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On modified circular units

and annihilation of real classes

Jean-Robert Belliard Th´̂ong Nguy˜̂en-Quang-̄D˜̂o

january 24 2005

Abstract

For an abelian totally real number field F and an odd prime number
p which splits totally in F , we present a functorial approach to special
“p-units” previously built by D. Solomon using “wild” Euler systems.
This allows us to prove a conjecture of Solomon on the annihilation of
the p-class group of F (in the particular context here), as well as related
annihilation results and index formulae.

0 Introduction

Let F be an imaginary abelian field, G = Gal(F/Q), and let Cl±F be the ”plus”
and ”minus” parts defined by complex conjugation acting on the class group
ClF of F . The classical Stickelberger theorem asserts that the Stickelberger
ideal, say Stick(F ) ⊂ Z[G], is an annihilator of Cl−F . Sinnott has shown that
the index (Z[G]− : Stick(F )−) is essentially ”equal” to the order h−F of Cl−F .
Using the p-adic point of view, these results fit into the theory of Iwasawa and
of p-adic L-functions via what is still called the Main Conjecture, even though
it is now a theorem (Mazur-Wiles).

For Cl+F , our knowledge is more fragmented. For simplicity take p 6= 2. The
Main Conjecture relates (in a “numerical” way) the p-part X+

F of Cl+F to the
p-part of UF+/CF+ , where UF+ (resp. CF+) is the group of units (resp. circular
units) of the maximal real subfield F+ of F . In the semi-simple case, it also
gives an ideal MW (F ) which annihilates a certain part of X+

F (the maximal
subgroup acting trivially on the intersection of the Zp-cyclotomic extension of
F+ with the p-Hilbert class field of F+). In the papers [So1], [So2] Solomon
constructed what could be considered as real analogues of Gauß sums and of
Stickelberger’s element, from which he conjectured an annihilation of X+

F . Be-
fore sketching Solomon’s construction let us recall some main principles of the
demonstration of Stickelberger’s theorem using Gauß sums : for all prime ideals
℘ not dividing the conductor of F , one constructs the Gauß sum g(℘) (which
belongs to some cyclotomic extension of F ), and if x is a denominator of the

0MSC number primary : 11R23, 11R18, 11R20

1



0 INTRODUCTION 2

Stickelberger element θF ∈ Q[G], then (g(℘)x) = ℘xθF . We stress two important
ingredients :

• one can always choose in the class of ℘ prime ideals L which split in F/Q.

• the Gauß sum is an ℓ-unit (L | ℓ), and the computation of its L-adic
valuation plays a crucial role.

We return to Solomon’s construction. For simplicity, we now assume that F
is a (totally) real field, and p an odd prime number splitting in F . From a
fixed norm coherent sequence of cyclotomic numbers (in the extension F (µp∞)),
Solomon constructs, using a process which could be seen as a ”wild” variant of
Kolyvagin-Rubin-Thaine’s method, a special ”(p)-unit” κ(F, γ) (which depends
on the choice of a topological generator of Gal(F (µp∞)/F (µp)), γ say). In fact
κ(F, γ) ∈ U ′F ⊗ Zp where U ′F is the group of (p)-units of F . The main result of
[So1] describes the P-adic valuation of κ(F, γ). Let f be the conductor of F ,
put ζf = exp(2iπ/f), and define εF = NQ(ζf )/F (1− ζf ). Then for P | p we have
the p-adic equivalence :

vP(κ(F, γ)) ∼
1

p
logp(ıP(εF ))

where ıP is the embedding F →֒ Qp defined by P. From this computation and
fixing an embedding ı : F →֒ Qp, Solomon introduces the element

solF :=
1

p

∑

g∈G

logp(ı(ε
g
F ))g−1 ∈ Zp[G],

and conjectures that this element annihilates the p-part XF of the class group
of F ([So1], conjecture 4.1; actually Solomon states a more general conjecture
assuming only that p is unramified in F ). Here some comments are in order :

• Solomon’s construction is not a functorial one, which means that he is dea-
ling with elements instead of morphisms (this objection may be addressed
to most ”Euler system” constructions); this may explain the abundance
of technical computations required to show the main result or some (very)
special cases of the conjecture.

• In the semi-simple case (i.e. p ∤ [F : Q]), Solomon’s conjecture is true but
it gives nothing new since one can easily see that solF ∈MW (F ) in that
case.

The object of this paper is to present Solomon’s construction in a more func-
torial way, making a more wholehearted use of Iwasawa theory. This functorial
approach is not gratuitous, since on the one hand it is an alternative to the
technical computations in [So1],[So2], and on the other hand it allows us to
prove a slightly modified version of Solomon’s conjecture and other related an-
nihilation results in the most important special case, namely when p splits in F
(see theorem 5.4).
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We now give an idea of our functorial construction and of its main deriva-
tives :
Assuming the above mentioned hypotheses (F is totally real and p splits in F ),
following UF and CF , we introduce U ′F , the group of (p)-units of F , together

with the p-adic completions UF , CF and U
′

F . The natural idea would be

to apply Iwasawa co-descent to the corresponding Λ-modules U∞, C∞, U
′

∞,
obtained by taking inverse limits up the cyclotomic Zp-extension of F , but since
we are assuming that p splits in F , some natural homomorphisms, for example
(C∞)Γ −→ CF , are trivial! The main point will be to construct other natural
(but non trivial) morphisms, which will allow us to compare the modules at
the level of F with the corresponding modules arising from Iwasawa co-descent.
To fix the ideas let us see how to compare CF with (C∞)Γ. We construct
successively two homomorphisms :
1) The first one, whose construction essentially uses an analog of ”Hilbert’s

theorem 90 in Iwasawa theory”, allows us to map (C∞)Γ to U
′

F after “dividing
by (γ − 1)” (see theorem 2.7). One may even go to the quotient by UF , the
natural projection being injective when restricted to the image of (C∞)Γ. So
we have canonical maps :

(C∞)Γ
α // U

′

F
and (C∞)Γ

β // U
′

F /UF . Then the image under β of

an ad hoc element in C∞ is nothing else but Solomon’s element κ(F, γ) and
functorial computations with β allow us to solve all index questions arising in
[So1],[So2].
2) The second homomorphism constructs a ”bridge” linking Sinnott’s exact se-

quence with the class-field exact sequence. More precisely, C̃′′F := α((C∞)Γ) is

considered as a submodule of U
′

F /UF as in 1), while CF is considered as a sub-

module of U
′

F /Û
′
F , where Û ′F is some kernel consisting of local cyclotomic norms,

usually called the Sinnott-Gross kernel. A priori there doesn’t exist any natural

map from U
′

F /Û
′
F to U

′

F /UF , since UF
⋂
Û ′F = {1}, but when restricting to

CF and using the map β, one is able to construct a map ϕ : CF −→ Tr(C̃
′′
F )

(the kernel of the algebraic trace of Zp[G] acting on C̃′′F ), which is injective and
whose cokernel may be computed (see theorem 4.5) .

Once the morphisms α, β, ϕ have been constructed one is able to compute
the Fitting ideals in Zp[G] of various codescent modules in terms of Solomon’s
elements. This yields annihilation results for various classes, e.g. ideal classes,
but also quotients of global units or semi-local units modulo circular units (see
theorem 5.7). Note that in the non semi-simple case, these differ from the ones
obtained by means of usual (tame) Euler systems.

In recent developments ([BB2], [BG], [RW2]) around the “lifted root number
conjecture” and its “twisted” versions (or “equivariant Tamagawa number” con-
jecture for Tate motives over Q in the language of Burns and Flach), Solomon’s
elements appear to play a role. In some special cases, the LRN conjecture is
equivalent to the existence of S-units satisfying a variety of explicit conditions;
in particular, it implies a refinement of Solomon’s main result (op. cit.) on
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the P-adic valuation of Solomon’s element ([BB2], 3.2 and 4.14). Moreover, the
proof of the ETN conjecture for abelian fields proposed recently by [BG] uses
Iwasawa co-descent in its final step and, in the splitting case, Solomon’s ele-
ments appear again ([BG], 8.7, 8.11, 8.12, 8.13), together with the usual heavy
calculations (see also [RW2]). Actually, all the technicalties seem to be related
to the phenomenon of “trivial zeroes” of p-adic L-functions (with an intended
vagueness, this means : zeroes of local Euler factors at p). This renders our
present approach all the more interesting, since it appears to give a functorial
(as opposed to technical) process to “bypass trivial zeroes”. We hope to come
back to this topic in a subsequent work.

1 A few exact sequences

In this section (which can be skipped at first reading), we collect for the con-
venience of the reader a few “well known” exact sequences which come from
class-field theory and Iwasawa theory, and will be used freely in the rest of the
paper. Let F be a number field, p an odd prime, S = S(F ) the set of primes in
F which divide p. We ’ll adopt once and for all the following notations :

UF (resp. U ′F ) = the group of units (resp. S-units) of F .

XF (resp. X ′F ) = the p-group of ideal classes (resp. S-ideal classes) of F .

XF = the Galois group over F of the maximal S-ramified (i.e. unramified
outside S) abelian pro-p-extension of F .

For any abelian group, we’ll denote by Ā = lim
←
m

A/Ap
m

the p-completion

of A. If A is of finite type, then Ā = A⊗ Zp.

1.1 Exact sequences from class-field theory

By class-field theory, XF (resp. X ′F ) is canonically isomorphic to the Galois
group over F of the maximal unramified (resp. unramified and S-decomposed)
abelian extension HF (resp. H ′F ) of F . We have two exact sequences :

– one relative to inertia :

UF
diag // U :=

⊕
v∈S U

1
v

Artin // XF // XF
// 0 (1)

Here U1
v = UFv

is the group of principal local units at v, and “diag” is
induced by the diagonal map. Assuming Leopoldt’s conjecture for F and
p (which holds e.g. when F is abelian), it is well known that “diag” is
injective.

– one relative to decomposition :

U
′

F

diag // F :=
⊕

v∈S F
×
v

Artin // XF // X ′F // 0 (2)
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Here again, the map “diag” is injective modulo Leopoldt’s conjecture. By
putting together (1) and (2) (or by direct computation), we get a third
exact sequence :

0 // U
′

F /UF
µ // F/U

Artin // XF
// X ′F // 0 (3)

where µ is induced by the valuation maps at all v ∈ S. By local class field theory

F×v /U1
v is canonically isomorphic to the Galois group over Fv of the unramified

Zp-extension of Fv. If F is Galois over Q, then F/U ≃ Zp[S] as Galois modules,
and we can rewrite (3) as :

0 // U
′

F /UF
µ // Zp[S]

Artin // XF
// X ′F // 0 (3 µ)

1.2 Sinnott’s exact sequence

For any v ∈ S, let F̂×v be the subgroup of F×v which corresponds by class-field

theory to the cyclotomic Zp-extension Fv,∞ of Fv i.e. F×v /F̂×v ≃ Gal(Fv,∞/Fv)

and F̂×v is usually called the group of universal (cyclotomic) norms of Fv,∞/Fv.

Let δ : U
′

F −→ ⊕v∈SF
×
v /F̂×v be the homomorphism induced by the diagonal

map. Its kernel, Û ′F say, usually called the Gross kernel ([FGS]; see also [Kuz1]),

consists of elements of U
′

F which are everywhere universal cyclotomic norms.
Its cokernel is described by the Sinnott exact sequence (see the appendix to
[FGS]), for which we need additional notations.

Let F∞ =
⋃
n≥0 Fn be the cyclotomic Zp-extension of F , L′∞ the maximal

unramified abelian pro-p-extension of F∞ which is totally decomposed at all
places dividing p (hence at all places), L′0 the maximal abelian extension of F
contained in L′∞. Then Sinnott’s exact sequence reads :

0 // U
′

F /Û
′
F

δ // ⊕
v∈S F

×
v /F̂×v

Artin // Gal(L′0/F ) // X ′F // 0 (4)

By class-field theory, Gal(L′∞/F∞) ≃ X ′∞ := lim
←

X ′Fn
and Gal(L′0/F∞) ≃

(X ′∞)Γ (the co-invariants of X ′∞ by Γ = Gal(F∞/F )). By the product formula,

the image of δ is contained readily in ⊕̃v∈SF
×
v /F̂×v (:= the kernel of the map

“sum of components”) and (4) can be rewritten as :

0 // U
′

F /Û
′
F

δ // ⊕̃
v∈SF

×
v /F̂×v

Artin // (X ′∞)Γ // X ′F (5)

The image of the natural map (X ′∞)Γ −→ X ′F is nothing but Gal(H ′F /H
′
F ∩

F∞). Gross’ conjecture asserts that (X ′∞)Γ is finite. It holds (which is the case

if F is abelian) if and only if Û ′F has Zp-rank equal to r1 + r2. Let us look

more closely at the Galois structure of ⊕v∈SF
×
v /F̂×v . For simplicity, suppose

that the completions of F are linearly disjoint from those of Q∞ (this property
should be called “local linear disjointness”) : this happens e.g. if p is totally

split in F . Then the local norm map gives an isomorphism F×v /F̂
×
v ≃ Q×p /Q̂×p ;

besides Q×p /Q̂×p ≃ 1 + pZp is isomorphic to pZp via the p-adic logarithm, hence

⊕v∈SF
×
v /F̂×v ≃ pZp[S] in this situation. Let us denote by I(S) the kernel of

the sum in Zp[S]. Assuming that p is totally split in F , we can rewrite (5) as :
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0 // U
′

F /Û
′
F

λ // pI(S) // (X ′∞)Γ // X ′F // 0 (5 λ)

On comparing the exact sequences (3 µ) and (5 λ), it is tempting to try and
“draw a bridge” between them, but unfortunately, there seems to be no natural

link between U
′

F /Û
′
F and U

′

F /UF because Û ′F and UF are “independent” in the
following sense :

Lemma 1.1 Suppose that F satisfies Leopoldt’s conjecture and p is totally split
in F . Then

Û ′F ∩ UF = {1}

Proof. Assuming Leopoldt’s conjecture, we can embed UF and Û ′F in F =

⊕v∈SF
×
v . If p is totally split, then for any v ∈ S, F̂×v = Q̂×p = pZp and

U1
v = 1 + pZp, hence an element u ∈ UF belongs to Û ′F if and only if u = 1.

�

Nevertheless, one of our main results will be the construction of a natural

map (§ 4) between two appropriate submodules of U
′

F /Û
′
F and U

′

F /UF .

2 Hilbert’s theorem 90 in Iwasawa theory

2.1 Some freeness results

We keep the notations of § 1. Let Λ = Zp[[Γ]] be the Iwasawa algebra. If
M∞ = lim

←
Mn is a Λ-module, α∞ = (α0, ..., αn, ...) will denote a typical element

of M∞, the index zero referring to F = F0. The canonical map (M∞)Γ −→M0

sends α∞+ IΓM∞ (where IΓ is the augmentation ideal) to the component α0 of

α∞. Let us denote by M
(0)
∞ the submodule of M∞ consisting of the elements α∞

such that α0 = 0 (in additive notation). We want to study the relations between

the Λ-modules U∞ := lim
←
Un and U

′

∞ := lim
←
U
′

n. Obviously, they have the same

Λ-torsion, which is Zp(1) or (0) according as F contains or not a primitive pth

root of unity (see e.g. [Kuz1] or [Wi]). Let FrΛ(U∞) := U∞/TorΛ(U∞) and

FrΛ(U
′

∞) := U
′

∞/TorΛ(U
′

∞).

Proposition 2.1 Let F be any number field, [F : Q] = r1 + 2r2. Then the

Λ-modules FrΛ(U∞) and FrΛ(U
′

∞) are free, with Λ-rank equal to r1 + r2.

Proof. The assertion concerning FrΛ(U
′

∞) is a theorem of Kuz′min ([Kuz1], 7.2).

As for FrΛ(U∞), it is enough to notice that the quotient FrΛ(U
′

∞)/FrΛ(U∞) ≃

U
′

∞/U∞ has no Zp-torsion, hence has no non-trivial finite submodule. This is

equivalent to saying that FrΛ(U
′

∞)/FrΛ(U∞) is of projective dimension at most
1 over Λ (see e.g. [N1]). Since Λ is local, the Λ-freeness of FrΛ(U∞) follows by
Schanuel’s lemma.

�
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2.2 Cyclotomic submodules

If the field F is abelian over Q, we have at our disposal the group CF (resp.
C′F ) of Sinnott’s circular units (resp. circular S-units), which is defined as
being the intersection of UF (resp. U ′F ) with the group of circular numbers
of F ([Si1], [Si2]; see also §4.3 below). Sinnott’s index formula states that
(UF : CF ) = cFh

+
F , where h+

F is the class number of the maximal real subfield
of F , and cF is a rational constant whose explicit definition does not involve
the class group. Going up the cyclotomic Zp-extension F∞ =

⋃
n Fn, it is

known that the constants cFn
remain bounded. It is a classical result (see e.g.

[Gr1]) that C∞ and U∞ have the same Λ-rank. It is an obvious consequence of

the definition that C∞ and C
′

∞ have the same Λ-rank. If the base field F is a
cyclotomic field, it is also known, by results on distributions “à la Kubert-Lang”,

that FrΛ(C∞) and FrΛ(C
′

∞) are Λ-free (see e.g. [Kuz2]). Life would be too easy
if such results could be extended to any abelian field. By proposition 2.1 and
the exact sequences 0 // FrΛ(C∞) // FrΛ(U∞) // U∞/C∞ // 0 ,

and 0 // FrΛ(C
′

∞) // FrΛ(U
′

∞) // U
′

∞/C
′

∞
// 0 , we see that the

Λ-freeness of FrΛ(C∞) (resp FrΛ(C
′

∞)) is equivalent to the triviality of the

maximal finite submodule of U∞/C∞ (resp. U
′

∞/C
′

∞). Let us call MF∞ (resp.
MF ′∞) these maximal finite submodules. In order to get hold of MF∞ and
MF ′∞, let us define :

Definition 2.2 The Kučera-Nekovář kernel is defined by

KNF,n :=
⋃

m≥n

Ker in,m

where for m ≥ n ∈ N, in,m : Un/Cn −→ Um/Cm is the natural map.

The orders of the kernels KNF,n are bounded independently of n : this is
an immediate consequence of the main result of [GK] and the one of [KN].
Let us denote by KNF the projective limit (relatively to norm maps and n)
KNF := lim

←
KNF,n. This kernel KNF is the obstruction to the Λ-freeness of

Fr(C∞) and Fr(C
′

∞), in the following sense :

Proposition 2.3

(i) (U∞/C∞)Γ is finite.

(ii) We have equalities KNF = MF∞ = MF ′∞, and canonical isomorphisms

(KNF )Γ ≃ TorZp
(Fr(C∞))Γ ≃ TorZp

(Fr(C
′

∞))Γ. In particular, FrΛ(C∞)

(resp. FrΛ(C
′

∞)) is free if and only if KNF = 0.

Proof. (i) The Main Conjecture (or Mazur-Wiles’ theorem) applied to the ma-

ximal real subfield F+ of F implies that the Λ-torsion modules U
+

∞/C
+

∞ =
U∞/C∞ and X+

∞ have the same characteristic series (where the + denotes
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the objects related to F+, i.e. the submodule on which complex conjugation
acts trivially because F is abelian and p 6= 2). Because Leopoldt’s conjecture
holds all along the cyclotomic tower, it is well known that X+

∞ and (X ′∞)+ are
pseudo-isomorphic (see e.g. [Wi]). By Gross ’ conjecture (which holds because
F is abelian), ((X ′∞)+)Γ is finite, and so is (U∞/C∞)Γ.

(ii) We have an exact sequence :

0 // U∞/C∞ // U
′

∞/C
′

∞
// U
′

∞/(U∞ + C
′

∞) // 0

It gives an inclusion MF∞ ⊂MF ′∞. To prove the inverse inclusion it is enough

to show that U
′

∞/(U∞+C
′

∞) is without Zp-torsion. Let S be the (finite) set of

places above p of F∞. Clearly U
′

∞/U∞ is isomorphic to a submodule of finite
index of Zp[S] with the natural action of Gal(F∞/Q) on both sides. Call M

this submodule. It follows that U
′

∞/(U∞ + C
′

∞) is isomorphic to M/µ(C
′

∞),
where µ is obtained from the valuations at finite levels, i.e. is the limit of the
homomorphisms µ of the exact sequences (3).

Let B∞ be the cyclotomic Zp-extension of Q, and Bn its nth step. Let
εQ,∞ denotes the norm coherent sequence of numbers εQ,∞ = (p,NQ(ζp2 )/B1

(1−

ζp2), . . . , NQ(ζ
pn+1)/Bn

(1 − ζpn+1), . . . ). Since F∞ is abelian over Q it is at

most tamely ramified over B∞, with ramification index e say. It follows that
µ(εQ,∞) = e

∑
v∈S v, with e ∈ N dividing (p−1) and therefore a unit in Zp. Each

generators of C∞ either is a unit or behaves like εQ,∞. This shows that µ(C
′

∞) =

Zp
∑

v∈S v. Consequently we have U
′

∞/(U∞ + C
′

∞) ≃ M/(Zp
∑

v∈S v) ⊂
Zp[S]/(Zp

∑
v∈S v) and this proves the second equality of proposition 2.3 (ii).

For the first equality, there exist an n0 such that for all n ≥ n0, γ
pn

acts
trivially on MF∞. Putting ωn = γp

n

−1 as usual, and taking n ≥ n0 and m−n
large enough in the commutative triangle :

Um/Cm
ωm/ωn //

Nm,n %%JJJJJJJJJ
Um/Cm

Un/Cn

in,m

99ttttttttt

where Nm,n is the obvious norm map, we see immediately that MF∞ ⊂ KNF ,
and the finiteness of KNF shows the equality. Moreover, the exact sequence of
Λ-modules

0 // FrΛ(C∞) // FrΛ(U∞) // U∞/C∞ // 0

gives by descent an exact sequence of Zp-modules :

0 // (U∞/C∞)Γ // FrΛ(C∞)Γ // FrΛ(U∞)Γ // (U∞/C∞)Γ // 0

By (i) (U∞/C∞)Γ is finite, hence the equality (U∞/C∞)Γ = (MF∞)Γ. It fol-
lows then from 2.1 that (MF∞)Γ = TorZp

(FrΛ(C∞)Γ). The remaining assertions
in 2.3 are straightforward.

�

In what follows the finite order #(KNF )Γ will play for descent modules a
role analogous to the one played by Sinnott’s constant cF at finite level. Let us
put the :
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Notation 2.4 κF := #(KNF )Γ

Remark : We take this opportunity to correct a few mistakes in §3 and §4
of [BN] (due to the eventual non triviality of the constant κF ). In short :
every statement concerning only pseudo-isomorphisms or characteristic
series remains true; every index formula should be corrected if necessary
by a factor involving κF ; in every monomorphism or isomorphism state-
ment related to (C∞)Γ, this module should be replaced by its image in
UF . Another, quicker solution would be to restrict generality and suppose
everywhere that κF = 1.

In many situations (e.g.when p ∤ [F : Q], or when F is a cyclotomic field),
it is known that KNF = 0, but note that this is indirect evidence, coming
from the Λ-freeness of FrΛ(C∞) ([Kuz2], [B1] ...), not from the definition of the
obstruction kernels. Let us describe examples of non trivial KNF (again by
indirect evidence, this time finding a (C∞)Γ containing non trivial Zp-torsion).
Note that another example for p = 3 has just been announced by R. Kučera
([Kuč]). Such examples may be considered as exceptional : let us recall that we
have to avoid Hypothèse B of [B1], which holds true in most cases. In order to
prove the non-triviality of the constant κF we need to add some very peculiar
decomposition hypotheses such as those used in [Gr2]. Then the Galois module
structure of circular units is less difficult to control. This justifies the terminolo-
gy “günstige (p+ 1)-tuple” used in [Gr2]. We state these conditions :

1– the conductor f of F is of the form f =
∏i=p+1
i=1 li, where li are prime

numbers, li ≡ 1[p], and for all j 6= i, there exist some xi,j such that
li ≡ xpi,j [lj ].

2– G := Gal(F/Q) ≃ (Z/pZ)2

3– All the (p + 1) subfields of absolute degree p of F (F 1, F 2, ..., F p+1 say)

have conductors cond(F j) =
∏i=p+1
i=1,i6=j li

Remark : Following Greither, and using Čebotarev density theorem,
it is not difficult to prove that there exist infinitely many (p + 1)-
uples of primes li such that p and any subfield of the cyclotomic field
Q(ζQ

li) satisfy condition 1. Such (p + 1)-uples were called günstige
(p+1)-tuple in [Gr2]. We can then deduce that for each p there exist
(infinitely) many fields F such that F and p satisfy condition 1–, 2–
and 3–.

Proposition 2.5 If the fixed field F together with the fixed prime p 6= 2 satisfy
condition 1–, 2– and 3–, then Fr(C∞) is not Λ-free.

Proof. Details are given in [B2].
�
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2.3 Dividing by T

Going back to the general (not necessarily abelian) situation, let us record a
useful result of co-descent, due to Kuz′min :

Proposition 2.6 ([Kuz1], 7.3) The natural map (U
′

∞)Γ −→ U
′

F is injective.

Remark : For simple reasons of Zp-ranks, the analogous property for U∞

does not hold. In other words the natural map (U∞)Γ −→ (U
′

∞)Γ induced

by the inclusion U∞ ⊂ U
′

∞, is not injective.

We aim to replace this last inclusion by a more elaborate injection. To this end,
we first prove an analog of Hilbert’s theorem 90 in Iwasawa theory :

Theorem 2.7 Recall that (U
′

∞)(0) is defined as the kernel of the naive descent

map U
′

∞ −→ U
′

0. Let us fix a topological generator γ of Γ = Gal(F∞/F ). Then
multiplication by (γ − 1) gives an isomorphism of Λ-modules :

U
′

∞
∼
−→ (U

′

∞)(0).

Proof. Since Γ acts trivially on U
′

0, the image (γ − 1)U
′

∞ is obviously con-

tained in (U
′

∞)(0). Moreover, the kernel of (γ−1) is Λ-torsion, but the Λ-torsion

submodule of U
′

∞ is (0) or Zp(1), hence (γ − 1) is injective on U
′

∞. It remains

to show that (γ − 1)U
′

∞ = (U
′

∞)(0). To this end, consider the composite of
natural injective maps :

(U
′

∞)(0)/(γ − 1)U
′

∞

� � // U
′

∞/(γ − 1)U
′

∞ = (U
′

∞)Γ
� � // U

′

F

(the injectivity on the left is obvious; on the right it follows from 2.6). By
definition (see the beginning of this section), this composite map is null, which
shows what we want.

�

Corollary 2.8 Suppose that F satisfies Leopoldt’s conjecture and p is totally
split in F . Then multiplication by (γ − 1) gives an isomorphism of Λ-modules

U
′

∞
∼
−→ U∞

Proof. Using 2.7, it remains only to show the equality (U
′

∞)(0) = U∞. Let us
show successively the mutual inclusions :

(i) If α∞ ∈ (U
′

∞)(0), then by 2.7, α∞ may be written as α∞ = (γ − 1)β∞, with

β∞ ∈ U
′

∞. Since γ acts trivially on the primes of F above p, it is obvious that

(γ − 1)β∞ ∈ U∞. Hence (U
′

∞)(0) ⊂ U∞.
(ii) Let u∞ ∈ U∞. For all primes v above p and all integers n, we have

u0 = NFn/F (un) = NFv,n/Fv
(un), i.e. u0 is actually an element of Û ′F . But

UF
⋂
Û ′F = {1} by 1.1. Hence U∞ ⊂ (U

′

∞)(0).
�

We are now in a position to construct the map we were looking for.

Definition 2.9
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(i) Suppose that F satisfies Leopoldt’s conjecture and p is totally split in F .
Define

Θ: U∞
∼ // U

′

∞

nat. //
(
U
′

∞

)
Γ

� � // U
′

F .

The first isomorphism is the inverse of the one in 2.8; the last monomor-
phism is the one in 2.6. The definition of Θ depends on the choice of
γ.

(ii) Suppose that F is abelian over Q. Then F∞/Q is also abelian, and each
Fn contains circular units in the sense of Sinnott [Si2]. Let Cn be the
group of circular units of Fn, Cn = Cn⊗Zp, C∞ = lim

←
Cn. If p is totally

split in F , define ΘC : C∞ −→ U
′

F as the restriction of Θ to C∞.

The homomorphism ΘC gives us Solomon’s “S-units” at a lower cost than in
[So1]. In fact the choice of any interesting element in C∞ would yield via ΘC

an interesting element in U
′

F . Let us fix once and for all the notation (ζn)n∈N

for a system of primitive nth roots of unity such that ζmmn = ζn. Let f be
the conductor of F . Consider the norm coherent sequence of circular units
εF,∞ := (1, NQ(ζp2f )/F1

(1− ζp2f ), · · ·, NQ(ζ
pn+1f

)/Fn
(1− ζpn+1f ), · · ·)n∈N. It is an

easy (but fastidious) consequence of the definition that ΘC(εF,∞) is indeed equal
to Solomon’s “p-unit” κ(F, c), as constructed in [So1]. We skip the calculations
since they give no further information. Actually we don’t need to show the
equality between κ(F, c) and ΘC(εF,∞) because in the sequel, all properties of
ΘC(εF,∞) which will be used (e.g. 4.2) will be reproved.

3 Modified circular S-units and regulators

3.1 Modified circular S-units

From now on, unless otherwise stated, F will be an abelian number field, and p
will be totally split in F . We aim to study the maps Θ and ΘC .

Proposition 3.1 KerΘ = (γ − 1)U∞ and ImΘ ≃ (U
′

∞)Γ. In particular ImΘ
has Zp-rank (r1 + r2).

Proof. The isomorphism ImΘ ≃ (U
′

∞)Γ follows obviously from the definition
of Θ and 2.6. The value of the Zp-rank comes from 2.1. To compute KerΘ, we

can decompose Θ as U∞
nat
։ (U∞)Γ

2.8
∼
→ (U

′

∞)Γ
2.6
→֒ U

′

F . It is then obvious that
KerΘ = (γ − 1)U∞.

�

It is naturally more difficult to get hold of ΘC , which contains more arithme-
tical information.

Proposition 3.2 KerΘC = ((γ − 1)U∞) ∩C∞ and (abusing notation)
ImΘC ≃ (C∞)Γ/(KNF )Γ. In particular ImΘC has Zp-rank (r1 + r2).
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Proof. The equality KerΘC = (γ − 1)U∞ ∩C∞ is 3.1. It follows that

Ker((C∞)Γ
ΘC−→ U

′

F ) = Ker((C∞)Γ
nat
−→ (U∞)Γ).

The latter has been shown in 2.3 to be the Zp torsion of (C∞)Γ, isomorphic to
(KNF )Γ.

�

Corollary 3.3 Using 3.2 we define the map α by the commutative triangle :

(C∞)Γ
ΘC //

����

U
′

F

(C∞)Γ/(KNF )Γ

α

88qqqqqqqqqqq
,

and the map β : (C∞)Γ/(KNF )Γ −→ U
′

F /UF by composing α with the natural

projection U
′

F ։ U
′

F /UF . They both depend on γ and are injective.

Proof. The map α is well defined and injective by 3.2. For β, the image of α
lies inside Û ′F , and Û ′F ∩ UF = {1} by lemma 1.1. Hence β is injective.

�

Definition 3.4 Put C̃′′F := ImΘC = Imα and call it the subgroup of modified
circular S-units of F (the terminology will be justified in 3.9 below). Solomon’s
“S-unit” is thus a particular modified circular S-unit.

Obviously C̃′′F ⊂ (U
′

∞)Γ ⊂ Û ′F ⊂ U
′

F . By β in 3.3 we have C̃′′F = Imα ≃ Imβ,

and we may also consider C̃′′F as a subgroup of U
′

F /UF . The distinction between
Imα and Imβ will always be made clear by the context.

Proposition 3.5 Û ′F /C̃
′′
F is the Zp-torsion of U

′

F /C̃
′′
F , and its order is

(Û ′F : C̃′′F ) = κF#((X ′∞)+)Γ .

Proof. Because of the validity of Gross’ conjecture, Û ′F has Zp-rank (r1 + r2),

hence Û ′F /C̃
′′
F is Zp-torsion by 3.2. Besides, U

′

F /Û
′
F is Zp-torsion free by Sin-

nott’s exact sequence, hence the first part of the proposition. Let us compute the

index (Û ′F : C̃′′F ) = (Û ′F : (U
′

∞)Γ)((U
′

∞)Γ : C̃′′F ). Using 3.2 we have an isomor-

phism (C∞)Γ/(KNF )Γ
∼
−→ C̃′′F . Using the snake sequence of the proof of 2.3 (ii)

(viz. applying the snake lemma to multiplication by (γ − 1)) we get an isomor-

phism (U
′

∞)Γ/C̃
′′
F ≃ (U∞/C∞)Γ. By a classical formula (Herbrand’s quotient

in Iwasawa theory), the order of the right hand side is p-adically equivalent to
κFG(0), where G(T ) is the common characteristic series of (X ′∞)+, X+

∞ and

U∞/C∞. In other terms ((U
′

∞)Γ : C̃′′F )
p
∼ κF#((X ′∞)+)Γ/#((X ′∞)+)Γ. Note

that by Gross’ conjecture, ((X ′∞)−)Γ is finite, hence null because (X ′∞)− has no
non-trivial finite submodule (see [I]). It follows that ((X ′∞)+)Γ = (X ′∞)Γ. As

for the quotient Û ′F /(U
′

∞)Γ, it is known to be isomorphic to (X ′∞)Γ (see [Kuz1],
7.5). The proof of the proposition is complete.

�
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3.2 Regulators

From now on, we impose the additional condition that F be totally real, in order

to get regulator formulae. Note that in this case, all modules C̃′′F , (U
′

∞)Γ, Û
′
F ,

and U
′

F /UF have the same Zp-rank r1 = [F : Q]. Note also that in the totally
real case, Leopoldt’s conjecture (i.e. the finiteness of (X∞)Γ, see e.g. [I] or
[Wi]) implies what we called Gross’ conjecture (i.e. the finiteness of (X ′∞)Γ) in
§1.2. However we prefer to keep the terminology “Gross’ conjecture” because in
general the module X∞ and X ′∞ are not of the same nature : they are mutually
in Spiegelung. Recall that we have injective homomorphisms (exact sequence
(5 λ) and lemma 1.1) between Zp-lattices of rank (r1 − 1) :

UF
� � // U

′

F /Û
′
F

� � λ // pI(S)

We consider pI(S) as a submodule of I(S) and we define regulators :

Definition 3.6 Since the abelian field F satisfies both conjectures of Leopoldt
and Gross, we can define

(i) RGross
F as the index of λ(U

′

F /Û
′
F ) inside I(S)

(ii) RLeop
F as the index of λ(UF ) inside I(S)

Remarks

(i) The exact sequence (1) in §1.1 and the isomorphism UF ≃
⊕

v∈S(1+pZp)
(because p is totally split) show immediately that our index RLeop

F is p-
adically equivalent to the classical Leopoldt p-adic regulator. Note that
we are obliged to work inside I(S) (and not pI(S)) because of Leopoldt’s
definition.

(ii) The exact sequence (5) in §1.2 and the isomorphism ⊕v∈SF
×

v /F̂
×
v ≃

⊕v∈S(1 + pZp) also show that, by taking p-adic logarithms, our index
RGross
F is p-adically equivalent to a determinant which is the real analog

of Gross’ “imaginary” regulator as defined in [FGS].

(iii) Clearly, RGross
F /RLeop

F is an integer equal to (U
′

F /Û
′
F : (UF ⊕ Û ′F )/Û ′F ) =

(U
′

F : UF ⊕ Û ′F ).

Theorem 3.7 Let F be an abelian, totally real number field, and let p be totally
split in F . Let h′F be the S-class number of F . Then :

(i) #TorZp
(U
′

F /C̃
′′
F ) = (Û ′F : C̃′′F )

p
∼ κF h′FR

Gross
F p1−r1

(ii) (U
′

F /UF : C̃′′F ) = (U
′

F : C̃′′F ⊕ UF )
p
∼ κF h′FR

Leop
F p1−r1

(the sign
p
∼ means p-adic equivalence).
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Proof. The first equality in (i) has been shown in 3.5. It remains to compute
the p-adic valuation of #(X ′∞)Γ. From Sinnott’s exact sequence (5 λ), we

get : #(X ′∞)Γ
p
∼ h′F#Cokerλ. This shows (i), and (ii) follows by the above

calculation of RGross
F /RLeop

F .
�

Corollary 3.8 Let hF be the class number of F . Then (Zp[S] : µ(C̃′′F ))
p
∼

κFhFR
Leop
F p1−r1 .

Proof. Recall that C̃′′F is embedded in U
′

F /UF by 3.3, and the map µ takes
place in the exact sequence :

0 // U
′

F /UF
µ // Zp[S]

Artin // XF
// X ′F // 0 (3 µ).

Together with 3.7 (ii), this shows the corollary.
�

Remark : In [So1], definition 4.1, Solomon introduces the Galois module
K(F ) generated by all Solomon elements attached to all subfields of F
distinct from Q, and he shows, in the semi-simple case, an index formula
analogous to that of 3.8 (but he takes quotients by norms; see [So1], propo-

sition 4.3). To compare K(F ) and C̃′′F , see theorem 4.4 below. Corollary
3.8 is clearly a strengthening of Solomon’s result. It gives the most gen-
eral estimation of the size of the modified circular S-units. Note also that
the regulator formula in 3.8 bears a resemblance with Leopoldt’s formula
giving the residue at 1 of the p-adic zeta function of F . This must (and
will) be explained (see §5).

3.3 Kuz′min’s modified circular S-units

Let us give now another description of the modified circular S-units. For sim-
plicity, we stick to the hypotheses of theorem 3.7. We have seen that for the
purpose of descent and co-descent in Iwasawa theory, it is often more convenient

to use the S-units U
′

∞ instead of the units U∞ (for example : the natural map

(U
′

∞)Γ −→ U
′

F is injective by Kuz′min’s theorem, here labelled 2.6, whereas
(U∞)Γ −→ UF is never injective). It is also natural to introduce the group C′n
of circular S-units of Fn in the sense of Sinnott, which is the intersection of U ′n
with the circular numbers of Fn (for details see §4.3), and put C

′

n = C′n ⊗ Zp,
C
′

∞ = lim
←
C
′

n. The drawback is that the Λ-torsion module U
′

∞/C
′

∞ has no

longer finite co-invariants (contrary to U∞/C∞). To get smoother descent,
Kuz′min has introduced –without any splitting hypothesis on p– a certain mod-
ule of modified circular S-units at infinite level which has been studied at length
in [Kuz2] and [BN] (but note that [Kuz2] uses circular units in the sense of
Washington – according to the terminology of [KN]– and [BN] in the sense of
Sinnott). In our particular situation here (p totally split), Kuz′min’s definition

can be adapted and much simplified : let C
′′

∞ be the Λ-submodule of U
′

∞ such

that (U
′

∞/C
′

∞)Γ = C
′′

∞/C
′

∞. The obvious guess is then the good one :
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Proposition 3.9 With the hypotheses of theorem 3.7, the inclusion C
′′

∞ ⊂ U
′

∞

induces, by taking co-invariants, an isomorphism

C̃′′F ≃ (C
′′

∞)Γ/(KNF )Γ

Proof. The proof will proceed in two steps :

Lemma 3.10 Multiplication by (γ − 1) induces isomorphisms of Λ-modules

C
′′

∞
∼
−→ C∞ and U

′

∞/C
′′

∞
∼= U∞/C∞.

Proof. Let τ be the inverse of the isomorphism U
′

∞

γ−1
∼
−→ (U

′

∞)(0) of theorem 2.7.

If α∞ ∈ τ(C∞), then (γ − 1)α∞ ∈ C∞ ⊂ C
′

∞, hence α∞ + C
′

∞ ∈ (U
′

∞/C
′

∞)Γ

and α∞ ∈ C
′′

∞. Conversely, if α∞ ∈ C
′′

∞, then (γ − 1)α∞ ∈ C
′

∞ by definition.
But we have seen in the proof of 2.8 that (γ−1)α∞ ∈ U∞, hence (γ−1)α∞ ∈ C∞
i.e. α∞ ∈ τ(C∞). (NB : we did not need to suppose F totally real).

�

We now complete the proof of 3.9. By 3.10 and the construction of the map

Θ, we see that C̃′′F is the image of C
′′

∞ by the natural map U
′

∞ → (U
′

∞)Γ →֒ U
′

F .

It remains only to show that the inclusion C
′′

∞ ⊂ U
′

∞ induces an injection

(C
′′

∞)Γ/(KNF )Γ →֒ (U
′

∞)Γ. This follows from 3.10 and 3.2.
�

4 A bridge over troubled water

From now on, unless otherwise stated, F will be an abelian number field, totally

real and p will be totally split in F , and let G = Gal(F/Q). Our goal is to

compare the groups of circular units and modified circular S-units, CF and C̃′′F .

4.1 Statement of the problem

By construction C̃′′F ≃ ((C∞)Γ)/(KNF )Γ (proposition 3.9) but, as noticed in
the introduction, the natural map (C∞)Γ −→ CF gives no information. The

idea is to replace it by the map (C∞)Γ −→ U
′

F derived from ΘC of 2.8, and to

compare its image C̃′′F with the group of cyclotomic units CF inside U
′

F . But

staying in U
′

F sheds no new light. Our strategy will be to consider C̃′′F inside

U
′

F /UF and CF inside U
′

F /Û
′
F , and the to “lay a bridge over troubled water”

between the exact sequences (3 µ) and (5 λ). As noticed in §1, the water is

really troubled, because there is a priori no natural map between U
′

F /UF and

U
′

F /Û
′
F . For the sake of clarity, let us give first an abstract of the construction

of the bridge :

– embed CF in U
′

F /Û
′
F by 1.1 and C̃′′F in U

′

F /UF by 3.3

– then embed CF in I(S) via λ and C̃′′F in Zp[S] via µ
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– use, as in [So1], Coleman’s theory of power series to compute the semi-local

module µ(C̃′′F )

– this computation suggests to introduce an auxiliary module Cyc′F of “cir-

cular numbers”, which contains naturally CF and is sent naturally to C̃′′F

– the composite map CF −→ Cyc′F −→ C̃′′F gives what we want. Its kernel
and cokernel are under control.

4.2 Explicit semi-local description of µ
(
C̃ ′′

F

)

We now review –and simplify– the proof of the main result of Solomon (see
[So1], theorem 2.1). Let L be a local p-adic field, i.e. a finite extension of Qp.

As previously, L× (resp. U(L)) will denote the p-completion of L× (resp of the

units), and L×∞ := lim
←
L×n , U∞(L) := lim

←
U(Ln) when going up the cyclotomic

Zp-extension L∞ =
⋃
n≥0 Ln of L.

Lemma 4.1 (local analog of 2.7 and 2.8) Suppose that L/Qp is tamely ra-
mified. Fix a topological generator γ of Gal(L∞/L) and let N be the norm map
of L/Qp. Then multiplication by (γ − 1) induces an isomorphism

Q×p,∞
γ−1
∼
−→ (Q×p,∞)(0) = N(U∞(L)).

Proof. The first isomorphism (multiplying by T ) is proved exactly in the same
way as in 2.7. The second equality comes from the tameness assumption and
the surjectivity of the norm map in this case.

�

We consider the special case L = Qp(ζp) and we want to make explicit the

inverse of the isomorphism of 4.1, say τp : N(U∞(L))
∼
−→ Q×p,∞. Let us start

from the exact sequence of Λ-modules 0 // U∞(L) // L×∞
v∞ // Zp // 0 ,

where the valuation v∞ is defined using a choice of norm coherent uniformizing
elements π∞ = (πn). This exact sequence in general does not split, but never-

theless, every element x∞ ∈ L×∞ may be uniquely written x∞ = z∞π
v∞(x∞)
∞ ,

z∞ ∈ U∞(L). In particular, take x∞ = τp(N(u∞)) ∈ Q×p,∞ ⊂ L×∞. By Cole-
man’s theory over Qp(ζp) we can associate uniquely to u∞ (resp. z∞) formal
power series gu∞

(T ) (resp. gz∞(T )) in Λ = Zp[[T ]], T = γ − 1. Let c denotes
the topological generator of 1+pZp which corresponds to γ by the isomorphism
Z×p ∼= Gal(Qp(ζp)/Qp). Then

Lemma 4.2 (Solomon’s lemma) (see [So1], Theorem 3.1).

Let τp(N(u∞)) = z∞π
a(u∞)
∞ . We have :

∏

ω∈µp−1

gu∞
((1 + T )ω − 1) =

(
(1 + T )c − 1

T

)a(u∞)
gz∞((1 + T )c − 1)

gz∞(T )
∈ Λ.
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In particular a(u∞) = (p−1) logc(gu∞
(0)), where logc(·) = logp(·)/ logp(c), and

logp is the Iwasawa logarithm characterized by logp(p) = 0.

Proof. This is an immediate consequence of the construction of τp. The left
hand side product is the norm of Coleman’s power series gu∞

(T ). The right

hand side is just obtained by applying (γ − 1) to (z∞π
a(u∞)
∞ ).

�

Let us now come back to our number field F and give an explicit description
of the semi-local module µ(C̃′′F ) ⊂ Zp[S] = ⊕v|pZpv. For any subfield M of F ,
let us denote by m the conductor of M (recall that p ∤ m). Consider the norm
coherent sequence in the Zp-extension of M :

εM,∞ =
(
N

Q(ζmpn+1)/Mn
(1 − ζσ

−n

m ζpn+1)
)
n≥0

where σ ∈ Gal(Q(ζfM
)/Q) is the Frobenius of p. For M 6= Q, εM,∞ is clearly

an element of C∞(F ). A system of Galois generators of C∞(F ) is given by
Greither’s lemma ([Gr1], lemma 2.3) :

Lemma 4.3 The elements εM,∞ (for Q $ M ⊂ F ), together with (γ − 1)εQ,∞,
form a system of Λ[G]-generators of C∞(F ).

By applying µ ◦ Θ to this system of generators we obtain a system of Zp[G]-

generators of µ(C̃′′F ), consisting of the elements
∑

v a(ıv(εM,∞))v, Q $ M ⊂ F ,
v ∈ S and of µ(p) = (1, ..., 1) (here ıv is the embedding of F in Fv and a(·)
is as in 4.2). We are then led by lemma 4.2 to evaluate at 0 the power series
gεM,∞

(T ). Once a choice of π∞ has been made, these power series are uniquely
determined. It is possible to choose a sequence π∞ such that gεM,∞

(T ) may
be easily written down (actually gεM,∞

(T ) will turn out to be a polynomial).
It then gives gεM,∞

(0) = ıv(εM ), where for all M , of conductor m say, εM is
the cyclotomic number εM := NQ(ζm)/M (1 − ζm). Applying lemma 4.2 one gets
µ(ΘC(εM,∞)) = (logc(ıv(εM )))v∈S . (for details see pp. 343 and 344 of [So1]).
This proves the :

Theorem 4.4 The Zp[G]-submodule µ(C̃′′F ) of Zp[S] is generated by all the
(logc(ıv(εM )))v∈S for Q $ M ⊂ F together with (1, ..., 1), where logc(x) denotes
logp(x)/ logp(c).

�

(compare with [So1], theorem 2.1; proposition 4.2)

Remark : Because of the injectivity of µ, this shows the precise relationship
between our C̃′′F and Solomon’s K(F ) ([So1], definition 4.1) :

C̃′′F = 〈K(F ), p〉Zp
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4.3 Cyclotomic numbers

Let CycF be the subgroup of cyclotomic numbers of F× in the sense of Sin-
nott. More precisely, CycF is generated by the elements εM (as defined in
4.4) and their Galois conjugates. These elements are actually local units ex-
cept possibly at the primes of F which are ramified above Q. Let us de-
note by Ram(F/Q) the set consisting of those primes. For technical reasons
we’ll consider CycF as a subgroup of the group UF (R) of R-units of F , where
R = Ram(F/Q)

⋃
S

⋃
{primes of F dividing (1 + p)}, and denote by CycF

the closure of CycF in UF (R) = UF (R) ⊗ Zp. We also introduce the group

Cyc′F = 〈CycF , (1 + p)〉 and its closure Cyc′F . For any finite set of primes T
containing S, the “T -analog” of Sinnott’s exact sequence is valid, viz. we have :

UF (T )
δT // ⊕

v∈T F
×
v /F̂

×
v

Artin // Gal(L′0/F ) // XF (T ) // 0 (6)

Here F̂×v , the local cyclotomic norms, is the group of norms in the Zp-extension

Fv,∞/Fv (when v /∈ S, F̂×v is the torsion of F×v , i.e. the local p-primary roots
of unity). The exactness of (6) is obvious from (4), because L′∞, hence L′0,
are independent of T ⊃ S. By Leopoldt’s conjecture, UF (T ) is embedded in

⊕v∈TF
×
v , and Ker δT = UF (T )∩⊕v∈T F̂

×
v . It follows at once from the definition

of F̂×v that kerδT = Ker δS = Û ′F , independently of T ⊃ S.

Remark : Jaulent’s presentation of Sinnott’s exact sequence (in [J]) en-
larges T to the set of all primes of F . This has the advantage to dispense
with Leopoldt’s conjecture.

Theorem 4.5

(i) We have a canonical epimorphism Cyc′F ։ C̃′′F .

(ii) This epimorphism induces a monomorphism ϕ : CF →֒ Tr(C̃
′′
F ). Here and

from now on, Tr(·) will denote the kernel of the algebraic trace (= action
of the trace element in Zp[G]).

Proof. (i) Let λR be the composite map (⊕v|p logp) ◦ pr ◦ δR, where pr denotes

the projection ⊕v∈RF
×
v /F̂

×
v ։ ⊕v∈SF

×
v /F̂

×
v . By (3 µ) and (5 λ), we have a

commutative square :

C̃′′F
µ // Zp[S]

Cyc′F
λR //

φ

OO�
�

�

pZp[S]

1
p

OO

where the dotted arrow φ exists because of 4.4 and the injectivity of µ. The
description of the generators in 4.4 also ensures the surjectivity of φ.
(ii) By definition of λR, we have another commutative square
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Cyc′F
λR // pZp[S]

CF
� � λ //

?�

OO

pZp[S]

Remark : Actually the image of λ is contained in pI(S) because the norm
of a (p)-unit is a power of p (up to a sign). But this holds no longer true
for T -units, T % S.

Gluing together the two commutative squares, we obtain still another :

Tr

(
C̃′′F

)
� � µ // I(S)

CF
� � λ //

ϕ

OO

pI(S),

1
p+

OO

where ϕ is the restriction of φ to CF . The injectivity of ϕ follows from that of
the three other sides of the square.

�

The monomorphism ϕ : CF →֒ Tr(C̃
′′
F ) allows us to compare these two Zp-

lattices in terms of ramification and “structural constants”. Recall Sinnott’s

index formula : (UF : CF ) = cFhF , where cF is a rational constant whose
explicit definition does not involve the class group of F , and has been extensively
studied in [Si1], [Si2], [Kuz2], [BN], etc ... Recall that the cyclotomic constant
c was introduced in 4.2, and κF in 2.4.

Theorem 4.6 Let pbZp be the ideal of Zp generated by [F : Q] and by the
numbers [F : Ml] logc(l) where Ml := F ∩ Q(ζl∞) and l runs through all prime

divisors of the conductor of F such that Ml 6= Q. Then (Tr(C̃
′′
F ) : ϕ(CF )) is

p-adically equivalent to pbcF /κF .

Proof. By definition of ϕ, we have a commutative diagram

0 // CF
ϕ //

� _

��

Tr(C̃
′′
F ) //

� _

µ logp(c)

��

Cokerϕ //

��

0

0 // UF
λ // pI(S) // Cokerλ // 0

and since logp(c) ∼ p, we deduce equalities

(
I(S) : µ( Tr(C̃

′′
F ))

)
=

(
pI(S) : Im logp(c)µ

)
=

(
UF : CF

) #Cokerλ

#Cokerϕ
.

But #Cokerλ
p
∼ RLeop

F p1−[F :Q] by 3.6, and (UF : CF )
p
∼ cFhF by Sinnott’s

formula. It remains to compute the index (I(S) : µ( Tr(C̃
′′
F ))). Using the

commutative diagram
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0 //
Tr(C̃

′′
F )

� _

µ

��

// C̃′′F
Tr //

� _

µ

��

Tr(C̃′′F ) //

ψ

��

0

0 // I(S) // Zp[S]
Tr // Zp // 0

it appears that we just have to study the vertical map ψ. A priori we know
that Tr(C̃′′F ) has Zp-rank one. But here we may identify the algebraic norm
Tr with the arithmetic norm N from F down to Q (recall that we are dealing

with S-units), so that Tr(C̃′′F ) may be identified with a submodule of U
′

Q = pZp ;
in particular it has no Zp-torsion. This implies that Kerψ = 0. Concerning
the image of ψ, the commutativity of the diagram shows that Imψ is the ideal
of Zp generated by the elements

∑
v∈S logc(ıv(εM )) = logc(N(εM )), together

with [F : Q] = Tr(µ(p)). Even more explicitly, we know that if the conductor
m of M is a power of a single prime, ℓ say, then N(εM ) = ℓ[F :M ], and if m is
composite, N(εM ) = 1. Denoting (as indicated in the statement of the theorem)

Imψ = pbZp, we have (I(S) : µ( Tr(C̃
′′
F ))) = p−b(Zp[S] : µ(C̃′′F )) and this last

quantity is p-adically equivalent to κF p
−b+1−r1hFR

Leop
F by corollary 3.8. The

theorem is proved.
�

Remark : In [So2], Solomon uses a description by generators and relations

to compare (in our notations) CF and C̃′′F . In doing so, he must enlarge
these modules to get (in his notations) a surjective map θ : DS ։ KS
([So2], theorem 1) which plays a role analogous to our map φ in the proof
of 4.5. The restriction of θ to CF coincides with our map ϕ, and theorem
4.2 of [So2] determines its image. This construction by generators and
relations allows one to compute Zp-ranks, but probably not indices nor
annihilators.

5 Applications

5.1 Annihilation of class groups

As announced in the introduction, we are now looking for ideals of Zp[G] which
annihilate the p-groups XF and UF /CF . Even more precisely, we intend to
compute the Fitting ideals of some related modules. In order to state Solomon’s
conjecture, let us temporary relax the hypothesis that p is totally split in the
totally real abelian field F . So now we only assume that p is a prime number
which doesn’t ramify in F , which in turn may be a real or complex abelian field.
We fix an embedding ı : Qsep →֒ Qsep

p , and we shall denote by O the topological
closure in Cp of the image ı(OF ) of F (a priori O is inside Cp, but it actually
lies in Qsep

p ). For any subfield M 6= Q of F , we define Solomon’s element solM
as in [So1], §4 :

solM :=
1

p

∑

g∈Gal(M/Q)

(
logp(ı(ε

g
M ))

)
g−1 ∈ O[Gal(M/Q)].
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By convention solQ = 1. These elements should be considered as real analogues
of the classical Gauß sums, and the real analog of Stickelberger’s theorem is
Solomon’s conjecture :

Conjecture 5.1 (see [So1], 4.1) solF annihilates ClF ⊗O.

Solomon’s conjecture holds true in the semi-simple case (i.e. p ∤ [F : Q]), but this
does not give anything new, because in this case it follows from Mazur-Wiles’
theorem ([So1], 4.1; see also 6.8 below). In the general case, let us introduce a
modified Solomon’s element.

Definition 5.2 Let F be a totally real abelian field. Recall that w | p is the
place corresponding to the fixed embedding ı : Qsep →֒ Qsep

p . We still write w for
the restriction of w to any subfield M of F .

(i) Let M be any subfield of F . Let s̃ol
F

M be any element in OFw
[Gal(F/Q)]

which restricts to solM in OMw
[Gal(M/Q)] ⊂ OFw

[Gal(M/Q)]. In the
commutative ring OFw

[Gal(F/Q)], we define the product

solFM := s̃ol
F

M TrF/M .

(with obvious notation for the trace). This product does not depend on the

choice of the lift s̃ol
F

M .

(ii) For any real abelian field M with prime power conductor, let gM be a
generator of the (necessarily cyclic, M being real) group Gal(M/Q). For
any subfield M of F we define

solFM,2 :=

{
(1 − gM ) solFM if the conductor of M is a prime power,

solFM otherwise.

We intend now to prove a slightly modified version of Solomon’s conjecture
in the non semi-simple case, with the additional hypothesis that p is totally split
in F (then O = Zp). It is here that our functorial approach will pay off, in that
it will allow us to apply techniques “à la Rubin” to annihilate XF :

Lemma 5.3 Let N be a power of p. Let V ⊂ UF /(UF )N be a Galois submodule
and let ρ : V −→ Zp[G]/NZp[G] be any equivariant homomorphism. Let C ⊂ UF
be the subgroup of ”special units” as defined in [R], p. 512, and write (C)N
for its image (C(UF )N )/(UF )N ⊂ UF /(UF )N . Then ρ(V ∩ (C)N ) annihilates
XF /NXF .

Proof. This lemma is a direct consequence in our special case of Rubin’s theorem
1.3 (see [R]). The field denoted K in loc. cit. is here equal to Q. We take for
A of loc. cit. the full group XF /NXF . Then Rubin’s theorem 1.3 shows that
ρ(V ∩ C) annihilates some submodule A′ ⊂ A. Using lemma 1.6 (ii) and the
definition of H1 in loc. cit. it is easily checked that, in our special case (i.e.
p 6= 2, the only roots of unity in F are ±1, and every place above p is totally
ramified in F (ζN )/F ), we actually have A′ = A = XF /NXF .

�
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Theorem 5.4 For any totally real abelian field F , and any p totally split in F ,
solFF,2 annihilates XF .

N.B. : If the conductor f of F is divisible by at least two distinct primes this
theorem is Solomon’s conjecture 5.1, because by definition the elements solFF,2
and solF are equal. If the conductor is a power of a single prime ℓ this theorem
is slightly weaker than Solomon’s conjecture. But it is, for ideal classes, the
perfect analogue of an anihilation result for unit classes that we shall prove
later (see theorem 5.7).
Proof. Let ρ1 : UF −→ Zp[G] be the composite map ρ1 = η◦ 1

p ◦λ, where η is the

isomorphism η : Zp[S] = Zp[G] w
∼
−→ Zp[G], and w is the prime corresponding

to ı. Fix N such that (XF /NXF ) = XF . We apply lemma 5.3 by taking V =
UF /(UF )N and ρ : V −→ Zp/NZp[G] to be the map induced by ρ1. Exactly as

we defined solFF,2 we put :

εF,2 :=

{
(1 − gF )εF if the conductor of F is a prime power,

εF otherwise.

Then it is a classical fact that εF,2 is a unit and the element solFF,2 is nothing
else but the image ρ1(εF,2). Further εF,2 is a special unit : in the special case
that F is the maximal real subfield of a cyclotomic field this is theorem 2.1 of
loc. cit., and for any abelian field the result for εF,2 follows from exactly the
same computation. By lemma 5.3 it follows that the class in Zp[G]/N of sol2F,2
anihilates XF /NXF = XF .

�

5.2 Fitting ideals of quotients of units

Theorem 5.4 is still unsatisfactory, in that it uses only the map λ, not the map
µ (notation of §1). Let us cross the bridge built in 4.5. We’ll rather work with
ideals than with elements :

Definition 5.5 We define ideals Sol1(F ) ⊃ Sol2(F ) of OFw
[G] by giving sets

of generators :

Sol1(F ) :=
〈
solFM |Q ⊆M ⊆ F

〉
⊃ Sol2(F ) :=

〈
solFM,2 |Q ⊆M ⊆ F

〉
.

Proposition 5.6 Suppose that p is totally split in F . Recall that η is the iso-
morphism η : Zp[S] = Zp[G] w

∼
−→ Zp[G]. Then :

Sol1(F ) = η ◦
1

p
◦ λR(Cyc′F ) and Sol2(F ) = η ◦

1

p
◦ λR(CF ⊕ (1 + p)Zp).

N.B. : The set of places R has been chosen in order that UF (R) contains
simultaneously Cyc′F , CF and (1 + p)Zp , the last two being direct summands.

Proof. By definition of the map λR, we have solFM = η ◦ 1
p ◦ λR(εM ). Since

these elements, together with (1+p) (which is sent to TrK/Q, up to a p-adic unit)
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generate Cyc′F , the first equality is proved. The second is proved in exactly the
same way.

�

We are now in a position to prove global annihilation results for various
quotients of units by circular units :

Theorem 5.7 Let F be a totally real abelian field, let p be totally split in F .
Then :

(i) Let Un be the semi-local module Un := ⊕v∈SU
1
v (Fn) and U∞ := lim

←
Un.

The embedding C∞ →֒ U∞ induces, by taking co-invariants, an embedding
C̃′′F →֒ (U∞)Γ, and Sol1(F ) is the initial Fitting ideal of the Zp[G]-quotient
module.

(ii) Let ϕ : CF →֒ C̃′′F be the map defined in 4.5, and extend it to a map

ϕ̃ : CF ⊕ (1 + p)Zp −→ C̃′′F by putting ϕ̃(1 + p) = p. Then µ ◦ ϕ̃ gives an
embedding CF ⊕ (1 + p)Zp →֒ (U∞)Γ, and Sol2(F ) is the initial Fitting
ideal of the Zp[G]-quotient module.

(iii) Sol2(F ) annihilates UF /CF .

Proof. (i) The analog of the exact sequence (1) at infinite level gives an injection
U∞/U∞ →֒ X∞ := lim

←
XFn

. Leopoldt’s conjecture is known to be equivalent

to XΓ
∞ = 0, hence implies (U∞/U∞)Γ = 0. It follows that (U∞)Γ →֒ (U∞)Γ

and that (C∞)Γ −→ (U∞)Γ has the same kernel as (C∞)Γ −→ (U∞)Γ, hence

the embedding C̃′′F →֒ (U∞)Γ. Let us introduce another semi-local module,

namely F∞(F ) := lim
←

⊕v∈SF
×
n,v. We have seen that multiplication by (γ − 1)

induces an isomorphism C
′′

∞
∼
−→ C∞ (by 3.10) and analogously, F∞(F )

∼
−→

N(U∞(F (ζp))) (by 4.1). But N(U∞(F (ζp))) = U∞(F ) by tame ramification. In
other words, we have a commutative square

C
′′

∞

∼

γ−1
//

� _

��

C∞� _

��
F∞(F )

∼

γ−1
// U∞(F ) = U∞

By codescent we then get a commutative diagram :

0 // C̃′′F = (C
′′

∞)Γ/(KNF )Γ
µ //

+
��

F∞(F )Γ ∼= Zp[S]

+
��

// Cokerµ

+
��

// 0

0 // (C∞)Γ/(KNF )Γ // (U∞)Γ // (U∞/C∞)Γ // 0

which shows that (U∞/C∞)Γ has the same Zp[G]-Fitting ideal as Cokerµ. By

the isomorphism η : Zp[S]
∼
−→ Zp[G], this last Fitting is nothing but the ideal

η ◦ µ(C̃′′F ) = η ◦ 1
p ◦ λR(Cyc′F ) = Sol1(F ).

(ii) The commutative diagram
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CF ⊕ (1 + p)Zp
� � ϕ̃ //

� _

��

C̃′′F� _

µ

��
UF ⊕ (1 + p)Zp

� �
1
p
◦λ

// Zp[S]

(see the construction of ϕ in 4.5) and the isomorphism Zp[S] ≃ (U∞)Γ in (i)
above show that µ ◦ ϕ̃ embeds CF ⊕ (1 + p)Zp into (U∞)Γ. We conclude by
applying η as in (i).
(iii) It is well known that the Fitting ideal of a module is contained in its
annihilator. Here Sol2(F ) will annihilate (U∞)Γ/µ ◦ ϕ̃(CF ⊕ (1 + p)Zp), which
contains, by the commutative square in (ii), an isomorphic image of UF /CF .

�

Corollary 5.8 (Real analog of Stickelberger’s index)

(Zp[G] : Sol1(F )) = (Zp[S] : µ(C̃′′F )) = κF#TorZp
XF

p
∼ κFhFR

Leop
F p1−r1

Proof. It has been shown in 5.7 (i) that (Zp[G] : Sol1(F )) = (Zp[S] : µ(C̃′′F )) =
#(U∞/C∞)Γ. Since X∞ has no non-trivial Γ-invariants (Leopoldt’s conjecture)
and has the same characteristic series as U∞/C∞, we deduce the equivalence :

#(U∞/C∞)Γ
p
∼ #(U∞/C∞)Γ#(X∞)Γ. As F is totally real, (X∞)Γ is obviously

isomorphic to TorZp
XF . It remains to compute the order of TorZp

XF : this a
classical calculation using p-adic L-functions (see e.g. [BN], 2.6), which is actual-
ly equivalent to Leopoldt’s p-adic formula (the discriminant does not appear here
because p is unramified in F ).

�

Remark : This gives another proof of formula 3.8, at the same time ex-
plaining the parenthood between this index formula and Leopoldt’s residue
formula.

5.3 Still another exact sequence

Let us extract from the proof of 5.7 the following analog of the exact sequences
(1) and (2) of class field theory :

Corollary 5.9 We have an isomorphism (U∞/C∞)Γ ≃ (⊕v∈SF̂
×
v )/C̃′′F (nota-

tion of §1.2) and an exact sequence of finite modules :

0 // Û ′F /C̃
′′
F

// (⊕v∈SF̂×v )/C̃′′F
// TorZp

XF // (X ′∞)Γ // 0 (7)

Proof. It has been shown in the proof of 5.7 that (U∞/C∞)Γ ≃ (F∞(F ))Γ/C̃
′′
F ,

where F∞(F ) := lim
←

⊕v∈SF
×
n,v (notation of §1.2). But (F×v,∞)Γ = (F×v,∞)Γv

≃

F̂×v by class field theory. Thus the isomorphism is proved.
From the exact sequence :
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0 // U
′

∞
// F∞(F ) //

## ##HHHHHHH
X∞ // X ′∞ // 0

D∞
.
�

=={{{{{{{

(where D∞ denotes the relevant subgroup generated by decomposition sub-
groups), we get by co-descent two exact sequences :

0 // (U
′

∞)Γ
// ⊕v∈SF̂×v

// (D∞)Γ // 0 and

0 // (X ′∞)Γ // (D∞)Γ // (X∞)Γ ≃ TorZp
XF // (X ′∞)Γ // 0

Putting them together and using Kuz′min’s isomorphism Û ′F /(U
′

∞)Γ ≃ (X ′∞)Γ

(see [Kuz1], 7.5), we get the exact sequence (which is general) :

0 // Û ′F
// ⊕v∈SF̂×v

// TorZp
XF // (X ′∞)Γ // 0 , hence also (7).

�

Remark : In the study of the Main Conjecture via circular units inside
semi-local units and Coleman’s theory, and even in the semi-simple case,
a problem arises for characters ψ of G = Gal(F/Q) such that ψ(p) = 1,
because the natural co-descent map (U∞/C∞)Γ,ψ −→ (UF /CF )ψ then
gives no information (see e.g. [Gi]). This difficulty is related to the phe-
nomenon of trivial zeroes of p-adic L-functions. In this context, the more
“sophisticated” exact sequence (7) could be viewed as a device to “bypass
trivial zeroes”. We hope to come back to it in greater detail.

5.4 A criterion for Greenberg’s conjecture

Greenberg’s conjecture asserts that the orders of the groups Xn = XFn
are

bounded in the cyclotomic Zp-extension of a totally real number field F . This
conjecture has been numerically verified by various authors in a huge amount
of special cases. The case when p splits in the base field F is notably more
difficult than the others, probably because of the phenomenon of trivial zeroes.
Our approach here gives a new proof of a known criterion (see [Ta], theorem
1.3; but note that Taya only needs Leopoldt’s conjecture) :

Theorem 5.10 Let F be a real abelian field and p be an odd prime totally split
in F . Let Dn ⊂ Xn be the submodule generated by (images of) the places of
Fn above p. Then Greenberg’s conjecture holds true for F and p if and only if
#Dn = #torZp

(XF) for every n sufficiently large.

Proof. By definition Dn is the kernel Dn = Ker(Xn −→ X ′n). Hence it may
be used to split the sequence (3 µ) in two shorter sequences. Taking projective
limits we get :

0 // U∞ // U
′

∞

µ // Zp[S] // D∞ // 0 (3µa)

0 // D∞ // X∞ // X ′∞ // 0 (3µ b)

Since F∞/F is totally ramified at all places above p, D∞ is a submodule of XΓ
∞

and therefore is finite. Again by total ramification, the maps Dn+1 −→ Dn
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are surjective. So the theorem asserts that Greenberg’s conjecture is equivalent

to the equality #D∞ = #torZp
(XF). From corollary 2.8 we have U

′

∞/U∞ =

(U
′

∞)Γ, hence by (3µa) we get the isomorphism D∞ ∼= Zp[S]/µ((U
′

∞)Γ). Using
corollary 3.8 we deduce the equality :

#D∞(µ((U
′

∞)Γ) : µ(C̃′′F )) = #D∞((U
′

∞)Γ : C̃′′F ) = κF#torZp
(XF) (†)

Now Greenberg’s conjecture is equivalent to the finiteness of U∞/C∞, which
in turn is equivalent to the equality U∞/C∞ = KNF . Crossing the bridge,
actually applying lemma 3.10, this equality becomes equivalent to the canonical

isomorphism KNF ∼= U
′

∞/C
′′

∞. By Nakayama’s lemma, this isomorphism is

equivalent to the equality ((U
′

∞)Γ : C̃′′F ) = #(KNF )Γ. Since KNF is finite we
already have the equalities #(KNF )Γ = #(KNF )Γ = κF . Comparison with
the equality (†) shows the theorem.

�

For numerical applications of criterion 5.10, see [Ta] and the references therein.

6 Comparison of Fitting ideals

At this point, a natural question arises : does theorem 5.7 give anything new
with respect to the Main Conjecture ? In this section, the general hypothesis
will be : F is an abelian totally real field (and p is not necessarily totally split in
F ), G = Gal(F/Q). To avoid petty technical trouble, let us also suppose that
F is linearly disjoint from Q∞ (which is the case if p is totally split in F ), in
order that G acts on all the natural modules attached to the fields Fn in the
cyclotomic Zp-extension F∞/F .

Definition 6.1 Let MW (F ) (for Mazur-Wiles) be the initial Fitting ideal of
TorZp

XF over Zp[G].

This ideal annihilates TorZp
XF , hence also (since F is supposed linearly disjoint

from Q∞) the p-class group XF , but we do not know a priori if it annihilates
UF /CF . Conversely, if p is totally split in F , recall that the ideal Sol2(F ) anni-
hilates both UF /CF and XF . We would like to compare Sol1(F ) and MW (F ).

At infinite level, class-field theory gives an exact sequence of Λ[G]-modules :

0 // U∞/C∞ // U∞/C∞ // X∞ // X∞ // 0

We get by co-descent and functoriality :

MW (F ) = FittZp[G](TorZp
XF ) = image in Zp[G] of FittΛ[G](X∞)

and

Sol1(F ) = FittZp[G]((U∞/C∞)Γ) = image in Zp[G] of FittΛ[G](U∞/C∞)

The Main Conjecture implies that U∞/C∞ and X∞ have the same characteristic
series in Λ, but to compare their Λ[G]-Fitting ideals, more is needed, some kind
of “equivariant Iwasawa theory” which does not exist yet (but there is work in
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progress, see e.g. [BG], [RW1] ...). Besides, the Fitting ideal of a module is a
rather weak invariant, except if this module is of projective dimension at most
1 (see the comments in [Gr3]). For all these reasons, we’ll be content to work
in the following setting (which was already that of [BB1], [BN], [Gr3]) :

Notations 6.2 Write G = P × ∆, where P (resp. ∆) is the p-part (resp.
non-p-part) of G.

For any Qp-irreducible character ψ of ∆, let eψ be the usual idempotent, and
for any Zp[G] or Λ[G]-module M , let Mψ be eψM . We intend to compare
MW (F )ψ and Sol1(F )ψ for some non trivial ψ. Let us denote by Zp(ψ) (resp.
Λ(ψ)) the rings eψZp[∆] ≃ Zp[χ(∆)] (resp. eψΛ[∆] ≃ Λ[χ(∆)]), where χ is any
Qsep
p -irreducible character of ∆ dividing ψ.

We must first show results on projective dimensions, and for that introduce
some more appropriate objects and hypotheses :

Definition 6.3

(i) Let T = S
⋃

Ram(F/Q) (recall that S is the set of primes above p).
Slightly abusing language, we’ll keep the notations S and T when going
up the cyclotomic tower. We define XT∞ as the Galois group over F∞ of
the maximal abelian pro-p-extension of F∞ which is unramified outside T .

(ii) Let Σ be the set of places v ∈ T − S which split totally in F (ζp)/F . A
Qp-irreducible character ψ of ∆ will be called “locally non Teichmüller” if
either Σ is empty or the restriction of ψ to the decomposition subgroup ∆v,
for any v ∈ Σ, differs from the restriction of the Teichmüller character.
(Examples of fields for which any character of ∆ is locally non Teichmüller
may be found in [BB1] and [Gr3]).

Lemma 6.4

(i) For any Qp-irreducible character ψ of ∆, ψ 6= 1, we have pd(XT∞)ψ ≤ 1
over the algebra Λ(ψ)[P ].

(ii) For any locally non Teichmüller character ψ 6= 1 of ∆, we have pd(X∞)ψ ≤
1 over the algebra Λ(ψ)[P ].

((ii) generalizes corresponding results of [BB1] and [Gr3]).
Proof. By [N1], proposition 1.7, there exists a canonical Λ[G]-module YT∞ of
projective dimension at most 1, such that XT∞ and YT∞ take place in an exact
sequence :

0 // XT∞
// YT∞

// Λ[G] // Zp // 0

By cutting out by any non trivial character ψ of ∆, we get an exact sequence
of Λ(ψ)[P ]-modules

0 // (XT∞)ψ // (YT∞)ψ // Λ(ψ)[P ] // 0

in which the last two modules have projective dimension less than or equal to 1.
Then classical relations between projective dimension in a short exact sequence
(see e.g. [N2], proposition 3.3) show immediately the assertion (i).
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To go back to (X∞)ψ, recall that Leopoldt’s weak conjecture (which is valid
for the cyclotomic Zp extension) yields an exact sequence

0 // ⊕w∈ΣMw
// XT∞

// XS∞
// 0

where Mw is the module obtained by inducing Zp(1) from Gal(F∞/Q)w to
Gal(F∞/Q) ([N2],[Wi]). Cutting out by any locally non Teichmüller character
ψ of ∆ gives the assertion (ii), since the hypothesis “locally non Teichmüller”
just means that (⊕w∈ΣMw)ψ = 0.

�

As A := Λ(ψ)[P ] is a local ring, lemma 6.4 (i) gives us a short free resolution

0 // Am
φ // Am // (XT∞)ψ // 0 , and FittA(XT∞)ψ = (detφ). Let

us abbreviate R := Ram(F/Q), denote detφ by HR = HR,ψ ∈ A, and call it
“the” equivariant characteristic series of the A-module (XT∞)ψ. Lemma 6.4 (ii)
gives us an analogous exact sequence for (X∞)ψ and ψ locally non-trivial, and
analogous equivariant characteristic series, H = Hψ of the A-module (X∞)ψ.

Let ψ̃ be the (non-irreducible) character of G induced by ψ. For any Qsep
p -

irreducible character χ of G dividing ψ̃, let us denote again by χ the map
obtained by extending χ to Zp[G] or Λ[G] by linearity.

Proposition 6.5 Let ψ be a non-trivial Qp-irreducible character of ∆, then :

(i) FittZp(ψ)[P ](X
T
F )ψ = (HR(0)).

(ii) If moreover ψ is locally non Teichmüller, then FittZp(ψ)[P ](XF )ψ = (H(0)).

(iii) For any Qsep
p -irreducible character χ of G dividing ψ̃ :

FittΛ(χ)((X
T
∞)χ) = (χ(HR)) = (hR,χ(T )), where hR,χ(T ) is the usual char-

acteristic series of (XT∞)χ over Λ(χ). Here Mχ denotes the “χ-quotient”
of M (see e.g. [Ts],§2).

(iv) For any Qsep
p -irreducible character χ of G :

FittΛ(χ)((X∞)χ) = (χ(H)) = (hχ(T )), where hχ(T ) is the usual character-
istic series of (X∞)χ over Λ(χ).

Proof. (i) and (ii) are direct consequences of lemma 6.4, (iii) and (iv) are the
classical Main Conjecture (see e.g. [Gr1] [Ts]).

�

Recall that by the Main Conjecture, χ(H)(0)
p
∼ hχ(0)

p
∼ Lp(χ, 1) (see e.g.

[Gr1], theorem 3.2 and proposition 3.4).
Let us now deal with Sol1(F ) = FittZp[G]((U∞/C∞)Γ). To this end, we

introduce some “structural constants” which intervene in the computation of
Sinnott’s constant “character by character” (see [BN])

Definition 6.6 For any Qsep
p -irreducible character χ of G, let Fχ be the field

cut out by χ (i.e. the fixed field of Kerχ). For all subfields M ⊂ F such that
Fχ ⊂ M , define bFχ,M := [F : M ]

∏
ℓ(1 − χ−1(ℓ)), where the product is taken

over all primes ℓ dividing the conductor of M . Let bFχ be “the” greatest common

divisor of all the bFχ,M .
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(actually since OFw
(χ) is a local ring, bFχ is “equal” to one of the bFχ,M with

minimal p-adic valuation). One can easily check that the ideal (bFχ ) defined
here coincides with (bχ) defined in [BN], définition 1.6.

Lemma 6.7 Suppose that p is totally split in F . For any χ 6= 1, we have
χ(Sol1(F )) = (bFχLp(χ, 1)) in Zp(χ).

Proof. If Fχ 6⊂ M , then obviously χ(solFM ) = 0. By definition of bFχ it will be

enough to show that if Fχ ⊂M , then χ(solFM )
p
∼ bFχ,MLp(χ, 1). We first consider

the special case M = F and χ has the same conductor, f say, as F . In that
case we have solFF = solF and bFχ,F = 1. It follows easily that

χ(solF ) =
1

p

∑

g∈Gal(F/Q)

logp(ı(ε
g
F ))χ(g−1)

=
1

p

∑

g∈Gal(F/Q)

logp(ı(NQ(ζf )/F (1 − ζf )
g))χ(g−1)

=
1

p

∑

g∈Gal(Q(ζf/Q))

logp(ı((1 − ζf )
g))χ(g−1)

=
1

p

∑

1≤a≤f

logp(ı(1 − ζaf ))χ−1(a)

p
∼ Lp(χ, 1),

(the last p-adic equivalence comes from a classical formula for Lp(χ, 1); see e.g
[W], p. 63). Note that an implicit choice of ı is made there, and that since we
are assuming that p is not ramified in F , the quantities p− χ(p), fχ, and τ(χ)
are all p-adic units.

Now χ(s̃ol
F

Fχ
) is well defined because taking another lift would only add an

element of the (additive) kernel of χ. From the previous special case we deduce

the equivalence (without assuming anything on the conductor fχ) : χ(s̃ol
F

Fχ
) =

χ(sol
Fχ

Fχ
)
p
∼ Lp(χ, 1), hence χ(solFFχ

) ∼ χ(s̃ol
F

Fχ
TrF/Fχ

) ∼ [F : Fχ]χ(s̃ol
F

Fχ
) ∼

[F : Fχ]Lp(χ, 1) ∼ bFχ,Fχ
Lp(χ, 1). The remaining cases are treated using the

distribution relations satisfied by the cyclotomic numbers (and hence by the
elements solFM ) and the formal identity χ(solFM ) = 1

[M :Fχ]χ(TrM/Fχ
solFM ).

�

Corollary 6.8 MW (F ) 6= Sol1(F ) in general. But in the semi-simple case
(i.e. p ∤ [F : Q]), MW (F ) = Sol1(F ).

Proof. In the semi-simple case, for any χ 6= 1, bFχ is a p-adic unit, the preceding
calculation about P -cohomology becomes empty. As for the trivial character,
the corresponding idempotent is just the norm map, which brings us down to
Q, where nothing harmful happens.

�
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Theorem 6.9 Suppose that p is totally split in F . For any non trivial and
locally non Teichmüller Qp-irreducible character ψ of ∆, the following properties
are equivalent :

(i) (C∞)ψ is Λ(ψ)[P ]-free

(ii) (X∞)ψ and (U∞/C∞)ψ have “the” same equivariant characteristic series
in Λ(ψ)[P ]

(iii) (KNF )ψ = 0 and (C̃′′F )ψ is Zp(ψ)[P ]-free

They all imply :

(iv) MW (F )ψ = Sol1(F )ψ

(v) (Û ′F /C̃
′′
F )∗ψ and (X ′∞)Γ,ψ have the same Fitting ideal over Zp(ψ)[P ], (.)∗

denoting the Pontryagin dual, endowed with the Galois action defined by
fσ(x) = f(σx).

Proof. To show the equivalence between (i) and (ii), let us consider the mod-
ule (U∞/C∞)ψ ≃ (U∞)ψ/(C∞)ψ. Since p is totally split in F , for all v ∈ S
the local fields Fv contain no pth power root of unity. Coleman’s theory (see
e.g. the exact sequence in theorem 4.2 of [Ts]) then shows that U∞ is a rank
one Λ[G]-free module, hence (U∞)ψ ≃ A := Λ(ψ)[P ]. This gives the short
resolution 0 // (C∞)ψ // A // (U∞/C∞)ψ // 0 , which shows the

equivalences :
pdR(U∞/C∞)ψ ≤ 1 ⇐⇒ (C∞)ψ is R-free ⇐⇒ FittR(U∞/C∞)ψ is principal.

In the last eventuality, let us denote by J the equivariant characteristic series
of (U∞/C∞)ψ (as defined before 6.5). To compare J with H (the equivariant
characteristic series of (X∞)ψ), we appeal to still another algebraic lemma of
Greither :

Lemma 6.10 ([Gr3], 3.7) Let A = Λ(ψ)[P ]. If M is an A-torsion module of
projective dimension at most 1, such that M/pM is finite, and if J is an element
of A such that FittΛ(χ)(Mχ) = (χ(J)) for all Qsep

p -irreducible characters χ of G

dividing ψ̃, then actually FittA(M) = (J).

We apply this to M = (U∞/C∞)ψ. It is known (see [BN], [Ts]) that for all χ | ψ̃,
the Λ(χ)-modules (U∞/C∞)χ and (X∞)χ have the same (usual) characteristic
series. In particular, their µ-invariants are null. It follows that χ(H) = χ(J)

for all χ | ψ̃, hence (H) = (J) by Greither’s lemma. Conversely the equality
(H) = FittΛ(ψ)[P ](U∞/C∞)ψ implies the principality of this last ideal. The
proof of the equivalence between (i) and (ii) is thus complete. Property (i)
implies the triviality of (KNF )ψ and then (iii) by Γ-co-descent.

Conversely, assume (iii) and choose a Zp(ψ)[P ]-basis (yi) of (C̃′′F )ψ. By
Nakayama’s lemma, this can be lifted to a system of Λ(ψ)[P ]-generators (yi)

of (C
′′

∞)ψ. Any linear relation
∑
λiyi = 0, with λi ∈ Λ(ψ)[P ], would give, by

Γ-co-descent, λi = 0 in Zp(ψ)[P ] for any i, viz. T (:= γ−1) would divide all the
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coefficients λi. As (C∞)ψ has no T -torsion, we could then simplify by T in the
above linear relation and repeat the process. This shows that the system (yi) is
a Λ(ψ)[P ]-basis.

By the same argument, (ii) implies (iv). Property (ii) implies (v) because of
the (ψ)-parts of the exact sequence (7) together with one last algebraic lemma :

Lemma 6.11 Let 0 // M // N // N ′ // M ′ // 0 be an exact sequence of

Zp(ψ)[P ]-modules of finite order. Suppose that N and N ′ are of projective
dimension at most 1 and have the same Fitting ideal over Zp(ψ)[P ]. Then M∗

and M ′ have the same Fitting ideal over Zp(ψ)[P ].

Proof. This is [CG], Proposition 6, but note that the correct statement involves
M∗ (and not M as in [CG]).

�

Acknowledgement : We thank Radan Kučera for pointing out an error in
a previous formulation of lemma 5.3.
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des nombres, Années 1998/2001, Publ. Math. UFR Sci. Tech. Besançon,
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