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We present a variational model for image denoising and/or texture identification. Noise and textures may be modelled as oscillating components of images. The model involves a L 2 -data fitting term and a Tychonov-like regularization term. We choose the BV 2 norm instead of the classical BV norm. Here BV 2 is the bounded hessian function space that we define and describe. The main improvement is that we do not observe staircasing effects any longer, during denoising process. Moreover, texture extraction can be performed with the same method. We give existence results and present a discretized problem. An algorithm close to the one set by Chambolle [9] is used: we prove convergence and present numerical tests.

Introduction

Variational models in image processing have been extensively studied during the past decade. There are used for segmentation processes (geodesic or geometric contours) and restoration purpose as well. We are mainly interested in the last item which involves denoising or deblurring methods and textures extraction as well. Roughly speaking image restoration problems are severely ill posed and a Tychonov-like regularization process is needed. The general form of such models consists in the minimization of an "energy" functional :

F(u) = u -u d X + R(u) , u ∈ Y ⊂ X ,
where X, Y are (real) Banach spaces, R is a regularization operator, u d is the observed (or measured) image and u is the image to recover or to denoise. The first term is the fitting data term and the second one permits to get a problem which is no longer ill posed via a regularization process. The most famous model is the Rudin-Osher-Fatemi denoising model (see [START_REF] Acar | Analysis of bounded variation penalty methods for ill-posed problems[END_REF], [START_REF] Osher | Nonlinear total variation based noise removal algorithms[END_REF]). This model involves a regularization term that preserves discontinuities, what a classical H 1 -Tychonov regularization method does not. The observed image to recover is split in two parts u d = u + v where u represents the oscillating component (noise or texture) and v is the smooth part (often called the cartoon component). So we look for the solution as u + v with v ∈ BV (Ω) and u ∈ L 2 (Ω), where BV (Ω) is the functions of bounded variation space defined on an open set Ω ( [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV spaces : applications to PDEs and optimization[END_REF]). The regularization term involves only the cartoon component v, while the remainder term u d -v represents the noise to be minimized. We get min v∈BV (Ω)

µ|v| BV (Ω) + 1 2 u d -v 2 L 2 (Ω) , (P ROF )
where µ > 0. This problem has a unique solution in BV (Ω). This functional space is the good one to deal with discontinuous functions that imply that the derivative (in the distribution sense) may be a measure (for example a Dirac measure). This model is used for denoising purpose. However, the use of the BV norm implies numerical perturbations. The computed solution turns to be piecewise constant which is called the "staircasing effect". Therefore, though noise can be successfully removed, the solution is not satisfactory. This variational model has been improved using different functional spaces, for the data fitting term or the regularizing term.

Recently people considered that an image can be decomposed into many components, each component describing a particular property of the image ( [START_REF] Aubert | Modeling very oscillating signals, application to image processing[END_REF][START_REF] Aubert | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Osher | Image decomposition and restoration using total variation minimization and the H 1 norm[END_REF][START_REF] Osher | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF][START_REF] Osher | Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis[END_REF]] and references therein for example). We shall assume as well that the image we want to recover from the data u d can be decomposed as f = u + v where u and v are functions that characterize different parts of f (see [START_REF] Aubert | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Osher | Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis[END_REF][START_REF] Yin | A comparison of three total variation based texture extraction models[END_REF] for example).

Components u and v belong to different functional spaces: u is the non regular part and belongs to L 2 (Ω) while v is a more regular part and belongs to BV 2 (Ω) (that we define in the sequel). The remainder term u = f -v involves the oscillating component (as noise and/or texture) and possibly contours. Such decompositions have been already performed [START_REF] Aubert | Modeling very oscillating signals, application to image processing[END_REF][START_REF] Aubert | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Aubert | Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[END_REF] using the so called Meyer-space of oscillating functions G [START_REF] Meyer | Oscillating patterns in image processing and nonlinear evolution equations[END_REF] instead of BV 2 (Ω). So far, the modelling we propose is not the same: the oscillating component will be a priori included in the non regular remainder term part u := f -v while v involves the cartoon. Our philosophy is different than the one used in Meyer approach. Here we perform a second order analysis to get sharper result so that we look for the smooth (cartoon) part. The oscillating part, texture and/or noise and possible contours will be part of the remainder term and are not modelled a priori.

The paper is organized as follows : in the next section, we present the functional framework and the space BV 2 (Ω) with useful properties. Section 3 is devoted to the variational model. In section 4, we focus on the discretization process. We present a Chambolle [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] like algorithm in section 5 and numerical tests are reported in the last section.

2 The space BV 2 (Ω)

Let Ω be an open bounded subset of R n , n ≥ 2 (practically n = 2) smooth enough (with the cone property and C 1 for example). Following Demengel [START_REF] Demengel | Fonctions à hessien borné[END_REF], we define the space of bounded hessian functions that we call BV 2 (Ω). We first recall the definition and the main properties of the space BV (Ω) of functions of bounded variation (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV spaces : applications to PDEs and optimization[END_REF][START_REF] Aubert | Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[END_REF] for example), defined by

BV (Ω) = {u ∈ L 1 (Ω) | Φ 1 (u) < +∞},
where

Φ 1 (u) := sup Ω u(x) div ξ(x) dx | ξ ∈ C 1 c (Ω), ξ ∞ 1 . (1) 
The space BV (Ω), endowed with the norm u BV (Ω) = u L 1 + Φ 1 (u), is a Banach space. The derivative in the sense of distributions of every u ∈ BV (Ω) is a bounded Radon measure, denoted Du, and Φ 1 (u) = Ω |Du| is the total variation of u. We next recall standard properties of functions of bounded variation [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV spaces : applications to PDEs and optimization[END_REF]. 

u → Φ 1 (u) is lower semi-continuous (denoted in short lsc) from BV (Ω) to R + for the L 1 (Ω) topology. 3. BV (Ω) ⊂ L 2 (Ω) with continuous embedding, if n = 2. 4. BV (Ω) ⊂ L p (Ω) with compact embedding, for every p ∈ [1, 2), if n = 2.
Now we extend this definition to the second derivative (in the distributional sense). Recall that the Sobolev space is defined as

W 1,1 (Ω) = { u ∈ L 1 (Ω) | ∇u ∈ L 1 (Ω) }
where ∇u stands for the first order derivative of u (in the sense of distributions).

Definition 1 A function u ∈ W 1,1 (Ω) is Hessian bounded if Φ 2 (u) := sup Ω ∇u, div(ξ) R n | ξ ∈ C 2 c (Ω, R n×n ), ξ ∞ 1 < ∞,
where div(ξ) = (div(ξ 1 ), div(ξ 2 ), . . . , div(ξn)),

with ∀i,

ξ i = (ξ 1 i , ξ 2 i , . . . , ξ n i ) ∈ R n and div(ξ i ) = n k=1 ∂ξ k i ∂x k . BV 2 (Ω) is defined as the space of W 1,1 (Ω) functions such that Φ 2 (u) < +∞. Remark 1 If V = R n×n , ξ ∞ = sup x∈Ω n i,j=1 ξ j i (x) 2 .
We give thereafter many useful properties of BV 2 (Ω) (proofs can be found in [START_REF] Demengel | Fonctions à hessien borné[END_REF][START_REF] Piffet | Modèles variationnels pour l'extraction de textures 2D[END_REF]).

Theorem 1 The space BV 2 (Ω) endowed with the following norm

f BV 2 (Ω) := f W 1,1 (Ω) + Φ 2 (f ) = f L 1 + ∇f L 1 + Φ 2 (f ), (3) 
where Φ 2 is given by [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], is a Banach space.

Proposition 2 A function u belongs to BV 2 (Ω) if and only if u ∈ W 1,1 (Ω) and ∂u ∂x i ∈ BV (Ω) for i ∈ {1, . . . , n}. In particular

Φ 2 (u) n i=1 Φ 1 ∂u ∂x i n Φ 2 (u).
Remark 2 The previous result shows that

BV 2 (Ω) = u ∈ W 1,1 (Ω) | ∀i ∈ {1, . . . , n}, ∂u ∂x i ∈ BV (Ω) .
We get a lower semi-continuity result for the semi-norm Φ 2 as well.

Theorem 2 The operator Φ 2 is lower semi-continuous from BV 2 (Ω) endowed with the strong topology of

W 1,1 (Ω) to R. More precisely, if {u k } k∈N is a sequence of BV 2 (Ω) that strongly converges to u in W 1,1 (Ω) then Φ 2 (u) lim inf k→∞ Φ 2 (u k ). Remark 3 In particular, if lim inf k→∞ Φ 2 (u k ) < ∞, then u ∈ BV 2 (Ω).
We have embedding results as well:

Theorem 3 (Demengel [10]) Assume n ≥ 2. Then BV 2 (Ω) ֒→ W 1,q (Ω) with q n n -1 , (4) 
with continuous embedding. Moreover the embedding is compact if q < n n-1 . In particular

BV 2 (Ω) ֒→ L q (Ω) for q n n -2 if n > 2 (5) BV 2 (Ω) ֒→ L q (Ω), ∀q ∈ [1, ∞[, if n = 2. ( 6 
)
In the sequel, we set n = 2 and Ω is a subset of R 2 , so that BV 2 (Ω) ⊂ H 1 (Ω) with continuous embedding and BV 2 (Ω) ⊂ W 1,1 (Ω) with compact embedding.

The variational model

We now assume that the image we want to recover from the data u d can be decomposed as f = u + v where u and v are functions that characterize different parts of f (see [START_REF] Aubert | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Osher | Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis[END_REF][START_REF] Yin | A comparison of three total variation based texture extraction models[END_REF] for example). Components u and v belong to different functional spaces: v is the (smooth) second order part and belongs to BV 2 (Ω) while u is the remainder term that should involve noise and/or texture. We consider the following cost functional defined on BV 2 (Ω) :

F (v) = 1 2 u d -v 2 L 2 (Ω) + λΦ 2 (v) + δ v W 1,1 (Ω) , (7) 
where λ, δ ≥ 0. We are looking for a solution to the optimization problem inf{

F (v) | v ∈ BV 2 (Ω) } (P)
The first term

u d -v 2 L 2 (Ω)
of F is the fitting data term. Here we have chosen the L 2norm for simplicity but any L p norm can be used (p ∈ [2, +∞)). We shall investigate in a future work the very case where p = 1; indeed we need to develop an approximation process to deal with this additional non differentiable term. Other terms are Tychonovlike regularization terms. The term λΦ 2 (v) + δ v W 1,1 (Ω) is nothing else that the BV 2 (Ω) norm of v. However, we have split it because the δ-part is not useful from the modelling point of view. It is only necessary to prove existence of solutions. We shall choose δ = 0 for numerical tests.

If the image is noisy, the noise is considered as a texture and will be involved in the remainder term u := u d -v: more precisely v will be the part of the image without the oscillating component, that is the denoised part and u is expected to involve noise, contours (and part of texture). In the sequel we shall focus on the denoising process. Such an approach has already been used by Hinterberger and Scherzer [START_REF] Hinterberger | Variational methods on the space of functions of bounded Hessian for convexification and denoising[END_REF] with the BV 2 (Ω) space. Their algorithm is different from the one we use here. Note that if we decide to split the function we look for in more than two components (f = u + v + w, where u is the texture part, v the cartoon and w the noise for example, with appropriate models ) then the minimization problem is a structured optimization problem to which standard decomposition methods can be applied (for example alternating minimization (Gauss Seidel) or parallel methods). Therefore, the study of (P) is quite significant from this point of view. For parallel methods one may consult [START_REF] Attouch | A Parallel Splitting Method for Coupled Monotone Inclusions[END_REF]. First we give a general existence and uniqueness result for problem (P).

Theorem 4 Assume that λ > 0 and δ > 0. Problem (P) has a unique solution v.

Proof.-We first prove existence by using the direct method in calculus of variations. Let vn ∈ BV 2 (Ω) be a minimizing sequence, i.e.

lim n→+∞ F (vn) = inf{ F (v) | v ∈ BV 2 (Ω) } < +∞.
The sequence (vn) n∈N is bounded in BV 2 (Ω). With the compactness result of Theorem 3, this yields that (vn) n∈N strongly converges (up to a subsequence) in W 1,1 (Ω) to v * ∈ BV 2 (Ω). Theorem 2 gives the following:

Φ 2 (v * ) lim inf n→+∞ Φ 2 (vn). So F (v * ) lim inf n→+∞ F (vn) = min v∈BV 2 (Ω) F (v),
and v * is a solution to (P). Uniqueness is straightforward with the strict convexity of F due to the term

u d -v 2 L 2 (Ω) .

Remark 4

It is an open question to know if we really need δ > 0. We could expect a Poincaré-Wirtinger inequality in the BV 2 (Ω)-space which is not very difficult to prove using appropriate "density" results. However, the boundary conditions we have to add are not clear (we have to deal with "second order" Neumann boundary conditions) .

It is not straightforward to get the suitable boundary conditions that allow to assert that the semi-norm Φ 2 is equivalent to the BV 2 (Ω)-norm. If we assume δ = 0 we are not sure to prove existence of a solution without additional assumptions and we lose uniqueness.

The discretized problem

Problem (P) can be written equivalently as inf

v∈BV 2 (Ω) u d -v 2 L 2 (Ω) 2λ + Φ 2 (v) + δ v W 1,1 (Ω) , ( P) 
where δ has been replaced by δ λ . We are going to compute the solution numerically. We first present the discretization process.

Discretization of problem P

We assume for simplicity that the image is squared with size N × N . We note X := R N ×N ≃ R N 2 endowed with the usual inner product and the associated Euclidean norm

u, v X := 1 i,j N u i,j v i,j , u X := 1 i,j N u 2 i,j . (8) 
We set Y = X × X. It is classical to define the discrete total variation as following (see for example [START_REF] Aubert | Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[END_REF]): the discrete gradient of the numerical image u ∈ X is ∇u ∈ Y :

(∇u) i,j = (∇u) 1 i,j , (∇u) 2 i,j , (9) 
where (∇u

) 1 i,j = u i+1,j -u i,j if i < N 0 if i = N, and (∇u) 2 i,j = u i,j+1 -u i,j if j < N 0 if j = N. The (discrete) total variation corresponding to Φ 1 (u) is given by J 1 (u) = 1 i,j N (∇u) i,j R 2 , (10) 
where (∇u

) i,j R 2 = (∇u) 1 i,j , (∇u) 2 i,j R 2 = (∇u) 1 i,j 2 + (∇u) 2 i,j 2 .
The discrete divergence operator div is the opposite of the adjoint operator of the gradient operator ∇:

∀(p, u) ∈ Y × X, -div p, u X = p, ∇u Y , so that (div p) i,j =      p 1 i,j -p 1 i-1,j if 1 < i < N p 1 i,j if i = 1 -p 1 i-1,j if i = N +      p 1 i,j -p 2 i,j-1 if 1 < j < N p 2 i,j if j = 1 -p 1 i,j-1 if i = N. (11)
To define a discrete version of the second order total variation Φ 2 we have to introduce the discrete Hessian operator. For any v ∈ X, the Hessian matrix of v, denoted Hv is identified to a X 4 vector: (Hv) i,j = (Hv) 11 i,j , (Hv) 12 i,j , (Hv) 21 i,j , (Hv) 22 i,j , with, for every i, j = 1, . . . , N,

(Hv) 11 i,j =    v i+1,j -2v i,j + v i-1,j if 1 < i < N, v i+1,j -v i,j if i = 1, v i-1,j -v i,j if i = N, (Hv) 12 i,j =    v i,j+1 -v i,j -v i-1,j+1 + v i-1,j if 1 < i N, 1 j < N, 0 if i = 1, 0 if i = N, (Hv) 21 i,j =    v i+1,j -v i,j -v i+1,j-1 + v i,j-1 if 1 i < N, 1 < j N, 0 if i = 1, 0 if i = N, (Hv) 22 i,j =    v i,j+1 -2v i,j + v i,j-1 if 1 < j < N, v i,j+1 -v i,j if j = 1, v i,j-1 -v i,j if j = N.
The discrete second order total variation corresponding to Φ 2 (v) is defined as

J 2 (v) = 1 i,j N (Hv) i,j R 4 . (12) 
The discretized problem stands

inf v∈X u d -v 2 X 2λ + J 2 (v) + δ(|v| + J 1 (v)), (P d ) where |v| := 1 i,j N |v i,j | .
In the finite dimensional case we have an existence result with δ = 0.

Theorem 5 Problem P d has a unique solution for every δ ≥ 0 and λ > 0.

Proof.-The cost functional

F δ := u d -v 2 X 2λ + J 2 (v) + δ(|v| + J 1 (v)) ,
is continuous and coercive because of the term u d -v 2 X . In addition it is strictly convex so that we get the result.

For numerical purpose we shall set δ = 0. In fact, we have performed tests with δ = 0 and very small δ = 0 (as required by the theory to get a solution to problem P): results were identical.

In the sequel, we adapt the method by Chambolle in the BV (Ω)-case, to the second order framework. We briefly recall the original result of [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]. Consider the finite dimensional optimization problem derived from the discretization of the ROF model :

inf u∈X J 1 (u) + 1 2λ u d -u 2 X . (P 1 d )
The following result holds :

Proposition 3 The solution to (P 1 d ) is given by u = u d -P λK1 (u d ), ( 13 
)
where

K 1 = {div g | g ∈ Y, g i,j R 2 1 ∀i, j = 1, • • • , N },
and P λK1 is the orthogonal projector operator on λK 1 .

We have a very similar result that we present in next sections. We first describe the conjugate function of J 2 4.2 The J 2 Legendre-Fenchel conjugate function

As the function J 2 is positively homogeneous, the Legendre-Fenchel conjugate

J * 2 (v) = sup u u, v X -J 2 (u),
is the characteristic function of a closed, convex set K

J * 2 (v) = 1 K (v) = 0 if v ∈ K +∞ else. As J * * 2 = J 2 , we get J 2 (v) = sup u∈K v, u X .
We use the inner scalar product of X 4 :

p, q X 4 = 1 i,j N p 1 i,j q 1 i,j + p 2 i,j q 2 i,j + p 3 i,j q 3 i,j + p 4 i,j q 4 i,j , for every p = p 1 , p 2 , p 3 , p 4 , q = q 1 , q 2 , q 3 , q 4 ∈ X 4 . So, for every v ∈ X,

J 2 (v) = sup p∈C p, Hv X 4 , (14) 
where the feasible set is

C := { p ∈ X 4 | p i,j R 4 1, ∀ 1 ≤ i, j ≤ N } .
Let us compute the adjoint operator of H (which is the discretized "second divergence" operator) :

∀p ∈ X 4 , ∀v ∈ X H * p, v X = p, Hv X 4 .
We verify that H * : X 4 → X satisfies for every p = (p 11 , p 12 , p 21 , p 22 ) ∈ X 4

(H * p) i,j =        p 11 i-1,j -2p 11 i,j + p 11 i+1,j if 1 < i < N p 11 i+1,j -p 11 i,j if i = 1,
p 11 i-1,j -p 11 i,j if i = N, +        p 22 i,j-1 -2p 22 i,j + p 22 i,j+1 if 1 < j < N, p 22 i,j+1 -p 22 i,j if j = 1,
p 22 i,j-1 -p 22 i,j if j = N, +                                            p 12 i,j-1 -p 12 i,j -p 12 i+1,j-1 + p 12 i+1,j if 1 < i, j < N, p 12 
i+1,j -p 12 i+1,j-1

if i = 1, 1 < j < N, p 12 i,j-1 -p 12 i,j if i = N, 1 < j < N, p 12 i+1,j -p 12 i,j if 1 < i < N, j = 1,
p 12 i,j-1 -p 12 i+1,j-1 if 1 < i < N, j = N, p 12 
i+1,j

if i = 1, j = 1, -p 12 i+1,j-1 if i = 1, j = N, -p 12 i,j if i = N, j = 1,
p 12 i,j-1 if i = N, j = N, (15) 
+                                            p 21 i-1,j -p 21 i,j -p 21 i-1,j+1 + p 21 i,j+1 if 1 < i, j < N, p 21 i,j+1 -p 21 i,j if i = 1, 1 < j < N, p 21 i-1,j -p 21 i-1,j+1 if i = N, 1 < j < N, p 21 i,j+1 -p 21 i-1,j+1 if 1 < i < N, j = 1,
p 21 i-1,j -p 21 i,j if 1 < i < N, j = N, p 21 
i,j+1

if i = 1, j = 1, -p 21 i,j if i = 1, j = N, -p 21 i-1,j+1 if i = N, j = 1,
p 21 i-1,j if i = N, j = N, Theorem 6 The Legendre-Fenchel conjugate of J 2 is J * 2 = 1 K2
where

K 2 := {H * p | p ∈ X 4 , p i,j R 4 1, ∀i, j = 1, . . . , N } ⊂ X. (16) 
Proof.-We have already mentioned that J * 2 = 1 K where K is of a non empty, closed, convex set subset of X. We first show that K 2 ⊂ K. Let be v ∈ K 2 . The discretized version of the definition of the second order total variation gives

J 2 (v) = sup ξ∈K2 ξ, v X ,
and ξ, v -J 2 (v) 0 for every ξ ∈ K 2 and v ∈ X. This gives for every

v * ∈ K 2 J * 2 (v * ) = sup v∈K2 v * , v -J 2 (v) 0. ( 17 
)
As J * 2 takes only one finite value, we get J * 2 (v * ) = 0, which yields that v * ∈ K. Therefore, K 2 ⊂ K and as K is closed we finally obtain K2 ⊂ K.

In particular

J 2 (v) = sup ξ∈K2 v, ξ sup ξ∈ K2 v, ξ sup ξ∈K v, ξ = sup ξ∈K v, ξ -J * 2 (ξ) = J * * 2 (v).
As J * * 2 = J 2 , we have

sup ξ∈K2 v, ξ = sup ξ∈ K2 v, ξ = sup ξ∈K v, ξ . (18) 
Now, let us assume there exists v * ∈ K such that v * / ∈ K2 . On may strictly separate v * and the closed convex set K2 . There exists α ∈ R and v 0 such that

v 0 , v * > α sup u∈ K2 v 0 , u .
We obtain sup

ξ∈K v 0 , ξ v 0 , v * > α sup u∈ K2 v 0 , u = sup u∈K v 0 , u ,
that gives a contradiction. We have proved that

K = K2 . As K 2 is closed we get K = K 2 .
Remark 5 We proved the previous result for the convenience of the reader. Indeed, one may note that J 2 is the support function of K 2 which is the conjugate function of the indicator function 1 K2 of K 2 (see [START_REF] Ekeland | Convex Analysis and Variational problems[END_REF] p. [START_REF] Meyer | Oscillating patterns in image processing and nonlinear evolution equations[END_REF]). Therefore, as K 2 is closed and convex and J 2 is continuous we get J * 2 = 1 * * K2 = 1 K2 .

Case where δ = 0

Now we focus on the case where δ = 0. Indeed, the δ-term in definition 7 was needed as a tool in the infinite dimensional framework to prove existence of solutions to (P). However, we have seen that the finite dimensional problem has a solution even if δ = 0, which is the most interesting case. The problem we have to solve turns to be

min v∈X u d -v 2 X 2λ + J 2 (v). (P 2 d )
As in the BV-case (proposition 3) we have a characterization of the solution.

Theorem 7 The solution v of (P 2 d ) verifies

v = u d -P λK2 (u d ),
where P λK2 is the orthogonal projector operator on λK 2 .

Proof.-The proof is similar to the one by Chambolle [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] but we give it for convenience. The solution v to (P 2 d ) is characterized by

0 ∈ ∂ J 2 (v) + 1 2λ v -u d 2 2 = v -u d λ + ∂J 2 (v), that is u d -v λ ∈ ∂J 2 (v).
As J 2 is proper, convex and continuous, then

v * ∈ ∂J 2 (v) ⇐⇒ v ∈ ∂J * 2 (v * ). So v ∈ ∂J * 2 ( u d -v λ ) ⇐⇒ 0 ∈ -v + ∂J * 2 ( u d -v λ ) ⇐⇒ 0 ∈ u d -v λ - u d λ + 1 λ ∂J * 2 ( u d -v λ ).
This means that w

= u d -v λ is the solution to min w 1 2 w - u d λ 2 X + 1 λ ∂J * 2 (w). As J * 2 = 1 K2 this implies that u d -v λ is the orthogonal projection of u d λ on K 2 : u d -v λ = P K2 ( u d λ ) . As P K2 ( u d λ ) = 1 λ P λK2 (u d )
, this ends the proof.

A fixed-point algorithm to compute ∂J 2

In [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] Chambolle proposed a fixed-point algorithm to compute P λK1 (f ) (and ∂J 1 (f )).

Let us briefly recall the main idea that we use again in the BV 2 context. To compute P λK1 (f ) we have to solve

min{ λdiv p -u d 2 X | p i,j R 2 1 ∀i, j = 1, . . . , N }. (19) 
that can be solved with a fixed-point method :

p 0 = 0 (20a) p n+1 i,j = p n i,j + τ (∇(div p n -u d /λ)) i,j 1 + τ (∇(div p n -u d /λ)) i,j R 2 (20b)
In addition, a convergence result is provided :

Theorem 8 ([9], Theorem 3.1) Assume that τ satisfies τ 1/8. Then λdiv p n converges to P λK1 (u d ) as n → +∞.

Remark 6 In [8] J.F. Aujol proves that the modified algorithm :

p 0 = 0 (21a) p n+1 i,j = p n i,j + τ (∇(div p n -u d /λ)) i,j max (1, p n i,j + τ (∇(div p n -u d /λ)) i,j R 2 ) (21b) converges if τ 1/4.
We extend this result to the second-order case. To compute P λK2 (u d ) we have to solve

min λH * p -u d 2 X | p ∈ X 4 , p i,j 2 R 4 -1 0, i, j = 1, . . . , N . (P ′ ) Let us denote F (p) = λH * p -u d 2 X and g i,j (p) = p i,j 2 
R 4 -1 = (p 11 i,j ) 2 + (p 12 i,j ) 2 + (p 21 i,j ) 2 + (p 22 i,j ) 2 -1.
First order optimality conditions give the existence of Lagrange multipliers α i,j , (i, j) ∈ {1, . . . , N } 2 , such that

∇F (p) + N i,j=1 α i,j ∇g i,j (p) = 0, ( 22a 
)
α i,j 0 and α i,j g i,j (p) = 0, (i,

j) ∈ {1, . . . , N } 2 . ( 22b 
)
It is easy to see that

∇F (p) = 2λH [λH * p -u d ] and that N i,j=1
α i,j ∇g i,j (p) = 2α i,j (p 11 i,j , p 22 i,j , p 12 i,j , p 21 i,j )

1 i,j N .
Therefore relations ( 22) are equivalent to

∀1 ≤ i, j ≤ N H λH * p -u d i,j + α i,j p i,j = 0, ( 23a 
)
∀1 ≤ i, j ≤ N α i,j 0 and α i,j g i,j (p) = 0. (23b)

Let us compute the multipliers α i,j more precisely :

-If α i,j > 0 then p i,j R 4 = 1. -If α i,j = 0 then (H [λH * p -u d ]) i,j = 0.
In both cases we get

∀1 ≤ i, j ≤ N α i,j = H λH * p -u d i,j R 4
and we finally obtain the following equality :

∀(i, j) ∈ {1, . . . , N } 2 , H λH * p -u d i,j + H λH * p -u d i,j R 4 p i,j = 0. ( 24 
)
We use a semi-implicit gradient method to solve these equations, namely : Choose τ > 0, and 1. Set p 0 = 0, n = 0 2. p n is known. For (i, j) ∈ {1, . . . , N } 2 , compute p n+1 i,j with

p n i,j = p n+1 i,j + τ H H * p n -u d /λ i,j + H H * p n -u d /λ i,j R 4 p n+1 i,j
. This is equivalent to

p n+1 i,j = p n i,j -τ (H [H * p n -u d /λ]) i,j 1 + τ (H [H * p n -u d /λ]) i,j R 4 . ( 25 
)
The algorithm step τ is related to the adjoint operator H * norm that we call κ in the sequel and we first give a κ estimate:

Lemma 1 The adjoint operator H * norm, κ satisfies κ ≤ 8 .
Proof.-The definition of κ reads κ = sup

p X 4 1 H * p . As H * p X = sup q∈ BX (0,1) H * p, q X and ∀q ∈ X 4 H * p, q X = p, Hq X 4 Hq X 4 p X 4 ,
we get

H * p X |||H||| p X 4 . (26) 
For any q ∈ X 4

Hq 2 X 4 = 1 i,j N q i+1,j -2q i,j + q i-1,j 2 + q i,j+1 -q i,j -q i-1,j+1 + q i-1,j 2 + q i+1,j -q i,j -q i+1,j-1 + q i,j-1 2 + q i,j+1 -2q i,j + q i,j-1

2 4 1 i,j N q 2 i+1,j + q 2 i,j + q 2 i,j + q 2 i-1,j + q 2 i,j+1 + q 2 i,j + q 2 i-1,j+1 + q 2 i-1,j
+q 2 i+1,j + q 2 i,j + q 2 i+1,j-1 + q 2 i,j-1 + q 2 i,j+1 + q 2 i,j + q 2 i,j + q 2 i,j-1 4 × 16 q 2 X .

Finally |||H||| 8, and with relation ( 26), H * p X 8 p X 4 .

We deduce that κ 8 (and κ 2 64).

Theorem 9 Let be τ 1/64. Then λ (H * p n ) n converges to P λK2 (u d ) as n → +∞.

Proof.-It is easy to check (by induction) that for every n 0 and i, j, p n i,j R 4

1. Set n > 0 and let be η n = (p n -p n+1 )/τ . Denote by (Un)n the sequence defined by :

Un = H * p n -u d /λ 2 X , ∀n 0.
The outline of the proof is the following : we first prove that (Un)n is a (nonnegative) non increasing sequence and therefore it is convergent. The proof provides an equality (29) that allows to show that the sequences (p n )n and (p n+1 )n have the same cluster points which are the unique solution to a projection problem. Therefore the whole sequence (p n )n converges.

• We first prove that (Un)n is a non increasing sequence if τ 1/κ 2 where κ is the norm of H * . We get

U n+1 = H * (p n -τ η n ) -u d /λ 2 X = -τ H * η n + H * p n -u d /λ , -τ H * η n + H * p n -u d /λ X = Un -2τ H * η n , H * p n -u d /λ X + τ 2 H * η n 2 X = Un -2τ η n , H H * p n -u d /λ X 4 + τ 2 H * η n 2 X Un -τ 2 η n , H H * p n -u d /λ X 4 -κ 2 τ η n 2 X 4 Un -τ   N i,j=1 2η n i,j , H H * p n -u d /λ i,j R 4 -κ 2 τ η n i,j 2 R 4   As η n i,j = H H * p n -u d /λ i,j + ρ n i,j , with ρ n i,j = H λH * p n -u d /λ i,j R 4 p n+1 i,j ;
we obtain

2η n i,j , H H * p n -u d /λ i,j R 4 -κ 2 τ η n i,j 2 R 4 = η n i,j , H H * p n -u d /λ i,j R 4 + η n i,j , H H * p n -u d /λ i,j R 4 -κ 2 τ η n i,j 2 R 4 = η n i,j , η n i,j -ρ n i,j R 4 + H H * p n -u d /λ i,j + ρ n i,j , Hl H * p n -u d /λ i,j R 4 -κ 2 τ η n i,j 2 R 4 = η n i,j 2 R 4 -η n i,j , ρ n i,j R 4 + H H * p n -u d /λ i,j 2 R 4 + ρ n i,j , H H * p n -u d /λ i,j R 4 -κ 2 τ η n i,j 2 R 4 = η n i,j 2 R 4 -η n i,j , ρ n i,j R 4 + H H * p n -u d /λ i,j 2 R 4 + ρ n i,j , η n i,j -ρ n i,j R 4 -κ 2 τ η n i,j 2 R 4 = (1 -κ 2 τ ) η n i,j 2 R 4 + H H * p n -u d /λ i,j 2 R 4 -ρ n i,j 2 R 4 .
Finally

U n+1 Un-τ   N i,j=1 (1-κ 2 τ ) η n i,j 2 R 4 + H H * p n -u d /λ i,j 2 R 4 -ρ n i,j 2 R 4   (27) 
As

p n+1 i,j 1, ρ n i,j R 4 (H [λH * p n -u d /λ]) i,j R 4 this yields that if τ 1/κ 2 ,
then the sequence (Un) is non increasing. Thus, the sequence (Un)n is convergent to some m. Moreover, relation (27

) gives 0 ≤ N i,j=1 (1-κ 2 τ ) η n i,j 2 R 4 + H H * p n -u d /λ i,j 2 R 4 -ρ n i,j 2 R 4 ≤ Un -U n+1 τ . (28) 
Passing to the limit in relation (28) gives

lim n→+∞ N i,j=1 (1-κ 2 τ ) η n i,j 2 R 4 + H H * p n -u d /λ i,j 2 R 4 -ρ n i,j 2 R 4 = 0. (29)
• Let us prove that we may extract a subsequence (p n k ) k of (p n )n such that (p n k ) k and (p n k +1 ) k have the same limit.

As (p n )n is bounded, we call p one cluster point and (p n k ) k the corresponding subsequence of (p n )n such that p n k → p, as k → +∞. Let us call p′ the limit (up to a subsequence) of p n k +1 . We obtain with relation ( 25)

p′ i,j = pi,j -τ (H [H * p -u d /λ]) i,j 1 + τ (H [H * p -u d /λ]) i,j R 4 . ( 30 
)
We note ρ et η the respective limits of ρ n k et η n k when k tends to +∞. With (29), we obtain

N i,j=1 (1-κ 2 τ ) ηi,j 2 R 4 + H H * p-u d /λ i,j 2 R 4 -ρi,j 2 R 4 = 0.
As the terms of the sum are nonnegative, we get

∀i, j (1 -κ 2 τ ) ηi,j 2 R 4 = 0 and H H * p -u d /λ i,j 2 R 4 -ρi,j 2 R 4 = 0.
-If κ 2 τ < 1, then ηi,j = 0 for all i, j, and so p′ = p.

-If κ 2 τ = 1, then, for all i, j, ρi,j

R 4 = (H [H * p -u d /λ]) i,j R 4 , that is to say H H * p -u d /λ i,j R 4 p′ i,j R 4 = H H * p -u d /λ i,j R 4 .
This implies p′ i,j R 4 = 1 or H H * p -u d /λ i,j R 4 = 0.

-If (H [H * p -u d /λ]) i,j R 4 = 0, then relation (30) gives p′ i,j = pi,j .

-If p′ i,j R 4 = 1, then 1 = pi,j -τ (H [H * p -u d /λ]) i,j R 4 1 + τ (H [H * p -u d /λ]) i,j R 4 pi,j R 4 + τ (H [H * p -u d /λ]) i,j R 4 1 + τ (H [H * p -u d /λ]) i,j R 4
, therefore pi,j R 4 1 and (together with pi,j R 4 1) pi,j R 4 = 1. We deduce that pi

,j -τ H H * p -u d /λ i,j R 4 = pi,j R 4 + τ H H * p -u d /λ i,j R 4 .
Since triangular inequality turns to be an equality, there exists β ∈ R * so that τ H H * p -u d /λ i,j = β pi,j .

As p′

i,j = 1, relation (30) implies p′ i,j = 1 -β 1 + |β| pi,j , so that 1 -β 1 + |β| = 1; this yields β 0 and p′ i,j = pi,j .

Finally, p = p′ , and ∀i, j, H λH * p -u d i,j + H λH * p -u d i,j R 4 pi,j = 0. This is the Euler equation for (P ′ ). Therefore p is a solution to (P ′ ). With uniqueness of the projection, we deduce that the sequence (λH * p n )n converges to P λK2 (u d ).

We conclude with Lemma 1 since τ 1/64 then τ ≤ 1/κ 2 .

Numerical results

In this section we briefly present numerical tests for the denoising process. A full comparison with existing methods will be performed in a forthcoming paper.

Examples

Throughout this section, we consider the following images that are degraded with a white Gaussian noise with standard deviation σ: We perform numerical tests with different values of σ. In any case, we observe that the model is quite efficient for image restoration. Moreover, we note that we lose details information when parameter λ increases, what was expected. However, especially when the "observed" image is very noisy, we have a blurriness (subjective) feeling, that we do not have when restoration is performed with the standard ROF model. Checking what happens precisely on slices (lines) of the image (Figure 8 for example), we remark that the BV 2 -model keeps contour information pretty well, anyway better than expected watching the image.

Numerical tests have been performed on different machines so that we cannot report precisely on the CPU time. However, the result is quite satisfactory after few iterations so that the process is not too slow. In what follows, the stopping criterion has been set to a maximal number of iterations itmax that can be chosen arbitrary large. The algorithms have been implemented with MATLAB c software. We give al so the Signal to Noise Ratio (SNR) 1 

: SN R(v) = 20 log 10 u L 2 u -v L 2
, where u is the expected image and v is the restored one. SN R(u d ) gives the observed SNR (with the noisy input image).

We have performed tests for two σ values. In the first example σ = 0.15 and we stopped after itmax=5000 iterations (Figure 3) and in the second case σ = 0.25 (the noise is more important). The noisy images are below: 1 There are different ways to compute this quantity with MATLAB c . We used the following syntax : SNR = 20*log10(norm(u(:))/norm(u(:)-v(:))) As expected, we see on Figure 3 that the smoothing process is more efficient when λ is large. For both images, the result is satisfactory for λ ≃ 10.

Sensibility with respect to λ parameter

Sensitivity with respect to iterations number itmax

We fix λ = 15 and σ = 0.15. Figures 6 and7 give the behavior of a slice (line) during iterations (we can see more easily how noise is removed). The algorithm converges well: the quality of restoration is improved as the number of iterations grows. Noise is removed and contours are preserved. It is well known that the ROF model makes staircasing effect appear, since the resulting image is piecewise constant on large areas. We first compare the two models on test images that are not very noisy. In Figure 9 we see that piecewise constant areas appear with ROF, which is not the case with the BV 2 model. To focus on this fact, we have selected a line of the image that meets contours. precisely what happens: the image restored with ROF is clearly piecewise constant, and the BV 2 restored one seems to be blurred (Figure 12). However, this is an optical effect: considering a slice shows that the BV 2 model removes noise significantly and contours are better preserved: the amplitude of high peaks that correspond to contours is not changed, which is not the case in ROF-model (Figure 11). 

Texture extraction

We do not report much on texture extraction process. The parameter tuning is slightly different but the algorithm behaves similarly (see [START_REF] Echegut | A variational model for image texture identification[END_REF]). Many variational methods have been developed for texture extraction (see [START_REF] Aubert | Modeling very oscillating signals, application to image processing[END_REF][START_REF] Aubert | Image decomposition into a bounded variation component and an oscillating component[END_REF] and the references therein). We shall precisely compare the BV 2 method to the existing ones in a forthcoming paper. We present an example in Figures 13 and14. The second order approach via the BV 2 space seems promising. Many improvements have to be performed. The algorithm is still slow (though we get acceptable results for quite few iterations ≃ 30). We currently investigate the Nesterov-techniques to speed up the method (see Weiss et al. [START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF] or Fadili-Peyré [START_REF] Fadili | Total Variation Projection with First Order Schemes[END_REF]). Moreover, we have to look for modifications of the variational model using different norms (for example the L 1 norm) for the fitting data term. Furthermore, coupling existing techniques for texture extraction with the second order approach should give quite performing results. This will be done in future works.
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 1 Fig. 1 Test images ("Shapes" (size : 740 × 740) and "Lena" (size : 512 × 512) )
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 2 Fig. 2 Noisy images -white Gaussian noise with standard deviation σ.
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 34 Fig. 3 Solution v -Standard deviation σ = 0.15 -5 000 iterations
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 89 Fig. 8 Comparison between ROF and BV 2 modelsσ = 0.25, λ = 25, 5 000 iterations.

Figures 8 and 11

 11 Figures 8 and 11 are obtained for λ = 25 and λ = 50 respectively and 5 000 iterations. Figures 10 and 12 are obtained for 10 000 iterations and λ = 50 and showprecisely what happens: the image restored with ROF is clearly piecewise constant, and the BV 2 restored one seems to be blurred (Figure12). However, this is an optical effect: considering a slice shows that the BV 2 model removes noise significantly and contours are better preserved: the amplitude of high peaks that correspond to contours is not changed, which is not the case in ROF-model (Figure11).

  (a) Noisy slice (b) Original slice (c) BV 2 model -50 iterations. (d) BV 2 model -5 000 iterations.(e) ROF model -5 000 iterations.
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 11 Fig. 11 Zoom on "Lena" slicesσ = 0.25, λ = 50
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 a514 Fig. 13 Texture extraction -Rescaled texture image u d -v at 10 and 15 iterations

  Proposition 1 Let Ω be an open subset of R n with Lipschitz boundary. 1. For every u ∈ BV (Ω), the Radon measure Du can be decomposed into Du = ∇u dx + D s u, where ∇u dx is the absolutely continuous part of Du with respect of the Lebesgue measure and D s u is the singular part. 2. The mapping