1):

(15.1.1.2) Daiq 25 DMy 25 DMq.

Consider the commutative diagram of premotivic categories
Dat.q —— DMq

(15.1.1.3) pul lw
DAl,Q 14*> MQ

in which the two vertical maps are the canonical enlargements, and, in particular, are fully faithful
(see 6.1.8).

45We have put to much assumptions here: in fact, if Ho(.#) is 7-pure and if local duality holds over B in
Ho(.#), the six Grothendieck operations preserve T-constructible objects on the restriction of Ho(.#) to B-schemes
of finite type; we leave this as a formal exercice for the reader.
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Let ¢ denotes either the qfth-topology or the h-topology. We also have the following commutative
triangle

Y a*
D 2 DM, 2. DM
(15.1.1.4) =ALQ C;im

*
a

in which both a¢* and a* are induced by the t-sheafification functor; see 5.3.34 and 10.4.3. We
obtain from (15.1.1.2), (15.1.1.3), and (15.1.1.4) the commutative diagram of premotivic categories
below, in which x; = ¢*a*y.

DAl,Q L) DMg
(15.1.1.5) pnl lxu

Daiq —=DM, g
From now on, we shall fix an excellent noetherian scheme of finite dimension S.

Theorem 15.1.2. We have canonical equivalences of categories
DMB(S) >~ Dquh’Q(S) ~ DMh’Q(S)

(recall that, for t = qfh,h, DM, q(S) stands for the localizing subcategory of DM, o (S), spanned
by the objects of shape X°Qg(X)(n), where X runs over the family of smooth S-schemes, and
n < 0 is an integer; see 5.5.34).

Proof. Let t denote the qth-topology or the h-topology. We shall prove that the functor
Xg : DMp(S) — DM, o(S5)
is fully faithful, and that its essential image is precisely DM; q. The functor
Bs : DM — Da1 q(S)

is fully faithful, so that its composition with its left adjoint 8* is canonically isomorphic to the
identity. In particular, we get isomorphisms of functors:

Xt = Xt 8" B = a” py B .
The right adjoint of ¢* is fully faithful, and its essential image consists of the objects of Da1 g (5)
which satisfy ¢-descent (5.3.32). On the other hand, the functor py is fully faithful, and an object of
Da1,q(S) satisfies t-descent if and only if its image by py satisfies t-descent (6.1.11). By virtue of
theorem 13.3.2, this implies immediately that xy is fully faithful. Let DM, q(S) be the localizing
subcategory of DM, q(S) spanned by the objects of shape E*°Q(X)(n), where X runs over the
family of smooth S-schemes, and n < 0 is an integer (5.3.34). We know that DM, q(.5) is compactly
generated (see 5.1.28, 5.2.36 and 5.3.31), and that xy is a fully faithful exact functor which preserves
small sums as well as compact objects from DMp(S) to DM, q(S). As, by construction, there
exists a generating family of compact objects of DM, q(S) in the essential image of x4, this implies
that x4 induces an equivalence of triangulated categories DMg(S) ~ DM, q(S) (see 1.3.19). O

Let us underline the following result which completes corollary 13.2.15:

Theorem 15.1.3. Let E be an object of Da1(S, Q). The following conditions are equivalent:
(i) E is a Beilinson motive;
(ii) E satisfies h-descent;
(iti) E satisfies qfh-descent;

Proof. We already know that condition (i) implies condition (ii) (theorem 13.3.2), and condition
(ii) implies obviously condition (iii). It is thus sufficient to prove that condition (iii) implies
condition (i). If E satisfies gfh-descent, then p;(E) satisfies gfh-descent in DM(S, Q) as well. The
commutativity of (15.1.1.4) implies then that py(£) belongs to the essential image of _ (the right
adjoint of 7*). As py is fully faithful, the commutativity of (15.1.1.3) thus implies that E itself
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belongs to the essential image of . (the right adjoint to v*). In particular, E is then a module over
the ring spectrum . (1g), which is itself an Hp-algebra. We conclude by corollary 13.2.15. (]

Theorem 15.1.4. If S is geometrically unibranch (e.g. normal), then the comparison functor
¢* : DMp(S) — DMq(S)
is an equivalence of symmetric monoidal triangulated categories.

Proof. If S is geometrically unibranch, then we know that the composed functor
DMq($) > DMq($) “ DM,q, o(5)
is fully faithful (10.4.4). The commutative diagram

DM (S) —2> DMg () ——% DM, g, o(S)
DMl

Xt
and theorem 15.1.2 imply that ¢* is fully faithful. As ¢* is exact, preserves small sums as well

as compact objects, and as DMq(S) has a generating family of compact objects in the essential
image of ¢*, the functor ¢* has to be an equivalence of categories (1.3.19). O

Remark 15.1.5. Some version of the preceding theorem (the one obtained by replacing DMy by
Ho(Hp-mod)) was already known in the case where S is the spectrum of a perfect field; see [R(A08,
theorem 68]. The proof used de Jong’s resolution of singularities by alterations and Poincaré
duality in a crucial way. The proof of the preceding theorem we gave here relies on proper descent
but does not use any kind of resolution of singularities.

We point out the following important fact about Voevodsky’s motivic cohomology spectrum
Ham,s = 7+(1s) with rational coefficients:

Corollary 15.1.6. (1) For any geometrically unibranch excellent scheme S, the canonical
map
Hp,s = Hms ® Q
s an isomorphism of ring spectra.
(2) For any morphism [ : T — S of excellent geometrically unibranch schemes, the canonical
map
["Hm,s ®Q — Har ® Q
s an isomorphism of ring spectra.
The second part is the last conjecture of Voevodsky’s paper [Voe02] with rational coefficients
(and geometrically unibranch schemes).

Proof. The first part is a trivial consequence of the previous theorem, and the second follows from
the first, as the Beilinson motivic cohomology spectrum is stable by pullbacks. O

15.2. Comparison with Morel motives.

15.2.1. Let S be a scheme. The permutation isomorphism

(15.2.1.1) 7: Q(L)[1] g Q(L)[1] — Q(1)[1] ®g Q(1)[1]

satisfies the equation 72 = 1 in Da1 g (5). Hence it defines an element € in EndDAl_,Q( 5)(Q) which
also satisfies the relation €2 = 1. We define two projectors

-1 1
(15.2.1.2) ey =< — and e = 6‘; .
As the triangulated category D a1 q(S) is pseudo abelian, we can define two objects by the formulze:
(15.2.1.3) Qi =Imey and Q_ =Ime_.

Then for an object M of D1 (5), we set
(15.2.1.4) M;=Q,®M and M_=Q_ogM.
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It is obvious that for any objects M and N of D1 (), one has
(15.2.1.5) Homp,, ,(s)(Mi,Nj) =0 fori,j € {+,—} with i # j.

Denote by Da1.q(S)+ (resp. Da1,q(S)-) the full subcategory of D1 q(S) made of objects
which are isomorphic to some M (resp. some M_) for an object M in D1 g(S). Then (15.2.1.5)
implies that the direct sum functor (M, M_) — M, @ M_ induces an equivalence of triangulated
categories

(15216) (DAl,Q(S)+) X (DA17Q(S),) ~ DA17Q(S) .

We shall call Da1 q(S)+ the category of Morel motives over S. The aim of this section is to
compare this category with DMp(S) (see theorem 15.2.13). This will consist essentially to prove
that Q. is nothing else than Beilinson’s motivic spectrum Hp (which was announced by Morel in
[Mor06b]). The main ingredients of the proof are the description of DMp () as full subcategory of
Da1,q(S), the homotopy t-structure on D1 (), and Morel’s computation of the endomorphism

ring of the motivic sphere spectrum in terms of Milnor-Witt K-theory [Mor03, Mor04a, Mor04b,
Mor06a].

15.2.2. For a little while, we shall assume that S is the spectrum of a field k.
Recall that the algebraic Hopf fibration is the map
A27{0}4}P1 ) (l’,y)*—’[it,y]

This defines, by desuspension, a morphism
n: QM —Q
in Da1,q(5); see [Mor03, 6.2] (recall that we identify D a1 q(S) with SHq(S) and that, under this
identification, Q(1)[1] corresponds to £°°(G,)).
Lemma 15.2.3. We have n = en in Homp , Q(S)(Q(l)[l], Q).
Proof. See [Mor03, 6.2.3]. O

15.2.4. Recall the homotopy t-structure on Da1 q(S5); see [Mor03, 5.2]. To remain close to
the conventions of loc. cit., we shall adopt homological notations, so that, for any object M of
Da1,q(S5), we have the following truncation triangle

TsoM — M — 7<gM — 750 M[1].

We whall write Hy for the zeroth homology functor in the sense of this ¢-structure. This ¢-structure
can be described in terms of generators, as in [Ayo07a, definition 2.2.41]: the category Da1 q(5)>0
is the smallest full subcategory of Da1 q(S) which contains the objects of shape Qg(X)(m)[m]
for X smooth over S, m € Z, and which satisfies the following stability conditions:
(a) Da1,g(S)>0 is stable under suspension; i.e. for any object M in Da1 q(S5)>0, M[1] is in
Da1.q(S8)=0;
(b) Da1,q(S)>0 is closed under extensions: for any distinguished triangle
M —- M- M'"— M[1],
if M" and M" are in D1 q(S)>0, so is M;
(c) Da1,q(S5)>0 is closed under small sums.
With this description, it is easy to see that D1 q(S)>0 is also closed under tensor product (because
the class of generators has this property). The category Da: q(S)<o is the full subcategory of
Da1,q(S) which consists of objects M such that

Homp,, _(s)(Qs(X)(m)[m +n], M) ~ 0

for X/S smooth, m € Z, and n > 0; see [Ayo07a, 2.1.72].
Note that the heart of the homotopy t-structure is symmetric monoidal, with tensor product
®" defined by the formula:
F oG = Hy(F % Q)
(the unit object is Ho(Q)).
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We shall still write n : Ho(Q(1)[1]) — Ho(Q) for the map induced by the algebraic Hopf
fibration.

Proposition 15.2.5. Tensoring by Q(n)[n| defines a t-exact endofunctor of Dar q(S) for any
integer n.

Proof. As tensoring by Q(n)[n] is an equivalence of categories, it is sufficient to prove this for
n > 0. This is then a particular case of [Ayo07a, 2.2.51]. O

Proposition 15.2.6. For any smooth S-scheme X of dimension d, and for any object M of
Da1,q(S), the map
HOIH(QS(X), M) - HOIH(QS(X), Mﬁn)

is an isomorphism for n > d.

Proof. Using [Mor03, lemma 5.2.5], it sufficient to prove the analog for the homotopy t-structure
on Dzﬁi Q(S), which follows from [Mor05, lemma 3.3.3]. O

Proposition 15.2.7. The homotopy t-structure is non-degenerated. Even better, for any object
M of Da1.q(S), we have canonical isomorphisms

Llim7.,M ~M and Rlim7s,M ~0,
n n
as well as isomorphisms

Llim7<,M ~0 and M ~Rlim7<, M.
— = — =

n n

Proof. The first assertion is a direct consequence of propositions 15.2.5 and 15.2.6 (because the
objects of shape Qg(X)(m)i], for X/S smooth, and m,i € Z, form a generating family). As the
objects Qg(X)(m)[m + n| are compact in D1 q(S), the category Da: q(S)<o is closed under
small sums. As Da1 q(S)>0 is also closed under small sums, we deduce easily that the truncation
functors 70 and 7<( preserve small sums, which implies that the homology functor Hy has the
same property. Moreover, if

Co— - —Cp— Chyqg — -

is a sequence of maps in Da1 g(S), then C' = Lli_H)ln C, fits in a distinguished triangle of shape

Po. =P, —c— P,

where s is the map induced by the maps C,, — C,11. This implies that, for any integer ¢, we have
(where the colimit is taken in the heart of the homotopy ¢-structure). As the homotopy t-structure
is non-degenerated, this proves the two formulas
Llim7s,M ~M and Llim7<,M ~0.
— — =
Let X be a smooth S-scheme of finite type, and p, ¢ be some integer. To prove that the map
Hom(Qs(X)(m)[i], M) — Hom(Qg(X)(m)[i], Rlim 7<,, M)
is bijective, we may assume that m = 0 (replacing M by M (—m)[—m] and i by ¢ — m, and using
proposition 15.2.5). Consider the Milnor short exact sequence below, with A = Qg (X)[é]:
0 — lim"Hom(A[1], 7<, M) — Hom(A, Rlim 7<,, M) — lim Hom(A, 7<, M) — 0.

n n n

Using proposition 15.2.6, as liill of a constant functor vanishes, we get that the map

Hom(A4, M) — Hom(A, Rlim 7<,, M)

n
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is an isomorphism. This gives the isomorphism

M ~ RliLHTSnM .
n
Using the previous isomorphism, and by contemplating the homotopy limit of the homotopy cofiber
sequences
TsnM — M — 1<, M,

we deduce the isomorphism Rliiln TsnM ~ 0. O

Lemma 15.2.8. We have Hi € Da1.q(S)>0, so that we have a canonical map
HB — Ho(HB)

in Dar.q(S). In particular, for any object M in the heart of the homotopy t-structure, if M s
endowed with an action of the monoid Ho(Hp), then M has a natural structure of Hp-module in

Da1,q(9)-
Proof. As Hpg is isomorphic to the motivic cohomology spectrum in the sense of Voevodsky
(15.1.6), the first assertion is the first assertion of [Mor03, theorem 5.3.2]. Therefore, the truncation
triangle for Hg gives a triangle

TsoHp — Hp — Ho(Hp) — m>0H5[1],

which gives the second assertion. For the third assertion, consider an object M in the heart of the
homotopy t-structure, endowed with an action of Ho(Hg). Note that Da1 q(S)>0 is closed under
tensor product, so that Hp ®% M is in Da1,q(8)>0. Hence we have natural maps

Hp @§ M — Ho(Hyp @§ M) — Ho(Ho(Hg) ®§ M) = Ho(Hg) @" M .

Then the structural map Ho(Hp) ®" M — M defines a map Hp ®% M — M which gives the
expected action (observe that, as we already know that Hp-modules do form a thick subcategory
of Da1 q(S) (13.2.8), we don’t even need to check all the axioms of an internal module: it is
sufficient to check that the unit Q — Hy induces a section M — Hy ®g M of the map constructed
above). O

Lemma 15.2.9. We have the following exact sequence in the heart of the homotopy t-structure.
Ho(Q()[1]) & Ho(Q) — Ho(Hp) — 0
Proof. Using the equivalence of categories from the heart of the homotopy t-structure to the
category of homotopy modules in the sense of [Mor03, definition 5.2.4], we know that Hy(Hp)
corresponds to the homotopy module K i\/[ ®Q associated to Milnor K-theory (see [Mor03, theorem
5.3.2]), while Hy(Q) corresponds to the homotopy module K" @ Q associated to Milnor-Witt
K-theory (which follows easily from [Mor06a, theorem 3.40]). Considering KM and KMW as
unramified sheaves in the sense of [Mor06al, this lemma is then a reformulation of the isomorphism
KXW(F) [y~ KX (F)
for any field F'; see [Mor06a, remark 2.2]. O

Proposition 15.2.10. We have Hp, ~ Hy, and the induced map Q1 — Hp gives a canonical
isomorphism Hy(Q4) ~ Ho(Hp).

Proof. The map €(1)[1] : Q(1)[1] — Q(1)[1] can be described geometrically as the morphism
associated to the pointed morphism

1:Gp — Gy, t—tt
(see the second assertion of [Mor03, lemma 6.1.1]). In the decomposition
Ki(Gp,) ~k[t,t 7' ~k* 0 Z,

the map ¢ induces multiplication by —1 on Z. Using the periodicity isomorphism KGL(1)[2] ~
KGL, we get the identifications:

Kl(Gm) D HomSH(k)(EOO(Gm)[I], KGL) ~ HOmKGL(KGL, KGL) ~ Kg(k) ~7.
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Therefore, € acts as the multiplication by —1 on the spectrum KGLq, whence on Hg as well. This
means precisely that Hg, ~ Hg. By lemma 15.2.3, the class 27 vanishes in Q, so that, appyling
the (t-exact) functor M — M, to the exact sequence of lemma 15.2.9, we get an isomorphism
HQ(Q+) >~ HO(HB+) >~ HO(HB> O

Corollary 15.2.11. For any object M in the heart of the homotopy t-structure, My is a Beilinson
motive.

Proof. The object M is an Hy(Q)-module, so that M, is an Hy(Q4)-module. By virtue of
proposition 15.2.10, M, is then a module over Ho(Hp), so that, by lemma 15.2.8, M, is naturally
endowed with an action of Hy. O

Remark 15.2.12. Until now, we didn’t really use the fact we are in a Q-linear context (replacing Hp
by Voevodsky’s motivic spectrum, we just needed 2 to be invertible in the preceding corollary).
However, the following result really uses Q-linearity (because, in the proof, we see DMg(S) ~
DMq(S) as a full subcategory of Da1,q(5))-

Theorem 15.2.13 (Morel). For any noetherian scheme of finite dimension S, the map Q4+ — Hp
is an isomorphism in Da1 q(S). As a consequence, we have a canonical equivalence of categories

DAI,Q(S)-F >~ DMB(S) .

Proof. Observe that, if ever Q. ~ Hp, we have D1 q(5)+ ~ DMp(S): this follows from the fact
that an object M of Da1 g (5) belongs to Da1 q(S)4+ (resp. to DMg(9)) if and only if there exists
an isomorphism M ~ M, (resp. M ~ Hp ®% M; see 13.2.15). It is thus sufficient to prove the
first assertion.

As both Q4 and Hp are stable by pullback, it is sufficient to treat the case where S = Spec (Z).
Using proposition 14.2.8, we may replace S by any of its henselisations, so that, by the localization
property, it is sufficient to treat the case where S is the spectrum of a (perfect) field k.

We shall prove directly that, for any object M of D1 q(S), My is an Hg-module (or, equiva-
lently, is Hp-local). Note that DMg(.S) is closed under homotopy limits and homotopy colimits in
Da1,q(S): indeed the inclusion functor DMy — D a1 g has a left adjoint which preserves a family
of compact generators, whence it also has a left adjoint (1.3.18). By virtue of proposition 15.2.7,
we may thus assume that M is bounded with respect to the homotopy t-structure. As DMp(.S) is
certainly closed under extensions in D1 q(5), we may even assume that M belongs to the heart
the homotopy t-structure. We conclude with corollary 15.2.11. O

Corollary 15.2.14 (Morel). For any noetherian scheme of finite dimension S, if —1 is a sum of
squares in all the residue fields of S (e.g. if S is a scheme over a finite field), then Q_ ~ 0 in
Da1,q(S), and we have a canonical equivalence of categories

DA17Q(S) >~ DMB(S) .

Proof. Tt is sufficient to prove that, under this assumption, Q_ ~ 0. As in the preceding proof,
we may replace S by any of its henselisations (14.2.8), so that, by the localization property (and
by induction on the dimension), it is sufficient to treat the case where S is the spectrum of a field
k. We have to check that, if —1 is a sum of squares in k, then we have ¢ = —1. Using [Mor03,
remark 6.3.5 and lemma 6.3.7], we see that, if k is of characteristic 2, we always have e = —1,
while, if the characteristic of k is distinct from 2, we have a morphism of rings

GW(k) - HomDAlwq(Spec(k))(Q7 Q) y

where GW (k) denotes the Grothendieck group of quadratic forms over k, such that —e is the
image of the class of the quadratic form —X?, which proves the result. (For a more precise version
of this, with integral coefficients, see [Mor06a, proposition 2.13].) (]

15.2.15. Consider the Q-linear étale motivic category Da1 ¢ (—, Q), defined by
Da1 (S, Q) = Da1(Shgt (Sm/S,Q))
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(see 5.3.34). The étale sheafification functor induces a morphism of motivic categories
(152151) DAl,Q(S) - DAl,ét(S, Q)
We shall prove the following result, as an application of Morel’s theorem 15.2.13.

Theorem 15.2.16. For any noetherian scheme of finite dimension S, there is a canonical equiv-

alence of categories
DMg(S) ~ Da1 ¢(5,Q) .

In order prove theorem 15.2.16, we shall study the behaviour of the decomposition (15.2.1.3)
in Da1 (5, Q):
Lemma 15.2.17. We have Q_ ~ 0 in Da1 (S5, Q).

Proof. Proceeding as in the proof of theorem 15.2.13, we may assume that S is the spectrum of
a perfect field k. By étale descent, we see that we may replace k by any of its finite extension.
In particular, we may assume that —1 is a sum of squares in k. But then, by virtue of corollary
15.2.14, Q_ ~ 0 in Da1 (S5), so that, by functoriality, Q_ ~ 0 in D1 ¢(S, Q). O

Proof of theorem 15.2.16. Note that the functor (15.2.15.1) has a fully faithful right adjoint, whose
essential image consists of objects of D1 q(S) which satisfy étale descent. As any Beilinson
motive satisfies étale descent (14.2.17), DMp(S) can be seen naturally as a full subcategory of
Da1(S,Q). On the other hand, by virtue of the preceding lemma, any object of D1 q(5)
which satisfies étale descent belongs to Da1 q(S)+. Hence, by theorem 15.2.13, any object of
Da1,q(S) which satisfies étale descent is a Beilinson motive. This achieves the proof. O

Remark 15.2.18. If S is excellent, and if all the residue fields of S are of characteristic zero, one
can prove theorem 15.2.16 independently of Morel’s theorem: this follows then directly from a
descent argument, namely from corollary 3.3.37 and from theorem 15.1.3.

Corollary 15.2.19. For any regular noetherian scheme of finite Krull dimension S, we have
canonical isomorphisms

Homp,, , (5,0)(Qs, Qs(p)[q]) = GriK2p—¢(S)q -
Proof. This follows immediately from theorem 15.2.16, by definition of DMy (13.2.14). O

Corollary 15.2.20. For any geometrically unibranch excellent noetherian scheme of finite Krull
dimension S, there is a canonical equivalence of symmetric monoidal triangulated categories

Da1 (S, Q) = DMq(S) .
Proof. This follows from theorems 15.1.4 and 15.2.16. O

Remark 15.2.21. The corollary above is also proved by Ayoub and Zucker [AZ09] in the case where
S is the spectrum of a field.

Corollary 15.2.22. Let S be an excellent noetherian scheme of finite dimension. An object of
Da1,q(S) satisfies h-descent if and only if it satisfies étale descent.

Proof. This follows from theorems 15.1.3 and 15.2.16. (]

16. REALIZATIONS
16.1. Tilting.

16.1.1. Let .# be a stable perfect symmetric monoidal Sm-fibred combinatorial model category
over an adequate category of S-schemes ., such that Ho(.#) is motivic, with generating set of
twists 7.

Consider a homotopy cartesian commutative monoid £ in .#. Then £-mod is an Sm-fibred
model category, such that Ho(€- mod) is motivic, and we have a morphism of motivic categories
(see 4.2.11 and 4.2.16)

Ho(.#) — Ho(E-mod) , M+ E@Y M.
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Moreover this change of scalars functor commutes with the six operations of Grothendieck. In
practice, all the realization functors are obtained in this way (at least over fields), which can be
formulated as follows (for simplicity, we shall work here in a Q-linear context, but, if we are ready
to consider higher categorical constructions, there is no reason to make such an assumption).

16.1.2. Consider a quasi-excellent noetherian scheme of finite dimension S, as well as two stable

symmetric monoidal Sm-fibred combinatorial model categories .# and .#’ over the category of

S-schemes of finite type such that Ho(.#) and Ho(.#') are motivic. We also assume that both

Ho(#) and Ho(.#') are Q-linear and separated, and are generated by their Tate twists (1.1.40).
Consider a Quillen adjunction

(16.1.2.1) o M =M o
inducing a morphism of Sm-fibred categories
(16.1.2.2) Ly* : Ho(.#) — Ho(.4").

Note that the functor Ly* preserves constructible objects, whence defines a morphism of motivic
categories

(16.1.2.3) Ly* : Ho(# ). — Ho(. '), .
Proposition 16.1.3. Under the assumptions of 16.1.2, if, for any regular S-scheme of finite type
X, and for any integers p and q, the map

Hompo(w)(x)(Lx, L1x (p)[g]) — Hompo(sry(x)(1x, 1x(p)[a])

is bijective, then the morphism (16.1.2.3) is an equivalence of motivic categories. Moreover, if both
Ho(#) and Ho(.#") are compactly generated by their Tate twists, then the morphism 16.1.2.2 is
an equivalence of categories.

Proof. Note first that, for any S-scheme of finite type X, and for any integers p and ¢, the map

Hompo(.z)(x)(Lx, 1x (p)[g]) — Hompo(.zn(x)(Lx, Lx (p)[q])

is bijective: by h-descent (3.3.36) and by virtue of Gabber’s weak uniformization theorem 14.1.15,
it is sufficient to treat the case where X is regular, which is done by assumption. Let S be a
S-scheme of finite type. To prove that the functor

Lo* : Ho(4).(S) — Hou(.2')(S)

is an equivalence, by virtue of theorem 14.1.18, it is sufficient to prove that, for any projective
morphisms f: X — S and g: Y — S, and for any integers p and ¢, the map

Hompo(z)(x) (Rf«(1x), Rgx(1y)(p)lg]) — Hompo () x) (Rf:(1x), R (1y)(p)lg])

is an isomorphism. Consider the pullback square

XxsY 2oy

X—S5

f
Considering the isomorphisms (obtained by adjunction and proper base change)
Hom(Rf.(1x), Rg.(1y)(p)[g]) ~ Hom(Lg" R f.(1x), 1x(p)[q])
~ Hom(Rpry , Lpri(1x), Lx (p)[q])
~ Hom(Rpry . (1xxsv), 1x(P)ld]) ,

we conclude easily from proposition 2.4.17 that (16.1.2.3) is an equivalence of motivic categories. If
both Ho(.#) and Ho(.#") are compactly generated by their Tate twists, then the sum preserving
exact functor
L™ : Ho(.#)(S) — Ho(.")(S)
is an equivalence at the level of compact objects, whence it is an equivalence of categories (1.3.19).
O
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16.1.4. Under the assumptions of 16.1.2, assume that .# and .#’ are strongly Q-linear (4.1.4),
left proper, tractable, satisfy the monoid axiom, and have cofibrant unit objects. Let £ be a
fibrant resolution of 1 in .#’(Spec (k)). By virtue of theorem 4.1.8, we may assume that &’ is
a fibrant and cofibrant commutative monoid in .#’. Then Ry, (1) = p.(E’). is a commutative
monoid in .#Z. Let £ be a cofibrant resolution of ¢, (') in .# (Spec (k)). Using theorem 4.1.8, we
may assume that £ is a fibrant and cofibrant commutative monoid, and that the map

& — Ry (&)

is a morphism of commutative monoids (and a weak equivalence by construction). We can see £ and
&' as cartesian commutative monoids in .# and .#' respectively (by considering their pullbacks
along morphisms of finite type f : X — Spec (k)). We obtain the essentially commutative diagram
of left Quillen functors below (in which the lower horizontal map is the functor induced by ¢* and
by the change of scalars functor along the map ¢*(&) — &').

M———H
(16.1.4.1) i l
E-mod — &’-mod
Note furthermore that the right hand vertical left Quillen functor is a Quillen equivalence by

construction (identifying .#’(X) with 1x-modules, and using the fact that the morphism of
monoids 1x — &% is a weak equivalence in .#’(X)).

Theorem 16.1.5. Consider the assumptions of 16.1.4, with S = Spec (k) the spectrum of a field
k. We suppose furthermore that one of the following conditions is verified.

(i) The field k is perfect.

(i1) The motivic categories Ho(.#) and Ho(.#") are continuous and semi-separated.
Then the morphism

Ho(€-mod). — Ho(£'-mod). ~ Ho(.#").

is an equivalence of motivic categories. Under these identifications, the morphism (16.1.2.3) cor-
responds to the change of scalar functor

Ho(A). — Ho(E-mod). , M+ EQY M.

If moreover both Ho(#) and Ho(.#') are compactly generated by their Tate twists, then these
identifications extend to mon-constructible objects, so that, in particular, the morphism (16.1.2.2)
corresponds to the change of scalar functor

Ho(.#) — Ho(4") ~ Ho(-mod) , M +— EQY M.
Proof. For any regular k-scheme of finite type X, and for any integers p and ¢, the map
Homyo () (x)(Lx, Ex (p)[g]) — Hompo(.an(x)(1x, Ex (p)[d])

is bijective: this is easy to check whenever X is smooth over k, which proves the assertion under
condition (i), while, under condition (ii), we see immediately from proposition 14.2.15 that we may
assume condition (i). The first assertion is then a special case of the first assertion of proposition
16.1.3. Similarly, by proposition 4.2.6, the second assertion follows from the second assertion of
proposition 16.1.3. O

Ezample 16.1.6. Let .# be the stable Sm-fibred model category of Tate spectra, so that Ho(.#) =
Da:1,q, and write .5 for the left Bousfield localization of .# by the class of Hp-equivalences (see
1323), so that HO(%E) = DMg.

Let k be a field of characteristic zero, endowed with an embedding o : £ — C. Given a complex
analytic manifold X, let .#,,(X) be the category of complexes of sheaves of Q-vector spaces on
the smooth analytic site of X (i.e. on the category of smooth analytic X-manifolds, endowed
with the Grothendieck topology corresponding to open coverings), endowed with its local model
structure (see [Ayo07b, 4.4.16] and [Ayo08]). We shall write .# Be,gti(X ) for the stable left Bousfield
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localization of .#,,,(X) by the maps of shape Q(U x D) — Q(U) for any analytic smooth X (C)-
manifold U (where D! = {z € C, |z| < 1} denotes the open disc). We define at last #p.u;(X) as
the stable model category of analytic G,,-spectra over X(C) (see [Ayo08, section 1]).

Given a k-scheme of finite type X, we shall write

(16.1.6.1) Dpeui(X) = Ho( M eri (X))

(where the topological space X (C) is endowed with its canonical analytic structure). According
to [Ayo08, 1.8 and 1.10], there exists a canonical equivalences of categories

(16.1.6.2) Dpewi(X) ~ Ho(.# 50, (X)) ~ D(X(C),Q),

where D(X(C), Q) stands for the (unbounded) derived category of the abelian category of sheaves
of Q-vector spaces on the small site of X (C). By virtue of [Ayo08, section 2|, there exists a sym-
metric monoidal left Quillen morphism of monoidal Sm-fibred model categories over the category
of k-schemes of finite type

(16.1.6.3) An® o M — Mpeti

which induces a morphism of motivic categories over the category of k-schemes of finite type.
Hence RAn, (1) is a ring spectrum in D1 q(Spec (k)) which represents Betti cohomology of
smooth k-schemes. As Dp.yy; satisfies étale descent, it follows from corollary 3.3.37 that it satisfies
h-descent, from which, by virtue of theorem 15.1.3, the morphism (16.1.6.3) defines a left Quillen
functor

(16.1.6.4) An® . My — MBesti
hence gives rise to a morphism of motivic categories
(16.1.6.5) DMg — Dpewi -

Appyling theorem 16.1.5 to (16.1.6.4), we obtain a commutative ring spectrum Epge; = RAnN, (1)
which represents Betti cohomology of smooth k-schemes, such that the restriction of the functor
(16.1.6.5) to constructible objects corresponds to the change of scalars functors

(16.1.6.6) DM5 o(X) — Ho(EBetri-mod) (X)) ~ D%(X(C),Q), M — Epeps @ M.

In other words, once Betti cohomology of smooth k-schemes is known, one can reconstruct canon-
ically the bounded derived categories of constructible sheaves on X (C) for any k-scheme of finite
type X, from the theory of mixed motives. We expect all the realization functors to be of this
shape (which should follow from (some variant of) theorem 16.1.5): the (absolute) cohomology
of smooth k-schemes with constant coefficients determines the derived categories of constructible
sheaves over any k-scheme of finite type, whatever this means. For instance, the whole theory of
variations of mixed Hodge structures should be obtained from Deligne cohomology, seen as a ring
spectrum in DM (k) (or, more precisely, in .45 (k)).

16.2. Mixed Weil cohomologies. Let S be an excellent (regular) noetherian scheme of finite
dimension, and K a field of characteristic zero, called the field of coefficients.

16.2.1. Let F be a Nisnevich sheaf of commutative differential graded K-algebras (i.e. is a
commutative monoid in the category of sheaves of complexes of K-vector spaces). We shall write

H"(X, ) = Hompa ()(Qux, Eln])

for any smooth S-scheme of finite type X, and for any integer n (note that, if F satisfies Nisnevich
descent and is A'-homotopy invariant, which we can always assume, using 4.1.8, then H"(X, E) =
H"(E(X))).
We introduce the following axioms :
K ifi=0,
0  otherwise.
1 ifi=0o0ri=1,
0 otherwise.

W1 Dimension.— H*(S, E) ~ {

W2 Stability— dimg H (G, E) = {
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W3 Kiinneth formula.— For any smooth S-schemes X and Y, the exterior cup product induces
an isomorphism

P H(X,E)ex HI(Y,E) > H*(X x5 Y,E) .
ptg=n
W3’ Weak Kiinneth formula.— For any smooth S-scheme X, the exterior cup product induces
an isomorphism

P HP(X,E)@x HY (G, E) = H"(X x5 G, E) .

ptg=n

16.2.2. Under assumptions W1 and W2, we will call any non zero element ¢ € H*(G,,,E) a
stability class. Note that such a class corresponds to a non trivial map

c:Qs(l)— F
in Dzﬁ:’Q(S) (using the decomposition Q(G,,) = Q @ Q(1)[1]). In particular, possibly after re-
placing F by a fibrant resolution (so that E is homotopy invariant and satisfies Nisnevich descent),

such a stability class can be lifted to an actual map of complexes of presheaves. Such a lift will
be called a stability structure on E.

Definition 16.2.3. A sheaf of commutative differential graded K-algebras F as above is a mized
Weil cohomology (resp. a stable cohomology) if it satisfies the properties W1, W2 and W3 (resp.
W1, W2 and W3') stated above.

Proposition 16.2.4. Let E be a stable cohomology. There exists a commutative ring spectrum &
in DMp(S) with the following properties.
(i) For any smooth S-scheme X, and any integer i, there is a canonical isomorphism of
K-vector spaces ‘
H'(X, E) ~ Homppy (s)(Ms(X), £[i]) -
(i) Any choice of a stability structure on E defines a map Q(1) — & in DMgp(S), which
induces an E-linear isomorphism (1) ~ £.

Proof. By [CD07, Proposition 2.1.6], there exists a commutative ring spectrum &£ in Da1 g(S5)
such that, for any smooth S-scheme X, and any integer ¢, there is a canonical isomorphism of

K-vector spaces ‘
HZ(X, E) o~ HomDALQ(S)(MS(X)vE[i])a

and such that any choice of a stability structure on E defines an isomorphism £(1) ~ £. By virtue
of [CDO07, corollary 2.2.8] and of theorem 11.2.10, this ring spectrum & is oriented, so that, by
corollary 13.2.15, £ is an Hp-module, i.e. belongs to DMg(.5). O

16.2.5. Given a stable cohomology E and its associated ring spectrum &, we can see £ as a
cartesian commutative monoid: we define, for an S-scheme X, with structural map f: X — S:

Ex =Lf(€),
and put
(16.2.5.1) D(X,€&) = Ho(€-mod)(X) = Ho(Ex-mod) .
We thus have realization functors
(16.2.5.2) DM5(X) = D(X,&), M~ Ex@% M

which commute with the six operations of Grothendieck. Furthermore, D(—,€) is a motivic
category which is Q-linear (in fact K-linear), separated, and continuous. Observe furthermore
that, if S is the spectrum of a field , then D(—, &) is also pure (14.3.22), so that the six Grothendieck
operations preserves constructible objects in D(—, ) (14.1.31).

For an S-scheme X, define

HY(X, E(p)) = Homp, (x)(Qx, €(p)]a]) = Homp(x ¢)(Ex, Ex (p)[a])
(this notation is compatible with 16.2.1 by virtue of proposition 16.2.4).
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Corollary 16.2.6. Any stable cohomology (in particular, any mized Weil cohomology) extends
naturally to S-schemes of finite type, and this extension satisfies cohomological h-descent (in par-
ticular, étale descent as well as proper descent).

Proof. This follows immediately from the construction above and from theorem 13.3.2. (]

16.2.7. We denote by DY (S, &) the localizing subcategory of D(S, £) generated by its rigid objects
(i.e. by the objects which have strong duals). For instance, by Poincaré duality, for any smooth
and proper S-scheme X, £(X) = £ ®% Mg(X) belongs to DY (S, £); see 14.3.23.
If we denote by D(K) the (unbounded) derived category of the abelian category of K-vector
spaces, we get the following interpretation of the Kiinneth formula.
Theorem 16.2.8. If E is a mized Weil cohomology, then the functor
RHomg (&, —) : DY(S,&) — D(K)

is an equivalence of symmetric monoidal triangulated categories.

Proof. This is [CD07, theorem 2.6.2]. O
Theorem 16.2.9. If S is the spectrum of a field, then DY (S,€) = D(S, &).
Proof. This follows then from corollary 14.3.24. O

Remark 16.2.10. It is not reasonnable to expect the analog of theorem 16.2.9 to hold whenever S
is of dimension > 0; see (the proof of ) [CDO7, corollary 3.2.7]. Heuristically, for higher dimensional
schemes X, the rigid objects of D(X, &) are extensions of some kind of locally constant sheaves
(in the f-adic setting, these correspond to Qg-faisceauzx lisses).

Corollary 16.2.11. If E is a mized Weil cohomology, and if S is the spectrum of a field, then
the functor

RHomg(E,—) : D(S,€) — D(K)
is an equivalence of symmetric monoidal triangulated categories.

16.2.12. Assume that F is a mixed Weil cohomology, and that S is the spectrum of a field k.
For each k-scheme of finite type X, denote by D.(X, &) the category of constructible objects of
D(X, &): by definition, this is the thick triangulated subcategory of D(X, £) generated by objects
of shape £(Y) = E@% Mx (V) for Y smooth over X (we can drop Tate twists because of 16.2.4 (ii)).
The category D.(X, &) also coincides with the category of compact objects in D(X, £); see 14.1.2.
Write D?(K) for the bounded derived category of the abelian category of finite dimensional K-
vector spaces. Note that Db(K) is canonically equivalent to the homotopy category of perfect
complexes of K-modules, i.e. to the category of compact objects of D(K).

Corollary 16.2.13. Under the assumptions of 16.2.12, we have a canonical equivalence of sym-
metric monotidal triangulated categories

D.(Spec (k) , &) ~ D*(K).

Proof. This follows from 16.2.11 and from the fact that equivalences of categories preserve compact
objects. O

Corollary 16.2.14. Under the assumptions of 16.2.12, if E’ is another K-linear stable coho-
mology with associated ring spectrum &', any morphism of presheaves of commutative differential
K-algebras E — E' inducing an isomorphism H*(G,, E) ~ HY(G,, E') gives a canonical iso-
morphism € ~ £ in the homotopy category of commutative ring spectra. In particular, we get
canonical equivalences of categories

D(X, ) ~ D(X, &)

for any k-scheme of finite type X (and these are compatible with the siz operations of Grothendieck,
as well as with the realization functors).

Proof. This follows from theorem 16.2.9 and from [CDO07, theorem 2.6.5]. O
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Remark 16.2.15. The preceding result can be stated in the following way: if £ and £ are two
(strict) commutative ring spectra associated to K-linear mixed Weil cohomologies defined on
smooth k-schemes, then any morphism £ — &’ in the homotopy category of (commutative)
monoids in the model category of K-linear Tate spectra is invertible.

Theorem 16.2.16. Under the assumptions of 16.2.12, the six operations of Grothendieck preserve
constructibility in D(—, ).

Proof. Observe that D(—, &) is Q-linear and separated (because DMy is so, see 4.2.16), as well as
pure (by proposition 14.3.22). We conclude with 14.1.31. O

16.2.17. As a consequence, we have, for any k-scheme of finite type X, a realization functor
DMg o(X) — Do(X, E)

which preserves the six operations of Grothendieck. For X = Spec(k), by virtue of corollary
16.2.13, this corresponds to a symmetric monoidal exact realization functor

R : DM .(Spec (k)) — D°(K).
This leads to a finiteness result:
Corollary 16.2.18. Under the assumptions of 16.2.12, for any k-scheme of finite type X, and

for any objects M and N in D.(X, &), Homg (M, N[n]) is a finite dimensional K-vector space,
and it is trivial for all but a finite number of values of n.

Proof. Let f : X — Spec(k) be the structural map. By virtue of 16.2.16, as M and N are
constructible, the object Rf. RHomx (M, N) is constructible as well, i.e. is a compact object of
D(Spec (k) , ). But RHomg (M, N) is nothing else than the image of Rf, RHomx (M, N) by the
equivalence of categories given by corollary 16.2.11. Hence RHomg (M, N) is a compact object of
D(K), which means that it belongs to D’(K). O

16.2.19. For a K-vector space V and an integer n, define
Vin) = V @k Homk (H* (G, E)®", K) if n >0,
|V ek HY(G,,, E)?(") if n <0.
Any choice of a generator in K(—1) = H'(G,,, E) ~ H*(P}, E) defines a natural isomorphism
V(n) = V for any integer n. We have canonical isomorphisms
HY(X, E(p)) ~ H'(X, E)(p)

(using the fact that the equivalence of corollary 16.2.13 is monoidal). The realization functors
(16.2.5.2) induce in particular cycle class maps

clx : HY(X,Q(p)) — H*(X, E)(p)
(and similarly for cohomology with compact support, for homology, and for Borel-Moore homol-
ogy).

Ezxample 16.2.20. Let k be a field of characteristic zero. We then have a mixed Weil cohomology
FE,r defined by the algebraic de Rham complex

Ear(X) = Q).
for any smooth affine k-scheme of finite type X = Spec (A) (algebraic de Rham cohomology of
smooth k-schemes of finite type is obtained by Zariski descent); see [CDO07, 3.1.5]. We obtain from
16.2.4 a commutative ring spectrum &4, and, for a k-scheme of finite type X, we define
Dar(X) = De(X, Ear) -

We thus get a motivic category Dgyr, and we have a natural definition of algebraic de Rham
cohomology of k-schemes of finite type, given by

Hjp(X) = Homp,(x)(Ear,x, Ear, x[n]) -
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This definition coincides with the usual one: this is true by definition for smooth k-schemes of finite
type, while the general case follows from h-descent (16.2.6) and from de Jong’s theorem 14.3.6 (or
resolution of singularities a la Hironaka). We have, by construction, a realization functor

Rgr : DMg (X) — Dg4r(X)
which preserves the six operations of Grothendieck. In particular, we have cycle class maps
HY(X,Q(p)) — Hip(X)(p) -
Note that, for any field extension k’/k, we have natural isomorphisms
Hjp(X) ®k k' ~ Hijp(X Xspec(r) Spec (k).

Example 16.2.21. Let k be a field of characteristic zero, which is algebraically closed and complete
with respect to some valuation (archimedian or not). We can then define a stable cohomology
E4r,an as analytic de Rham cohomology of X", for any smooth k-scheme of finite type X see
[CDO07, 3.1.7]. As above, we get a ring spectrum Egg on, and for any k-scheme of finite type, a
category of coefficients

Dair,an(X) = De(X, Ear,an) ,

which allows to define the analytic de Rham cohomology of any k-scheme of finite type X by
Hip,an(X) = Homp,, . (x)(Ear,an,x s Ear,an, x[1])
We also have a realization functor
Rar,an : DMg (X) — Dyr,an(X)

which preserves the six operations of Grothendieck.
We then have a morphism of stable cohomologies

EdR - EdR,an
which happens to be a quasi-isomorphism locally for the Nisnevich topology (this is Grothendieck’s
theorem in the case where K is archimedian, and Kiehl’s theorem in the case where K is non-
archimedian; anyway, one obtains this directly from corollary 16.2.14). This induces a canonical
isomorphism

Ear >~ E4R,an
in the homotopy category of commutative ring spectra. In particular, Eyg, on is a mixed Weil
cohomology, and, for any k-scheme of finite type, we have natural equivalences of categories

Dir(X) — Dapyan(X), M — Eipan ®F,, M

which commute with the six operations of Grothendieck and are compatible with the realization
functors.

Note that, in the case k = C, E4r qn coincides with Betti cohomology (after tensorization by
C), so that we have canonical fully faithful functors

DBetti7c(X) ®Q C— DdR,an (X)
which are compatible with the realization functors. More precisely, we have equivalences
DY(X(C),C) ~ Ho(Epewi ®q C-mod)e(X) = Dyg, an(X) .

In particular, by the Riemann-Hilbert correspondence, Dgr on(X) is equivalent to the bounded
derived category of analytic regular holonomic D-modules on X. (A purely algebraic proof of this
equivalence would furnish a new proof of the Riemann-Hilbert correspondence, using corollary
16.2.14.)

Ezxample 16.2.22. Let V be a complete discrete valuation ring of mixed characteristic with per-
fect residue field k and field of functions K. The Monsky-Washnitzer complex defines a stable
cohomology Fjpsw over smooth V-schemes of finite type, defined by

Epw (X) = Q41 )y @v K

for any affine smooth V-scheme X = Spec (A) (the case of a smooth V-scheme of finite type is
obtained by Zariski descent); see [CD07, 3.2.3]. Let Eyw be the corresponding ring spectrum in
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DMg (Spec (V)), and write j : Spec (K) — Spec (V') and i : Spec (k) — Spec (V') for the canonical
immersions. As we obviously have j*Epw = 0 (the Monsky-Washnitzer cohomology of a smooth
V-scheme with empty special fiber vanishes), we have a canonical isomorphism

We define the rigid cohomology spectrum &, in DM (Spec (k)) by the formula

Erig = Li"Eprw

This is a ring spectrum associated to a K-linear mixed Weil cohomology: cohomology with co-
efficients in &£, coincides with rigid cohomology in the sense of Berthelot, and the Kiinneth
formula for rigid cohomology holds for smooth and projective k-schemes (as rigid cohomology co-
incides then with cristalline cohomology), from which we deduce the Kiinneth formula for smooth
k-schemes of finite type; see [CD07, 3.2.10]. As before, we define

Drig (X) = Dc(Xa 57'ig)

for any k-scheme of finite type X, and put

rig(X) = Homp_ (x)(Erig,x, Erig, x[M]) -

Here again, we have, by construction, realization functors

Rm'g : DMB’C(X) — Dmg(X)

which preserve the six operations of Grothendieck, as well as cycle class maps
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