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Abstract. The temperature dependence of the pre-edge features in x-ray absorption

spectroscopy is reviewed. Then, the temperature dependence of the pre-edge structure

at the K-edge of titanium in rutile TiO2 is measured at low and room temperature. The

first two peaks grow with temperature. The fact that these two peaks also correspond

to electric quadrupole transitions is explained by a recently proposed theory.
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1. Introduction

Pre-edge peaks often arise at the K-edge of transition metal elements. This pre-edge

structure is sensitive to the metal valence, to the symmetry of its surroundings and to

the atomic species of the neighbours (see [1] for a recent review). As a consequence, the

measurement and analysis of the pre-edge peaks are widely used in earth sciences [2],

biology [3], chemistry [4] and physics [5, 6].

Because of their practical importance, pre-edge features have to be well understood

and they were the object of detailed theoretical works using various approaches:

multiplets [7, 8], Bethe-Salpeter equation [9], multiple-scattering [10], pseudopotential

theory [5, 11]. Vedrinskii and his group were particularly active to extract information

from the pre-edge structure [12, 13, 14].

In section 2, we make a short review of the literature to show that the temperature

dependence of pre-edge peaks is not a rare property of x-ray absorption spectra.

However, this dependence is usually attributed to static off-center displacements or to

phase transitions. Therefore, our preliminary investigation [15] showing a temperature

dependence of the pre-edge peaks at the titanium K-edge in TiO2 (rutile) came

out as a surprise because the pre-edge variation was observed in a temperature

range where no phase transition occurs and where many high-precision structural

studies [16, 17, 18, 19, 20] indicate that no off-center atomic displacement takes place.

Soft modes have indeed be reported [21] but the calculated phonon spectrum shows

excellent agreement with experiment and no imaginary mode is present [22, 23, 24, 25]

when the proper functionals are used [26].

Thus, we carried out detailed experiments to confirm and analyze this temperature

dependence. The results of these experiments are presented in section 3. Section 4

describes why such a temperature dependence is a priori surprising and sketches a

theoretical interpration that enables us to understand why the temperature dependence

is restricted to the first two peaks and why no energy shift is observed. A conclusion

summarizes our results and provides possible extensions of this work.

2. A short review

In this section, we present a short and non-exhaustive review of the temperature

dependence of pre-edge peaks.

As far as we know, such a temperature dependence was first observed by Durmeyer

and coll. [15] at the K-edge of titanium in TiO2 (rutile), Li4/3Ti5/3O4 and LiTi2O4.

It was subsequently measured at the titanium K-edge of a several perovskite crystals:

PbTiO3 [27, 28, 12, 29, 30], SrTiO3 [31, 30], BaTiO3 [30], CaTiO3 [30].

A similar temperature dependence was observed at other edges in perovskite

crystals: at the niobium K-edge of KNbO3 [32, 33], NaNbO3 [34], PbIn1/2Nb1/2O3 [35],

at the zirconium K-edge of PbZrO3 [14], PbZr0.515Ti0.485O3 [14], BaZrO3 [14], at the

K-edge of Mn in La1−xCaxMnO3 [36, 37] and at the K-edge of Fe in in La0.8Sr0.2FeO3
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and La0.7Sr0.2FeO3 [38]. In most cases, the temperature effect was intepreted in terms

of a phase transition or of a static off-center atomic displacement due to the presence

of very soft modes in the crystal.

However, the effect is not restricted to the perovskite structure. Apart from the

results of Durmeyer and coll. [15], it was observed at the K-edge of titanium in TiO2

and Mg2TiO4 [30], at the L-edges of La in Sr-doped La2CuO4 [39] and at the K-edge

of V in VO2 [40]. A temperature dependence of XANES spectra was also observed at

the K-edge of oxygen in water [41] and in doped LaMnO3 [42, 43]. Finally, the Mahan-

Nozières-Dominics singularity can also give rise to a temperature dependence of the

x-ray absorption spectra of metals (see Ref. [44] for a review).

We come now to our experimental temperature dependence at the K-edge of

titanium in rutile.

3. Experiment

The x-ray absorption experiments were performed at the D11 (energy dispersive) and

at the EXAFSII stations of the DCI storage ring of the Laboratoire pour l’Utilisation

du Rayonnement Synchrotron in Orsay (France).

A rutile single-crystal plate (9 mm x 4 mm x 50 µm) was measured at the D11

station in the transmission mode. The crystal plate was placed inside a liquid-helium

cryostat operating between 4.2 K and 300 K. Measurements were carried out for two

orientations, with the (110) face of the crystal perpendicular to the x-ray beam and

the c-axis either parallel or perpendicular to the linear polarization vector of the beam.

The polychromator consisted in a curved Si(111) crystal focusing the X-ray beam at

the center of the cryostat sample holder. Higher harmonics were rejected by a SiO2

plane mirror. The x-ray intensity was measured by a photodiode array detector. Each

spectrum was obtained as a result of four measurements: I0 (without sample and with

the beam), I0black (without sample and without beam), I (with sample and with the

beam), Iblack (with sample and without beam). The absorption spectrum was then

obtained from the formula σ = log(I0 − I0black) − log(I − Iblack). The x-ray energy

corresponding to each detector pixel was determined by comparing the spectra with a

spectrum measured on a two-crystal monochromator beamline. The energy resolution

was typically 0.8 eV.

Our preliminary study [15] showed us that the pre-edge structure could exhibit a

low signal to noise (S/N) ratio when the crystal thickness was optimized for the edge-

jump. Therefore, we optimized the crystal thickness for the pre-edge structure and cut

an approximately 50 µm thick crystal plate. As a consequence, we obtained excellent

spectra in the pre-edge region but the XANES spectra after the edge had a rather

low S/N ratio and, for each polarization direction, we normalized the spectrum at the

inflection point of the absorption edge instead of at the edge jump.

To check the validity of this procedure, we carried out additional experiments

at the EXAFSII station. The experimental equipment consisted of a two-crystal
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Figure 1. Temperature variation of the pre-edge peaks at the K-edge of titanium in

rutile, with the x-ray polarization vector parallel and perpendicular to the c-axis of

the crystal.

Si(311) monochromator, an ionisation chamber to measure the incident beam and an

electron-yield detector. We measured a bulk rutile single crystal with the (110) face

perpendicular to the x-ray beam and with the c-axis of the crystal either parallel or

perpendicular to the x-ray polarization vector. The S/N ratio of the pre-edge region was

comparable to that of the Ti K-edge spectra of rutile measured on the same beamline in

similar conditions [45, 46]. The experimental spectra were normalized by the standard

procedure and, as in our previous work [15], the temperature dependence was found

to be negligible except in the pre-edge region. Moreover, the observed spectra and

temperature dependence agreed well with the transmission experiments of the D11

station. In the present paper we show only the results of the transmission experiments

because of their better S/N ratio.

4. Experimental results

Figure 1 shows the pre-edge features of rutile recorded at different temperatures with

the polarization vector perpendicular and parallel to the crystal c-axis. A decrease of

the first two peaks A1 and A2 is observed at low temperature, whereas the third peak

A3 does not show any significant variation. It is important to notice that temperature

induces a change in the intensity but not in the energy position of the peaks.
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Figure 2. Relative intensity of peak A2 as a function of temperature for ǫ || c,

normalized to 1 at 8K. Dots: experimental results; thick solid line: fit to the function

a(1 + e−θ/T ) + (1 − a); thin solid line: fit to the function a cosh(θ/2T ) + (1 − a).

The physical origin of the pre-edge peaks of titanium in rutile is well known [47].

Peaks A1 and A2 correspond to electric quadrupole transitions towards 3d states of

titanium with t2g and eg symmetry, respectively. Therefore, the peaks that vary with

temperature are also the peaks corresponding to quadrupole transitions.

In the optical range, the effect of temperature is usually described by a simple

model developed by Holmes and McClure [48, 49, 50], in which the intensity of the

vibronic peak varies as 1 + e−θ/T , where θ is the energy of the first vibrational level.

Figure 2 shows the variation of the A2 peak with temperature, fitted to the function

a(1 + e−θ/T ) + (1− a), where a(1 + e−θ/T ) represents the fraction of the A2 peak that is

purely vibrational and 1 − a the fraction that is due to electric quadrupole transitions

(and to the possible tail of the electric dipole peak A3).

The result of the fit is a = 0.21 and θ = 168 K ± 10 K. Note that the value of θ

compares favorably to the energy of the first odd vibrational level at the Γ point obtained

by ab initio calculations (168 K [51], 150 K [26], 169 K [25] or 181 K [23]) or by neutron

scattering 163 K [52]. However, the simplicity of the Holmes and McClure model implies

that the quality of this agreement is probably fortuitous. Indeed, an alternative single-

mode model is sometimes used [53, 54, 55, 56], for which the temperature dependence

is coth θ/2T . For this second model the fit gives θ = 58 K ± 5 K and a = 0.014.

5. Interpretation

It remains to understand why only the first two peaks vary with temperature while the

rest of the XANES spectrum remains constant. We first describe the arguments that

are usually given to explain the absence of temperature dependence of XANES spectra.

Then, we show why, in some circumstances, this independence can be broken.
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5.1. The temperature independence of XANES spectra

There are many reasons to believe that the pre-edge features of x-ray absorption spectra

do not depend on temperature in the absence of structural transition. The first reason

comes from the temperature dependence of the EXAFS part of x-ray absorption spectra,

which is represented by a Debye-Waller factor e−2k2σ in the EXAFS formula. The Debye-

Waller factor accurately describes the temperature dependence of XAS in crystals,

although it has to be supplemented with higher order cumulants in disordered materials.

Moreover, it is well understood because it can be calculated ab initio with a good

agreement with experiment [57, 58, 59, 60, 61]. If we use this factor to describes the

temperature dependence near the edge, we must take an energy very close to the Fermi

energy, so that k is very small and the factor is close to unity.

Of course, near the edge, the effect of temperature is not supposed to be described

by a Debye-Waller factor and we must use a more sophisticated approach. Natoli’s

rule [62] gives good results near the edge. However, it describes an energy shift through

the equation kR =Constant, and we do not observe any energy shift. More elaborate

theoretical analyses were carried out. Brouder and Goulon [63, 64] used Lie group theory

to describe the influence of a displacement on the multiple-scattering operator. However,

the temperature evoluation is expected to be small near the edge, essentially because

of Natoli’s rule. Poiarkova and Rehr [57] extended the Debye-Waller factor to multiple-

scattering paths. Their formalism is not really valid in the pre-edge region, but if we

try to extend it we find a very small temperature dependence because of the presence of

the k2 factor in the exponent. Fujikawa [65, 66] used Schwinger’s technique to calculate

the effect of the Franck-Condon factors on XAFS. He concluded that this effect was not

important. In a later work [67], he investigated the effect of temperature through the

Keldysh approach to nonequilibrium systems. He found that thermal vibrations could

be represented by a convolution with the phonon spectral function. His result is valid in

the pre-edge region but leads to a small temperature effect. Moreover, the convolution

should give rise to a broadening of the pre-edge peaks with temperature. Again, this is

not compatible with our experimental results. A further elaboration of his approach [68]

lead to similar results.

We can try to take vibrations into account by coming back to the Born-

Oppenheimer approximation and writing the initial and final wavefunctions as a product

of a vibrational and an electronic function. However, this approach looks like a dead

end if we consider the work by Mäder and Baroni [69] who showed that, at the K-edge of

carbon, the vibrations in the final state are strongly anharmonic and are deeply affected

by the presence of the core-hole. Therefore, we are not allowed to consider the vibrations

as similar in the initial and final states and we cannot use the harmonic approximation.

Ankudinov and Rehr [70] brought some hope by showing that the S K-edge

spectrum of SF6 is closer to experiment when the atomic positions are slightly shifted

with respect to the equilibrium position. But, as can be seen in their figure, atomic

displacements shift the position of the main lines and this shift is not experimentally
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observed.

5.2. The temperature dependence of XANES spectra

We recently proposed a model that enables us to understand the observed temperature

dependence [71]. Although a detailed account of this model would be beyond the scope

of the present paper, we can give a physical description of the underlying physics.

We start from the Born-Oppenheimer approximation where the wavefunctions of

the electron+nuclei system is the product of a vibrational function by a solution of the

Schrödinger equation for clamped nuclei. The energy of these wavefunctions do not

depend on the position of the nuclei (as the eigenvalues of the Schrödinger equation

for an electron in a potential do not depend on position). The transitions are made

between these wavefunctions. If we assume that the vibrational energies are small with

respect to experimental resolution, we can sum over the final state vibrational functions

and we obtain an average over the vibrational function of the initial state of transitions

for which the transition energy do not depend on the atomic positions. This explains

why the peak positions do not move while they move if we calculate the spectrum of a

distorted structure.

The second step of the model consists in making a different approximation for the

initial and the final states. The initial state is taken to be the core state centered at

the position specified by the vibrational wave function. For the final state, we make the

crude Born-Oppenheimer approximation, where the electronic wavefunction is assumed

independent of the position of the absorbing atom. Then, the cross-section boils down

to an average of the x-ray absorption spectra for a shifted core wavefunction (with

fixed energies). What happens next can be sketched by an oversimplified model of the

shifted core wavefunction. We assume that the displacement R is small compared to

the electronic variable r and we obtain, to first order in R and for a spherical core state

φ0(r), the shifted function

φ0(|r− R|) ≃ φ0(r) −
r · R

r
φ′

0
(r). (1)

When multiplied by ǫ · r, the additional term gives us a factor ǫ · rR · r that can be

transformed into the sum of a monopole term proportional to (ǫ ·R)r2 and a quadrupole

term. The monopole term gives rise to transitions towards s states, the quadrupole

term to transition towards d states. The transition towards s states are observed at the

aluminium or silicon K-edge [71], the transitions towards d states are observed at the

K-edge of transition metals because of the presence of a strong density of d states. This

explains why the temperature variation occurs at the position of the quadrupole peaks.

Finally, the fact the temperature-dependent pre-edge peaks grow with temperature is

due to the corresponding increase in thermal vibration amplitudes.

Of course, eq. (1) is not sufficient because the integration over r includes also a

region where r < R. The full theory [71] is more complex but the physical idea is the

same.
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6. Conclusion

In this paper, we have presented the temperature-dependence of pre-edge features at

the K-edge of titanium in rutile. This temperature dependence is not due to a phase

transition or to a static distortion of the titanium site.

The temperature dependence changes only the intensities of the peaks and not their

positions. Moreover, the peaks that vary with temperature are the electric quadrupole

peaks of the spectrum. An explanation of this behavior was given in terms of the

dynamic displacement of the absorbing atom.

Two conditions turn out to be crucial to observe temperature-dependent pre-edge

peaks at the K-edge : (i) a large density of d states below the p states, so that

the transitions to final d states are significant and visible; (ii) the existence of low-

energy vibrational modes, so that the temperature effect can be observed at reasonable

temperatures. Both of these conditions are satisfied in rutile and in perovskites

containing transition metals. In that case, the temperature dependence provides

information on the local vibrations around the absorbing atom. This can be particularly

useful to investigate the vibrations of transition metal impurities.
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