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Non asymptotic minimax rates of testing in signal detection with

heterogeneous variances

B. Laurent, J.M. Loubes, C. Marteau ∗

Abstract

The aim of this paper is to establish non-asymptotic minimax rates for goodness-of-fit hy-
potheses testing in an heteroscedastic setting. More precisely, we deal with sequences (Yj)j∈J

of independent Gaussian random variables, having mean (θj)j∈J and variance (σj)j∈J . The
set J will be either finite or countable. In particular, such a model covers the inverse problem
setting where few results in test theory have been obtained. The rates of testing are obtained
with respect to l2 and l∞ norms, without assumption on (σj)j∈J and on several functions
spaces. Our point of view is entirely non-asymptotic.

AMS subject classifications: 62G05, 62G20
Key words and phrases: Goodness-of-fit tests, heterogeneous variances, inverse problems.

1 Introduction

We consider the following heteroscedastic statistical model :

Yj = θj + σjǫj , j ∈ J, (1.1)

where θ = (θj)j∈J is unknown, σ = (σj)j∈J is assumed to be known, and the variables (ǫj)j∈J
are i.i.d. standard normal variables. The set J is either {1, . . . , N} for some N ∈ N

∗ (which
corresponds to a Gaussian regression model) or N∗ (which corresponds to the Gaussian sequence
model). The sequence θ has to be tested from the observations (Yj)j∈J in order to decide whether
”θ = 0” or not. The particular case σj = σ for all j ∈ J corresponds to the classical statistical
model where the variance of the observations is always the same. It has been widely considered
in the literature, both for test and estimation approaches. In this paper, we consider a slightly
different setting in the sense that the variance of the sequence is allowed to depend on j.

We point out that the model (1.1) can describe inverse problems. Indeed, for a linear operator
T on an Hilbert space H with inner product (., .), consider an unknown function f indirectly
observed in a Gaussian white noise model

Y (g) = (Tf, g) + σǫ(g), g ∈ H (1.2)

where ǫ(g) is a centered Gaussian variable with variance ‖g‖2 := (g, g). If T is assumed to be
compact, it admits a singular value decomposition (SVD) (bj , ψj , φj)j≥1 in the sense that

Tφj = bjψj, T ∗ψj = bjφj ,

∗Institut de Mathématiques de Toulouse, INSA de Toulouse, Université de Toulouse.
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with T ∗ the adjoint operator of T . Hence considering the observations Y (ψj), model (1.2)
becomes

Zj = bjθj + σǫj , j ∈ N
⋆, (1.3)

with ǫj = ǫ(ψj), (Tf, ψj) = bjθj and θj = (f, φj). This model is often considered in the inverse
problem literature, see eg [7]. Setting Yj = b−1

j Zj and σj = σb−1
j for all j ∈ N

⋆, we obtain
(1.1). Hence inference on observations from model (1.1) provides the same results for inverse
problems. We stress that if estimation issues for inverse problem have been well studied over
the past years (see for instance [19], [7] or [18] for a model selection approach), tests for inverse
problems have either only been tackled, in the general case, by very few authors among them we
refer to [5], [12], [16] or have been investigated only for the very specific case of the convolution
problem, see in [6] and references therein.

For all θ ∈ l2(J), we set ‖θ‖22 =
∑

j∈J θ
2
j and for all θ ∈ l∞(J), ‖θ‖∞ = supj∈J |θj|. The

purpose of this paper is to provide rates of testing for the hypothesis ”θ = 0” against the
alternative ”‖θ‖q ≥ ρ” where q = 2 or q = ∞ . More precisely, given α, β ∈]0, 1[, a level α
test Φα of the null hypothesis ”θ = 0”, and a class of vectors F ⊂ lq(J), we define the uniform
separation rate ρq(Φα,F , β) of the test Φα over the class F with respect to the lq norm as the
smallest radius ρ such that the test guarantees a power greater that 1 − β for all alternatives
θ ∈ F such that ‖θ‖q ≥ ρ. More formally

ρq(Φα,F , β) = inf

{

ρ > 0, inf
θ∈F ,‖θ‖q≥ρ

Pθ(Φα rejects ) > 1− β

}

.

Let us now define ρq(F , α, β) as the infimum over all level α test Φα of the quantity ρq(Φα,F , β).
This quantity will be called the (α, β) minimax rate of testing over the class F . The aim of the
paper is to determine this minimax rate of testing over various classes of alternatives F , for the
test of null hypothesis ”θ = 0” in Model (1.1) with respect to the l2 and l∞ norms.

The main reference for computing minimax rates of testing over non parametric alternatives
is the series of paper due to Ingster[11], where various statistical models and a wide range of sets
of alternatives are considered. Lepski and Spokoiny [17] obtained minimax rates of testing over
Besov bodies Bs,p,q(R) in the irregular case (when 0 < p < 2), see also Ingster and Suslina [13].
Ermakov [10] determines a family of asymptotic minimax tests for testing that the signal belongs
to a parametric set against nonparametric sets of alternatives in the heteroscedastic Gaussian
white noise. In all these references, asymptotic minimax rates of testing are established. In
Model (1.1), with σj = σ for all j ∈ J , Baraud [2] consider a non asymptotic point of view,
which means that the noise level σ is not assumed to converge towards 0. This is the point of
view that we adopt in this paper. We give a precise expression of the dependency of the minimax
rates of testing with respect to the sequence (σj)j∈J . The particular cases of interest correspond
to polynomial and exponentially increasing sequences, which in the case of Model (1.3) leads to
the so-called mildly and severely ill-posed inverse problems. We do not aim at providing the
adaptive minimax rates of testing, which will be the core of a future work.

The paper is organised as follows. In Section 2, we provide lower bounds for the minimax
separation rate over classes of vectors θ with a finite number of non-zero coefficients, which yet
covers sparse signals. In Section 3, we determine upper bounds for those minimax rates. In
Section 4, we compute minimax rates of testing over ellipsoids and lp balls. The proofs are
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gathered in Sections 5 and 6.

To end this introduction, let us define some notations. Let Y = (Yj)j∈J obey to Model (1.1).
We denote by θ the vector (or sequence) (θj)j∈J and by Pθ the distribution of Y . All along the
paper, we consider the test of null hypothesis ”θ = 0”. Let α ∈]0, 1[ be some prescribed level. A
test function Φα is a measurable function of the observation Y , with values in {0, 1}. The null
hypothesis is accepted if Φα = 0 and rejected if Φα = 1. Finally, for all x ∈ R, we denote by ⌊x⌋
the greater integer smaller than x and we set ⌈x⌉ = ⌊x⌋+ 1.

2 Lower bounds

The bounds will be established for two classes of signals characterized by their non zeros coef-
ficients. The first one deals with the elementary case where the coefficients are equal to zero
after a certain rank. The second one concerns the so-called sparse signals which are defined by
the amount of non zeroes coefficients which can be located at different scales.

2.1 Lower bounds in l2 norm

In this section, we generalize the results obtained by Baraud [2] in an homoscedastic model to
the heteroscedastic Model (1.1).

We first give a lower bound for the minimax rate of testing over the set SD, defined for all
D ≥ 1 by

SD = {θ ∈ l2(J),∀j > D, θj = 0} .
When J = {1, . . . , N}, we assume that D ≤ N .

Proposition 1 Assume that Y = (Yj)j∈J obeys to Model (1.1). Let β ∈]0, 1 − α[, c(α, β) =
(

2 ln(1 + 4(1 − α− β)2)
)1/2

and

ρ2D = c(α, β)





D
∑

j=1

σ4j





1/2

.

The following result holds:

∀ρ ≤ ρD, inf
Φα

sup
θ∈SD ,‖θ‖2=ρ

Pθ(Φα = 0) ≥ β.

This implies that the minimax rate of signal detection over SD with respect to the l2 norm
satisfies

ρ2(SD, α, β) ≥ ρD.

This proposition can be understood as follows: whatever the α-level test chosen, for all ρ ≤ ρD,
there exists a signal θ ∈ SD with norm ρ such that the error of the second kind is greater than
β. The results obtained in Proposition 1 coincide with the lower bound established by Baraud
[2] in the homoscedastic model (σj = σ ∀j ∈ J).
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Let us now consider the problem of sparse signal detection. Let k, n ∈ N
∗ with k ≤ n. When

J = {1, . . . , N}, we assume that n ≤ N . We want to obtain lower bounds for the minimax
separation rate of signal detection over the set Sk,n defined by

Sk,n = {θ ∈ l2(J), ∀j > n, θj = 0, Card {j ≤ n, θj 6= 0} ≤ k} . (2.4)

Theorem 1 Assume that Y = (Yj)j∈J obeys to Model (1.1). Let σ(1) ≤ σ(2) ≤ . . . ≤ σ(n), we
define for all l ∈ {0, . . . , n− k},

Σ2
l,k =

l+k
∑

j=l+1

σ2(j). (2.5)

Let β ∈]0, 1− α[, such that α+ β ≤ 59%. Let

ρ2k,n =






max

0≤l≤n−k
Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

∨





n
∑

j=n−k+1

σ4(j)





1/2





. (2.6)

For all level α test Φα,
inf

θ∈Sk,n,‖θ‖2≥ρk,n
Pθ(Φα = 1) ≤ 1− β.

This implies that the minimax rate of signal detection over Sk,n with respect to the l2 norm
satisfies

ρ2(Sk,n, α, β) ≥ ρk,n.

Comments : Let us consider three cases governing the behaviour of the sequence (σj)j∈J .

1. In the homoscedastic case, σj = σ for all j ∈ J . In this case, Σ2
l,k = σ2k for all l and,

taking l = 0, we obtain that

ρ2k,n ≥ σ2k ln

(

1 +
n

k2
∨
√

n

k2

)

,

which corresponds to the lower bound established by Baraud [2].

2. When k ≤ n/2 and Σ2
⌊n/2⌋,k ≥ CΣ2

n−k,k for some absolute constant C (independent of k

and n), we obtain that

ρ2k,n ≥






CΣ2

n−k,k ln

(

1 +
n

2k2
∨
√

n

2k2

)

∨





n
∑

j=n−k+1

σ4(j)





1/2





. (2.7)

At the price of a factor 2 in the logarithm (n is replaced by n/2), the variance term
appearing in the lower bound for ρ2k,n is Σ2

n−k,k which corresponds to the largest possible
variance for a set of cardinality k in {1, . . . , n}, indeed

Σ2
n−k,k = max

m∈Mk,n

∑

j∈m
σ2j ,
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where Mk,n denotes the set of all subsets of {1, . . . , n} with cardinality k.
This situation occurs for example when (σj)j∈J grows at a polynomial rate : σj = j2γ for
some γ > 0. In this case,

Σ2
n−k,k ≤ kn2γ , Σ2

n/2,k ≥ k
(n

2

)2γ
≥ 1

22γ
Σ2
n−k,k.

3. When (σj)j∈J grows at an exponential rate : σj = exp(γj) for some γ > 0, we obtain that
ρ2k,n ≥ σ2(n)

2.2 Lower bounds in l∞ norm

In this section, we provide lower bounds for the minimax rate of signal detection in Model (1.1)
with respect to the l∞ norm. These bounds can be derived from the Theorem 1. Indeed, let
Sk,n be defined by (2.4). For θ ∈ S1,n, ‖θ‖2 = ‖θ‖∞. Hence, denoting by ρ∞(F , α, β) the (α, β)
minimax rate of testing over the class F with respect to the l∞ norm, we obtain that

ρ∞(S1,n, α, β) = ρ2(S1,n, α, β).

By definition of the (α, β) minimax rate of testing it is obvious that if S ⊂ S ′, then ρ∞(S) ≤
ρ∞(S ′). S1,n ⊂ Sk,n for all 1 ≤ k ≤ n. This implies that for all 1 ≤ k ≤ n,

ρ∞(Sk,n, α, β) ≥ ρ2(S1,n, α, β).

This leads to the following corollary of Theorem 1 :

Corollary 1 Assume that Y = (Yj)j∈J obeys to Model (1.1). Let β ∈]0, 1 − α[, such that
α+ β ≤ 59%. Let

Sk,n = {θ ∈ l2(J), ∀j > n, θj = 0, Card {j ≤ n, θj 6= 0} ≤ k} .

Let σ(1) ≤ σ(2) ≤ . . . ≤ σ(n). We define

ρn,∞ = max
0≤l≤n−1

σ(l+1)

√

ln (1 + n− l). (2.8)

The following result holds :

∀1 ≤ k ≤ n, ρ∞(Sk,n, α, β) ≥ ρn,∞.

The proof of the corollary follows directly from the arguments given above and therefore will be
omitted.
Comments :

1. Let Sn = {θ ∈ l2(J),∀j > n, θj = 0} . Note that Sn = Sn,n, hence ∀n ≥ 1, ρ∞(Sn, α, β) ≥
ρn,∞.

2. When σj = σ for all 1 ≤ j ≤ n, we obtain ρn,∞ = σ
√

ln (n+ 1).

3. When (σj)j∈J grows at a polynomial rate : σj = jγ for some γ > 0, we obtain that
ρn,∞ ≥ C(γ)nγ

√

ln(n) by taking l = ⌊n/2⌋ in (2.8).

4. When (σj)j∈J grows at an exponential rate : σj = exp(jγ) for some γ > 0, we obtain that
ρn,∞ ≥ C exp(nγ) for some constant C.
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3 Upper bounds

In this section, we give upper bounds for the (α, β) minimax rates of testing over the sets SD
and Sk,n that we compare with the lower bounds obtained in the previous section.
In order to show that the (α, β) minimax rate of testing with respect to the lq norm over a set
F is bounded from above by ρ, it suffices to define a test statistic Φα such that the power of the
test at each point θ in F satisfying ‖θ‖q ≥ ρ is greater than 1− β.

Proposition 2 Assume that Y = (Yj)j∈J obeys to Model (1.1). Let α, β ∈]0, 1[, and let

tD,1−α(σ) denote the 1− α quantile of
∑D

j=1 σ
2
j ǫ

2
j :

P





D
∑

j=1

σ2j ǫ
2
j ≥ tD,1−α(σ)



 = α.

Let Φα be the test defined by
Φα = 1I∑D

j=1
Y 2
j >tD,1−α(σ)

. (3.9)

Then, Φα is a level-α test :
Pθ=0(Φα = 1) = α.

Moreover, there exists an absolute constant C such that for all θ ∈ SD, setting

C(α, β) = C(log(β−1) + log(α−1) +
√

log(α−1) +
√

log(β−1))

‖θ‖22 ≥ C(α, β)





D
∑

j=1

σ4j





1/2

⇒ Pθ(Φα = 1) > 1− β.

Hence, we obtain that

ρ22(SD, α, β) ≤ C(α, β)





D
∑

j=1

σ4j





1/2

.

Note that this bound coincides to the upper bound found in Proposition 1. Hence, it proves
that this lower bound is sharp.

Let us now propose a testing procedure for sparse signal detection. This procedure will be
defined by a combination of two tests. The first one is based on a thresholding method, which
was already used for detection of irregular alternatives in Baraud et al [3] and in Fromont et al
[9]. The second one is the test considered in Proposition 2 with D = n, which will be powerful
when k is larger that

√
n.

Theorem 2 Assume that Y = (Yj)j∈J obeys to Model (1.1). Let α, β ∈]0, 1[, and let tn,1−α(σ)

denote the 1− α quantile of
∑n

j=1 σ
2
j ǫ

2
j . Let Φ

(1)
α be the test defined by

Φ(1)
α = 1I∑n

j=1
Y 2
j >tn,1−α(σ).

6



Let qn,1−α denote the 1− α quantile of max1≤j≤n ǫ
2
j . Let Φ

(2)
α be the test defined by

Φ(2)
α = 1 if max

1≤j≤n

(

Y 2
j

σ2j

)

> qn,1−α

= 0 otherwise.

We define Φα = max
(

Φ
(1)
α/2,Φ

(2)
α/2

)

. Then, Φα is a level-α test :

Pθ=0(Φα = 1) = α.

There exists a constant C(α, β) such that for all θ ∈ Sk,n satisfying

‖θ‖22 ≥ C(α, β)











n
∑

j=1

σ4j





1/2

∧





∑

j,θj 6=0

σ2j



 ln(n)






, (3.10)

we have
Pθ(Φα = 1) > 1− β.

Hence, we obtain that

ρ22(Sk,n, α, β) ≤ C(α, β)











n
∑

j=1

σ4j





1/2

∧ Σ2
n−k,k ln(n)






, (3.11)

where Σ2
l,k has been defined in (2.5).

Comments : Let us compare these results with the lower bounds obtained in Theorem 1.

1. We first assume that (σj)j∈J grows at a polynomial rate : ∀j ∈ J , σj = σjγ for some γ ≥ 0
(this includes the homoscedastic case). In this case, when k ≤ n/2 there exists a constant
C > 0 such that Σ2

⌊n/2⌋,k ≥ CΣ2
n−k,k. A lower bound for the (α, β) minimax separation

rate of signal detection over Sk,n is given by (2.7). This lower bound has to be compared
with the upper bound (3.11).

• When k = nl with l < 1/2, the upper and lower bounds coincide and are of order
Σ2
n−k,k ln(n).

• When k = nl with l ≥ 1/2, the lower bound is of order Σ2
n−k,k

√
n/k and Σ2

n−k,k ≥
Ckσ2n2γ , which leads to a lower bound of order Cσ2n2γ+1/2. The upper bound is

smaller that
(

∑n
j=1 σ

4
j

)1/2
, which is smaller than σ2n2γ+1/2. Hence, the two bounds

coincide.

• When k =
√
n/φ(n) where φ(n) → +∞ and φ(n)/n → 0 as n → +∞ (typically

φ(n) = ln(n)), the lower bound is of order Σ2
n−k,k ln(φ(n)) and the upper bound is of

order Σ2
n−k,k ln(n). In this case, the upper and lower bound do not coincide, up to a

logarithmic term.
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2. Let us now assume that (σj)j∈J grows at an exponential rate : ∀j ∈ J , σj = σ exp(γj) for
some γ > 0. The lower bound is greater than σ2n = σ2 exp(2γn) and the upper bound is

smaller that C(α, β)
(

∑n
j=1 σ

4
j

)1/2
, which is bounded from above by C(α, β, γ)σ2 exp(2γn).

Hence the two bounds coincide. Note that in this case, the test Φ
(2)
α based on thresholding

is useless and one can simply consider that test

Φα = Φ(1)
α ,

which achieves the lower bound for the separation rate.

3. The result stated in (3.10) is more precise than the minimax upper bound given in (3.11).
If the set J1 = {j, θj 6= 0} corresponds to small values for the variances (σj)j∈J1 , it is not
required that ‖θ‖22 is greater than the right hand term in (3.11) for the test to be powerful
for this value of θ. The minimax bound given in (3.11) corresponds to the worst situation,
that is the case where the set J1 corresponds to the largest values for the variances.

Let us now present an upper bound for the minimax separation rate with respect to the l∞
norm.

Corollary 2 Assume that Y = (Yj)j∈J obeys to Model (1.1). Let σ(1) ≤ . . . ≤ σ(n). Let
α, β ∈]0, 1[. Let Φα be the test defined in Theorem 2. There exists a constant C(α, β) such that
for all k ∈ {1, . . . , n}, for all θ ∈ Sk,n such that

‖θ‖∞ ≥ C(α, β)






σ(n)

√

ln(n) ∧





n
∑

j=1

σ4j





1/4






we have
Pθ(Φα = 1) > 1− β.

This implies that for all k ∈ {1, . . . , n},

ρ∞(Sk,n, α, β) ≤ C(α, β)






σ(n)

√

ln(n) ∧





n
∑

j=1

σ4j





1/4






This upper bound coincides with the lower bound obtained in Corollary 1 when the sequence
(σj)j∈J is constant or grows at a polynomial or at an exponential rate.

4 Minimax rates over ellipsoids and lp balls

In the previous sections, the only constraint on the signal was expressed through the number
of non-zero coefficients. In several situations, one deals instead with infinite sequences having a
finite number of significant coefficients, the reminder being considered as negligible (in a sense
which will be precised later on). To this end, we consider in this section a slightly different
framework. Our aim is to study the link between the decay of the θk’s and the associated rate
of testing. We consider in the following two different kinds of function spaces: ellipsoids and
lp-bodies.
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4.1 Minimax rates of testing over ellipsoids

In the following, we assume that the sequence θ = (θj)j∈J belongs to the ellipsoid Ea,2(R) defined
as

Ea,2(R) =







ν ∈ l2(J),
∑

j∈J
a2jν

2
j ≤ R2







,

where a = (ak)k∈J denotes a monotone non-decreasing sequence. For instance, if θ corresponds
to the sequence of Fourier coefficients of a function f and aj is of order js with s > 0, then
assuming that θ ∈ Ea,2(R) is equivalent to impose conditions on the s-th derivative of f . The
belonging to Ea,2(R) may be seen as a regularity assumption on our signal. The following result
characterises the minimax rate of testing over Ea,2(R).

Proposition 3 Let α, β be fixed and denote by ρ2(Ea,2(R), α, β) the minimax rate of testing
over Ea,2(R) with respect to the l2 norm. Then

ρ22(Ea,2(R), α, β) ≥ sup
D∈J

(ρ2D ∧R2a−2
D ),

where ρ2D has been introduced in Proposition 1. Moreover, for all D ∈ J ,

sup
θ∈Ea,2(R),‖θ‖2

2
≥Cρ2D+R2a−2

D

Pθ(Φα = 0) ≤ β,

where C = C(α, β) is a positive constant depending only on α and β and Φα denotes the test
introduced in Proposition 2. Hence,

ρ22(Ea,2(R), α, β) ≤ inf
D∈J

(Cρ2D +R2a−2
D ),

Proposition 3 presents both an upper and a lower bound for the minimax rate of testing over
Ea,2(R). Remark that the upper bound is attained by the test Φα introduced in Proposition 2
where only signals with a finite number of non-zero coefficients were considered. We do not use
the whole sequence (Yj)j∈J in order to test the null hypothesis ”θ = 0” but only the first D
coefficients. The price to pay is to introduce some bias in the testing procedure. However this
bias can be controlled by taking advantage of the constraint expressed on the decay of θ.

A good characterization of ρ2(Ea,2(R), α, β) can be obtained as soon as the lower and upper
bounds are of the same order. As many statistical problems encountered in the literature, one
has to find a trade-off between the bias R2a−2

D and some kind of variance term ρ2D. This trade-
off can be performed in several situations, hence leading to explicit rates of convergence: see
Corollary 3 below.

Proposition 3 presents the minimax rate of testing in a general setting. Several explicit rates
can be obtained when introducing specific constraints on the sequences (ak)k∈J and (bk)k∈J .
These rates are summarized in Corollary 3. Let (νk)k∈N⋆ be a sequence real numbers. In the
following, we write νk ∼ kl if there exist positive constants c1 and c2 such that, for all k ∈ N

⋆,
c1k

l ≤ νk ≤ c2k
l.

Corollary 3 Let α, β be fixed. We assume that J = N
⋆ and (Zj)j∈J obeys to Model (1.3). The

table below presents the minimax rates of testing over the ellipsoids Ea,2(R) with respect to the l2

9



norm. We consider various behaviours for the sequences (ak)k∈N⋆ and (bk)k∈N⋆. For each case,
we give f(σ) such that for all 1 > σ > 0, C1(α, β)f(σ) ≤ ρ2(Ea,2(R), α, β) ≤ C2(α, β)f(σ) where
C1(α, β) and C2(α, β) denote positive constants independent of σ.

Mildly ill-posed Severely ill-posed

bk ∼ k−t bk ∼ exp(−γkr)
ak ∼ ks σ

4s
2s+2t+1/2

(

log(σ−2)
)−2s/r

ak ∼ exp(νks) σ2
(

log(σ−2)
)(2t+1/2)/s

e−2νD̃s
(s ≤ 1)

Here D̃ denotes the integer part of the solution of ρ2D = R2a−2
D .

These rates have already been presented in the literature. The case ak ∼ ks and bk ∼ k−t was
first studied in [14]. More recently, [12] deals with other cases. Similar rates are also available
in [6] in the context of density estimation with errors in the variables. The aim of Corollary 3
is to show that our approach can lead to important minimax results. Our point of view in this
paper is indeed entirely non-asymptotic and is not restricted to ill-posed inverse problems.

Concerning severely ill-posed problems with supersmooth functions (i.e. bk ∼ exp(−γkr)
and ak ∼ exp(νks)), we do not handle the general case since we assume that s ≤ 1. When this
assumption is violated, the upper and lower bounds in Proposition 3 do not coincide: our test
does not attain the minimax rate of testing. This is certainly due to our approach, which in
some sense is related to a rough regularization scheme. We mention [12] for a complete study
of this case.

4.2 Minimax rates of testing over lp-bodies with 0 < p < 2

Ellipsoids contain essentially smooth functions. In the particular case where θ corresponds to
the Fourier coefficients of a given function f , the constraints expressed through the belonging
to one of the spaces introduced above may be incompatible with the presence of discontinuities.
In order to extend the covered cases, we consider in this subsection sequences θ belonging to
lp-bodies Ea,p(R) defined as

Ea,p(R) =







ν ∈ l2(J),
∑

j∈J
apjν

p
j ≤ Rp







,

where a = (ak)k∈J denotes a monotone non-decreasing sequence and 0 < p < 2. The following
theorem proposes a lower bound for the minimax rate of testing over such spaces.

Theorem 3 Let (Yj)j∈J obey to Model (1.1). Let α, β be fixed and denote by ρ2(Ea,p(R), α, β)
the minimax rate of testing over Ea,p(R) with respect to the l2 norm. For all D ∈ J and for all
0 ≤ l ≤ D − ⌈

√
D⌉, we set

ρ2⌈
√
D⌉,D,l

= Σ2
l,⌈

√
D⌉ ln

(

1 +

√

1− l

D

)

,

where Σ2
l,⌈

√
D⌉ is given in (2.5). Then

ρ2(Ea,p(R), α, β) ≥ sup
D∈J

(ρ1(D) ∨ ρ2(D)) ,

10



where

ρ1(D) = max
0≤l≤D−⌈

√
D⌉

(

√
D

1−2/p
R2a−2

D

Σ2
l,⌈

√
D⌉

Σ2
D−⌈

√
D⌉,⌈

√
D⌉

∧ ρ2⌈√D⌉,D,l

)

,

and

ρ2(D) =
√
D

1−2/p
R2a−2

D ∧





D
∑

j=D−⌈
√
D⌉+1

σ4(j)





1/2

.

To the end of this section, we assume that the sequence (bj)j∈J is polynomially or exponen-
tially increasing, which yet correspond to the main case of interest in inverse problems. The
lower bounds in this particular setting are easier to handle, as proved in the following corollary.

Corollary 4 Let (Zj)j∈N⋆ obey to the Model (1.3) with bj = σσ−1
j for all j ∈ N

⋆. Then,
assuming that for all j ∈ N

⋆, σj = jγ or that for all j ∈ N
⋆, σj = exp(γj) for some γ ≥ 0, we

obtain
ρ2(Ea,p(R), α, β) ≥ C(γ) sup

D∈J
(ρ2⌈

√
D⌉,D ∧

√
D

1−2/p
R2a−2

D ) := ρ2a,p,R,

where ρ2⌈
√
D⌉,D is defined in (2.6).

In order to attain the lower bound presented above, a test similar to the one introduced in
Proposition 2 is not sufficient. On lp-bodies, the bias after a given rank D is indeed more
difficult to control than for ellipsoids. Some significant coefficients (in a sense which will be
precised in the proof) may be contained in the sequence θ after the rank D. Hence, we have to
introduce specific tests in order to detect these coefficients.

More precisely, for all j ∈ J and α ∈ (0, 1), introduce

Φ{j},α = 1{|Yj |≥qj,α},

where qj,α denotes the 1− α quantile of a Gaussian random variable with mean 0 and variance
σ2j . Then define

Φ†
α = Φloc,α/2 ∧ ΦD†,α/2 with Φloc,α/2 = sup

j∈{D†+1,..N}
Φ{j},3α/π2(j−D†)2 ,

where ΦD†,α/2 denotes the test constructed in Proposition 2 and

D† = inf
{

D ∈ J,R2a−2
D

√
D

1−2/p ≤ ρ2⌈
√
D⌉,D

}

. (4.12)

By convention, D† = N if J = {1, . . . , N} and the set in (4.12) is empty. The following theorem

emphasizes the performances of the test Φ†
α.

Proposition 4 Let α, β be fixed. We assume that the sequence
(

a−p
j b

−(2−p)
j

)

j∈N∗
is monotone

non-increasing. Suppose that J = {1, . . . , N}. Then

sup
θ∈Ea,p(R),‖θ‖2≥λσρ2a,p,R

Pθ(Φ
†
α = 0) ≤ β,

with
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• λσ = C log(N) for mildly ill-posed problems, i.e (σj)j∈J ∼ (jt)j∈J for t > 0,

• λσ = C log(N)
√
D†1−p/2

for severely ill-posed inverse problems, i.e. (σj)j∈J ∼ (eγj)j∈J
for γ > 0,

where C denotes a positive constant independent of σ.

Our test reaches the lower bound established in Proposition 3 up to a log term, it is not
sharp. Nevertheless this drawback is not characteristic of the heteroscedastic model since a
similar property occurs in the homoscedastic case: see [2] for more details. Hence, the lower
bound established in Proposition 3 corresponds certainly to the minimax rate on Ea,p(R).

For the sake of convenience, the upper bound is presented for J = {1, . . . , N} which, roughly
speaking, corresponds to the regression setting. Nevertheless, our result can be easily extended
to the case where J = N

⋆. In such a situation, our test will be performed on {1, . . . , Ñ}, where
Ñ is a trade-off between the bias after the rank Ñ on Ea,p(R) and the growth of log(N). A good
candidate for Ñ is a power of σ−2.

In order to conclude this discussion, we point out that we impose a condition on the sequence
(

a−p
j b

−(2−p)
j

)

j∈N
. This condition is necessary in order to control the bias after the rank D†. It

always hold when p = 2 since (aj)j∈N is an increasing sequence. When p < 2, the considered
function has to be sufficiently smooth with respect to the ill-posedness of the problem. A similar
condition can be found for instance in [8].

The corollary below deals with the particular case of mildly ill-posed problems with polyno-
mial lp-bodies, where the situation is easier to handle.

Corollary 5 Assume that ak ∼ ks and bk ∼ k−t for all k ∈ N
∗ where s, t denote positive

constants such that s > t(2/p − 1). Then

C2 log(N)σ
4s+2/p−1

2s+2t+1/p ≥ ρ2(Ea,p(R), α, β) ≥ C1σ
4s+2/p−1

2s+2t+1/p ,

where C1, C2 denote positive constant independent of σ.

Remark that the sequence
(

a−p
j b

−(2−p)
j

)

j∈N∗
is monotone non-increasing as soon as s > t(2/p−

1). Hence the conditions of Proposition 4 are satisfied. The proof follows the same argument as
in Corollary 3.

5 Proofs

5.1 Proof of the lower bounds

The proofs of the lower bounds use a Bayesian approach extending the methods developed in
the papers by Ingster [11] and by Baraud [2]. We use the following lemma :

Lemma 1 Let F be some subset of l2(J). Let µρ be some probability measure on

Fρ = {θ ∈ F , ‖θ‖2 ≥ ρ}

12



and let

Pµρ =

∫

Pθdµρ(θ).

Assuming that Pµρ is absolutely continuous with respect to P0, we define

Lµρ(y) =
dPµρ

dP0
(y).

For all α > 0, β ∈]0, 1 − α[, if

E0

(

L2
µρ∗

(Y )
)

≤ 1 + 4(1 − α− β)2,

then
∀ρ ≤ ρ∗, inf

Φα

sup
θ∈Fρ

Pθ(Φα = 0) ≥ β.

This implies that
ρ(F , α, β) ≥ ρ∗.

For the proof of this lemma, we refer to Baraud [2], Section 7.1.

5.1.1 Proof of Proposition 1

Let ρ > 0, we set for 1 ≤ j ≤ D,

θj = ωjσ
2
j ρ





D
∑

j=1

σ4j





−1/2

where (ωj, 1 ≤ j ≤ D) are i.i.d. Rademacher random variables : P(ωj = 1) = P(ωj = −1) = 1/2.
Let µρ be the distribution of (θ1, . . . , θD). µρ is a probability measure on

{θ ∈ SD, ‖θ‖2 = ρ} .

Let us now evaluate the likelihood ratio Lµρ(Y ) =
dPµρ

dP0
(Y ).

Lµρ(Y ) = Eω



exp



−1

2

D
∑

j=1

1

σ2j



Yj −
σ2jωjρ

√

∑D
j=1 σ

4
j





2

 exp





1

2

D
∑

j=1

Y 2
j

σ2j









= exp

(

−ρ
2

2

∑D
j=1 σ

2
j

∑D
j=1 σ

4
j

)

D
∏

j=1

cosh





ρYj
√

∑D
j=1 σ

4
j



 .

Let Z be some standard normal variable. For all λ ∈ R,

E(cosh2(λZ)) = exp(λ2) cosh(λ2). (5.13)
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Hence, since Yj/σj ∼ N (0, 1),

E0

(

L2
µρ
(Y )
)

=

D
∏

j=1

cosh

(

ρ2σ2j
∑D

j=1 σ
4
j

)

.

Since for all x ∈ R, cosh(x) ≤ exp(x2/2), we obtain

E0

(

L2
µρ
(Y )

)

≤ exp

(

ρ4

2
∑D

j=1 σ
4
j

)

.

For ρ = ρD we obtain :

E0

(

L2
µρ
(Y )
)

≤ 1 + 4(1 − α− β)2,

which implies that ρ(SD, α, β) ≥ ρD by Lemma 1.

5.1.2 Proof of Theorem 1

Without loss of generality, we can assume that the sequence (σj)j∈J is non decreasing (if this
is not the case, we can reorder the observations Yj). We fix some l ∈ {0, 1, . . . , n − k}. Let
Mk,l,n denote the set of all subsets of {l + 1, . . . , n} with cardinality k. Let m̂ be a random set
of {l + 1, . . . , n}, which is uniformly distributed on Mk,l,n. This means that for all m ∈ Mk,l,n,
P(m̂ = m) = 1/Ck

n−l. Let (ωj, 1 ≤ j ≤ n) be i.i.d. Rademacher random variables, independent
of m̂. Let us recall that

Σ2
l,k =

l+k
∑

j=l+1

σ2j .

We set

θj = (ρωjσj/Σl,k) 1Ij∈m̂ (5.14)

Note that θ = (θj)j∈J ∈ Sk,n and that, since (σj)j∈J is non decreasing,

‖θ‖22 = ρ2
∑

j∈m̂ σ
2
j

Σ2
l,k

≥ ρ2.

Lµρ(Y ) = Em̂,ω



exp



−1

2

∑

j∈J

1

σ2j
(Yj − θj)

2



 exp



−1

2

∑

j∈J

Y 2
j

σ2j









= Em̂,ω



exp





∑

j∈m̂

Yjθj
σ2j



 exp



−1

2

∑

j∈m̂

θ2j
σ2j







 .

= Em̂,ω



exp





∑

j∈m̂

Yjωjρ

σjΣl,k



 exp

(

− kρ2

2Σ2
l,k

)



 .
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Lµρ(Y ) =
1

Ck
n−l

∑

m∈Mk,l,n

Eω



exp





∑

j∈m

Yjωjρ

σjΣl,k



 exp

(

− kρ2

2Σ2
l,k

)





= exp

(

− kρ2

2Σ2
l,k

)

1

Ck
n−l

∑

m∈Mk,l,n

∏

j∈m
cosh

(

ρYj
σjΣl,k

)

.

We use (5.13) together with E(cosh(λZ)) = exp(λ2/2) for a standard Gaussian variable Z. Since
Yj/σj is a standard normal variable, we obtain that

E0

(

L2
µρ
(Y )

)

= exp

(

− kρ2

Σ2
l,k

)

1

(Ck
n−l)

2

∑

m,m′∈Mk,l,n

∏

j∈m\m′

exp

(

ρ2

2Σ2
l,k

)

×
∏

j∈m′\m
exp

(

ρ2

2Σ2
l,k

)

∏

j∈m∩m′

exp

(

ρ2

Σ2
l,k

)

cosh

(

ρ2

Σ2
l,k

)

.

Since, for all m,m′ ∈ Mk,l,n,

|m\m′|+ |m′\m|+ 2|m ∩m′| = |m|+ |m′| = 2k,

we obtain

E0

(

L2
µρ
(Y )
)

=
1

(Ck
n−l)

2

∑

m,m′∈Mk,l,n

(

cosh

(

ρ2

Σ2
l,k

))|m∩m′|

.

The end of the proof is similar to the proof of Theorem 1 in Baraud [2], similar arguments are
also given in Fromont et al. [9]. Let us recall these arguments.

E0

(

L2
µρ
(Y )
)

= E

[

exp

(

|m̂ ∩ m̂′| ln cosh
(

ρ2

Σ2
l,k

))]

,

where m̂, m̂′ are independent random subsets with uniform distribution on Mk,l,n. For fixed
m̂, |m̂ ∩ m̂′| is an hypergeometric variable with parameters (n− l, k, k/(n − l)). We know from
Aldous [1] that there exists a binomial variable B with parameters (k, k/(n − l)) and a σ−
algebra B such that E(B/B) = |m̂ ∩ m̂′|. By Jensen’s inequality,

E0

(

L2
µρ
(Y )

)

≤ E

[

exp

(

B ln cosh

(

ρ2

Σ2
l,k

))]

.

Since B is a binomial variable with parameters (k, k/(n − l)),

E

[

exp

(

B ln cosh

(

ρ2

Σ2
l,k

))]

= exp

[

k ln

(

1 +
k

n− l

(

cosh

(

ρ2

Σ2
l,k

)

− 1

))]

.

Let c = 1 + 4(1 − α − β)2, and A = n−l
k2 ln(c). Since the function cosh is increasing on R

+, we
obtain that if

ρ2

Σ2
l,k

≤ ln
(

1 +A+
√

2A+A2
)

,
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then

cosh

(

ρ2

Σ2
l,k

)

− 1 ≤ 1

2

(

A+
√

2A+A2 − 1
)

+
1

2

(

A+
√

2A+A2 + 1
)−1

= A.

We finally obtain that

E0

(

L2
µρ
(Y )

)

≤ exp

[

k ln

(

1 +
k

n− l
A

)]

≤ c.

By Lemma 1, this implies that

ρ(Sk,n, α, β) ≥ Σ2
l,k ln

(

1 +A+
√

2A+A2
)

≥ Σ2
l,k ln

(

1 + 2A ∨
√
2A
)

.

If α+ β ≤ 0.59, ln(c) ≥ 1/2, which implies that

ρ(Sk,n, α, β) ≥ Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

.

Since this result holds for all l ∈ {0, n − k}, we get

ρ(Sk,n, α, β) ≥ max
0≤l≤n−k

Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

.

In order to prove that

ρ(Sk,n, α, β) ≥





n
∑

j=n−k+1

σ4j





1/2

,

we define, as in the proof of Proposition 1,

θj = ωjσ
2
j ρ
(

∑n
j=n−k+1 σ

4
j

)−1/2
∀j ∈ {n− k + 1, . . . , n},

= 0 ∀j /∈ {n− k + 1, . . . , n},
where (ωj , n− k+1 ≤ j ≤ n) are i.i.d. Rademacher random variables. Note that (θj)j∈J ∈ Sk,n

and that ‖θ‖22 = ρ2. We now conclude as in the proof of Proposition 1, using that C(α, β) =
√

2 ln(c) ≥ 1.

5.2 Proof of the upper bounds

5.2.1 Proof of Proposition 2

In order to prove Proposition 2, we have to show that for all θ ∈ SD such that ‖θ‖22 ≥
C(α, β)

(

∑D
j=1 σ

4
j

)1/2
,

Pθ





D
∑

j=1

Y 2
j ≤ tD,1−α(σ)



 < β. (5.15)
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We denote by tD,β(θ, σ) the β quantile of
∑D

j=1 Y
2
j , when Y = (Yj)j∈J obeys to Model (1.1). In

order to prove (5.15), it suffices to show that

tD,1−α(σ) < tD,β(θ, σ).

To prove this inequality, we will first give an upper bound for tD,1−α(σ) and then a lower bound
for tD,β(θ, σ).
Upper bound for tD,1−α(σ) :

We use an exponential inequality for chi-square distributions due to Laurent and Massart [15]
(see Lemma 1). It follows from this inequality that for all x ≥ 0,

P







D
∑

j=1

σ2j (ǫ
2
j − 1) ≥ 2

√
x





D
∑

j=1

σ4j





1/2

+ 2x sup
1≤j≤D

(σ2j )






≤ exp(−x).

Setting xα = ln(1/α), we obtain that

tD,1−α(σ) ≤
D
∑

j=1

σ2j + 2
√
xα





D
∑

j=1

σ4j





1/2

+ 2xα sup
1≤j≤D

(σ2j ).

Since sup1≤j≤D σ
2
j ≤

(

∑D
j=1 σ

4
j

)1/2
,

tD,1−α(σ) ≤
D
∑

j=1

σ2j + C(α)





D
∑

j=1

σ4j





1/2

. (5.16)

Lower bound for tD,β(θ, σ) :

We prove the following lemma, which generalizes the results obtained by Birgé [4] to the het-
eroscedastic framework :

Lemma 2 Let
Yj = θj + σjǫj, 1 ≤ j ≤ D,

where ǫ1, . . . ǫD are i.i.d. Gaussian variables with mean 0 and variance 1.
We define T̂ =

∑D
j=1 Y

2
j and

Σ =

D
∑

j=1

σ4j + 2

D
∑

j=1

σ2j θ
2
j .

The following inequalities hold for all x ≥ 0 :

P

(

T̂ − E(T̂ ) ≥ 2
√
Σx+ 2 sup

1≤j≤D
(σ2j )x

)

≤ exp(−x). (5.17)

P

(

T̂ − E(T̂ ) ≤ −2
√
Σx
)

≤ exp(−x). (5.18)
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The proof of this lemma is given in the Appendix.
Inequality (5.18) provides a lower bound for tD,β(θ, σ). Indeed, setting xβ = log(1/β), we obtain
that

P

(

T̂ − E(T̂ ) ≤ −2
√

Σxβ

)

≤ β.

Hence, tD,β(θ, σ) ≥
∑D

j=1(θ
2
j + σ2j )− 2

√

Σxβ. (5.15) is satisfied if tD,1−α(σ) < tD,β(θ, σ), which
holds as soon as

D
∑

j=1

θ2j − 2
√

Σxβ > 2
√
xα

√

√

√

√

D
∑

j=1

σ4j + 2xα sup
1≤j≤D

(σ2j ). (5.19)

Let us note that

√
Σ =

√

√

√

√

D
∑

j=1

σ4j + 2σ2j θ
2
j ≤

√

√

√

√

D
∑

j=1

σ4j +
√
2

√

√

√

√

D
∑

j=1

σ2j θ
2
j

≤

√

√

√

√

D
∑

j=1

σ4j +
√
2 sup
1≤j≤D

(σj)

√

√

√

√

D
∑

j=1

θ2j

Hence, the following inequality implies (5.19) :

D
∑

j=1

θ2j − 2
√
2 sup
1≤j≤D

(σj)
√
xβ

√

√

√

√

D
∑

j=1

θ2j − 2

√

√

√

√

D
∑

j=1

σ4j (
√
xβ +

√
xα)− 2 sup

1≤j≤D
(σ2j )xα > 0.

This inequality holds if

D
∑

j=1

θ2j ≥ C



 sup
1≤j≤D

(σ2j )(xβ + xα) +

√

√

√

√

D
∑

j=1

σ4j (
√
xβ +

√
xα)



 ,

where C is an absolute constant (which can be taken equal to 8). Hence, we have proved that

ρ(SD, α, β) ≤ C(α, β)

√

√

√

√

D
∑

j=1

σ4j ,

which concludes the proof of Proposition 2.

5.2.2 Proof of Theorem 2

The test Φα is obviously of level α thanks to Bonferroni’s inequality :

P0(Φα = 1) ≤ P0(Φ
(1)
α/2 = 1) + P0(Φ

(2)
α/2 = 1)

≤ α

2
+
α

2
≤ α.

Let us now evaluate the power of the test.

Pθ(Φα = 1) ≥ max
(

Pθ(Φ
(1)
α/2 = 1) + Pθ(Φ

(2)
α/2 = 1)

)

.
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It follows from Proposition 2 that for all θ ∈ Sk,n such that

‖θ‖22 ≥ C(α, β)





n
∑

j=1

σ4j





1/2

,

we have Pθ(Φ
(1)
α = 1) > 1− β. It remains to evaluate the power of the test Φ

(2)
α/2.

Pθ(Φ
(2)
α = 0) = Pθ(∀j ∈ {1, . . . , n},

Y 2
j

σ2j
≤ qn,1−α)

≤ inf
1≤j≤n

Pθ(
Y 2
j

σ2j
≤ qn,1−α).

Pθ(
Y 2
j

σ2j
≤ qn,1−α) = P

(

|θj + σjǫj| ≤ σj
√
qn,1−α

)

≤ P
(

|θj| − σj|ǫj | ≤ σj
√
qn,1−α

)

≤ P
(

σj|ǫj | ≥ |θj | − σj
√
qn,1−α

)

.

Let qβ denote the 1− β quantile of |ǫj |. We obtain that if

∃j ∈ {1, . . . , n}, |θj | > σj(qβ +
√
qn,1−α), (5.20)

then
Pθ(Φ

(2)
α = 0) ≤ β.

Condition (5.20) is equivalent to

∃m ∈ Mk,n,
∑

j∈m
θ2j >

∑

j∈m
σ2j (qβ +

√
qn,1−α)

2.

In particular, if

‖θ‖22 >





∑

j,θj 6=0

σ2j



 (qβ +
√
qn,1−α)

2,

then (5.20) holds. This implies that for all θ ∈ Sk,n such that

‖θ‖22 > max
m∈Mk,n





∑

j∈m
σ2j



 (qβ +
√
qn,1−α)

2,

we have Pθ(Φ
(2)
α = 0) < β. It remains to give an upper bound for qn,1−α. We use the inequality

P(|ǫ1| ≥ x) ≤ exp(−x2/2). This leads to

P( max
1≤j≤n

ǫ2j ≥ 2 ln(n/α)) ≤ nP(|ǫ1| ≥
√

2 ln(n/α))

≤ α.

Hence, qn,1−α ≤ 2 ln(n/α), which concludes the proof of Theorem 2.
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5.2.3 Proof of Corollary 2

Since ‖θ‖22 ≥ ‖θ‖2∞ ≥ C2(α, β)
(

∑n
j=1 σ

4
j

)1/2
, we obtain from Theorem 2 that

Pθ(Φ
(1)
α/2

= 0) < β.

We obtained in the proof of Theorem 2 that if (5.20) holds, then Pθ(Φ
(2)
α = 0) < β. Since qn,1−α ≤

2 ln(n/α), we obtain that there exists a constant C(α, β) such that if ‖θ‖∞ ≥ C(α, β)σ(n)
√

ln(n),

then Pθ(Φ
(2)
α/2 = 0) < β.

5.3 Proof of minimax rates on ellipsoids and lp-bodies

5.3.1 Proof of Proposition 3

We first prove the lower bound. For all D ∈ J , introduce r2D = ρ2D ∧ R2a−2
D . Let D be fixed.

Then for all θ ∈ SD such that ‖θ‖22 = r2D

∑

j∈J
a2jθ

2
j =

D
∑

j=1

a2jθ
2
j ≤ a2D‖θ‖22 ≤ R2.

Hence
{

θ ∈ SD, ‖θ‖22 = r2D
}

⊂
{

θ ∈ Ea,2(R), ‖θ‖22 ≥ r2D
}

.

Since rD ≤ ρD, we get from Proposition 1

inf
Φα

sup
θ∈Ea,2(R),‖θ‖2≥rD

Pθ(Φα = 0) ≥ inf
Φα

sup
θ∈SD,‖θ‖2=rD

Pθ(Φα = 0) ≥ β, (5.21)

where the infinimum is taken over all possible level-α testing procedures. Since inequality (5.21)
holds for all D ∈ J , we obtain ρ2(Ea,2(R), α, β) ≥ supD∈J(ρ

2
D ∧ R2a−2

D ). Concerning the upper
bound, we know from Proposition 2 that the test Φα is powerful as soon as:

D
∑

j=1

θ2j ≥ C(α, β)ρ2D ⇔ ‖θ‖22 ≥ C(α, β)ρ2D +
∑

k>D

θ2k,

where C(α, β) denotes a positive constant. Since θ ∈ Ea,2(R), we get

∑

k>D

θ2k ≤ R2a−2
D and sup

θ∈Ea,2(R),‖θ‖2≥Cρ2D+R2a−2

D

Pθ(Φα = 0) < β,

where C = C(α, β). This concludes the proof since the previous result holds for all D ∈ J .

5.3.2 Proof of Corollary 3

First case: ak ∼ ks and bk ∼ k−t. Choosing

D̄ =
⌊

σ
2

4s+4t+1

⌋

,
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we can remark that ρ2
D̄

and R2a−2
D̄

are of the same order, hence leading to the desired rate.

Second case: ak ∼ eνk
s
and bk ∼ k−t. Set

D0 =

⌈

(

1

2ν
log(σ−2)

)1/s
⌉

.

Then

ρ22(Ea,2(R), α, β) ≤ Cρ2D0
+R2a−2

D0
,

≤ Cσ2
(

log(σ−2)
)(2t+1/2)/s

+ σ2 ≤ (C + 1)σ2
(

log(σ−2)
)(2t+1/2)/s

,

where C denotes a constant independent of σ. Concerning the lower bound, we set

D1 =

⌊

(

1

4ν
log(σ−2)

)1/s
⌋

.

Then

ρ22(Ea,2(R), α, β) ≥ ρ2D1
∧R2a−2

D1
,

≥ Cσ2
(

log(σ−2)
)(2t+1/2)/s ∧ σ = Cσ2

(

log(σ−2)
)(2t+1/2)/s

,

for some C > 0.

Third case: ak ∼ ks and bk ∼ e−γkr . Set

D0 =

⌊

(

1

4γ
log σ−2)

)1/r
⌋

.

Then

ρ22(Ea,2(R), α, β) ≤ ρ2D0
+R2a−2

D0
,

≤
√

D0σ
2b−2

D0
+R2a−2

D0
,

≤ σ +C
(

log(σ−2)
)−2s/r ≤ (C + 1)

(

log(σ−2)
)−2s/r

,

for some C > 0. Concerning the lower bound, we set

D1 =

⌈

(

1

2γ
log(σ−2)

)1/r
⌉

.

Then

ρ22(Ea,2(R), α, β) ≥ ρ2D1
∧R2a−2

D1
,

≥ σ2b−2
D1

∧R2a−2
D1
,

≥ 1 ∧ C
(

log(σ−2)
)−2s/r

= C
(

log(σ−2)
)−2s/r

,
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for some C > 0.

Fourth case: ak ∼ eνks and bk ∼ e−γkr . Denote by D̃ the solution of the equation

ρ2D = R2a−2
D .

Remark that
ρ2D0

≤ R2a−2
D0

where D0 = ⌊D̃⌋,
since (ρ2D)D∈N⋆ and (a2D)D∈N⋆ are monotone increasing. Hence

ρ22(Ea,2(R), α, β) ≤ Cσ2e2γD
r
0 + e−2νDs

0 ≤ (C + 1)e−2νDs
0 .

Then
ρ2D1

≥ R2a−2
D1

where D1 = ⌈D̃⌉.
We get:

ρ22(Ea,2(R), α, β) ≥ ρ2D1
∧R2a−2

D1
≥ R2a−2

D1
≥ R2e−2νDs

1 .

In order to conclude the proof, we have to prove that the lower and upper bounds coincide. To
this end, remark that D1 = D0 + 1. Thus

e−2νDs
1 = e−2ν(D0+1)s = e−2νDs

0 × e2ν{D
s
0−(D0+1)s} ≤ Ce−2νDs

0 ,

for some constant C as soon as s ≤ 1.

5.3.3 Proof of Theorem 3

The proof will use the one of Theorem 1. We assume that (σj)j∈J is non-decreasing. Let us first
establish a relation between the lp ball Ea,p(R) and the sets Sk,n. For all D ∈ J , for all θ ∈ S√

D,D

such that ‖θ‖22 ≤
√
D

1−2/p
R2a−2

D , we have θ ∈ Ea,p(R). Indeed, using Hölder’s inequality

+∞
∑

j=1

apjθ
p
j =

∑

j:θj 6=0

apjθ
p
j ≤ (

√
D)1−p/2(‖θ‖2)p/2apD ≤ Rp.

We set k = ⌈
√
D⌉, n = D and for all l ∈ {0, 1, . . . , n− k}, we define θ = (θj , j ∈ J) by

(5.14). As pointed out in the proof of Theorem 1, θ ∈ Sk,n and ‖θ‖22 ≥ ρ2. We also have
‖θ‖22 ≤ ρ2Σ2

n−k,k/Σ
2
l,k. This implies that if

ρ2
Σ2
n−k,k

Σ2
l,k

≤ (
√
D)1−2/pR2a−2

D ,

then θ ∈ Ea,p(R).
Moreover, in the proof of Theorem 1, we proved that if

ρ2 ≤ Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

,

then
E0(L

2
µρ
(Y )) ≤ 1 + 4(1− α− β)2.
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This implies by Lemma 1 that ρ22(Ea,p(R)) ≥ ρ2. We finally get

ρ22(Ea,p(R)) ≥ Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

∧
√
D

1−2/p
R2a−2

D

Σ2
l,k

Σ2
n−k,k

.

Since the result holds for all l ∈ {0, 1, . . . , n− k}, we obtain that ρ22(Ea,p(R)) ≥ ρ1(D). To obtain
that ρ22(Ea,p(R)) ≥ ρ2(D), we consider, as in the proof of Theorem 1, for k = ⌈

√
D⌉ and n = D

θj = ωjσ
2
j ρ
(

∑n
j=n−k+1 σ

4
j

)−1/2
∀j ∈ {n− k + 1, . . . , n},

= 0 ∀j /∈ {n− k + 1, . . . , n}.

Since ρ22(Ea,p(R)) ≥ ρ1(D) ∨ ρ2(D) for all D ∈ J , the result follows.

5.3.4 Proof of Corollary 4

For the sake of simplicity, we assume that
√
D is an integer. We derive from Comment 2. of

Theorem 1 that when σj = jγ , then

ρ1(D) ≥ C(γ)
√
D

1−2/p
R2a−2

D ∧ Σ2
D/2,

√
D
.

Moreover,

ρ2√
D,D

≤ C max
0≤l≤D−

√
D
Σ2
l,
√
D
≤ C

D
∑

j=D−
√
D+1

j2γ

≤ CD2γ+1/2 ≤ CΣ2
D/2,

√
D
.

When σj = expγj , we have from Theorem 3 that

ρ22(Ea,p(R)) ≥ sup
D∈J

ρ2(D).

Moreover, ρ2(D) ≥
√
D

1−2/p
R2a−2

D ∧ σ2D. We conclude by noticing that, in this case, we also
have that ρ2√

D,D
≤ C(γ)σ2D.

5.3.5 Proof of Proposition 4

It follows from Bonferonis’s inequality that Φ†
α is a level-α test. Introduce

A =
{

D ∈ J,R2a−2
D

√
D

1−p/2 ≤ ρ2⌈
√
D⌉,D

}

.

In a first time, we suppose that A is empty. From the definition of D†, we get D† = N and

Pθ(Φ
†
α = 0) ≤ Pθ(ΦD†,α/2 = 0) = Pθ(ΦN,α/2 = 0) ≤ β,

for all sequence θ satisfying
∑

j∈J
θ2j = ‖θ‖2 ≥ Cρ2N ,
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for some positive constant C. Since A is empty and using the comments following Theorem 1

ρ2N ≤ Cρ2⌈
√
N⌉,N ≤ C(ρ2⌈

√
N⌉,N ∧

√
N

1−2/p
a−2
N R2) ≤ C sup

D∈J
(ρ2⌈

√
D⌉,D ∧

√
D

1−2/p
a−2
D R2).

Hence, our test is powerful as soon as ‖θ‖2 ≥ ρ2a,p,R.

From now on, we assume that the set A is not empty: D† ≤ N . For all j ∈ J , set

µj = 2(
√
5 + 4) ln

(

π2(j −D†)2

3αβ

)

.

Two different situations may occur:

1/ For all j > D†, b2jθ
2
j ≤ σ2µ2j for some sequence µj, i.e. all the coefficients θk have poor

importance after the rank D†.

2/ There exists at least j ∈ {D†, . . . , N} such that b2jθ
2
j ≥ σ2µ2j , i.e. there exist significant

coefficients after the rank D†.

First consider the case 2/. Recall that in this case, the set A is not empty and there exists
j′ ∈ {D†, . . . , N} such that b2j′θ

2
j′ > σ2µ2j′. In this particular setting, we have to use the

threshold test in order to detect these coefficients. More precisely,

Pθ(Φ
†
α = 0) ≤ Pθ

(

sup
j>D†

Φ{j},3α/π2(j−D†)2 = 0

)

≤ Pθ

(

Φ{j′},3α/π2(j′−D†)2 = 0
)

.

Thanks to inequality (29) of [2], we know that this probability is smaller than β as soon as:

θ2j′ > σ2b−2
j′ ln

(

π2(j −D†)2

3αβ

)

2(
√
5 + 4).

This is exactly the assumption made in case 2/.

Now, we consider point 1/. Let j > D†,

θ2j = θ2−p
j b2−p

j θpj b
−(2−p)
j ,

≤ σ2−pµ2−p
j θpj b

−(2−p)
j .

Then, we get
∑

j>D†

θ2j ≤ σ2−p
∑

j>D†

θpj b
−(2−p)
j µ2−p

j ,

≤ σ2−p
∑

j>D†

apjθ
p
ja

−p
j b

−(2−p)
j µ2−p

N ,

≤ σ2−pRp max
j>D†

a−p
j b

−(2−p)
j µ2−p

N .

Since the sequence (a−p
j b

−(2−p)
j )j∈N is assumed to be monotone non increasing, we can control

the bias as follows
∑

j>D†

θ2j ≤ σ2−pRpa−p
D†b

−(2−p)

D† µ2−p
N .
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In order to conclude the proof, we have to bound the right hand side of the above inequality.
First assume that the problem is mildly ill-posed, i.e. (bk)k∈N⋆ ∼ (k−t)k∈N for some t > 0. Then

D† = inf
{

D ∈ J,R2a−2
D (

√
D)1−2/p ≤ σ2D2t+1/2

}

,

= inf
{

D ∈ J,R2a−2
D ≤ σ2D2t+1/p

}

.

Thus
∑

j>D†

θ2j ≤ σ2−pσp(D†)tp+1/2(D†)2t−tpµ2−p
N ≤ σ2(D†)2t+1/2µ2−p

N . (5.22)

Hence, we deduce from Proposition 2 that

Pf (Φ
†
α = 0) ≤ Pθ(ΦD†,α/2 = 0) ≤ β,

for all sequence θ satisfying
∑D†

j=1 θ
2
j ≥ Cα,βσ

2(D†)2t+1/2, which is equivalent to

‖θ‖2 ≥ Cα,βσ
2(D†)2t+1/2 +

∑

j>D†

θ2j . (5.23)

The first point of Proposition 4 follows from (5.22) and (5.23). Now assume that the problem
is severely ill-posed, i.e. (bk)k∈N⋆ ∼ (e−γk)k∈N⋆ for some positive constant γ. In this setting,

D† = inf
{

D ∈ J,R2a−2
D

√
D

1−p/2 ≤ σ2e2γD
}

.

Hence,
∑

j>D†

θ2j ≤ σ2e2γD
√
D†1−p/2

µ2−p
N .

An inequality similar to (5.23) holds, which concludes the second point.

6 Appendix

Proof of Lemma 2 :

We first compute the Laplace transform of T̂ . Easy computations show that for t < 1/(2σ2j ),

E
[

exp(t(θj + σjǫj)
2)
]

=
1

√

1− 2tσ2j

exp

(

tθ2j
1− 2tσ2j

)

.

This implies that for t < min1≤j≤D 1/(2σ2j ),

E

[

exp(tT̂ )
]

= exp





D
∑

j=1

tθ2j
1− 2tσ2j





D
∏

j=1

1
√

1− 2tσ2j

.

Moreover,

E(T̂ ) =
D
∑

j=1

θ2j +
D
∑

j=1

σ2j .
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This leads to

E

[

exp(t(T̂ − E(T̂ ))
]

= exp





D
∑

j=1

2t2θ2jσ
2
j

1− 2tσ2j
− tσ2j





D
∏

j=1

1
√

1− 2tσ2j

= exp





D
∑

j=1

2t2θ2jσ
2
j

1− 2tσ2j
− tσ2j



 exp



−1

2

D
∑

j=1

log(1− 2tσ2j )



 .

We use the following inequality which holds for x < 1/2 :

x

[

1

2
log (1− 2x) + x+

x2

1− 2x

]

≥ 0. (6.24)

This inequality implies that for all t < min1≤j≤D 1/2σ2j ,

logE
[

exp(t(T̂ − E(T̂ ))
]

≤
D
∑

j=1

t2σ4j
1− 2tσ2j

+ 2t2
D
∑

j=1

θ2jσ
2
j

1− 2tσ2j
.

This leads to

logE
[

exp(t(T̂ − E(T̂ ))
]

≤ t2Σ

1− 2t sup1≤j≤D(σ
2
j )
.

We now use the following lemma which is proved in Birgé [4] (see Lemma 8.2) :

Lemma 3 Let X be a random variable such that

log (E [exp(tX)]) ≤ (at)2

1− bt
for 0 < t < 1/b

where a and b are positive constants. Then

P
(

X ≥ 2a
√
x+ bx

)

≤ exp(−x) for all x > 0.

Hence, inequality (5.17) is proved. Let us now prove inequality (5.18).
For all z ∈ R,

P

(

T̂ − E(T̂ ) ≤ −z
)

= P

(

−T̂ + E(T̂ )− z ≥ 0
)

≤ inf
t>0

E

(

et(−T̂+E(T̂ )−z)
)

≤ inf
t<0

E

(

et(T̂−E(T̂ )+z)
)

.

We have, from the above computations

ln
(

E

(

et(T̂−E(T̂ )+z)
))

=

D
∑

j=1

[

2t2θ2jσ
2
j

1− 2tσ2j
− tσ2j −

1

2
ln(1− 2tσ2j )

]

+ tz.

We now use (6.24) for x = tσ2j with t < 0. We obtain

1

2
ln(1− 2tσ2j ) + tσ2j +

t2σ4j
1− 2tσ2j

≤ 0.
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This implies that
2t2θ2jσ

2
j

1− 2tσ2j
≤ −2tθ2j −

θ2j
σ2j

ln(1− 2tσ2j ).

Hence, for all t < 0, z ∈ R,

E

(

et(T̂−E(T̂ )+z)
)

≤ exp



−
D
∑

j=1

(

1

2
log
(

1− 2tσ2j
)

+ tσ2j

)

(

1 + 2
θ2j
σ2j

)

+ tz



 .

We use this inequality with z = 2
√
Σx, and tx = −√

x/
√
Σ.

P

(

T̂ − E(T̂ ) ≤ −2
√
Σx
)

≤ E

(

etx(T̂−E(T̂ )+2
√
Σx)
)

.

Moreover,

E

(

etx(T̂−E(T̂ )+2
√
Σx)
)

= exp



−
D
∑

j=1

(

1

2
log

(

1− 2

√
x√
Σ
σ2j

)

−
√
x√
Σ
σ2j

)

(

1 + 2
θ2j
σ2j

)

− 2x



 .

We use the following inequality which holds for all u ≥ 0 :

1

2
log(1 + 2u)− u ≥ −u2,

and we apply this inequality to u = −txσ2j . We obtain that for all x ≥ 0,

P

(

T̂ − E(T̂ ) ≤ −2
√
Σx
)

≤ exp(−x).

This concludes the proof of Lemma 2.
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