Iterated maps for clarinet-like systems - Archive ouverte HAL Access content directly
Journal Articles Nonlinear Dynamics Year : 2010

Iterated maps for clarinet-like systems

(1) , (2) , (3)
1
2
3

Abstract

The dynamical equations of clarinet-like systems are known to be reducible to a non-linear iterated map within reasonable approximations. This leads to time oscillations that are represented by square signals, analogous to the Raman regime for string instruments. In this article, we study in more detail the properties of the corresponding non-linear iterations, with emphasis on the geometrical constructions that can be used to classify the various solutions (for instance with or without reed beating) as well as on the periodicity windows that occur within the chaotic region. In particular, we find a regime where period tripling occurs and examine the conditions for intermittency. We also show that, while the direct observation of the iteration function does not reveal much on the oscillation regime of the instrument, the graph of the high order iterates directly gives visible information on the oscillation regime (characterization of the number of period doubligs, chaotic behaviour, etc.).
Fichier principal
Vignette du fichier
FLPATK_HAL2.pdf (2.7 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00440847 , version 1 (12-12-2009)
hal-00440847 , version 2 (07-05-2010)

Identifiers

Cite

Pierre-André Taillard, Jean Kergomard, Franck Laloë. Iterated maps for clarinet-like systems. Nonlinear Dynamics, 2010, 62, pp.253-271. ⟨10.1007/s11071-010-9715-5⟩. ⟨hal-00440847v2⟩
159 View
179 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More