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Abstract

In the present study we investigate analytically the process of velocity and en-
ergy relaxation in two-phase flows. We begin our exposition by considering the
so-called six equations two-phase model [Ish75,Rov06]. This model assumes each
phase to possess its own velocity and energy variables. Despite recent advances,
the six equations model remains computationally expensive for many practical ap-
plications. Moreover, its advection operator may be non-hyperbolic which poses
additional theoretical difficulties to construct robust numerical schemes [GKC01].
In order to simplify this system, we complete momentum and energy conservation
equations by relaxation terms. When relaxation characteristic time tends to zero,
velocities and energies are constrained to tend to common values for both phases.
As a result, we obtain a simple two-phase model which was recently proposed for
simulation of violent aerated flows [DDG10]. The preservation of invariant regions
and incompressible limit of the simplified model are also discussed. Finally, several
numerical results are presented.
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1 Introduction

Currently, single phase flows modeling is essentially understood besides the
problem of turbulence. In two-phase flows the situation is completely different.
Nowadays there is no general consensus on the two-phase flow modeling. Tur-
bulence modeling in two-phase flows is even more tricky [Llo05]. The two-phase
models are based on space and time (ensemble) averaging of the local governing
equations of each phase. Consequently, these models can only provide infor-
mation on the average flow behaviour. The derivation of the proper model is
far from being achieved [Ish75,DL79,DCL79,BD82,SW84,DW94,IH06]. One of
the main difficulties lies in the determining the mass, momentum and energy
transfers in the presence of steep gradients across the interfaces. Very often
more or less accurate empirical correlations are used to describe such interface
processes. In the same time, two-phase flows are very frequent in industry and
in nature. Typical examples include water waves (especially during the wave
breaking), petroleum and gas flow in pipes, nuclear reactors [SFW+05], etc.

The most important industrial application of two-phase flows is the simulation
of a wide spectrum of accident scenarios in Pressurized (or Boiling) Water Re-
actors (PWR, BWR). Extensive experimental programmes for the PWRs are
extremely expensive. Currently, new reactor design requires more and more
numerical simulations of basic reactor features [SFW+05]. The goal is to re-
duce experimental programmes to a minimum. On the other hand, industrial
codes (such as CATHARE [Bes90], RELAP5 [Ran85], THYC [ACOR95] or
Neptune CFD [BG05,GCMM09,GBBea07], for example) need to be supple-
mented by a large number of empirical closures which prevents reliable code
application outside of their validity domain. Also these codes use robust but
higly diffusive numerical schemes which make it difficult the computation of
strong variable gradients proper to many accident conditions.

Two-phase models play also an important role in simulation of interfaces be-
tween two immiscible compressible fluids. This problem is very challenging
from numerical point of view. All existing methods to address this problem
can be conventionally divided into four big groups:

• Volume of fluid (VOF) [HN81,SZ99]
• Level set method [OS88,OS94]
• Lagrangian interface tracking [GGLT00]
• Diffuse interface method [Lar90,AMW98,Shy98]

In the last approach we do not compute precisely the interface position. Due
to numerical diffusion, the volume fraction takes intermediate values between
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0 and 1 even if it is initialized by values in {0, 1}. The resulting mixture of
two fluids has to be properly modelled in the transition region. Two-phase
models that we will discuss below provide a sound physical description of
mixing zones. The diffuse interface approach is less accurate than mentioned
above methods (unless some special sharpening techniques are employed) but
it is much simpler to implement and can naturally handle arbitrary topological
changes in the flow.

Recently, a single velocity/single energy two-phase model was proposed [Dut07]
[DDG08a,DDG08b,DDG10] in ad-hoc way as a model for violent aerated flows.
By analogy with the six equations model, this system was called the four equa-
tions model since in one space dimension it consists of two equations of the
mass conservation, one equation of the momentum and one of the energy con-
servation. Two-phase models where both fluids share the same velocity were
previously considered in [ACK02,Del05], for example.

The main goal of the present paper is to show the connection between the
six equations model [GKC01,GP05,Rov06,IH06] (two equations of mass, mo-
mentum and energy conservation) and recently proposed four equations model
[Dut07,DDG08a,DDG08b,DDG10] with single velocity and single energy. Phys-
ically it is done by introducing relaxation terms into momentum and energy
relaxation equations. These relaxation terms constrain velocities and energies
to tend to a common value. Then, after taking the singular limit when the
characteristic relaxation time goes to zero, one obtains a simplified model.
Mathematically, it is achieved by employing a Chapman-Enskog type expan-
sion [CC95]. This technique has been already successfully applied to the so-
called Baer-Nunziato model [BGN86,BN86] in [MG05]. The present study is
greatly inspired by their work. This type of reduction from the barotropic six
equations model were recently done in [MDG09].

The present manuscript is organized as follows. We start our exposition by
presenting the so-called six equations model in Section 2. Then, we complete
this model by relaxation terms and derive in Section 3 a single velocity, single
energy model. Preservation of invariant regions and incompressible limit of the
resulting four equations model are studied in Sections 4 and 5 correspondingly.
Then we present some numerical results in Section 6. Finally, this paper is
ended by drawing out main conclusions of this study and some perspectives
for future research (Section 7).

2 Mathematical model

Consider a fluid domain Ω ⊆ R
3 which is filled by two miscible fluids. All

physical quantities related to the heavy and light fluids will be denoted by the
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Figure 1. A quasi uniform air/water mixture after the wave breaking has occured.

superscripts + and − correspondingly. For example, if we consider a plunging
breaker with important mixing processes, then water velocity, density, viscos-
ity, etc. will be denoted with the superscript +, while variables related to the
air will have the superscript −. When the interfaces are so multiple that it
is impossible any more to follow them (see Figure 1 for an illustration), the
classical modelling procedure consists in applying a volume average operator
[Ish75,Rov06]. At this level of description, two additional variables naturally
appear. The so-called volume fractions α±(~x, t), ~x ∈ Ω are defined as

α±(~x, t) := lim
|dΩ|→0

~x∈dΩ

|dΩ±|
|dΩ| , (1)

the heavy fluid occupies volume dΩ+ ⊆ dΩ and the light one the volume
dΩ− ⊆ dΩ (see Figure 2) such that

|dΩ| = |dΩ+|+ |dΩ−|. (2)

After taking the limit in relation (2), one readily finds

α+(~x, t) + α−(~x, t) ≡ 1, ∀(~x, t) ∈ Ω× [0, T ]. (3)

The volume fractions α± characterize the volume occupied by the correspond-
ing phase per unit volume of the mixture.

After applying the averaging procedure, we obtain the so-called six equations
model [Ish75,SW84,GKC01,Rov06]:

∂t(α
±ρ±) +∇ · (α±ρ±~u ±) = 0, (4)

∂t(α
±ρ±~u ±) +∇ · (α±ρ±~u ± ⊗ ~u ±) + α±∇p = ∇ · (α±

τ
±) + α±ρ±~g, (5)
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dΩ+(t)
dΩ−(t)

S

Figure 2. An elementary fluid volume dΩ occupied by two phases.

∂t(α
±ρ±E±) +∇ · (α±ρ±H±~u ±) + p ∂tα

± =

∇ · (α±
τ
±~u ±)−∇ · (α±~q ±) + α±ρ±~g · ~u ±, (6)

where ρ±(~x, t), ~u ±(~x, t), E±(~x, t) are densities, velocities and energies of each
fluid respectively. The total energy E± is the sum of the internal and kinetic
energies E± := e± + 1

2
|~u ±|2. The specific total enthalpy H± is defined as

H± := h±+ 1
2
|~u ±|2 = E±+

p

ρ±
, where h± is just the specific enthalpy. Finally,

~g stands for the vector of the gravity acceleration.

The symbol τ± denotes the viscous stress tensor of each phase. If we assume
both fluids to be Newtonian, the viscous stress tensor τ± can be written as

τ
± = λ± trD(~u ±)I+ 2µ±

D(~u ±), trD(~u ±) = ∇ · ~u ±, (7)

where I := (δij)1≤i,j≤3 is the identity tensor, D(~u ) := 1
2

(

∇~u + t(∇~u )
)

is

the deformation rate and λ±, µ± are viscosity coefficients. For ideal gases, for
example, these coefficients are related by Stokes relation λ±+ 2

3
µ± = 0. Recall

that the derivation procedure presented in the next section does not require
any particular form of the tensor τ±.

Finally, the heat flux in each fluid is denoted by ~q ± (see Equation (6)). As
with viscous stress tensor, we do not assume any particular form of the heat
flux. However, in most cases the Fourier’s law [Fou22] is adopted:

~q ± := −K±∇T±,

whereK± is the thermal conductivity coefficient and T± is the thermodynamic
temperature.

Remark 1 When a material demonstrates flagrant anisotropic properties, it
is advised to use the generalized Fourier’s law [IH06]:

~q ± := −K
± · ∇T±,

where K
± is the conductivity tensor. The same remark applies to the viscous

stress tensor τ
± as well.
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In order to close the system (4) – (6), we have to provide two equations of state
which relate the pressure p to other thermodynamic variables p = p±(ρ±, e±).
We assume the equations of state to satisfy some general thermodynamic
assumptions:

p±(ρ±, e±) > 0,
∂p±(ρ±, e±)

∂ρ±

∣

∣

∣

∣

∣

s±

> 0, for ρ± > 0. (8)

The symbol ∂p±(ρ±,e±)
∂ρ±

∣

∣

∣

s±
denotes the partial differentiation with respect to

the density ρ± while the entropy s± is kept constant. Physically this quantity
corresponds to the squared velocity of pressure waves in each fluid (see Lemma
6).

Remark 2 We reiterate that the model (4) – (6) is a one pressure model,
i.e. two phases share the same pressure. Models with two pressures can also be
derived [SW84,BN86,BGN86,RH88,MG05]. In this situation, an extra closure
(algebraic or differential) must be added. In many cases this additional closure
represents a relaxation process which will tend to equilibrate the pressures.

Remark 3 The momentum balance Equation (5) can be rewritten differently:

∂t(α
±ρ±~u ±)+∇·

(

α±ρ±~u ±⊗~u ±+α±pI
)

−p∇α± = ∇·(α±
τ
±)+α±ρ±~g. (9)

These two forms are obviously equivalent for smooth solutions. However, it is
not the case for discontinuous ones. We believe that this form is more relevant
from physical point of view, since the flux of momentum involves the pres-
sure. In our analytical investigations we consider smooth solutions, however
for numerics we advise using the last form (9).

Remark 4 While considering two-phase flows, it is useful to introduce several
additional quantities which play an important rôle in the description of such
flows. The mixture density ρ and mass fractions m± are naturally defined as

ρ(~x, t) := α+ρ+ + α−ρ− > 0, ∀(~x, t) ∈ Ω× [0, T ], (10)

m± :=
α±ρ±

ρ
, consequently m+ +m− = 1.

The total density ρ is assumed to be strictly positive everywhere in the domain
Ω. Hence, the void creation is forbidden in our modeling paradigm. Important
quantities ρ, m± will appear several times below.

The six-equations two-phase model presented in this section contains some
other simplifications. Namely, we neglect capillarity effects which could be
taken into account in the form of the Korteweg term [Kor01,BDGG09]. More-
over, terms modeling mass, momentum and energy exchange between the
phases are neglected as well. In general, their form depends strongly on the
flow regime under consideration and is a subject of current debates.
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Remark 5 Even if the Jacobian matrix of the advection operator in (4) – (6)
is not diagonalizable over R, the existence of global weak solutions was recently
proven at least in barotropic case [BDGG09] if we supplement the model by
viscous and surface tension effects [Kor01]. Previously, it was already shown
that viscosity and thermal diffusivity are indeed sufficient for the evolution
problem well-posedness in the linearized or in the nonlinear sense for small
data [Ara80,Ram00].

Despite recent advances in numerical methods [GKC96,GKC01,Rov06] and
several simplifications made above, the system (4) – (6) is still very complex
to solve numerically for industrial scale problems. One of the main difficulties
lies in the advection operator which is known to be generally non-hyperbolic.
In the next section we will derive a simplified two-phase model which has fewer
variables and possesses the requested hyperbolic structure for quite general
equations of state.

3 Relaxation process

In this section we will supplement momentum and energy conservation Equa-
tions (5), (6) by relaxation terms. Physically, they represent the friction or
drag force between two phases. When time evolves, this mechanism will en-
sure the convergence of two velocities ~u ± and energies E± to common for both
phases values ~u and E. Augmented Equations (5), (6) take the following form:

∂t(α
±ρ±~u ±)+∇· (α±ρ±~u ±⊗~u ±)+α±∇p = ∇· (α±

τ
±)+α±ρ±~g± ~Fd, (11)

∂t(α
±ρ±E±) +∇ · (α±ρ±H±~u ±) + p ∂tα

± =

∇ · (α±
τ
±~u ±)−∇ · (α±~q ±) + α±ρ±~g · ~u ± ± Ed. (12)

In the present study we choose friction terms ~Fd and Ed in this form:

~Fd :=
κ

ε

α−ρ−α+ρ+

α+ρ+ + α−ρ−
(~u + − ~u −), Ed :=

κ

ε

α−ρ−α+ρ+

α+ρ+ + α−ρ−
~u · (~u + − ~u −),

where ~u := m+~u + +m−~u − is the barycentric velocity, κ = O(1) is a dimen-
sionless constant and ε is a small parameter which controls the magnitude of
the relaxation term. Physically it represents the characteristic relaxation time.
In the following we are going to take the singular limit as the relaxation pa-
rameter ε → 0. This goal is achieved with a Chapman-Enskog type expansion
[CC95].

This kind of computations has already been successfully carried out for the
Baer-Nunziato model [BN86]. In this section we follow in great lines the work
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of Guillard & Murrone [MG05]. However, the computation details are sub-
stantially different.

The first step consists in rewriting the governing Equations (4), (11), (12)
in quasilinear form. To shorten the notation, we will also use the material
derivative which is classically defined for any smooth scalar function ϕ(~x, t)
as

d±ϕ

dt
:=

∂ϕ

∂t
+ ~u ± · ∇ϕ.

In computations below, we will need the following technical lemma:

Lemma 6 Consider two compressible fluids with general equations of state
p = p±(ρ±, e±). Then, partial derivatives of pressure p are given by:

∂p

∂s±

∣

∣

∣

∣

∣

ρ±

=
T±

θ±
,

∂p

∂ρ±

∣

∣

∣

∣

∣

s±

≡ (c±s )
2 =

1

θ±

(

p

(ρ±)2
− χ±

)

,

where s±, c±s are the entropy and the sound velocity in the phase ± respectively.

We also denote by χ± := ∂e±

∂ρ±

∣

∣

∣

p
and by θ± := ∂e±

∂p

∣

∣

∣

ρ±
.

PROOF. Obviously, one can write:

dp =
∂p

∂ρ±

∣

∣

∣

∣

∣

s±

dρ± +
∂p

∂s±

∣

∣

∣

∣

∣

ρ±

ds±. (13)

Similarly, if one takes into account the definitions of χ± and θ±:

de± = χ±dρ± + θ±dp. (14)

Now we will use the Gibbs relation [Ish75,Cal85,IH06]:

de± = T±ds± +
p

(ρ±)2
dρ±. (15)

After expanding de± and dp according to (14), (13) correspondingly, we get
the following differential inequality:

(

p

(ρ±)2
− χ± − θ±

∂p

∂ρ±

∣

∣

∣

∣

∣

s±

)

dρ± +
(

T± − θ±
∂p

∂s±

∣

∣

∣

∣

∣

ρ±

)

ds± = 0.

Since this equality must be true for arbitrary de± and dp, we conclude the
proof by requiring the coefficients to be equal to zero.
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Theorem 7 Smooth solutions to Equations (4), (11), (12) satisfy the follow-
ing system:

α±ρ±T±d
±s±

dt
= α±

τ
± : ∇~u ± −∇ · (α±~q ±)± (Ed − ~Fd · ~u ±), (16)

α±ρ±
d±~u ±

dt
+ α±∇p = ∇ · (α±

τ
±) + α±ρ±~g ± ~Fd, (17)

α±ρ±θ±
d±p

dt
± (ρ±)2(c±s )

2θ±(∂tα
+ ±∇ · (α±~u ±)) =

α±
τ
± : ∇~u ± −∇ · (α±~q ±)± (Ed − ~Fd · ~u ±), (18)

where s± is the entropy, (c±s )
2 and θ± are defined in Lemma 6.

PROOF. The mass conservation Equation (4) is straightforwardly rewritten
using the material derivative:

d±(α±ρ±)

dt
+ α±ρ±∇ · ~u ± = 0. (19)

If we multiply the latter by ~u ± and subtract the result from (11), we will
obtain announced above Equation (17). Similarly, multiplying Equation (19)
by E± and subtracting it from (12) leads to the total energy equation in
quasilinear form:

α±ρ±
d±E±

dt
+∇ · (α±p~u ±) + pα±

t =

∇ · (α±
τ
±~u ±)−∇ · (α±~q ±) + α±ρ±~g · ~u ± ± Ed. (20)

The kinetic energy evolution equation is straightforwardly obtained after tak-
ing the scalar product of (17) with ~u ±:

α±ρ±
d±(1

2
|~u ±|2)
dt

+α±~u ± ·∇p = ~u ± ·∇ · (α±
τ
±)+α±ρ±~g ·~u ±± ~Fd ·~u±. (21)

Recall that the total energy E± is constituted of internal and kinetic energies:
E± = e± + 1

2
|~u ±|2. Consequently, the internal energy evolution equation is

derived by subtracting (21) from (20):

α±ρ±
d±e±

dt
+p∇· (α±~u ±)+pα±

t = α±
τ
± : ∇~u ±−∇· (α±~q ±)± (Ed− ~Fd ·~u ±).

(22)
In order to introduce the entropy variable s± into our considerations, we will
make use of the Gibbs relation. After multiplying (15) by α±ρ± and passing
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to the material derivative, one gets:

α±ρ±T±d
±s±

dt
= α±ρ±

d±e±

dt
− α±p

ρ±
d±ρ±

dt
.

Substituting (22) into the last relation and taking into account (19), leads to
the requested entropy Equation (16).

From lemma 6 we directly obtain the following equality:

α±ρ±θ±
d±p

dt
= α±ρ±

(

p

(ρ±)2
− χ±

)

d±ρ±

dt
+ α±ρ±T±d

±s±

dt
.

After substituting (16) and replacing
(

p
(ρ±)2

−χ±
)

by θ±(c±s )
2, we obtain (18)

and the proof is completed.

Computations that we will perform below will be clearer if the governing
Equations (16) – (18) are recast in the vectorial form:

A(Vǫ)
∂Vǫ

∂t
+B(Vǫ)∇Vǫ = ∇ ·T(Vǫ) + S(Vǫ) +

R(Vǫ)

ǫ
, (23)

where we introduced several notations. The vector Vǫ represents six unknown
physical variables Vǫ :=

t(s+, s−, ~u +, ~u −, p, α+) and ∂Vǫ

∂t
is the componentwise

partial time derivative. Symbol ∇Vǫ denotes this vector:

∇Vǫ :=
t
(

∇s+,∇s−, (·∇)~u+, (·∇)~u −,∇p,∇α+
)

.

Matrices A(Vǫ) and B(Vǫ) are defined as

A(Vǫ) :=



































a+T 0 0 0 0 0

0 a−T 0 0 0 0

0 0 α+ρ+I 0 0 0

0 0 0 α−ρ−I 0 0

0 0 0 0 a+θ p+θ

0 0 0 0 a−θ −p−θ
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B(Vǫ) :=



































a+T ~u
+ 0 0 0 0 0

0 a−T ~u
− 0 0 0 0

0 0 α+ρ+~u + 0 α+I 0

0 0 0 α−ρ−~u − α−I 0

0 0 α+p+θ I 0 a+θ ~u
+ p+θ ~u

+

0 0 0 α−p−θ I a−θ ~u
− −p−θ ~u

−



































,

where several symbols were introduced to shorten the notation:

p±θ := (ρ±)2(c±s )
2θ±, a±T := α±ρ±T±, a±θ := α±ρ±θ±.

In these matrix notations the size of zero entries must be chosen to make the
multiplication operation possible.

On the right hand side of (23), the work of viscous forces is denoted by symbol
∇ ·T(Vǫ) which is defined as

∇ ·T(Vǫ) :=
t(α+

τ
+ : ∇~u + −∇ · (α+~q +), α−

τ
− : ∇~u − −∇ · (α−~q −),

∇·(α+
τ
+),∇·(α−

τ
−), α+

τ
+ : ∇~u +−∇·(α+~q +), α−

τ
− : ∇~u −−∇·(α−~q −)).

The source term S(Vǫ) :=
t(0, 0, α+ρ+~g, α−ρ−~g, 0, 0) incorporates the gravity

force and R(Vǫ) contains the relaxation terms:

R(Vǫ) := κ
α+ρ+α−ρ−

α+ρ+ + α−ρ−

t(

~u− ~u +,−(~u− ~u −),

1,−1, ~u− ~u +,−(~u− ~u −)
)

× (~u + − ~u −).

Since we expect the limit Vǫ → V to be finite as ǫ → 0, necessary the limiting
vector V lies in the hypersurface R(V ) = 0. In terms of physical variables, it
implies ~u = ~u + = ~u −. Consequently, we find our solution in the form of the
following Chapman-Enskog type expansion [CC95]:

Vǫ = V + εW +O(ε2).

After substituting this expansion into (23) and taking into account the fact
that R(V ) ≡ 0, at the leading order in ǫ one obtains:

A(V )
∂V

∂t
+B(V )∇V = ∇ ·T(V ) + S(V ) +R′(V )W, (24)
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where

R′(V ) := κ
α+ρ+α−ρ−

α+ρ+ + α−ρ−



































0 0 0 0 0 0

0 0 0 0 0 0

0 0 I −I 0 0

0 0 −I I 0 0

0 0 0 0 0 0

0 0 0 0 0 0



































Henceforth, we make a technical assumption of the presence of both phases in
any point ~x ∈ Ω of the flow domain. Mathematically it means that 0 < α+ < 1.
Since α+ + α− = 1, obviously the same inequality holds for α−. Otherwise,
the relaxation process physically does not make sense and we will have some
mathematical technical difficulties.

Under the aforementioned assumption, the matrix A(V ) is invertible. Hence,
we can multiply on the left both sides of (24) by PA−1(V ) where the projection
matrix P is to be specified below:

P
∂V

∂t
+PA−1(V )B(V )∇V = PA−1(V )∇·T(V )+PR̃′(V )W+PA−1(V )S(V ),

(25)
where R̃′(V ) := A−1(V )R′(V ) and has the following components

R̃′(V ) = κ
α+ρ+α−ρ−

α+ρ+ + α−ρ−







































0 0 0 0 0 0

0 0 0 0 0 0

0 0
1

α+ρ+
I − 1

α+ρ+
I 0 0

0 0 − 1

α−ρ−
I

1

α−ρ−
I 0 0

0 0 0 0 0 0

0 0 0 0 0 0







































The vector of physical variables V has six components (in 1D):

V = t(s+, s−, ~u , ~u , p, α+)

and only five are different. In order to remove the redundant information,
we will introduce the new vector U defined as U := t(s+, s−, ~u , p, α+). The
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Jacobian matrix of this transformation can be easily computed:

J :=
∂V

∂U
=



































1 0 0 0 0

0 1 0 0 0

0 0 I 0 0

0 0 I 0 0

0 0 0 1 0

0 0 0 0 1



































.

In new variables Equation (25) becomes:

PJ
∂U

∂t
+PA−1(U)B(U)J∇U = PA−1(U)∇·T(U)+PR̃′(U)W+PA−1(U)S(U).

(26)

Now we can formulate two conditions to construct the matrix P. First of
all, the vector W is unknown and we need to remove it from Equation (26).
Hence, we require PR̃′(V ) = 0. Then, we would like the governing equations
to be explicitly resolved with respect to time derivatives. It gives us the second
condition PJ = I. The existence and effective construction of the matrix P

satisfying two aforementioned conditions

PR̃′(V ) = 0, PJ = I,

are discussed below. Presented in this section results follow in great lines
[MG05].

We will consider a slightly more general setting. Let be vector V ∈ R
n and its

reduced counterpart U ∈ R
n−k, k < n. In such geometry, R̃′(V ) ∈ Matn,n(R),

J ∈ Matn,n−k(R) and, consequently, P ∈ Matn−k,n(R). Here, the notation
Matm,n(R) denotes the set of m× n matrices with coefficients in R. We have
to say also that from algebraic point of view, matrices R̃′(V ) and R′(V ) are
completely equivalent. Thus, for the sake of simplicity, the following proposi-
tions will be formulated in terms of the matrix R′(V ).

Lemma 8 The columns of the Jacobian matrix J form a basis of ker
(

R′(V )
)

.

PROOF. If we differentiate the relation R(V ) = 0 with respect to U , we

will get the identity R′(V )J = 0. It implies that range
(

J
)

⊆ ker
(

R′(V )
)

.

By direct computation one verifies that dim range
(

R′(V )
)

= k. From the

well-known identity range
(

R′(V )
)

⊕ ker
(

R′(V )
)

= R
n, one concludes that
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dimker
(

R′(V )
)

= n−k. But in the same time, the rank of J is equal to n−k

as well. It proves the result.

Theorem 9 We suppose that for all V , range
(

R′(V )
)

∩ ker
(

R′(V )
)

= {0}
then there exists a matrix P ∈ Matn−k,n(R) such that PR′(V ) = 0 and PJ =
In−k.

PROOF. Assumption range
(

R′(V )
)

∩ ker
(

R′(V )
)

= {0} implies that

range
(

R′(V )
)

⊕ ker
(

R′(V )
)

= R
n.

From Lemma 8 it follows that range
(

J
)

= ker
(

R′(V )
)

. Thus, the space R
n

can be also represented as a direct sum range
(

R′(V )
)

⊕ range
(

J
)

. We will

define P to be the projection on ker
(

R′(V )
)

≡ range
(

J
)

. Since obviously

R′(V ) ∈ range
(

R′(V )
)

and J ∈ range
(

J
)

, we have two required identities:

PJ = In−k and PR′(V ) = 0.

Now, in order to compute effectively the projection matrix P, we will con-
struct an auxiliary matrix D(V ) = [J1, . . . , Jn−k, I1, . . . , Ik], where J i is the
column i of the matrix J and {I1, . . . , Ik} are vectors which form a basis of

range
(

R′(V )
)

. We remark that PD(V ) = [In−k, 0]. Lemma 8 implies that

the matrix D(V ) is invertible. Thus, the projection P can be computed by
inverting D(V ):

P = [In−k, 0] ·D−1(V ). (27)

Let us apply this general framework to our model (25), where n = 6 and k = 1.
The matrix D(V ) and its inverse D−1(V ) take this form:

D(V ) =



































1 0 0 0 0 0

0 1 0 0 0 0

0 0 I 0 0 m−I

0 0 I 0 0 −m+I

0 0 0 1 0 0

0 0 0 0 1 0



































, D−1(V ) =



































1 0 0 0 0 0

0 1 0 0 0 0

0 0 m+I m−I 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 I −I 0 0



































,

where m± are mass fractions defined in Remark 4.
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Now, the projection matrix P can be immediately computed by (27):

P =





























1 0 0 0 0 0

0 1 0 0 0 0

0 0 m+I m−I 0 0

0 0 0 0 1 0

0 0 0 0 0 1





























.

Finally, after computing all matrix products PA−1(U)B(U)J, PA−1(U)∇ ·
T(U), PA−1(U)S(U) present in Equation (26), we obtain the following model:

α±ρ±T±ds
±

dt
=α±

τ
± : ∇~u ± −∇ · (α±~q ±), (28)

ρ
d~u

dt
+∇p= ρ~g +∇ · τ , (29)

Π
(dp

dt
+ ρc2s∇ · ~u

)

=
ρ−(c−s )

2

θ+ρ+

(

α+
τ
+ : ∇~u −∇ · (α+~q +)

)

+
ρ+(c+s )

2

θ−ρ−

(

α−
τ
− : ∇~u −∇ · (α−~q −)

)

, (30)

Π
(dα+

dt
+ α+α−δ∇ · ~u

)

=
α−

θ+ρ+

(

α+
τ
+ : ∇~u −∇ · (α+~q +)

)

− α+

θ−ρ−

(

α−
τ
− : ∇~u −∇ · (α−~q −)

)

, (31)

where ρ = α+ρ++α−ρ− is the mixture density (10), c2s physically is the sound
velocity in the mixture:

Πρc2s := ρ+(c+s )
2ρ−(c−s )

2. (32)

To shorten the notation, we also introduced a quantity δ defined by

Πδ := ρ+(c+s )
2 − ρ−(c−s )

2 (33)

and Π := α−ρ+(c+s )
2 + α+ρ−(c−s )

2.

The viscous stress tensor of the mixture is defined as τ := α+
τ
+ + α−

τ
−. If

both fluids are assumed to be Newtonian (7), we can express it in closed form:

τ := λ trD(~u )I+ 2µD(~u ), λ := α+λ+ + α−λ−, µ := α+µ+ + α−µ−.
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Similarly, the thermal flux ~q in the mixture is given by this formula:

~q := α+~q + + α−~q −.

For practical computations it is better to rewrite Equations (28) – (31) in
conservative form [Lax73,GR96] which is valid for discontinuous solutions as
well. After repeating in inverse sense computations from Theorem (7) one
obtains the following system:

∂t(α
±ρ±) +∇ · (α±ρ±~u ) = 0, (34)

∂t(ρ~u ) +∇ · (ρ~u ⊗ ~u + pI) = ρ~g +∇ · τ , (35)

∂t(ρE) +∇ · (ρH~u ) = ρ~u · ~g +∇ · (τ~u )−∇ · ~q . (36)

If we neglect viscous stress τ and thermal flux ~q , we will obtain the so-
called four equations model recently proposed by F. Dias, D. Dutykh and
J.-M. Ghidaglia [Dut07,DDG08b,DDG10,DDG08a] for simulation of violent
aerated flows. Formal computations presented in this study can be considered
as a step towards justification of the four equations model. It can be also shown
[DDG10], that the advection operator of Equations (34) – (36) is hyperbolic
for quite general equations of state (8). Hence, derived here four equations
model is very attractive from modeling and computational point of view.

4 Invariant regions

Consider only the hyperbolic part of the system (34) – (36) together with
source terms due to gravity:

∂t(α
±ρ±) +∇ · (α±ρ±~u )= 0, (37)

∂t(ρ~u ) +∇ · (ρ~u ⊗ ~u + pI)= ρ~g, (38)

∂t(ρE) +∇ · (ρH~u )= ρ~u · ~g. (39)

In this section we would like to study the preservation of invariant regions
under the dynamics of the system (37) – (39). This property is very important
in practice for stability of computations. Namely, from physical sense and from
definition (1) of volume fractions α± it follows that 0 ≤ α± ≤ 1, ∀(~x, t) ∈
Ω × [0, T ]. The question we address here is whether the region 0 ≤ α± ≤ 1
remains invariant under the system (37) – (39) dynamics. This property can be
checked only for α+, for example, since α++α− = 1. If the answer is negative,
the model can be hardly applied to any practical situation. Positive result was
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already proved for a barotropic model with two velocities in [BDGG09]. In the
same work of Bresch et al. (2009) it was also shown that two-phase mixtures
of compressible/incompressible fluids do not preserve the invariant regions.

The notion of invariant regions is due to Chueh, Conley and Smoller [CCS77].
Independently it was also introduced byWeinberger [Wei75] for scalar parabolic
equations.

In order to handle this problem, it is more convenient to rewrite Equations
(37) – (39) in terms of the so-called physical variables W =t (~u , p, α+, s).
The derivation of the equation for the velocity ~u evolution is straightforward.
Equations for thermodynamical variables p, α+ and s are trickier to obtain.
However, it was already done in [DDG08a,DDG10] and partially above (see
Equations (28) – (31)):

Lemma 10 Smooth solutions to Equations (37) – (39) satisfy the following
quasilinear system:

∂t~u + ~u · ∇~u +
∇p

ρ
=~g, (40)

∂tp + ~u · ∇p+ ρc2s∇ · ~u =0, (41)

∂tα
+ + ~u · ∇α+ + α+α−δ∇ · ~u =0, (42)

∂ts + ~u · ∇s=0, (43)

where ρc2s and δ are defined in (32) and (33) respectively.

PROOF. For the proof see, for example, Dias et al. (2009) [DDG10] where
the authors worked with an auxiliary variable α := α+ − α−. Taking into
account the relation α+ + α− = 1, one can express the volume fractions in

terms of α: α± =
1± α

2
. Consequently, α+α− =

1− α2

4
.

Corollary 11 System (40) – (43) which governs the evolution of physical
variables can be recast under the following matricial form:

∂W

∂t
+M(W )

∂W

∂x
= S(W ), (44)

whereW = (~u , p, α+, s), source terms S(W ) = t(~g, 0, 0, 0) and if ~n = (n1, n2, n3)
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is a normal direction, un = ~u · ~n is a normal velocity, then

M(W )~n =
3

∑

i=1

Mi(W )ni =



































un 0 0 1
ρ
n1 0 0

0 un 0 1
ρ
n2 0 0

0 0 un
1
ρ
n3 0 0

ρc2sn1 ρc2sn2 ρc2sn3 un 0 0

α+α−δn1 α+α−δn2 α+α−δn3 0 un 0

0 0 0 0 0 un



































.

Now we can state the main result:

Theorem 12 For smooth solutions to Equations (37) – (39), the region 0 ≤
α± ≤ 1 remains invariant under the system dynamics.

PROOF. The proof is based on the theory of J. Smoller [Smo94]. We know
that the value α− = 0 corresponds to W5 = α+ = 1. Obviously, the case
α+ = 0 can be treated similarly with the same conclusions. The matrices
Mi(W ) are smooth functions of W in the neighborhood of W which satisfies
W5 ∈ [0, 1]. We would like to check whether the boundary W5 = 1 is invariant
under the dynamics of (44). According to the theory of invariant regions by
Chueh, Conway and Smoller ([CCS77]), this will be the case if and only if
d(W5−1) = dW5 = (0, 0, 0, 0, 1, 0) is a left eigenvector of matricesMi(~u , p, 1, s)
for all admissible values of ~u , p and s. By straightforward computation one
can easily check that

(0, 0, 0, 0, 1, 0) ·Mi(~u , p, 1, s) = ~ui(0, 0, 0, 0, 1, 0).

The theorem is shown now.

Remark 13 The present result shows also that if negative values of volume
fractions α± are reported in simulations, they are due to some numerical in-
stabilities and have nothing to do with mathematical properties of the four
equations model (37) – (39).

5 Incompressible limit

In practice, there are many situations when governing equations can be fur-
ther simplified by filtering out acoustic effects. For various combustion models
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it was done by A. Majda and his collaborators [Maj82,KM82,MS85]. More re-
cently these techniques were applied to some two-phase models [KPTV00,Del05],
[Del07].

In the present section we derive the incompressible limit of the four equations
model (34) – (36). For the sake of simplicity we will neglect thermal fluxes
which are not important for the exposition below and do not directly affect
acoustic waves propagation. Hence, in this section we consider the following
set of equations in nonconservative form for convenience:

∂t(α
±ρ±) +∇ · (α±ρ±~u ) = 0, (45)

ρ∂t~u + ρ(~u · ∇)~u +∇p = ρ~g +∇ · τ , (46)

ρ∂te+ ρ~u · ∇e+ p∇ · ~u = τ : ∇~u , (47)

where we expressed the energy balance in terms of the internal energy e.

In order to estimate the relative importance of various terms, we introduce
dimensionless variables. In this section we use the special low Mach number
scaling which reveals acoustic effects magnitude. The characteristic length,
time, and velocity scales are denoted by ℓ, t0 and U0 respectively. For example,
ℓ can be chosen as a linear dimension of the fluid domain Ω. The density,
viscosity and sound velocity scales are chosen to be those of the heavy fluid,
i.e. ρ+0 , ν

+
0 and c+0s correspondingly. Since we are interested in acoustic effects,

the natural pressure scale is given by ρ+0 (c
+
0s)

2. If we summarize these remarks,
dependent and independent dimensionless variables (denoted with primes) are
defined as:

~x′ :=
~x

ℓ
, t′ :=

t

t0
, (ρ±)′ :=

ρ±

ρ+0
, (µ±)′ :=

µ±

ρ+0 ν
+
0

,

~u ′ :=
~u

U0
, p′ :=

p

ρ+0 (c
+
0s)

2
, e′ :=

e

U2
0

.

Since the volume fraction is dimensionless by definition (1) we keep this vari-
able unchanged.

After dropping the tildes, nondimensional system (45) – (47) of equation be-
comes:

St ∂t(α
±ρ±) +∇ · (α±ρ±~u ) = 0, (48)

St ρ∂t~u + ρ(~u · ∇)~u +
1

Ma2
∇p =

1

Fr2
ρ~g +

1

Re
∇ · τ , (49)

St ρ∂te+ ρ~u · ∇e+
1

Ma2
p∇ · ~u =

1

Re
τ : ∇~u , (50)

where several scaling parameters appear:
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• Strouhal number St :=
ℓ

U0t0
. In this study we will assume the Strouhal

number to be equal to one St ≡ 1, i.e. t0 =
ℓ

U0
.

• Mach number Ma :=
U0

c+0s
which measures the relative importance of the

flow speed and the sound speed in the medium.

• Froude number Fr :=
U0√
gℓ

compares inertia and gravity forces.

• Reynolds number Re :=
U0ℓ

ν+
0

gives the measure of the ratio of inertial to

viscous forces.

In this section we will consider the asymptotic limit as Ma → 0. Consequently,
all physical variables α±, ρ±, p, ~u and e are expanded in formal series in powers
of the Mach number:

ϕ = ϕ0 +Ma ϕ1 +Ma2ϕ2 + . . . , ϕ ∈ {α±, ρ±, p, ~u , e}. (51)

Formal expansion (51) is then substituted into the system (48) – (50). Our
goal is to derive a system which governs the evolution of physical variables
at the lowest order in the Mach number (e.g. ~u 0, α

±
0 , etc.). Equation (49) at

orders Ma−2 and Ma−1 leads:

∇p0 = ∇p1 = 0.

In other words, p0 = p0(t) and p1 = p1(t) are only functions of time. Internal
energy balance equation (50) gives us the incompressibility constraint ∇·~u 0 =
0 at the leading order Ma−2 and, correspondingly, ∇·~u 1 = 0 at the order Ma−1.

Relation (3) after asymptotic expansion (51) becomes

α+
k (~x, t) + α−

k (~x, t) = δ0k,

where δ0k is the Kronecker delta symbol equal to 1 if k = 0 and 0 otherwise.
Thus, at the leading order in Mach number we keep usual relations:

α+
0 + α−

0 = 1, ρ0 = α+
0 ρ

+
0 + α−

0 ρ
−
0 .

Equations (48), (49) at the order Ma0 become:

∂t(α
±
0 ρ

±
0 ) +∇ · (α±

0 ρ
±
0 ~u 0) = 0, (52)

ρ0∂t~u 0 + ρ0(~u 0 · ∇)~u 0 +∇π =
1

Fr2
ρ0~g +

1

Re
∇ · τ 0, (53)

where by π we denote the pressure oscillations p2 at the order Ma2.
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Finally, some information on the behaviour of ρ±0 can be deduced from the
Gibbs relation (15) which takes the following dimensionless form:

T±ds± = de± − p

Ma2(ρ±)2
dρ±.

After dividing by dt and expanding the Gibbs relation as in (51) we get these
results:

dρ±0
dt

= 0,
dρ±1
dt

= 0. (54)

In particular, it means that if in each phase the density ρ±0,1 was initially
constant 1 , it remains so under the system dynamics. Moreover, taking into
account the first relation in (54) and the flow incompressibility constraint
∇ · ~u 0 = 0, one can easily deduce from the mass conservation Equations (52)
that volume fractions α±

0 are also simply transported by the flow:

∂tα
±
0 + ~u 0 · ∇α±

0 = 0.

If we summarize all the developments made above and turn back to physi-
cal variables, we will get the following system of equations which governs an
incompressible two-phase flow:

∂tα
± + ~u · ∇α± = 0, (55)

∇ · ~u = 0, (56)

ρ∂t~u + ρ(~u · ∇)~u +∇π = ρ~g +∇ · τ , (57)

where we dropped the index 0 to simplify the notation. The mixture density
ρ and the viscous stress tensor τ are defined as above. This system should be
completed by appropriate boundary and initial conditions.

Remark 14 Two-fluid incompressible models, such as the system just derived
above (55) – (57), are often used in many practical situations such as wave
breaking [CKZL99] and others [SZ99]. For powder-snow avalanches applica-
tions, the volume fraction Equation (55) is completed by a diffusive term ac-
cording to the Fick’s law:

∂tα
± + ~u · ∇α± = ∇ · (νf∇α±).

This extra term allows to take into account the mixing between two fluids due
to turbulence effects, for example. For more details on this extension we refer
to [JR93,ESH04,DARB09].

1 This assumption is often made in applications. For example, pure water and pure
air are assumed to have constant densities under normal conditions. However, the
mixture density can undergo strong variations (e.g. after the wave breaking).
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6 Numerical results

In the present section we will consider only the advective part of the system
(34) – (36), i.e. we neglect viscous and thermal fluxes:

∂t(α
±ρ±) +∇ · (α±ρ±~u ) = 0, (58)

∂t(ρ~u ) +∇ · (ρ~u ⊗ ~u + pI) = ρ~g, (59)

∂t(ρE) +∇ · (ρH~u ) = ρ~u · ~g. (60)

Actually, the system we consider here is stiffer than the original Equations
(34) – (36) since it does not contain any diffusive effects. The resulting equa-
tions have been shown to be hyperbolic for any reasonable equation of state
[DDG10,DDG08a]. For illustrative purposes we assume here that both fluids
are governed by stiffened gas type laws:

p± + π± = (γ± − 1)ρ±e±, e± = c±v T
± +

π±

γ±ρ±
,

where γ±, π± and c±v are some constants determined by physical properties
of pure fluids under consideration. Also we assume that two fluids are in the
thermodynamic equilibrium:

p ≡ p+ = p−, T ≡ T+ = T−.

We refer to [Dut07,DDG10,DDG08a] for more details on the construction of
this equation of state and the discussion of some properties of such two-phase
mixtures.

6.1 Numerical schemes

For the numerical study we choose the finite volumes method [Kro97,BO04]
since it is the method of choice for the systems of conservation laws due to its
excellent local conservative properties. More precisely, we use the cell-centered
approach [BJ89,Bar94] which is more natural in our opinion. For simplicity we
assume that the system of equations is solved in R

2. However the extension
to 3D for cartesian meshes is straightforward. We briefly describe below the
discretization procedure adopted in this study. References are also provided if
more details of the discretization method are needed.
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6.1.1 Space discretization

System (58) – (60) can be written as

∂w

∂t
+∇ · F(w) = S(w) , (61)

where
w = (wi)

5
i=1 := (α+ρ+, α−ρ−, ρu1, ρu2, ρE) ,

and, for every ~n = (n1, n2) ∈ R
2,

F(w) · ~n = (α+ρ+~u · ~n, α−ρ−~u · ~n, ρ~u · ~nu1 + pn1,

ρ~u · ~nu2 + pn2, ρH~u · ~n) , (62)

S(w) = (0, 0, ρg1, ρg2, ρ~g · ~u ) .
Then, the Jacobian matrix A(w) · ~n is defined by

An(w) := A(w) · ~n =
∂(F(w) · ~n)

∂w
. (63)

In order to compute A(w) · ~n, one writes Equation (62) for F(w) · ~n in terms
of w and p:

F(w) · ~n =
(

w1
w3n1 + w4n2

w1 + w2
, w2

w3n1 + w4n2

w1 + w2
, w3

w3n1 + w4n2

w1 + w2
+ pn1,

w4
w3n1 + w4n2

w1 + w2
+ pn2, (w5 + p)

w3n1 + w4n2

w1 + w2

)

.

The Jacobian matrix (63) then has the following expression:

A(w) · ~n=




























un
α−ρ−

ρ
−un

α+ρ+

ρ

α+ρ+

ρ
n1

α+ρ+

ρ
n2 0

−un
α−ρ−

ρ
un

α+ρ+

ρ
α−ρ−

ρ
n1

α−ρ−

ρ
n2 0

−u1un +
∂p
∂w1

n1 −u1un +
∂p
∂w2

n1 un + u1n1 +
∂p
∂w3

n1 u1n2 +
∂p
∂w4

n1
∂p
∂w5

n1

−u2un +
∂p
∂w1

n2 −u2un +
∂p
∂w2

n2 u2n1 +
∂p
∂w3

n2 un + u2n2 +
∂p
∂w4

n2
∂p
∂w5

n2

un

(

∂p
∂w1

−H
)

un

(

∂p
∂w2

−H
)

un
∂p
∂w3

+Hn1 un
∂p
∂w4

+Hn2 un

(

1 + ∂p
∂w5

)





























,

where un = ~u · ~n.

The computational domain Ω ⊂ R
2 is decomposed into a set of control volumes

T such that Ω = ∪K∈T K. We integrate Equation (61) on K:

d

dt

∫

K
w dΩ +

∑

L∈N (K)

∫

K∩L
F(w) · ~nKL dσ =

∫

K
S(w) dΩ , (64)
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where ~nKL denotes the unit normal vector on K ∩ L pointing into L and
N (K) = {L ∈ T : area(K ∩ L) 6= 0} . Then, setting

wK(t) :=
1

vol(K)

∫

K
w(~x, t) dΩ ,

we approximate (64) by

dwK

dt
+

∑

L∈N (K)

area(L ∩K)

vol(K)
Φ(wK ,wL;~nKL) = SK ,

where the numerical flux

Φ(wK ,wL;~nKL) ≈
1

area(L ∩K)

∫

K∩L
F(w) · ~nKL dσ

is explicitly computed by the FVCF formula of Ghidaglia et al. [GKC01]:

Φ(wK ,wL;~n) =
F(wK) · ~n + F(wL) · ~n

2

− sign(An(µ(wK ,wL)))
F(wK) · ~n− F(wL) · ~n

2
. (65)

Here the Jacobian matrix An(µ) is defined in (63), µ(wK ,wL) is an arbitrary
mean between wK and wL and sign(M) is the matrix whose eigenvectors are
those of M but whose eigenvalues are the signs of that of M . In this section we
did not deal with boundary conditions. We refer to [GP05] for more details.

6.1.2 Higher order extension

In the previous section we described the first order scheme which might be
too diffusive for most practical applications. That is why we present here
a higher-order extension which is a variant of MUSCL 2 limiting technique
[Kol75,Kol72,vL79,vL06]. This numerical method ensures stability and non-
oscillatory behaviour of numerical solutions. To describe this scheme we switch
to Cartesian notation since a bigger stencil is needed for the gradient recon-
struction procedure. In this notation wi denotes the average of conservative
variables in the cell i and w

L,R

i+ 1

2

denotes respectively reconstructed left and

right states at cell faces. According to the method adopted in the current
study [Bar94,BO04,TMD07], cell faces values are computed as:

wL
i+ 1

2

= wi +
1

4

(

(1− κ)ϕ(rLi )(wi −wi−1) + (1 + κ)ϕ
( 1

rLi

)

(wi+1 −wi)
)

, (66)

2 Acronym MUSCL stands for Monotone Upstream-centered Scheme for Conserva-
tion Laws [vL79]
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wR
i+ 1

2

= wi+1−
1

4

(

(1−κ)ϕ(rRi )(wi+2−wi+1)+(1+κ)ϕ
( 1

rRi

)

(wi+1−wi)
)

, (67)

where κ ∈ [−1, 1) is a free parameter and

rLi :=
wi+1 −wi

wi −wi−1
, rRi :=

wi+1 −wi

wi+2 −wi−1
.

Then, reconstructed values wL,R

i+ 1

2

are used to compute the numerical flux (65)

of the FVCF scheme.

The function ϕ(r) is called the limiter function and is incorporated to obtain
non-oscillatory resolution of discontinuities and steep gradients [BB73,Swe84].
We tested in practice two following limiter functions:

• M3 limiter proposed in [ZD98,TMD07]:

ϕM3(r) = 1−
(

1 +
2Nr

1 + r2

)(

1− 2r

1 + r2

)N

, N = 2, (68)

• MinMod limiter with compression parameter [Bar94,BO04]:

ϕMM(r) = max{0,min{r, β}}, β ∈
(

1,
3− κ

1− κ

]

. (69)

In the smooth unlimited form (ϕ(r) ≡ 1), the truncation error ε for a scalar
conservation law with the smooth flux f(u) is given by [Bar94,BO04]:

ε = −
(

κ− 1
3

)

4
∆x2∂

3f(u)

∂x3
.

Consequently, for κ = 1
3
, the scheme provides theoretically in smooth regions

an overall spatial discretization with O(∆x3) error. In computations presented
below, we use the optimal choice of this parameter together with M3 limiter
(68).

Remark 15 If the limiter function is symmetric, i.e.

ϕ(r)

r
≡ ϕ

(1

r

)

,

the reconstruction formulas (66), (67) are independent of the parameter κ and
degenerate to the classical MUSCL2 scheme. It is straightforward to show that
limiter functions (68) and (69) are not symmetric.

6.1.3 Time discretization

In the previous section we briefly described the spatial discretization procedure
with some finite-volume scheme. It is a common practice in solving time-
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dependent PDEs to first discretize the spatial variables. This approach is called
a method of lines:

∂w

∂t
+∇ · F(w) = S(w)

FV
=⇒ wt = L(w),

where L(w) is a space discretization operator. In order to obtain a fully dis-
crete scheme, we have to discretize the time evolution operator. In the present
work we decided to retain the so-called Strong Stability-Preserving (SSP)
time discretization methods described in [Shu88,GST01,SR02]. Historically
these methods were initially called Total Variation Diminishing (TVD) time
discretizations. However, this term is not completely correct. In computa-
tions presented below we use the following third order four-stage SSP-RK(3,4)
scheme with CFL = 2:

w(1) = w(n) +
1

2
∆tL(w(n)),

w(2) = w(1) +
1

2
∆tL(w(1)),

w(3) =
2

3
w(n) +

1

3
w(2) +

1

6
∆tL(w(n)),

w(n+1) = w(3) +
1

2
∆tL(w(3)),

where w(n) = w(·, tn) and w(n+1) = w(·, tn+1).

The time step is chosen adaptively to satisfy the following stability condition
[CFL67]:

∆t ≤ CFL ·∆xmin

max{|u+ cs|max, |u− cs|max}
,

where ∆xmin is the minimal mesh spacing, u is the velocity and cs is the sound
speed in the mixture (32).

Remark 16 Presented above time step restriction is used together with the
first order finite volumes scheme. The application of the MUSCL3 scheme
requires the following modification of the CFL condition:

∆t ≤ 1− κ

2− κ
· CFL ·∆xmin

max{|u+ cs|max, |u− cs|max}
.

6.2 Two-fluid Sod shock tube problem

We present here a two-fluid generalization of the classical Sod shock tube
problem [Sod78]. The sketch of the initial condition is given on Figure 3. The
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L = 2

ℓ = 1

α+, ρ+, p+ α−, ρ−, p−

u = 0 u = 0

Figure 3. Sketch of the initial condition for the Sod shock tube test case.

Velocity, u Density, ρ± Volume fraction, α+ Pressure, p

Heavy fluid, + 0.0 1.0 0.98 1.0

Light fluid, − 0.0 0.125 0.02 0.1

Table 1
Initial condition parameters for the two-fluid Sod shock tube problem.

γ± π±, Pa c±v ,
J

kg·K

Heavy fluid, + 2.6 0.0 661.0

Light fluid, − 1.4 0.0 661.0

Table 2
Equation of state parameters for the two-fluid Sod shock tube problem.
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(b) MUSCL 3

Figure 4. Convergence of the solution with h-refinement

gravity force is not taken into account in this test case, i.e. ~g = ~0. Values of
all parameters used in this computation are given in Tables 1 and 2.

The simulation was stopped at time T = 0.4 s and the computation results
are presented on Figures 4 and 5. On all Figures we show the total density ρ

plots and perform a comparison between FVCF and MUSCL3 schemes. Figure
4 shows the behaviour of the solution when the mesh is refined. Left image
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Figure 5. Convergence of the solution with p-refinement

shows the results of the first order FVCF scheme, while the right one refers to
the MUSCL3 extension. The improvement of the solution is obvious in both
cases. In particular, we would like to underline the excellent shock resolution
by the higher order scheme (Figure 4 (b)).

We perform also the comparison between two schemes (see Figure 5) for the
same mesh size. As it was expected, higher order scheme greatly improves
the sharp resolution of discontinuities for nearly comparable CPU time. Thus,
there is an obvious interest in using MUSCL type schemes for practical appli-
cations.

This test case clearly shows the convergence of the numerical solution when the
mesh is refined (h-convergence), but also with respect to the scheme order (p-
convergence). Consequently, it validates our numerical code. In all subsequent
computations we use the MUSCL3 scheme with the optimal choice of the
parameter κ = 1

3
.

6.3 Water drop test case

The sketch of this numerical experiment is given on Figure 6. The values of
parameters are given in Table 3. Initially the velocity field is taken to be zero
and the pressure field is uniform in all domain p0 = 10 Pa. The gravity force
is taken to be g = 10 m/s2 and the computational domain is discretized with
a uniform grid of 100 × 100 control volumes. Results of this simulation are
presented in Figures 7 – 10. A similar test case has already been considered
in [Dut07,DDG10,DDG08a] and results are in good qualitative agreement.
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ℓ

b
(x0, y0)

r0

α−, ρ−

g

Figure 6. Sketch of the initial condition and computational domain geometry for the
water drop test case. In our simulation we took the following values of geometrical
parameters: ℓ = 1.0 (the domain is square), r0 = 0.15, x0 = 0.5 and y0 = 0.7. The
gravity acceleration is taken to be g = 10 m/s2.

γ± π±, Pa c±v ,
J

kg·K ρ±, kg
m3 α+

Heavy fluid, + 1.6 0.0 1.0 5.0 0.99

Light fluid, − 1.4 0.0 1.0 1.0 0.01

Table 3
Equation of state parameters for the water drop test case.

(a) t = 0.1 s (b) t = 0.2 s

Figure 7. Water drop test case: initial acceleration and deformation stage.

7 Perspectives and conclusions

In this study we considered several two-fluid models. We began the exposi-
tion by the so-called six equations model (4) – (6). Despite recent progress
[ACOR95,GKC96,TKP99,GKC01,BG05,SFW+05,BQ06,Rov06,NKDVLG08],
[GCMM09], this system still represents some major difficulties for the nu-
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(a) t = 0.3 s (b) t = 0.4 s

Figure 8. Water drop test case: falling and further deformation of the drop.

(a) t = 0.5 s (b) t = 0.6 s

Figure 9. Water drop hitting the tank bottom.

(a) t = 0.7 s (b) t = 0.8 s

Figure 10. Water drop flow on the bottom.

merical solution. Namely, the advection operator may be non-hyperbolic and
contains non-conservative terms to be defined in some sense for discontinuous
solutions. That is why, the six equations model was simplified through the ve-
locity and energy relaxation process (see Section 3). In this way, we formally
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derived the so-called four equations model (34) – (36) recently proposed as a
model for violent aerated flows [Dut07,DDG08b,DDG10,DDG08a]. Thus, the
present work can be considered as an attempt towards further comprehen-
sion and at least formal justification of single velocity, single energy two-phase
models. The resulting system (34) – (36) is hyperbolic for any reasonable equa-
tion of state [DDG10] and possesses several nice properties. In particular, in
Section 4 we show that invariant regions α± ∈ [0, 1] are preserved under the
system dynamics. This property is necessary for the well-posedness of the sys-
tem. In Section 5 we also formally derived the incompressible limit as the Mach
number tends to zero. As a result, we recover usual two-fluid incompressible
Navier-Stokes equations [PZ99,SZ99,CKZL99] if both fluids are assumed to
be Newtonian. Finally, several numerical results are presented in Section 6.
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mouvement des fluides si l’on tient compte des forces capillaires
causées par des variations de densité considérables mais continues
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