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Abstract

We study magnetohydrodynamics in a von Kármán flow driven by the rotation of impellers made

of material with varying electrical conductivity and magnetic permeability. Gallium is the working

fluid and magnetic Reynolds numbers of order unity are achieved. We find that specific induction

effects arise when the impeller’s electric and magnetic characteristics differ from that of the fluid.

Implications in regards to the VKS dynamo are discussed.

PACS numbers:

Keywords:

1



I. INTRODUCTION

The choice of electromagnetic boundary conditions in dynamo studies and its implication

on the underlying magnetohydrodynamic processes has long been an open issue. In experi-

ments, a finite flow of an electrically conducting fluid is generally considered, and the outer

medium is ultimately electrically insulating (with electromagnetic properties of vacuum).

Studies have considered layers with various properties regarding electrical conductivity σw

and / or magnetic permeability µw. Motivations for this have varied considerably. In many

numerical simulations, it has been computationally convenient to assume an infinite value

of µw, yielding an attachment of magnetic field lines normal to the wall [1]. In some simula-

tions of the geodynamo, a thin wall approach [2] has been implemented in order to account

for the rapid changes in electrical conductivity at the Core-Mantle Boundary [3, 4]. Exper-

iments have tend to study extensively changes with boundary conditions. The motivations

is that the critical magnetic Reynolds number value for the onset of dynamo action must

be lowered as much as possible in order to lie within reach of a given experimental facility.

For instance, in the pioneering experiments in Riga and Karlsruhe a volume of stagnant

liquid sodium around the flow was found to be very favorable [5, 6]. In the same spirit,

dynamo action in the von Kármán sodium (VKS) experiment [7] has only been observed

in situations where the fluid is driven by the motion of soft iron impellers. When replaced

by non-magnetic stainless steel impellers, no dynamo was generated at the highest stirring

achievable with the mechanical drives. In addition, the dominant VKS dynamo mode is

essentially an axisymmetric dipole, in contradiction with predictions based on the mean

flow structure [8, 9]. It is the motivation of this work to understand better the influence of

the boundary conditions imposed by the ferromagnetic impellers, in particular whether they

change significantly the induction processes or simply lower the threshold of a dynamo that

would be reached at higher rotation rates of non-magnetic impellers, if that was possible.

To this end, we have performed extensive induction measurements in a gallium von Kármán

flow driven by impellers made of stainless steel, copper or soft-iron.

The experimental device is first described. Induction measurements are then presented

and detailed in section III. A physical interpretation of these measurements is developed in

section IV. In the last section, we present a discussion of the impact of these mechanisms

on the VKS experiments.
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II. EXPERIMENTAL SETUP

A von Kármán flow is produced by the coaxial rotation of two impellers inside a stainless

steel cylindrical vessel filled with liquid gallium - c.f. figure 1(a). The cylinder radius R

is 97 mm and its length is 323 mm. The impellers have a radius equal to 82.5 mm and

are fitted to a set of 8 straight blades with height 10 mm. The impellers are separated by

a distance H = 203 mm. They are driven by two AC-motors which provide a constant

rotation rate in the interval (F1, F2) ∈ [0.5, 25] Hz.

In most of the cases, the flow is driven by symmetric counter-rotation of the impellers

at F1 = F2 = F . It is structured in two rotating cells in front of each impeller, separated

by a large azimuthal shear layer in the mid plane of the cylinder. Driving can also be

achieved using the rotation of one single disk, the other being at rest; the flow then consists

in a single rotating cell. In both cases, the fluid is also ejected radially outward by the

rotating(s) disk(s); this drives an axial flow toward them along the cylinder axis and a

recirculation in the opposite direction along the cylinder lateral boundary.

The system is cooled by a water circulation located behind the driving impellers; the

experiments are run at a temperature between 40◦C and 48◦C. Liquid gallium has density

ρ = 6.09 × 103 kg · m−3, electrical conductivity σ = 3.68 × 106 Ω−1 · m−1, hence a magnetic

diffusivity λ = 1/µ0σ = 0.22 m2 · s−1. Its kinematic viscosity is ν = 3.1 × 10−7m2 · s−1.

The integral kinematic and magnetic Reynolds numbers are defined as Re = 2πR2F/ν and

Rm = 2πR2F/λ. By varying F , values of Rm up to 5 are achieved, with corresponding Re

values in excess of 106.

Two pairs of induction coils (in a Helmoltz configuration) are aligned parallel to the

rotation axis, or perpendicular to it. They create an applied magnetic field BA of a few

ten gauss inside the vessel, essentially uniform in the direction of the axis of the coils.

The interaction parameter N = σ(BA)2/2πρF ∼ 10−5 is small, so that the action of Lorentz

forces on the flow can be neglected. Magnetic induction measurements are performed using

a Hall sensor probe array (8 probes) inserted into the flow in the mid-plane. Data are

recorded using a National Instrument PXI-4472 digitizer at a rate of 1000 Hz with a 23 bits

resolution.

The impellers driving the flow are made of a flat disk upon which straight blades are

fixed. In the study reported here, both the disk and the blades can be chosen independently
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FIG. 1: A von Kármán flow of liquid gallium is generated in a cylindrical vessel between two

counter rotating impellers driven by two AC-motors. (a) When an axial field BA
z is applied, the

counter rotating flow induces an azimuthal magnetic field BI
θ in the mid-plane of the flow. A radial

profile of this field is recorded by a linear probe array of Hall sensors. (b) When a transverse field

BA
x is applied, an axial component BI

z is induced in the center, in a plane perpendicular to the

applied field. (c) Schematic and (d) pictures of the impellers used in this study: disks and blades

can be assembled independently from elements made of stainless steel, copper or soft iron.

from stainless steel, copper or soft iron materials. These materials are characterized by their

electrical conductivity and their magnetic permeability. For stainless steel and copper, the

permeability is equal to that of vacuum, µ0 = 4π × 10−7 H·m−1. The permeability of soft

iron is known to change significantly during the manufacturing process. We have measured

its value after machining from the B−H response curves for small amplitude magnetic fields,

using the procedure described in [10]: a flux-meter is set on a soft iron blade and one on a

copper blade, so as to build the hysteresis cycle of the soft iron B = f(H). The permeability

of soft iron is then computed from the slope ∂B/∂H when H → 0. The electrical and

magnetic properties of the material used in this study are summarized in table I. Note that
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stainless steel copper soft iron gallium

µr 1 1 65 1

σ [×106 Ω−1·m−1] σss = 1.4 42 σss 7.3 σss 2.6 σss

λ−1 = µσ [m−2 · s] λ−1
ss = 1.8 42 λ−1

ss 475 λ−1
ss 2.6 λ−1

ss

TABLE I: Relative magnetic permeability (µr), electric conductivity (σ) and magnetic diffusivity

(λ) of the materials used, using stainless steel (ss) as a reference. Values taken from [12], except

for iron permeability which was experimentally measured - see text.

we checked experimentally and numerically – using FEMM 4.2 software [11] – that, with

liquid gallium at rest and in the case of soft-iron impellers, the effect of the high permeability

of the material produces only a weak distortion of the magnetic field applied by the coils at

the probe location as compared to stainless steel impellers.

III. INDUCTION LINKED TO DIFFERENTIAL ROTATION

The swirling flow generated by the exact counter rotation of the impellers (F1 = F2 = F )

possesses a large shear layer in the mid-plane of the cylinder [13]. Induction effects are

generated by this azimuthal shear. We study the variation of their amplitude and radial

profile, as the impellers are counter-rotated with increasing rotation rate F and the impeller

material varied.

A. Induction from an axial applied field

We first investigate the case where the applied field is coaxial to the cylinder: BA = BA
z ẑ.

This configuration is sketched in figure 1 (a). When stainless-steel impellers are used, the

induced magnetic field along the azimuthal direction, denoted BI
θ , is due to the ω-effect, and

proportional to the fluid differential rotation ∂zvθ [14, 15, 16].

We now consider possible changes of this induction effect caused by driving the flow

with impellers of varying materials. The radial profiles (in the median plane xOy) of the

time-averaged induced azimuthal field, 〈BI
θ 〉, are shown for F=12 Hz in figure 2. Impellers

made of stainless steel, copper or iron have been used (in this case, disks and blades

are made of the same material). In figure 2(a), magnetic fields have been normalized to
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FIG. 2: Time-averaged ω-effect with an axially imposed field BA
z . (a) Radial profiles of the induced

field 〈BI
θ 〉 at F = 12 Hz for impellers made of stainless steel (⋆), iron (�) and copper (◦). Profiles are

normalized to the maximum of 〈BI
θ 〉 along the radius (maxr〈B

I
θ 〉). (b) Evolution of the maximum

of 〈BI
θ 〉 along the radius normalized to the imposed field BA

z as a function of impellers rotation

frequency (symbols as in (a)).

their maximum value in order to compare the induction profiles. We observed that they

do not change noticeably when the material of the impellers is varied. The profiles are

also independent of the impellers rotation rate. Figure 2(b) shows the evolution of the

maximum amplitude of these radial profiles with the rotation rate F . One observes that

the impeller material has a very weak influence here. Induction can be understood as

the usual ω-effect due to the fluid motions (linear in the flow forcing and proportional to

the time- averaged fluid differential rotation 〈∂zvθ〉) with no noticeable influence of the

impellers material. Note that all field amplitudes have been normalized to the applied field

measured at the probe location, thus taking into account the weak local distortion of the

applied field lines in the case of the soft-iron impellers (the variation is weak – less than 10 %).

Given the very high Reynolds number value of the flow, the induced magnetic field has

a turbulent signature, with fluctuations as high as the time-averaged amplitude (see for

instance [14]). The evolution of the rms amplitude of the fluctuations as a function of the

impellers rotation rate is displayed in figure 3(a). It is linear in F and the dispersion between
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FIG. 3: Fluctuations of the ω-effect with an axially imposed field BA
z . (a) Evolution of the standard

deviation of BI
θ as a function of the impellers rotation rate F for impellers made of stainless steel (⋆),

iron (�) and copper (◦). (b) Corresponding probability density function and (c) power spectrum

density for F = 12 Hz and impellers made of stainless steel (blue), iron (green), copper (red).

data obtained for impellers made of the three materials is less than 5 %. The probability

density function (PDF) and power spectrum density (PSD) at F = 12 Hz are shown in

figure 3(b) and (c) respectively. These measurements show that no significant change in the

fluctuations of the ω-effect can be observed as the impellers material is varied – at least at

the location of the measurements, i.e. here in the mid-plane.

B. Induction from a transverse applied field

In this section, we address the issue of induction from a transverse applied field: BA =

−BA
x x̂. This configuration is sketched in figure 1(b). The induced magnetic field is probed

along the axial direction, BI
z .

For the case of a flow driven by stainless-steel impellers and enclosed in a stainless-steel

vessel, the induction processes at work here have been described in details in [15, 16] (in

particular, see figure 13 in [16]) and will only be recalled here. Near the impellers, the flow

rotational motion advects the imposed magnetic field BA
x , so as to induce a perpendicular

component BI
y . With the rotation opposite on either side of the flow mid-plane, two such

contributions (with opposite directions) are generated on each side. These induced fields

are associated to a current distribution consisting of two current sheets in the direction of

the applied field, one in each flow cell, plus one with opposite direction in the shear layer.
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FIG. 4: Time-averaged BC-effect with a transverse imposed field BA
x . (a) Radial profiles of the

induced field 〈BI
z 〉 at F = 12 Hz for impellers made of stainless steel (⋆), iron (�) and copper (◦).

Profiles are normalized to the maximum of 〈BI
z 〉 along the radius (maxr〈B

I
z 〉). (b) Evolution of the

maximum of 〈BI
z 〉 along the radius, normalized to the imposed field BA

x , as a function of impellers

rotation frequency (symbols as in (a)).

Since the outside medium is electrically insulating, these currents loop back inside the flow

volume. In doing so, they generate an axial field BI
z , maximum in a plane transverse to

the applied field. This effect, directly linked to the rotation of the fluid, is linear in F . As

in [16] we will refer to this induction process as a BC-effect in the what follows, since it

originates in the Boundary Conditions from the steep variation in electrical conductivity at

the flow wall. A simplified way to understand this effect is to consider the BI
z component in

the mid-plane as resulting from the loop-back path of the BI
y contributions on either side.

As before, we study modifications of this induction process resulting from changing the

impellers. For the three materials used, the radial profile of the normalized time-averaged

induced axial field 〈BI
z 〉 is shown in figure 4(a). These normalized profiles are again

independent of impellers rotation rate and impellers materials. Since the profiles are

unchanged, one may suppose that a similar BC mechanism can be invoked in all cases.

In addition, in the low Rm regimes accessible in the device, the BC-effect remains linear

with Rm whatever the impellers material. However, as seen in figure 4(b), the amplitude of

the time-averaged induced field now strongly depends on the impellers materials: a 20%
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FIG. 5: Fluctuations of the BC-effect with a transverse imposed field BA
x . (a) Evolution of the

standard deviation of BI
z as a function of the impellers rotation rate F for impellers made of

stainless steel (⋆), iron (�) and copper (◦). (b) Corresponding PDF and (c) PSD at F = 12 Hz

for impellers made of stainless steel (blue), iron (green), copper (red).

increase for copper and a 220% increase for soft iron are measured, as compared to stainless

steel impellers.

As shown in figure 5, changes in the rms intensity of the fluctuations of induction are

much more modest. The variations are very small between stainless-steel and copper im-

pellers. Soft-iron generate a 10% increase of the fluctuation level compared to the other,

non-magnetic, materials. This may be a second order effect: as the mean axial component

〈BI
z 〉 is increased, its stretching by fluctuations of the axial velocity gradient may add to

the rms intensity. Time spectra are however identical in the frequency range usually at-

tributed to turbulent motions – figure 5(c). The bimodal distribution in figure 5(b) is known

to originate in the non-stationarity of the shear layer in the mid-plane [17, 18]. Its shape

remains fairly independent of the impellers nature. Fluctuations of the induced field are

thus not essentially modified by a change of impellers material. This may be expected since

the magnetic field fluctuations trace back to the flow turbulence which is not expected to

be affected by impellers material.

We argue in section IV below that the increase in the mean induced component 〈BI
z 〉

arises in a process similar to the one described in [16] from a localized ω-effect generated

when the magnetic diffusivity of the impellers differs from that of the fluid.
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IV. INTERPRETATION

A. An induction mechanism associated to a jump of magnetic diffusivity at the

impellers

When probing induction effects in the mi- plane, our observations so far can be

summarized as follows:

- in the case of an axial applied field (induction from differential rotation in the fluid bulk),

the induced field seems to be fairly independent of the impeller material.

- in the case of a transverse applied field (induction from differential rotation, coupled with

insulating boundary conditions), the time-averaged amplitude of the induced field varies

strongly with impeller material,

- in both cases, the spatial profile of the induced field is independent of the impellers nature,

and the fluctuations of induction are not appreciably changed.

In order to interpret these observations, we need to understand the role of variations

of magnetic diffusivity at the interface gallium-impellers on induction effects. We begin

with the case of the transverse applied field, which shows the strongest dependence with the

impellers nature. Herzenberg and Lowes have studied the case of a finite cylinder rotating at

frequency Ω in a uniform field perpendicular to the cylinder axis. To leading order equation

4.12 of [19] for the induced magnetic field writes:

BI(r, θ, φ) =
1

32π2
(2πµσΩa2)BAVcylẑ ×∇

(

sin θ cos φ

r2

)

, (1)

where (r, θ, φ) are spherical coordinates with origin at the center of the cylinder of radius

a and Vcyl the volume of the cylinder. In the above derivation the cylinder and medium

are assumed to have the same magnetic diffusivity, and the medium outside the cylinder

is at rest. This induced field has approximately the geometry of a dipole with its axis

perpendicular both to the axis of rotation and to the applied field. Its amplitude can also

be written as BI ∝ BARcyl
m (Vcyl/r

3), with Rcyl
m = µσ(2πaΩ)a the magnetic Reynolds number

of the rotating cylinder. It corresponds to a (radial) ω-effect, due to the shearing of the

magnetic field lines which are ‘advected’ by the cylinder rotation; it is also the first step

of the expulsion of the transverse field from the rotating body [20]. If we now consider a

situation where the cylinder is made of a material with a different magnetic diffusivity, a
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similar induced field will be generated, even if the fluid around the cylinder rotates with the

same velocity, i.e. if there is no differential rotation. This is because a change in magnetic

permeability or a change in electrical conductivity also contribute to the induction processes.

For instance if the cylinder has a higher permeability, then the higher values of the flux of B

in the cylinder will generate a shear of field lines at the fluid boundary. If the cylinder has

a better electrical conductivity, then the same flux variation will be able to generate more

induced currents. Altogether it is a change in the magnetic diffusivity µσ that matters here.

These arguments, supported by recent numerical works [21], have lead us to write the

correction to homogenous induction effects, in a first approximation, as

BI ∝ BA(Rcyl
m − Rfluid

m )
Vcyl

r3
. (2)

for the induction generated by a local jump of either magnetic diffusivity or velocity at the

cylinder end.

We then return to our induction measurements, as reported in the previous section.

In the case of an applied field transverse to the flow axis, the rotation of each impeller

creates an induced perpendicular dipole (as above). As in the BC-effect, the reconnection

of these induced fields and the constraints on currents paths create an axial component in

the (yOz) plane. This field will add to the axial field induced by the usual BC mechanism.

This explanation accounts for the very similar induction profile observed (see figure 4(a))

with different materials used for the impellers: the additional effect due to the impellers

is produced by a mechanism with a geometry identical to that of the BC-effect. It also

explains why the impeller material have so little effect on the fluctuations of induction: the

source of induction lies in the rotation of the impellers which is precisely controlled in the

experiment to be constant in time, fixed to a prescribed value. Fluctuations are essentially

due to changes in the induction generated by the velocity gradients within the flow, which

have a quite non-stationary (turbulent) dynamics [18].

We thus write the axial induced field measured in the mid-plane as being the sum of two

contributions: (i) the regular BC-effect which originates from the differential rotation of the

fluid and (ii) the effect described above, caused by the change in magnetic diffusivity at the

impellers: BI
z = BI

z (fluid) + BI
z (at impellers), i.e.

BI
z

BA
= KfRm + KiRm

(

(µσ)i

(µσ)f
− 1

)

Vi

V max
i

(3)

11



where Kf,i are constants taking into account the precise location of the measurement, and

the second term has been chosen to emphasize two features: (i) no additional effect occurs

when the impellers have a magnetic diffusivity which matches that of the fluid (all is then

incorporated in the first term); (ii) the ratio Vi/V
max
i accounts for the fact that at each

impeller, disk and blades can be made of materials; V imax is the maximum volume of disk

plus blades, and Vi is the actual volume of a given material in the impeller (which can be

disk and/or blade) so that the effective volume fraction is less than one – Vi < V max
i =

3.15 10−4 m3.
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FIG. 6: Slopes of curves BI/BA as a function of Rm, for the different configurations studied, as

a function of
(

(µσ)i
(µσ)f

− 1
)

Vi

V max

i

when the material of the disk and that of the blades are changed.

The combinations used are indicated in the figure, with the first mention corresponding to the disc

and the second to the blades. “SS” stands for stainless steel, “Fe” for iron and “Cu” for copper.

The blue circles correspond to the case of a transverse applied field and the red triangles to the

axial applied field.

By varying separately blade and disk materials, and performing measurements for

a range of rotation rates of the impellers, one may thus probe the above relationship.

Figure 6 (blue circles) shows the slopes d(BI
z/BA)

dRm
as a function of the impeller parameter
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(

(µσ)i
(µσ)f

− 1
)

Vi

V max

i

. The linear behavior expected from equation (3) is indeed observed: we

measure Kf = 2.4 10−2 and Ki = 3.9 10−4. The horizontal error bars are fairly large, since

there is a non negligible uncertainty in computing the actual volume of the impellers that

plays a role in the induction effect. This is because the blades are indeed attached with

stainless steel screws that may prevent the optimal development of electrical currents in

more conducting materials.

The inhomogeneity of magnetic diffusivity at the impellers is also expected to produce

an added induction in the case of an axially applied field – in this case, however, a velocity

shear at the fluid-impeller interface is necessary (otherwise no variation of flux can cause

induction). Using again the calculation by Herzenberg and Lowes [19] as a reference, we

expect a variation of the azimuthal induced field with disks and blades materials. Figure 6

(red triangles) shows that it is indeed the case, but the evolution is much shallower. The

explanation lies in the fact that the effect is localized in the vicinity of the impellers – it

decays as the inverse third power of the distance to the disk [19](equation 3.21)) and, in

this case, there is no global effect of the boundary condition that constrains the currents

and help ensure that a sizable magnetic field can be detected in the mid-plane of the flow

(where the measurement probes are located).

We thus find that our modelization, which attributes the induction to conventional effects

from the shearing motion of the fluid plus an additional contribution due to the inhomo-

geneity of the magnetic diffusivity of the impellers compared to that of the fluid, gives an

adequate interpretation of our experimental data.

B. Illustration: induction effects linked to helicity

When the fluid is set into motion by the rotation of a single impeller, the mean flow

has a strong helical component. It results from the rotational entrainment and axial flow

generated by the impeller acting as a centrifugal pump. When a transverse magnetic field is

applied, this swirling motion induces an axial component through what has been termed the

Parker effect [22]. Its evolution with the impeller rotation rate is quadratic because it invokes

both the azimuthal and the axial velocity of the fluid. When impellers of high magnetic
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permeability are being used we expect an additional effect as described above, again being

made accessible to measurements in the mid-plane because of the boundary condition at the

vessel boundary. Moreover, this last effect is dominant at the lateral wall of the vessel, so we

expect to observe: (i) induction characteristics corresponding to the Parker effect near the

axis of the cylinder (it varies quadratically with the impeller rotation rate); (ii) induction

characteristics associated to the solid rotation of the impeller in a transverse applied field,

as described in the previous section (it varies linearly with the impeller rotation rate).
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FIG. 7: Evolution of the normalized time averaged induced field 〈BI
z 〉 as a function of the impellers

rotation rate at radial position (a) r/R = 0.15 and (b) r/R = 0.87. Corresponding rms amplitudes

in (c) and (d). Symbols: (⋆) stainless steel impellers, (◦) iron impellers, (�) soft-iron impellers.

Our measurements correspond to (F2 6= 0 and F1 = 0 in the configuration sketched

in figure 1(b)). The applied field is transverse, BA = −BA
x x̂. The evolution of the time-
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averaged induced field 〈BI
z 〉 measured in the mid-plane is shown in figure 7(a,b) for the most

inner probe in the array (r/R = 0.15) and the most outer probe (r/R = 0.87). As can be

seen, in the center of the flow, the induction varies quadratically with the impeller rotation

rate, in a manner which is independent of its material. On the other hand, nearer the outer

wall, the evolution, initially quadratic, becomes linear when soft iron impellers are used.

In all cases, the fluctuations shown in figure 7(c,d) show no dependence with the impeller

material. These features are consistent with the interpretation given in the previous section.

V. DISCUSSION AND CONCLUSIONS

Our observations show that the driving of von Kármán flows with ferromagnetic impellers

have a significant impact on magnetic induction processes. The response of the flow to

an externally applied magnetic field reveals additional contributions to the induced field.

Moreover, at the intermediate magnetic Reynolds numbers probed with our gallium flow,

the additional contributions vary linearly with the change in µσ between fluid and impeller.

Finally, as this additional contribution is associated with the (controlled) motion of the

impellers, it has much less fluctuations than the induction originating solely from the flow

velocity gradients.

Such effects may have a significant impact on dynamo processes in laboratory experi-

ments. They could be quite important in the generation of the VKS dynamo [7]. Expanding

on our observations, one may expect that the combination of velocity shear and magnetic

diffusivity discontinuity at the impellers generates a quite strong ω-effect in the vicinity of

the soft iron impellers. As a result, an axial magnetic field would be efficiently converted

into a toroidal field in this region. For the regeneration of the axial field, several types of

α-effects have been proposed [8]. In the above scenario, the VKS dynamo generates an axial

dipole from α − ω processes which are both localized in the vicinity of the ferromagnetic

impellers, which also has the following major contributions:

- their large µσ value and associated enhancement of induction effects (as measured in

section IIIB) helps bring a dynamo threshold within the range of Rm values accessible to

the experiment,

- they promote an axial magnetic field. It would help understand why the actual dynamo
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field generated with soft iron impellers is dominated by an axial dipole, in contrast with

numerical simulations made for homogeneous magnetic conditions which predicted a

transverse dipole,

- the localization of dynamo sources near the impellers may help understand why the

evolution of the VKS dynamo field shares many features with low dimensional chaos [23],

as would result from non-linear interactions of two weakly coupled dynamos.

Further measurements will of course be needed. They involve the precise measurement

of the magnetic fields in the very vicinity of the impellers – an endeavor that requires

major changes in the experimental setup and involves several technical challenges. Detailed

induction measurements in the sodium (VKS) experiment would also be needed to clarify

the evolution with the magnetic Reynolds, as the current gallium studies are restricted to

Rm values of order unity.
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