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We demonstrate for the first time and unexpectedly that the Principle of Relativity dictates the
choice of the ”gauge conditions” in the canonical example of a Gauge Theory namely Classical
Electromagnetism. All the known ”gauge conditions” of the literature are interpreted physically as
electromagnetic continuity equations hence the ”gauge fields”. The existence of a Galilean Electro-
magnetism with TWO dual limits (”electric” and ”magnetic”) is the crux of the problem [1]. A
phase-space with the domains of validity of the various ”gauge conditions” is provided and is shown
to depend on three characteristic times : the magnetic diffusion time, the charge relaxation time
and the transit time of electromagnetic waves in a continuous medium [2].

The Standard Model of Physics is based on the as-
sumed existence of a superior principle called Gauge
Symmetry which would rule all the laws of Physics: Phys-
ical theories of fundamental significance tend to be gauge
theories. These are theories in which the physical sys-
tem being dealt with is described by more variables than
there are physically independent degree of freedom. The
physically meaningful degrees of freedom then reemerge as
being those invariant under a transformation connecting
the variables (gauge transformation). Thus, one intro-
duces extra variables to make the description more trans-
parent and brings in at the same time a gauge symmetry
to extract the physically relevant content. It is a remark-
able occurrence that the road to progress has invariably
been towards enlarging the number of variables and intro-
ducing a more powerful symmetry rather than conversely
aiming at reducing the number of variables and eliminat-
ing the symmetry [3]. Wolfgang Pauli was used to ask at
the end of tiresome seminars he attended loosely if the
principal result presented by the speaker was ”gauge in-
variant” [4]. Hence, the concept of Gauge Theory has
emerged progressively in Physics such that the equa-
tions feature variables (”gauge fields”) which are under-
determined and in order to remove this degree of liberty
(”gauge transformations”) a closure assumption (”gauge
condition”) is formulated [5]. Similarly, the Principle of
Relativity is known to be a robust safeguard when scaf-
folding a new theory since the proposed new laws must
be covariant with respect to the transformations of space-
time.

The goal of this paper is to remove the Gauge sym-
metry in the most famous example of a supposed Gauge
Theory namely Classical Electromagnetism by revealing
a conflict with another symmetry that is the Principle of
Relativity. To do so, we first emphasize the Riemann-
Lorenz approach to Electromagnetism. Therein the cen-
tral role is played by the vector and scalar potentials
A and V , unlike the Heaviside-Hertz approach, which
rather relies on the fields B and E themselves (for a jus-
tification, see [6] and [7]). In this formulation, the fields
are defined as a function of the potentials (and not the
reverse) according to B = ∇×A and E = −∇V − ∂A

∂t
. As

a consequence of these definitions and using obvious vec-

torial identities, the fields obey the following constraints
∇.B = 0 and ∂B

∂t
= −∇ × E. But how are defined the

potentials themselves ? They are the mathematical so-
lutions of the Maxwell-Minkowski equations written for
the excitations:

∇.D = ρ and ∇× H =
∂D

∂t
+ J. (1)

We have to relate the excitations to the fields thanks
to the constitutive relations for media at rest and then
the fields to the potentials thanks to their definitions
above. The current density features two terms J =
Jconstitutive + Jexternal. The constitutive current which
expresses the matter response to the fields depends on the
medium. For example, in Ohmic conductors, we have
JOhm = σE = σ

(

−∇V − ∂A

∂t

)

whereas in a Supercon-
ductor [8], the constitutive relation becomes JSupra =
~ne∗

m

(

∇φ − e∗

~
A

)

. For continuous media at rest the ex-

citations are related to the fields according to D = ǫE
and B = µH. We get a system of equations where the
unknowns are the potentials S (A, V ; ǫ, µ, ρ,J) = 0 pro-
vided the sources are given or expressed in function of the
potentials which vanish far from the latter or take pre-
scribed values on given boundaries. However, the system
S = 0 cannot be solved unless another equation is added.
This closure assumption is usually known as the ”gauge
condition” in the Heaviside-Hertz formulation since the
potentials are de facto underdetermined (by the ”gauge

transformations” A
′ = A + ∇f and V ′ = V − ∂f

∂t
[5]) if

and only if they are defined in function of the fields and
not the reverse as in the Riemann-Lorenz formulation.

In the following, we will show that the closure assump-
tion is a consequence of the Relativistic or Galilean na-
ture of the problem under study. For that purpose, we
will recall the Stratton ”gauge condition” which is, ac-
cording to us, the most general physical constraint which
can be used all the times. Then, thanks to the Galilean
limits of Classical Electromagnetism [1, 9, 10, 11, 12], we
will approximate the Stratton ”gauge condition” depend-
ing on the context and we will recover the other ”gauge
conditions” introduced in the literature by pointing out
their domain of validity.
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The Stratton ”gauge condition” was introduced in
Physics at M.I.T. in 1941 by Julius Adams Stratton [13]
to cope with the propagation of electromagnetic waves
in Ohmic conductors such that the sources are given by
ρ = 0 and Jconstitutive = JOhm. Its temporal Fourier
transformation was known as early as 1928 by communi-
cation engineers like John Renshaw Carson from Bell Sys-
tem [14]. Indeed, from the temporal Fourier transforma-

tion of the Maxwell-Ampère equation ∇×Ĥ = iωǫÊ+σÊ,
Carson introduced a complex permittivity ǫ = ǫ − i σ

ω
into the temporal Fourier transformation of the Lorenz
”gauge condition” ∇.A + µǫ∂V

∂t
= 0 [5, 16] to obtain the

temporal Fourier transformation of the Stratton ”gauge
condition” ∇.Â + (iωµǫ + µσ)V̂ = 0.

According to Stratton’s alternative procedure, Gauss’
law ∇.E = 0 implies immediately:

∇2V +
∂

∂t
(∇.A) = 0 (2)

which can be solved if and only if the potentials are con-
strained by the Stratton ”gauge condition”:

∇.A + µǫ
∂V

∂t
= −µσV. (3)

In the simple case of constant permeability µ and permit-
tivity ǫ, Stratton deduced from the Maxwell-Minkowski’s
set the following equations (SStratton = 0):

∇2V − µǫ
∂2V

∂t2
− µσ

∂V

∂t
= 0 (4)

∇2
A− µǫ

∂2
A

∂t2
− µσ

∂A

∂t
= −µJexternal (5)

which are the well-known ”telegrapher’s equations”.
They were derived previously for the tension and the
current by Vaschy and Heaviside starting from the global
electrical equations of Kirchhoff for circuitry and not di-
rectly from the local Maxwell-Minkowski equations for
the fields. As an example, they described the propagation
of waves in a coaxial cable with Ohmic dissipation. Later,
Paul Poincelot derived its tensorial expression since the
Stratton ”gauge condition” is not manifestly Relativis-
tic covariant under the Lorentz transformations of space-
time [15]. The more famous Lorenz ”gauge condition”
[5, 16] is the dissipation-free version of the Stratton’s
constraint (σ = 0). As a partial conclusion, it is very
surprising to notice that the Stratton ”gauge condition”
is completely absent from modern textbooks and is not
even mentioned in the benchmark review paper on the
history of Gauge Invariance [5].

Now, we recall the reader of the physical meaning of
the potentials [7] and their constraints. As for the Strat-
ton ”gauge condition”, the following interpretations of
the ”gauge conditions” are nowhere in modern treat-
ments of Classical Electromagnetism. The Lorenz ”gauge
condition” for vacuum ∇.A + 1

c2

∂V
∂t

= 0 is analogous to

the mass continuity equation for compressible flows in the
particular case of the linearized acoustic perturbations.
As a matter of fact, the mass conservation of a flowing
fluid is encoded in the following law [17]:

∇. (ρu) +
∂ρ

∂t
= 0. (6)

If we perturb the density, pressure and velocity around
a basic state at rest: ρ = ρ0 + δρ, p = p0 + δp and
u = 0 + δu, the continuity equation can be recast in a
Lorenz ”gauge condition” form:

∇. (δu) +
1

c2
s

∂

∂t

(

δp

ρ0

)

= 0 (7)

where cs = 1√
ρκ

=
√

∂p
∂ρ

≃
√

δp
δρ

is the speed of sound

analogous to the speed of light in vacuum c = 1√
µ0ǫ0

.

The Coulomb ”gauge condition” ∇.A = 0 is analogous
to the mass continuity equation for incompressible flows
∇.u = 0 [17] provided that the compressibility (permit-
tivity) vanishes i.e. κ → 0 at constant density ρ0 (perme-
ability). As we will see later on, this approximation cor-
responds to the Galilean (magnetic) limit of the Lorenz
”gauge condition” [9, 10, 11].

The Stratton ”gauge condition” is a generalized conti-
nuity equation for the vector potential :

∇.A + µǫ
∂V

∂t
= −µσV. (8)

The right-hand side is a sink term. The vector potential
is dissipated by Ohmic conduction. Loci of high scalar
potential are sinks for the vector potential whose flux is
directed towards them. The Stratton ”gauge condition”
is analogous to the mass continuity equation with nuclear
reactions acting as a sink.

Thanks to the above analogy with Fluid Mechanics, it
is now obvious to the reader that the vector (scalar) po-
tential is a kind of electromagnetic momentum (energy)
per unit charge [7]. Once again, modern Physics has al-
most completely forgotten the physical meaning of the
potentials as it was formulated by James Clerk Maxwell
in the nineteenth century and part of his results are redis-
covered from time to time either by historians of science
or Physics teachers [7].

We have just recalled three examples of ”gauge condi-
tions”. It is clear that the analogy with Fluid Mechan-
ics advocates for different domains of validity depending
on the underlying Physics. Here, we will discuss how
to choose a ”gauge condition” depending on the con-
text. Our method will be dimensional analysis as often
in Fluid Mechanics. Our guide will be Relativistic or
Galilean Covariance. That is why we start by a recap
on Galilean Electromagnetism as described by Physicists
following Lévy-Leblond and Le Bellac [1, 9, 10, 11, 12]
and Engineers following another M.I.T. researcher James
Melcher [2].
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We list first the dimensional quantities. An electro-
magnetic phenomenon happens in a spatial arena of ex-
tension L in a duration τ . The arena is a continuous
medium with constitutive properties ǫ, µ and σ taken
as constant for simplicity (otherwise they are tensors
with time and space dependance). Applying the Vaschy-
Buckingham theorem of dimensional analysis [17], we can
construct dimensionless parameters which would char-
acterize the electromagnetic response of the continuous
medium. As we will deal with Galilean approxima-
tions, we introduce v ≈ L

τ
the typical velocity of the

system and we compare it with cm = 1√
µǫ

the light

celerity in the continuous medium. The Galilean limit
(quasi-static approximation) corresponds to v << cm.
If we neglect time dependance in the Stratton system
SStratton = 0 (∂/∂t = 0 or ∂/∂t ≃ 0), we get ∇2

A =
−µJ and ∇2V = − ρ

ǫ
. In terms of orders of magni-

tude [1, 9, 10, 11, 12] (the tilde means order of magni-

tude), we deduce Ã ≈ L2µJ̃ and Ṽ ≈ L2

ǫ
ρ̃. Hence, we

construct by hand the dimensionless parameter:

1√
ǫµ

Ã

Ṽ
≈ J̃

ρ̃ 1√
ǫµ

(9)

which characterizes the type of regime [1, 9, 10, 11, 12]:

(i) v ≃ cm and cmÃ ≃ Ṽ → Relativistic regime; (ii)

v << cm and cmÃ >> Ṽ (Ṽ ≃ vÃ) → Galilean mag-
netic limit (magnetoquasi-statics or MQS); (iii) v << cm

and cmÃ << Ṽ (Ã ≃ v
c2

m

Ṽ ) → Galilean electric limit

(electroquasi-statics or EQS).

The Stratton’s continuity equation becomes (the bar
denotes a dimensionless quantity):

Ã

L
∇.A + µǫ

Ṽ

τ

∂V

∂t
= −µσṼ V (10)

that is:

∇.A +
L
τ
1√
µǫ

Ṽ
1√
ǫµ

Ã

∂V

∂t
= −L

l∗

Ṽ
1√
ǫµ

Ã
V (11)

whose mathematical form is simply I + II = III with
the following dimensionless ratios:

II

I
≈ v

cm

Ṽ

cmÃ
=

τem

τ

Ṽ

cmÃ
(12)

III

I
≈ L

l∗

Ṽ

cmÃ
=

τm

τem

Ṽ

cmÃ
=

τem

τe

Ṽ

cmÃ
(13)

III

II
≈ τ

τe

(14)

and where we introduced the following parameters [2]:

l∗ = 1

σ

√

ǫ
µ

the constitutive length, τem = L
cm

the light

transit time, τe =
√

ǫ
σ

the charge relaxation time and

τm = µσL2 the magnetic diffusion time such that τem =√
τeτm.
The Figure 1 displays the different approximations of

the Stratton’s constraint depending on the Relativistic
or Galilean (Magnetic, Electric or Statics) regime for a
given problem. In practice, we compare the magnitude of
the three terms I, II and III in the Stratton’s constraint
using the scaling laws (i), (ii) or (iii).

log

(

τ

τem

)

Galilean
Magnetic
Limit

Galilean
Electric
Limit

Special
Relativity

Galilean
Statics

τ = τm

τ = τe

(a) log

(

τm

τem

)

log

(

τ

τem

)

τ = τm

τ = τe

∇.A + µǫ
∂V

∂t
= −µσV

∇.A + µǫ
∂V

∂t
= −µσV

∇.A ≃ −µσV

∇.A ≃ −µσV

∇.A ≃ −µσV

∇.A + µǫ
∂V

∂t
≃ 0

(b) log

(

τm

τem

)

FIG. 1: Domains of validity of (a) the Galilean limits and (b)
the various ”gauge conditions” in a log-log plot inspired by
Melcher [2] with dimensionless times as variables.

Hence, the ”gauge conditions” are continuity equations
whose domains of validity depend on the Relativistic or
Galilean nature of the underlying phenomenon and have
nothing to do with mathematical closure assumptions
taken without physical motivations.
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According to our results, Gauge Invariance is NOT a
fundamental symmetry of Physics since (1) the ”gauge
transformations” can be avoided by a direct definition of
the potentials as mathematical solutions of the Maxwell-
Minkowski equations; (2) the ”gauge conditions” are
interpreted physically as electromagnetic continuity
equations; (3) the ”gauge fields” are interpreted phys-

ically as electromagnetic energy and momentum per
unit charge; (4) the ”gauge conditions” have domains of
validity derived from Relativistic or Galilean Covariance.

The author would like to thank Francesca Rapetti for
playing the role of a sounding board.
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