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Abstract 
 
 

This paper presents a simulation based validation 
approach for test vectors generation. We  suggest to 
borrow techniques used successfully in the software 
testing and constraints logic programming areas. Our 
methodology is based on the three following steps: VHDL 
code modeling and analysis, constraints-based stimuli 
generation and test sequences generation.  

 
1. Introduction 

 
The verification that no error was introduced between 

the algorithmic level and the RTL level remains an 
important issue which requires an automation. We know 
this field of study under the name of functional validation 
or functional verification. IEEE [1][2] defines verification 
as the means of establishing the correspondence between 
a product and its specification, and validation as the 
means of insuring that a product achieves the function for 
which it was conceived. In the electronic designer and 
tester community, the term of verification, that is formal 
verification, refers to the methods consisting in proving 
that a circuit will behave as it is supposed to, whereas the 
term of validation, so called simulation based validation, 
refers to the methods consisting in exciting a description 
of circuit by a series of stimuli: the set of stimuli and the 
observed values is called test vectors.  

In spite of recent progress, the formal verification 
which proposes to prove mathematically the correctness 
of a description is only realizable for small descriptions.  

Indeed the automation of the method implies the 
exhaustive analysis of a very large space of inputs and is 
thus restricted to reduced parts of a description. So the 
simulation based validation is still the best method for 
design verification. The reader can refer to the various 

articles published in [3] which present the last projections 
in formal verification.  

 
Our interest here is in the approaches of the simulation 

based validation. The production of the test vectors is one 
of the principal problems of the simulation based 
validation. The disadvantages of this approach are that an 
exhaustive simulation is necessary to guarantee the 
exactitude of a description, and that the complexity of 
current descriptions makes this task unfeasible. The 
random generation of test vectors is relatively easy but 
does not guarantee the verification of all the 
functionalities of the description of the circuit. In general, 
the designers of circuits generate manually the test vectors 
according to their knowledge of circuit functionalities. 
The problem of the automatic generation of test vectors 
thus remains a subject largely studied by the scientific 
community. 

In this paper, we suggest an approach of test vectors 
generation which borrows techniques used successfully in 
the software testing area and which uses a simulator 
developed within our laboratory. We present in the 
following section a state of art - which is not meant to be 
exhaustive - of the automatic test vectors generation. In 
the third section, we present our methodology to generate 
the test vectors. Results are presented in section 4 and the 
prospects are given in section 5. 

 
2. State of art  

 
Our intention is not to describe in details all the 

existing methods derived from the software testing area, 
but simply to present the most representative, to show 
their limits, and give the reasons which led us to develop 
our methodology. 

Software testing is usually done at several levels. They 
are commonly referred to as unit testing, integration 



testing, and system testing. Theirs objectives are 
respectively:  

− to verify that individual units (the smallest 
compilable components) function correctly  

− to test the integration of components and the 
communication between them  

− to find defects that are attributable to the behavior 
of the system as a whole, rather than the behavior 
of individual components, and to test the software 
functions as a complete system. 

Whatever the level of development, the activity of test 
generally proceeds in two times:  

− selection of a set of input data (often called test set 
or test data)  

− execution of the software with these input data 
and observation of its behavior. This observation 
is often carried out by a human being which must 
pronounce an "oracle" (i.e. it must decide if the 
results of the execution are correct).  

 
Our study is at the unit level because we consider that 

a behavioral VHDL program is a module which can form 
part of a larger program. Concerning oracle, VHDL 
language [4] envisages the use of files of simulation, 
called test-bench, which make it possible to check and 
announce any error met during simulation.  

 
The quality of the test data can be evaluated using 

metrics. The software metrics describe the properties of 
the code of the software. Their objective is to evaluate if 
the requirements for quality are satisfied during all the 
phases of the software life cycle. The metrics are 
measurements which make it possible to evaluate the 
complexity of a software and thus offering a help for the 
test.  

 
The use of coverage metric [5] constitutes an approach 

to test vectors generation. In [6][7], the test vectors 
generation is based on observability and instructions 
coverage metric[8]. Tags are associated to each variable 
assignment in the RTL level Verilog description and must 
be propagated, as for the behavioral faults, towards an 
exit during simulation. The vectors are generated thanks 
to a hybrid algorithm SAT (problem of satisfaction of 
Boolean expression). 

The method developed by Kapoor and Armstrong [9] 
takes into account VHDL descriptions of RTL level and 
aims at the detection of design errors. It uses the CDFG 
(Control and Data Flow Graph) defined in [10] and 
generates test vectors starting from the instructions 
coverage criterion. Symbolic values are used to represent 
the signal values and their transitions. These values are 
affected by the user to justify the paths through the CDFG 
which make it possible to respect the instructions 
coverage criterion. A test-bench is finally generated in 
order to simulate description. 

In [11] and [12] execution paths for which one wishes 
to generate test vectors are specified through certain 
annotations, managed by the user, in VHDL behavioral 
description. Each annotated path is translated into 
constraints, a constraints solver is then used to produce 
the test vectors which allow their execution. The test 
vectors are finally converted into format WAVES [13] to 
facilitate the automatic generation of test-bench. 

The methods of [14] and [15] use concepts borrowed 
to the formal verification to extract from a Verilog 
description, a Finite State Machine (FSM), from which 
the test vectors are generated. Whereas the method of [14] 
is based on the path coverage, the one developed in [15] is 
based on the transitions (change of state) coverage. 

The approaches of [16] and [17] take into account 
VHDL descriptions of RTL level. The first approach 
combines techniques used in the software testing area: 
instructions coverage criterion starting from a STG (State 
Transition Graph); and techniques used at the gate level 
(RTL synthesis tool). The generated test vectors make it 
possible to detect faults of low level, whereas the 
approach developed in [17] aims at detecting design 
errors. This approach uses a genetic algorithm, which 
interacts with a VHDL simulator, and automatically 
generates test vectors respecting the branch coverage 
criterion.  

 
The interested reader can refer to the various articles 

published in [18] which present the last projections as 
regards functional verification and generation of test-
bench. The methods previously described can be the 
subject of criticisms and the following comments. In [11] 
and [12] the designer must annotate the number of times 
that an instruction of control must be carried out. This 
implies a knowledge on the functionality of description 
and can give paths whose execution is impossible. 
However, an effective model of constraints was defined 
which makes it possible to model VHDL instructions 
crossed by a path. We used this model in our approach. 
The methods of [17][6][7][16], take into account HDL 
descriptions of RTL level which is lower than the 
algorithmic level. Moreover the approach of [16] is 
dependent of a synthesis tool. In [15] and [14], the 
developed methods are applicable only for relatively 
small designs because of the state space size of the FSM, 
in spite of the improvements made in [14].  

 
To conclude this section, we can say that the static 

analysis of the code is not sufficient. As a matter of fact, 
in the presence of loops, the number of execution paths 
are potentially infinite. Furthermore some of them can be 
unfeasible. We think that a solution is to connect a 
simulator to the test vectors generator and thus evaluate 
the quality of the generated test vectors with pertinent 
metrics.  

 



3. Our approach  
 
In this section, we present our methodology to 

generate the test vectors. Our approach is limited to a 
subset of VHDL defined in [19].  

 
3.1. Overview  
 
As the various methods of software testing, the test of 

white box type seems most suitable for behavioral VHDL 
descriptions. This testing technique uses the structure of 
control of the program, i.e. the code, as a basis to develop 
or evaluate tests. When this strategy is used the program 
is seen as a white box in opposition to the test of the black 
box type which does not use any information on the 
structure of the coded program. By using this strategy, the 
tester selects the test data by the examination of the logic 
of the program. This approach is based on a graph of the 
program called control flow graph. A multitude of criteria 
of selection defined on this graph were suggested. The 
principal methods are the coverage of instructions, the 
coverage of branches and the coverage of paths. The 
coverage of instructions requires the execution of each 
instruction in the program at least once during the test. 
The coverage of branches requires that each branch of the 
program will be crossed at least once. A branch is a point 
in the program from which one or more sets of 
alternatives of program instructions are selected. The 
coverage of paths is the most rigorous method and most 
effective and consists in crossing all the paths which 
respects a certain criterion. These methods can be 
classified by means of the relation of inclusion: a criterion 
X is included in the criterion Y if any test set satisfying Y 
also satisfies X. One obtains that the coverage of 
instructions is included in the coverage of branches, it 
even included in the coverage of paths. However, the 
coverage of 100% of the paths is theoretically impossible 
to reach. As we said earlier, in the presence of loops, the 
number of paths of a control flow graph is potentially 
infinite. For this reason, several other criteria were 
defined with the aim of filling the gap between the 
branches coverage and the paths coverage. In this way we 
suggest to use a powerful test criterion called the 
structured testing criterion defined by Watson and 
McCabe [20]. In order to find data to apply to input port 
(stimuli) of the VHDL description we chose to represent 
paths, i.e. the crossed VHDL instructions, by systems of 
constraints.  

 
The basic operations (cf. Figure 1) of our test vector 

generator approach consist in the three following steps: (i) 
VHDL code analysis, (ii) constraints-based stimuli 
generation, (iii) test sequences generation.  
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Figure 1. Global view of our approach  

 
These steps are detailed in the three following sub-

sections. 
 
3.2. VHDL code analysis 
 
The first part of our approach concerns VHDL code 

analysis. The goal of this step is to  
− generate the graphs needed by the structured 

testing criterion 
− generate and analyze the produced paths  
 
The structured testing criterion uses the cyclomatic 

complexity [21] as an index of the number of paths to be 
tested in a software module. This criterion is stronger than 
other common coverage criteria like statement coverage 
or branch coverage. The cyclomatic complexity, also 
called v(G), is a software metric based on the control flow 
graph (CFG). This complexity represents the number of 
linearly independent paths (called a “basis set”) of the 
CFG. It is defined for each module by e-n+2, where e and 
n are respectively the number of edges and nodes in the 
CFG. These paths can be used to construct any other 
existing paths. The problem of finding an appropriate set 
of v(G) paths is solved using a powerful algorithm: the 
Poole’s algorithm [22]. The basis generated with such an 
algorithm will be referred to as primary basis. 

 
Behavioral VHDL programs contain multiple 

communicating concurrent processes, delta delay 
mechanism for signal assignments and the concept of time 
which are not found in traditional software programming 
languages. Variables and signals keep their value through 
time and are not directly controllable as input ports. These 
VHDL features imply that some paths of the primary 



basis can not be exercised directly by their corresponding 
test vectors.  

 
We have classified the paths of the primary basis in 

three sub-sets:  
− The paths that need an event on an internal signal 

(any change in the current value of a signal). 
These paths of the basis do not start at the entry of 
the program. They must be combined with a path 
of the primary basis which starts at the entry of the 
program. We define this type of path as path to be 
modified. 

− The paths that traverse a decision node that 
implies a variable or an internal signal assigned in 
an other path. A decision node models any VHDL 
control instruction (e.g. an if statement). We 
define this type of path as path to be scheduled. 
We have to construct a sequence of test vectors. 
This sequence must be executed before the test 
vector that exercises the path to be scheduled.  

− The path that can be exercises directly, because 
they do not contain references to internal signal or 
variable. They can be considered as the entry of 
the VHDL program. All sequences have to begin 
with one of these paths, we called primary paths.  

 
In order to analyze the primary basis and to determine 

these three sub-sets, we use the Dependence Flow Graph 
(DFG). This graph is defined on the same nodes as the 
CFG. The edges of the DFG represent the dependencies 
between the program’s statements. We have developed in 
[19] algorithms which generate the list of solution paths 
that allows to change the paths to be modified and the list 
of solution paths that allows to construct the sequences 
for the paths to be scheduled. All of them must begin with 
a primary path. We choose to keep all the solutions in a 
single list of solution paths. For each path many stimuli 
are possible and the choice between them is discussed in 
the section 3.4.  

 
3.3 Constraints-based stimuli generation  

 
The second part of our approach concerns the test data 

generation. We have to find data to apply to input port 
(stimuli) of the VHDL description. We chose to represent 
paths as a constraints system.  

 
Vemuri and Kalynaraman [12] have defined a method 

of test vectors generation for VHDL programs using a 
constraints model which have inspired our work. Their 
constraints model allows to take into account the VHDL 
delta delay mechanism for signal assignments and the 
concept of time which are not found in traditional 
software programming languages.  

 

More recently, [23][24] have also suggested to solve 
the problem of the test generation using constraint 
programming. Let’s start with some definitions.  
 
A Constraint Satisfaction Problem (CSP) consists in: 

− a set of variables X={ x1, … , xn } 
− for each variable xi, a finite set Di of possible 

values (its domain)  
− and a set of constraints C={ C1, C2, ... , Cm } 

restricting the values that the variables can 
simultaneously take. 

 
A solution to a CSP is an assignment of a value from 

its domain to every variable, in such a way that every 
constraint is satisfied. We may want to find: 

− just one solution, with no preference as to which 
one  

− all solutions  
− an optimal, or at least a good solution, with a 

given objective (e.g., cost) to be maximized or 
minimized  

 
The constraints can be solved by using a Constraints 

Logic Programming (CLP) language including a solver of 
constraints. If all the domains of the variables are finite 
and can be enumerated, then the constraints solver will 
find a solution if it exists. In fact, if the solver of 
constraint uses the concept of backtracking, so all the 
solutions can be obtained. Let us note that the force of a 
environment containing constraints is that the problem 
can be partially specified, leaving the environment 
computing the value of the variables.  

 
In the context of test vector generation, i.e. the 

generation of data input from paths, we have two 
elements to model:  
− the translation of VHDL objects (variable and 

signals) into constraint variables, and the definition 
of their domain  

− the translation of VHDL instructions into constraints  
 
We have developed algorithms in [19] which translate 

paths into a system of constraints composed by: 
− domain constraints which define the domain of the 

variables and signals, 
− relational constraints due to the statements crossed by 

a given path. 
 
After the translation into a constraint programming 

language [25], we used the OPL studio solver to obtain all 
the solutions of the constraint system. We thus obtained a 
set of stimuli for each v(G) paths.  

 



3.4. Test sequences generation  
 
The third part of our approach concerns the test 

sequences generation. As explained in section 3.2 some 
paths, the paths to be scheduled, do not only need a 
stimuli but a sequence of stimuli. They can not be directly 
exiting, but are dependant of the execution of an other 
path. In order to find the valid sequence, we need to build 
a schedule graph. This graph represents the dependencies 
between the paths including notion of priority in 
execution.  

As a result of the schedule graph analysis, we select a 
list of linked paths and for each path a specific stimuli. In 
order to validate the produced sequences, we connect a 
VHDL simulator developed in our laboratory: the BFS-
DEVS behavioral fault simulator [26]. This tool allows to 
simulate faulty definition but can also be used as a classic 
VHDL simulator. We use it in order to compare values of 
non controllable VHDL objects (internal signal and 
variable): the value obtained from the simulator and the 
one obtained from the solver. If these values are not 
equal, we compose another sequence according to the 
schedule graph until we find a solution. If there is no valid 
solution in the stimuli set, the path can not be excited.  

 
4. Results  

 
We have implemented the two first steps of the test 

vectors generator in Prolog and LISP languages 
[19][27][28]. The Table 1 shows the first results we 
obtained on descriptions of ITC benchmarks [29].  

 
Table 1. Results on ITC benchmarks.  

 #l #p #I #o #v(G) #pp #ps #pm 
B01 111 1 4 2 19 3 16 0 
B02 71 1 2 1 13 3 10 0 
B03 142 1 6 1 19 3 16 0 
B04 103 1 6 1 12 3 9 0 
B05 333 3 3 6 52 3 12 37 
B06 129 1 4 4 17 3 14 0 
B07 93 1 3 1 15 3 12 0 
B08 90 1 4 1 11 3 8 0 
B09 104 1 3 1 11 3 8 0 
B11 119 1 4 1 23 3 20 0 
B13 297 5 5 7 56 14 42 0 
B14 518 1 34 54 164 3 161 0 
B20 1040 3 34 22 329 5 324 0 
B22 1547 4 34 22 492 7 485 0 
 
The first column corresponds to the names of the 

VHDL descriptions. We did not take into account from 
B16 to B19 and B21 descriptions cause they are structural 
types. The following four columns are related to programs 
features: number of lines (#l), number of processes (#p), 
number of input ports (#i) of output ports (#o). The other 
columns present the results obtained with our software 
after the first step that is code analysis: the cyclomatic 
complexity number (#v(G)) which represents the total 

number of paths to be exercised respecting the structured 
testing criterion, the number of primary paths (#pp), the 
number of paths to be scheduled (#ps) and the number of 
paths to be modified (#pm).  

A quick analysis of these figures gives knowledge 
about the structure of the VHDL code and the way the 
processes are connected. For example in the case of the 
b22, the number #pm equal to zero shows that the 
processes are no connected as opposite to the b05 
description.  

 
In order to illustrate the second and the third step of 

our approach, we choose to focus on the b02 VHDL 
description. The results obtained after constraints 
generation and schedule graph analysis are shown in 
Table 2.  

 
Table 2. Focus on b02 VHDL description 

Path name # stimuli couples solution paths 
1 16 - 
2 16 - 
3 4 5-8 
4 4 5-8 
5 8 10 
6 8 7-4 
7 8 9 
8 4 11 
9 4 11 
10 4 6-12 
11 4 6-12 
12 8 13-3 
13 24 - 

 
The first column corresponds to the v(G) paths needed 

to test the b02 description: path 1 to path 13. The second 
column gives for each path the number of the stimuli 
couples obtained after the resolution of the constraint 
system. The last column presents the list of the solution 
paths that allows to construct the sequences for the paths 
to be scheduled. For example in the case of the path 12: 
eight couples of stimuli are possible. But a sequence has 
to be exercised before. This sequence has to be composed 
with stimuli couples of the path 13 or with stimuli couples 
of the path 3. If the primary path 13 is chosen, the number 
of stimuli couples that are possible is equal to 24.  

 
The implementation of the third step, i.e. test 

sequences generation, is not finished. We have not made 
for the moment the link between the stimuli test generator 
and the VHDL simulator, but the results obtained seem 
already effective.  
 
5. Conclusion and futures works 

 
We have presented in this paper the test vectors 

generation problem in terms of executing a particular set 
of paths. We have used software testing techniques and 
constraint logic programming.  



We have developed a software prototype we called 
GENESI for GENErator of StimulI. We must finish its 
implementation, particularly the test sequences generation 
step. But it already permit to help designers and testers to 
find valid test sequences.  

 
In order to validate our approach, we feel the need for 

benchmarks of algorithmic level VHDL descriptions and 
the definition of a standard for a subset of VHDL for 
behavioral specification.  

 
Our future investigations will concern: 
− the study of different metrics for path or stimuli 

selection and measure the quality of the test 
sequences 

− the design improvement of high level VHDL 
descriptions using graphical HDL tools, e.g. 
visualizing paths coverage on the graph  

− the consequences of the writing quality of VHDL 
code on synthesized electronic circuit.  
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