
HAL Id: hal-00440834
https://hal.science/hal-00440834

Submitted on 11 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation-based validation of VHDL descriptions using
constraints logic programming

Christophe Paoli, Marie Laure Nivet, Fabrice Bernardi, Laurent Capocchi

To cite this version:
Christophe Paoli, Marie Laure Nivet, Fabrice Bernardi, Laurent Capocchi. Simulation-based valida-
tion of VHDL descriptions using constraints logic programming. IEEE Workshop on RTL and High
Level Testing, Nov 2004, Osaka, Japan. pp.S2.3. �hal-00440834�

https://hal.science/hal-00440834
https://hal.archives-ouvertes.fr

Simulation-based validation of VHDL descriptions
using constraints logic programming∗

Christophe Paoli Marie-Laure Nivet Fabrice Bernardi Laurent Capocchi

UMR CNRS 6134, University of Corsica,

SPE – Systèmes Physiques pour l’Environnement,
Campus Grossetti, Bat 018, BP 52, 20250 Corté, France.

[cpaoli|nivet|bernardi|capocchi]@univ-corse.fr

∗ A part of this research is founded by CTC (Collectivité Territoriale de Corse) under the contract number A-03-0842; Project 15-3740 “Développement
d’un outil de test de circuit et amélioration de la testabilité des circuits” (2003-2004).

Abstract

This paper presents a simulation based validation
approach for test vectors generation. We suggest to
borrow techniques used successfully in the software
testing and constraints logic programming areas. Our
methodology is based on the three following steps: VHDL
code modeling and analysis, constraints-based stimuli
generation and test sequences generation.

1. Introduction

The verification that no error was introduced between

the algorithmic level and the RTL level remains an
important issue which requires an automation. We know
this field of study under the name of functional validation
or functional verification. IEEE [1][2] defines verification
as the means of establishing the correspondence between
a product and its specification, and validation as the
means of insuring that a product achieves the function for
which it was conceived. In the electronic designer and
tester community, the term of verification, that is formal
verification, refers to the methods consisting in proving
that a circuit will behave as it is supposed to, whereas the
term of validation, so called simulation based validation,
refers to the methods consisting in exciting a description
of circuit by a series of stimuli: the set of stimuli and the
observed values is called test vectors.

In spite of recent progress, the formal verification
which proposes to prove mathematically the correctness
of a description is only realizable for small descriptions.

Indeed the automation of the method implies the
exhaustive analysis of a very large space of inputs and is
thus restricted to reduced parts of a description. So the
simulation based validation is still the best method for
design verification. The reader can refer to the various

articles published in [3] which present the last projections
in formal verification.

Our interest here is in the approaches of the simulation

based validation. The production of the test vectors is one
of the principal problems of the simulation based
validation. The disadvantages of this approach are that an
exhaustive simulation is necessary to guarantee the
exactitude of a description, and that the complexity of
current descriptions makes this task unfeasible. The
random generation of test vectors is relatively easy but
does not guarantee the verification of all the
functionalities of the description of the circuit. In general,
the designers of circuits generate manually the test vectors
according to their knowledge of circuit functionalities.
The problem of the automatic generation of test vectors
thus remains a subject largely studied by the scientific
community.

In this paper, we suggest an approach of test vectors
generation which borrows techniques used successfully in
the software testing area and which uses a simulator
developed within our laboratory. We present in the
following section a state of art - which is not meant to be
exhaustive - of the automatic test vectors generation. In
the third section, we present our methodology to generate
the test vectors. Results are presented in section 4 and the
prospects are given in section 5.

2. State of art

Our intention is not to describe in details all the

existing methods derived from the software testing area,
but simply to present the most representative, to show
their limits, and give the reasons which led us to develop
our methodology.

Software testing is usually done at several levels. They
are commonly referred to as unit testing, integration

testing, and system testing. Theirs objectives are
respectively:

− to verify that individual units (the smallest
compilable components) function correctly

− to test the integration of components and the
communication between them

− to find defects that are attributable to the behavior
of the system as a whole, rather than the behavior
of individual components, and to test the software
functions as a complete system.

Whatever the level of development, the activity of test
generally proceeds in two times:

− selection of a set of input data (often called test set
or test data)

− execution of the software with these input data
and observation of its behavior. This observation
is often carried out by a human being which must
pronounce an "oracle" (i.e. it must decide if the
results of the execution are correct).

Our study is at the unit level because we consider that

a behavioral VHDL program is a module which can form
part of a larger program. Concerning oracle, VHDL
language [4] envisages the use of files of simulation,
called test-bench, which make it possible to check and
announce any error met during simulation.

The quality of the test data can be evaluated using

metrics. The software metrics describe the properties of
the code of the software. Their objective is to evaluate if
the requirements for quality are satisfied during all the
phases of the software life cycle. The metrics are
measurements which make it possible to evaluate the
complexity of a software and thus offering a help for the
test.

The use of coverage metric [5] constitutes an approach

to test vectors generation. In [6][7], the test vectors
generation is based on observability and instructions
coverage metric[8]. Tags are associated to each variable
assignment in the RTL level Verilog description and must
be propagated, as for the behavioral faults, towards an
exit during simulation. The vectors are generated thanks
to a hybrid algorithm SAT (problem of satisfaction of
Boolean expression).

The method developed by Kapoor and Armstrong [9]
takes into account VHDL descriptions of RTL level and
aims at the detection of design errors. It uses the CDFG
(Control and Data Flow Graph) defined in [10] and
generates test vectors starting from the instructions
coverage criterion. Symbolic values are used to represent
the signal values and their transitions. These values are
affected by the user to justify the paths through the CDFG
which make it possible to respect the instructions
coverage criterion. A test-bench is finally generated in
order to simulate description.

In [11] and [12] execution paths for which one wishes
to generate test vectors are specified through certain
annotations, managed by the user, in VHDL behavioral
description. Each annotated path is translated into
constraints, a constraints solver is then used to produce
the test vectors which allow their execution. The test
vectors are finally converted into format WAVES [13] to
facilitate the automatic generation of test-bench.

The methods of [14] and [15] use concepts borrowed
to the formal verification to extract from a Verilog
description, a Finite State Machine (FSM), from which
the test vectors are generated. Whereas the method of [14]
is based on the path coverage, the one developed in [15] is
based on the transitions (change of state) coverage.

The approaches of [16] and [17] take into account
VHDL descriptions of RTL level. The first approach
combines techniques used in the software testing area:
instructions coverage criterion starting from a STG (State
Transition Graph); and techniques used at the gate level
(RTL synthesis tool). The generated test vectors make it
possible to detect faults of low level, whereas the
approach developed in [17] aims at detecting design
errors. This approach uses a genetic algorithm, which
interacts with a VHDL simulator, and automatically
generates test vectors respecting the branch coverage
criterion.

The interested reader can refer to the various articles

published in [18] which present the last projections as
regards functional verification and generation of test-
bench. The methods previously described can be the
subject of criticisms and the following comments. In [11]
and [12] the designer must annotate the number of times
that an instruction of control must be carried out. This
implies a knowledge on the functionality of description
and can give paths whose execution is impossible.
However, an effective model of constraints was defined
which makes it possible to model VHDL instructions
crossed by a path. We used this model in our approach.
The methods of [17][6][7][16], take into account HDL
descriptions of RTL level which is lower than the
algorithmic level. Moreover the approach of [16] is
dependent of a synthesis tool. In [15] and [14], the
developed methods are applicable only for relatively
small designs because of the state space size of the FSM,
in spite of the improvements made in [14].

To conclude this section, we can say that the static

analysis of the code is not sufficient. As a matter of fact,
in the presence of loops, the number of execution paths
are potentially infinite. Furthermore some of them can be
unfeasible. We think that a solution is to connect a
simulator to the test vectors generator and thus evaluate
the quality of the generated test vectors with pertinent
metrics.

3. Our approach

In this section, we present our methodology to

generate the test vectors. Our approach is limited to a
subset of VHDL defined in [19].

3.1. Overview

As the various methods of software testing, the test of

white box type seems most suitable for behavioral VHDL
descriptions. This testing technique uses the structure of
control of the program, i.e. the code, as a basis to develop
or evaluate tests. When this strategy is used the program
is seen as a white box in opposition to the test of the black
box type which does not use any information on the
structure of the coded program. By using this strategy, the
tester selects the test data by the examination of the logic
of the program. This approach is based on a graph of the
program called control flow graph. A multitude of criteria
of selection defined on this graph were suggested. The
principal methods are the coverage of instructions, the
coverage of branches and the coverage of paths. The
coverage of instructions requires the execution of each
instruction in the program at least once during the test.
The coverage of branches requires that each branch of the
program will be crossed at least once. A branch is a point
in the program from which one or more sets of
alternatives of program instructions are selected. The
coverage of paths is the most rigorous method and most
effective and consists in crossing all the paths which
respects a certain criterion. These methods can be
classified by means of the relation of inclusion: a criterion
X is included in the criterion Y if any test set satisfying Y
also satisfies X. One obtains that the coverage of
instructions is included in the coverage of branches, it
even included in the coverage of paths. However, the
coverage of 100% of the paths is theoretically impossible
to reach. As we said earlier, in the presence of loops, the
number of paths of a control flow graph is potentially
infinite. For this reason, several other criteria were
defined with the aim of filling the gap between the
branches coverage and the paths coverage. In this way we
suggest to use a powerful test criterion called the
structured testing criterion defined by Watson and
McCabe [20]. In order to find data to apply to input port
(stimuli) of the VHDL description we chose to represent
paths, i.e. the crossed VHDL instructions, by systems of
constraints.

The basic operations (cf. Figure 1) of our test vector

generator approach consist in the three following steps: (i)
VHDL code analysis, (ii) constraints-based stimuli
generation, (iii) test sequences generation.

VHDL File

Parser

 Graph models

Paths Analyser Set of paths

Constraint
Generator

&
Constraint Solver

Stimuli

Test
sequence
generator

DEVS
VHDL

Simulator

Test Vectors

Test Vectors
sequence

VHDL code analisis

Test sequences generation

Constraint based Stimuli generation

Figure 1. Global view of our approach

These steps are detailed in the three following sub-

sections.

3.2. VHDL code analysis

The first part of our approach concerns VHDL code

analysis. The goal of this step is to
− generate the graphs needed by the structured

testing criterion
− generate and analyze the produced paths

The structured testing criterion uses the cyclomatic

complexity [21] as an index of the number of paths to be
tested in a software module. This criterion is stronger than
other common coverage criteria like statement coverage
or branch coverage. The cyclomatic complexity, also
called v(G), is a software metric based on the control flow
graph (CFG). This complexity represents the number of
linearly independent paths (called a “basis set”) of the
CFG. It is defined for each module by e-n+2, where e and
n are respectively the number of edges and nodes in the
CFG. These paths can be used to construct any other
existing paths. The problem of finding an appropriate set
of v(G) paths is solved using a powerful algorithm: the
Poole’s algorithm [22]. The basis generated with such an
algorithm will be referred to as primary basis.

Behavioral VHDL programs contain multiple

communicating concurrent processes, delta delay
mechanism for signal assignments and the concept of time
which are not found in traditional software programming
languages. Variables and signals keep their value through
time and are not directly controllable as input ports. These
VHDL features imply that some paths of the primary

basis can not be exercised directly by their corresponding
test vectors.

We have classified the paths of the primary basis in

three sub-sets:
− The paths that need an event on an internal signal

(any change in the current value of a signal).
These paths of the basis do not start at the entry of
the program. They must be combined with a path
of the primary basis which starts at the entry of the
program. We define this type of path as path to be
modified.

− The paths that traverse a decision node that
implies a variable or an internal signal assigned in
an other path. A decision node models any VHDL
control instruction (e.g. an if statement). We
define this type of path as path to be scheduled.
We have to construct a sequence of test vectors.
This sequence must be executed before the test
vector that exercises the path to be scheduled.

− The path that can be exercises directly, because
they do not contain references to internal signal or
variable. They can be considered as the entry of
the VHDL program. All sequences have to begin
with one of these paths, we called primary paths.

In order to analyze the primary basis and to determine

these three sub-sets, we use the Dependence Flow Graph
(DFG). This graph is defined on the same nodes as the
CFG. The edges of the DFG represent the dependencies
between the program’s statements. We have developed in
[19] algorithms which generate the list of solution paths
that allows to change the paths to be modified and the list
of solution paths that allows to construct the sequences
for the paths to be scheduled. All of them must begin with
a primary path. We choose to keep all the solutions in a
single list of solution paths. For each path many stimuli
are possible and the choice between them is discussed in
the section 3.4.

3.3 Constraints-based stimuli generation

The second part of our approach concerns the test data

generation. We have to find data to apply to input port
(stimuli) of the VHDL description. We chose to represent
paths as a constraints system.

Vemuri and Kalynaraman [12] have defined a method

of test vectors generation for VHDL programs using a
constraints model which have inspired our work. Their
constraints model allows to take into account the VHDL
delta delay mechanism for signal assignments and the
concept of time which are not found in traditional
software programming languages.

More recently, [23][24] have also suggested to solve
the problem of the test generation using constraint
programming. Let’s start with some definitions.

A Constraint Satisfaction Problem (CSP) consists in:

− a set of variables X={ x1, … , xn }
− for each variable xi, a finite set Di of possible

values (its domain)
− and a set of constraints C={ C1, C2, ... , Cm }

restricting the values that the variables can
simultaneously take.

A solution to a CSP is an assignment of a value from

its domain to every variable, in such a way that every
constraint is satisfied. We may want to find:

− just one solution, with no preference as to which
one

− all solutions
− an optimal, or at least a good solution, with a

given objective (e.g., cost) to be maximized or
minimized

The constraints can be solved by using a Constraints

Logic Programming (CLP) language including a solver of
constraints. If all the domains of the variables are finite
and can be enumerated, then the constraints solver will
find a solution if it exists. In fact, if the solver of
constraint uses the concept of backtracking, so all the
solutions can be obtained. Let us note that the force of a
environment containing constraints is that the problem
can be partially specified, leaving the environment
computing the value of the variables.

In the context of test vector generation, i.e. the

generation of data input from paths, we have two
elements to model:
− the translation of VHDL objects (variable and

signals) into constraint variables, and the definition
of their domain

− the translation of VHDL instructions into constraints

We have developed algorithms in [19] which translate

paths into a system of constraints composed by:
− domain constraints which define the domain of the

variables and signals,
− relational constraints due to the statements crossed by

a given path.

After the translation into a constraint programming

language [25], we used the OPL studio solver to obtain all
the solutions of the constraint system. We thus obtained a
set of stimuli for each v(G) paths.

3.4. Test sequences generation

The third part of our approach concerns the test

sequences generation. As explained in section 3.2 some
paths, the paths to be scheduled, do not only need a
stimuli but a sequence of stimuli. They can not be directly
exiting, but are dependant of the execution of an other
path. In order to find the valid sequence, we need to build
a schedule graph. This graph represents the dependencies
between the paths including notion of priority in
execution.

As a result of the schedule graph analysis, we select a
list of linked paths and for each path a specific stimuli. In
order to validate the produced sequences, we connect a
VHDL simulator developed in our laboratory: the BFS-
DEVS behavioral fault simulator [26]. This tool allows to
simulate faulty definition but can also be used as a classic
VHDL simulator. We use it in order to compare values of
non controllable VHDL objects (internal signal and
variable): the value obtained from the simulator and the
one obtained from the solver. If these values are not
equal, we compose another sequence according to the
schedule graph until we find a solution. If there is no valid
solution in the stimuli set, the path can not be excited.

4. Results

We have implemented the two first steps of the test

vectors generator in Prolog and LISP languages
[19][27][28]. The Table 1 shows the first results we
obtained on descriptions of ITC benchmarks [29].

Table 1. Results on ITC benchmarks.

 #l #p #I #o #v(G) #pp #ps #pm
B01 111 1 4 2 19 3 16 0
B02 71 1 2 1 13 3 10 0
B03 142 1 6 1 19 3 16 0
B04 103 1 6 1 12 3 9 0
B05 333 3 3 6 52 3 12 37
B06 129 1 4 4 17 3 14 0
B07 93 1 3 1 15 3 12 0
B08 90 1 4 1 11 3 8 0
B09 104 1 3 1 11 3 8 0
B11 119 1 4 1 23 3 20 0
B13 297 5 5 7 56 14 42 0
B14 518 1 34 54 164 3 161 0
B20 1040 3 34 22 329 5 324 0
B22 1547 4 34 22 492 7 485 0

The first column corresponds to the names of the

VHDL descriptions. We did not take into account from
B16 to B19 and B21 descriptions cause they are structural
types. The following four columns are related to programs
features: number of lines (#l), number of processes (#p),
number of input ports (#i) of output ports (#o). The other
columns present the results obtained with our software
after the first step that is code analysis: the cyclomatic
complexity number (#v(G)) which represents the total

number of paths to be exercised respecting the structured
testing criterion, the number of primary paths (#pp), the
number of paths to be scheduled (#ps) and the number of
paths to be modified (#pm).

A quick analysis of these figures gives knowledge
about the structure of the VHDL code and the way the
processes are connected. For example in the case of the
b22, the number #pm equal to zero shows that the
processes are no connected as opposite to the b05
description.

In order to illustrate the second and the third step of

our approach, we choose to focus on the b02 VHDL
description. The results obtained after constraints
generation and schedule graph analysis are shown in
Table 2.

Table 2. Focus on b02 VHDL description

Path name # stimuli couples solution paths
1 16 -
2 16 -
3 4 5-8
4 4 5-8
5 8 10
6 8 7-4
7 8 9
8 4 11
9 4 11
10 4 6-12
11 4 6-12
12 8 13-3
13 24 -

The first column corresponds to the v(G) paths needed

to test the b02 description: path 1 to path 13. The second
column gives for each path the number of the stimuli
couples obtained after the resolution of the constraint
system. The last column presents the list of the solution
paths that allows to construct the sequences for the paths
to be scheduled. For example in the case of the path 12:
eight couples of stimuli are possible. But a sequence has
to be exercised before. This sequence has to be composed
with stimuli couples of the path 13 or with stimuli couples
of the path 3. If the primary path 13 is chosen, the number
of stimuli couples that are possible is equal to 24.

The implementation of the third step, i.e. test

sequences generation, is not finished. We have not made
for the moment the link between the stimuli test generator
and the VHDL simulator, but the results obtained seem
already effective.

5. Conclusion and futures works

We have presented in this paper the test vectors

generation problem in terms of executing a particular set
of paths. We have used software testing techniques and
constraint logic programming.

We have developed a software prototype we called
GENESI for GENErator of StimulI. We must finish its
implementation, particularly the test sequences generation
step. But it already permit to help designers and testers to
find valid test sequences.

In order to validate our approach, we feel the need for

benchmarks of algorithmic level VHDL descriptions and
the definition of a standard for a subset of VHDL for
behavioral specification.

Our future investigations will concern:
− the study of different metrics for path or stimuli

selection and measure the quality of the test
sequences

− the design improvement of high level VHDL
descriptions using graphical HDL tools, e.g.
visualizing paths coverage on the graph

− the consequences of the writing quality of VHDL
code on synthesized electronic circuit.

References

[1] IEEE Press. IEEE Standard Glossary of Software
Engineering Terminology; ANSI/IEEE Standard 729-1983;
1983.
[2] IEEE Press. IEEE Standards Collection, Software
Engineering, 1994.
[3] IEEE Press. Formal Verification of Commercials ICs.
IEEE Design & Test of Computers, v. 18, no. 4, New York, July-
August 2001.
[4] IEEE Press. VHDL, Language Reference Manual, IEEE
Standard 1076, 1987.
[5] B. Beizer, Software Testing Techniques, Van Nostrand
Rheinhold, New York, second edition, 1990.
[6] F. Fallah, S. Devadas, and K. Keutzer, Functional vector
generation for HDL models using linear programming and 3-
satisfaiability, Proc. ACM/IEEE DAC, pp. 528–533, 1998.
[7] F. Fallah, P. Ashar and S. Devadas, Simulation Vector
Generation from HDL Descriptions for Observability Enhanced
Statement Coverage, Proc. Of 36th ACM/IEEE conference on
Design automation conference, New Orleans, LA USA, June 21
– 25, 1999.
[8] F. Fallah, S. Devadas, and K. Keutzer, OCCOM: Efficient
computation of observability-based code coverage metrics for
functional verification, Proc. ACM/IEEE DAC, pp. 152–157,
1998.
[9] S. Kapoor, J. R. Armstrong, S. R. Rao, An Automatic Test
Bench Generation System, Proc. VHDL International Users
Forum, pp. 8-17, 1994.
[10] C. H. Cho and J. R. Armstrong, B-algorithm: A Behavioral
Test Generation Algorithm, Proc. ITC, pp. 968-979, October
1994.
[11] R. Kalyanaraman, Behavioral Test Vector Generation in
VHDL/WAVES Environment, M.S. Thesis, 1993.
[12] R. Vemuri, R. Kalyanaraman, Design Verification tests
from Behavioral VHDL Programs, IEEE Trans. on VLSI, Vol. 3,
N° 2, pp. 201-214, June 1995.

[13] IEEE Press. Standard 1029.1-1991, IEEE Standard for
waveform and vector exchange (WAVES) VHDL, September
1992.
[14] J. Shen and J. A. Abraham, Verification of Processor
Microarchitectures, Proc. IEEE VLSI Test Symposium, pp. 189-
194, 1999.
[15] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill.
Architecture validation for processors, Proc. Int. Symp.
Computer Architecture, pp. 404-413, 1995.
[16] E.M. Rudnick, R. Vietti, A. Ellis, F. Corno, P. Prinetto, and
M. Sonza Reorda, Fast Sequential Circuit Test Generation
Using High-Level and Gate-Level Techniques, Proc. DATE, pp.
570-576, 1998.
[17] F. Corno, M. Sonza Reorda, G. Squillero, A. Manzone and
A. Pincetti, Automatic Test Bench Generation for Validation of
RT-Level Descriptions: An Industrial Experience, Proc. IEEE
DATE, March 2000.
[18] IEEE Press. Functionnal Verification and Testbench
Generation. IEEE Design & Test of Computers, v. 21, no. 2,
New York, March-April 2001.
[19] C. Paoli, PhD in Computer Science, Thesis title :
« Validation de descriptions VHDL fondée sur des techniques
issues du domaine du test de logiciels » (Validation of VHDL
descriptions based on software testing techniques), defended at
the University of Corsica the december 20th 2001.
[20] A.H. Watson, T.J. McCabe, “Structured Testing: A testing
Methodology using the cyclomatic Complexity Metric”, NIST
Special Publication 500-235, August 1996.
[21] T.J. McCabe, “A Complexity Measure”, IEEE Trans.
Software Testing Engineering, N°2, December 1976, pp. 308-
320.
[22] J. Poole, “A Method to Determine a Basis Set of Paths to
Perform Program Testing”, NISTIR 5737, November 1995.
[23] F. Ferrandi, M. Rendine, and D. Sciuto, “Functional
Verification for SystemC Descriptions Using Constraint
Solving,” in Design Automation and Test in Europe (DATE’02)
(C. D. Kloos and J. da Franca, eds.), (Paris, France), pp. 744–
751, 4-8 March 2002.
[24] F. Baray, P. Codognet, D. Diaz and H. Michel.
``Validation of Functional Processor Descriptions by Test
Generation''. International Conference on Using Hardware
Design and Verification Languages (DVCon), San Jose, USA,
2003.
[25] ILOG Solver 6.0 User’s Manual, October 2003.
[26] L. Capocchi, F. Bernardi, D. Federici, P. Bisgambiglia, A
DEVS-based Modeling and Behavioral Fault Simulator for RTL-
level digital circuits, SCSC 2004, San-Jose, California, USA.
[27] C. Paoli, M-L. Nivet, J-F. Santucci et T. Campana, Path-
Oriented Test Data Generation of Behavioral VHDL
Description, IEEE International Workshop on Electronic
Design, Test & Applications(DELTA'02), 29-31 January 2002,
Christchurch, New Zealand, pp. 382-386.
[28] C. Paoli, M-L. Nivet et J-F. Santucci, “Use of constraint
solving in order to generate test vectors for behavioral
validation”, Proc. IEEE International High Level Design
Validation and Test Workshop, November 2000, Berkeley,
Californie, USA, pp. 15-20.
[29] 1999 International Test Conference benchmarks.
Benchmarks from Politecnico di Torino.
http://www.cad.polito.it/tools/poli.itc.tar.gz.

http://delta2002.massey.ac.nz/
http://www.cad.polito.it/tools/poli.itc.tar.gz

	Simulation-based validation of VHDL descriptions �using constraints logic programming(

