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2 Université de Provence, 3, Place Victor Hugo, 13331 Marseille cedex 03, France and
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We consider a N-dot-S junction in the Kondo regime in the limit where the superconducting gap is
much smaller than the Kondo temperature. A generalization of the floating of the Kondo resonance
is proposed and many body corrections to the average subgap current are calculated. The zero
frequency noise is computed and the Fano factor sticks to the value 10/3 for all voltages below the
gap. Implications for finite frequency noise are briefly discussed.

PACS numbers: 71.10.Ay, 71.27.+a, 72.15.Qm, 73.63.Fg

Possible realizations of quantum dots have revived the
interest in Kondo physics1,2. For normal electrodes,
the dot spin is screened and the system behaves in
first approximation as a resonant level at the Fermi en-
ergy. However, this picture is not sufficient; the sys-
tem is a Fermi liquid with interactions, morevover, the
ratio of elastic and inelastic backscattering obeys some
universality3, which can be obtained from the concept
of floating of the Kondo resonance. Current noise is a
useful tool to obtain informations on interactions, which
are not present in the average current 〈I〉. Recently, the
zero frequency noise S and the Fano factor F = S/2e〈I〉
in the SU(2) case4 and the SU(4) case5,6 were calculated
and confirmed experimentally7 for SU(2).

What happens to this effect in the superconducting
case? This poses the problem of interplay between
Kondo physics and superconductivity, already present
in heavy fermion compounds2 and underdoped high-Tc

materials8. Devices with a dot between two supercon-
ducting electrodes have been extensively studied both
theoretically9,10,11,12,13,14,15 and experimentally16,17 with
emphasis on the Josephson current, and on how increas-
ing the gap ∆ destroys the Kondo effect. Here, we study
the noise of the subgap Andreev current in a normal
metal-dot-superconductor structure for ∆ ≪ TK . While
in this regime, there is still no destruction of the Kondo
resonance by the presence of the gap ∆1,11, the inter-
play between one and many-particle scattering, Andreev
and normal reflexion, is far from trivial. The central re-
sult of this paper is a generalization of the floating of
the Kondo resonance in the case where one electrode is
superconducting. The most noticeable consequence is a
constant Fano factor, equal to 10/3 for all voltages bias
below the gap. This could be tested experimentally on
carbon nanotubes.

Model: A quantum dot with effectively one level of
energy ǫ0 is placed between two electrodes, the left one
being normal and the right one being a usual BCS super-
conductor, see Fig. 1. The on site repulsion U on the dot
is supposed to be the largest energy of the problem. Elec-
trons can hop from the lead to the dot with amplitude τ ,
implying a broadening of the level Γ = 2πρ(ǫF )|τ |2, with
ρ(ǫF ) the density of states at the Fermi energy in the

normal metal. We abide by the particle-hole symmetric
case, for which ǫ0 = −U/2. The Hamiltonian reads

H =
∑

k,σ,p

(ǫk − µp)c
†
k,σ,pck,σ,p + τck,σ,pd

†
σ + h.c.

+
∑

k

∆c†k,↑,Rc
†
−k,↓,R + h.c.+ ǫ0(n↑ + n↓) + Un↑n↓, (1)

where ∆ is the superconducting order parameter; p = L
for the normal lead on the left and p = R for the su-

perconducting one; the operators c†k,p,σ and d†σ create an
electron on the p lead and on the dot, respectively and
nσ = d†σdσ. The chemical potentials are µL = eV and
µR = 0, with V the voltage bias. For ∆ ≪ TK , and even
when both electrodes are superconducting, it was shown
by various methods1, both analytical and numerical11,12

that the Kondo resonance subsists despite the gap. In
the non-Kondo case, the average current has been calcu-
lated in Ref. 10. Also, in the low temperature regime,
in the Kondo case, the average current and the noise
were estimated by using slave-boson methods but this
method is an effective one-body approximation to the full
Kondo Hamiltonian and thus, is not sufficient to capture
the complexity of the Kondo Hamiltonian, already when
both electrodes are normal4.

Method and one-body setting: Here, we want to gener-
alize the calculation of the Kondo noise when two elec-
trodes are normal to the case where one electrode is su-
perconducting. In order to include the many-body ef-
fects, we consider a slightly different model for the Kondo
dot, which has been used for modelling an imperfect NS
junction18, see Fig. 2. The dot is a scatterer placed
in front of the superconductor and produces dephasing,
whereas in reality, the dot acquires off-diagonal order due
to hopping on and from the superconductor. An incident
electron of energy ǫ is scattered by the dot and then An-
dreev reflected as a hole by the NS interface, supposed to
be perfect, with a modulus one and a phase −i atan(ǫ/∆),
and then, this hole gets scattered by the dot, (see Fig.
2). The dephasing of the electron by the scatterer is

δe = δ
(0)
e + δ

(1)
e + ..., where δ

(0)
e = −π/2, δ

(1)
e is first

order in ǫ/TK and the dots represent higher orders in
ǫ/TK . The energy transmission of electrons through the
scatterer is T (ǫ) = sin2(δe). The same thing happens
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FIG. 1: Quantum dot sandwiched between a normal electrode
on the left with chemical potential µL an a superconducting
one on the right with gap ∆ and chemical potential µR = 0.
Only one level of negative energy ǫ0 intervenes. Hopping am-
plitudes on and from the dot to both electrodes are assumed
to be equal. The effective energy level taking into account the
Hartree correction is ǫ̃0 = ǫ0 + U/2, in heavy dashed line.

for the holes with dephasing δh. Using the Bogolubov-de
Gennes (BdG) equations enables to express the s−matrix
in Nambu space for the whole structure, which is 4 × 4
but, below the gap, reduces to a 2 × 2 reflexion matrix,
because no transmission of one-particle excitation occurs
in the superconductor. The energy dependent normal
reflection coefficient rN and the Andreev amplitude re-
flection coefficient rA can be extracted in terms of δe and
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FIG. 2: Simplified model for the N −dot−S system. A scat-
terer, having no off-diagonal Green’s function, is placed in
front of the superconductor accounts for the imperfect trans-
mission properties of the dot. The interface with the su-
perconducting electrode is taken to be perfect so that only
Andreev reflexion occurs at the interface and only normal
reflexion or transmission occurs across the scatterer. Prox-
imity effects are neglected. An incident electron is partially
transmitted through the scatterer and then totally Andreev
reflected as a hole. This hole is in turn partially transmitted
as a hole but also partially reflected by the scatterer, etc... All
processes need to be resummed to infinite order, the ampli-
tudes rN and rA are the result of this (coherent) resummation.
However, this is equivalent to solving the BdG equations.

δh. We want to make contact with the original model of
Eq (1). If TK were infinite, then, the one-body picture of
a resonant model centered at the Fermi level, with width
TK would be valid. We are close to the unitary limit
and we need the dot Green’s function in this limit. In

the case where both electrodes are normal, the retarded

Green’s function is of the form z−1
(

ǫ− ǫ̃0−2iΓ̃sgn(ǫ)
)−1

with z = 1 − (∂Σret(ǫ)/∂ǫ)|ǫ=ǫF
and Γ̃ = z−1Γ ≃ TK/2;

Σret(ǫ) being the retarded self-energy of the dot and
ǫ̃0 = ǫ0 + U/2. This has been used justified theoreti-
cally by Ref. 2. When both electrodes are supercon-
ducting, for ∆ ≪ TK , a similar procedure exists and has
been used in Ref. 13 to study the dynamics of Andreev
states. We thus use these Green’s functions, adapted to
our case, and following the same steps as in Ref. 10, the
conductance gA reads

gA = 4
e2

h
(eV )−1

∫ eV

0

( ǫ

Γ̃/2

)2( ǫ

∆

)2]

dǫ. (2)

On the other hand, the model of Ref. 18 leads to a con-
ductance

gB = 4
e2

h
(eV )−1

∫ eV

0

( T (ǫ)

2 − T (ǫ)

)2

dǫ. (3)

Thus, for gA and gB to have the same expression, we ad-

just the dephasing of the scattering center to be δ
(1)
e =

(ǫ/∆) (ǫ/Γ̃) ≡ (ǫ/TK)α1(ǫ), where α1 is a function of ǫ.

The same occurs for δ
(1)
h . This form does not correspond

to a resonant level at ǫ = 0 and width Γ̃/2. In the original
model, the dot acquires some off-diagonal matrix element
in Nambu space. Very qualitatively, this favors direct An-
dreev reflexion of a wave incoming on the dot. Since, for
the whole structure, |rN |2 + |rA|2 = 1, there will be less
normal scattering. The amount of normal scattering in-
creases as (ǫ−ǫF )2 instead of (ǫ−ǫF ) for the normal case.
Let us denote by Gret

dot 1,1 the upper Nambu component
of the retarded dot Green’s function, calculated with-
out the many-body corrections, using the renormalized
parameter Γ̃ and putting aside the usual multiplicative
renormalization factor z. For energies higher than the
gap, the form of the normal part of the spectral density
of the dot ρ1,1(ǫ) = −π−1 ImGret

dot 1,1 is very close to the
usual shape for the normal case. Surprisingly, this per-
sists down to energies barely larger than ∆. Of course,
this is not the exact ρ1,1(ǫ) but this feature seems to
be shared by more elaborate numerical solutions for the
S-dot-S case, such as numerical renormalization group
(NRG)11 or functional renormalization group (fRG)14,17.

Many-body calculation: Now, we want to put the
many-body corrections since TK is not infinite. The elec-
trons build the Kondo resonance from hopping to the
normal lead and also from hopping to the superconduc-
tor. Unlike the normal case, the argument of doping
the normal side to establish the floating of the Kondo
resonance3,6 does not work directly, because doping the
metal and changing the chemical potential for the elec-
trons will also change it for the holes. However, for

∆ ≪ ǫ ≪ TK , δ
(1)
e is linear in ǫ, (α1 becomes energy

independent) and the argument can be used. Thus we
have to cancel the linear contribution in 1/TK of δe by
a many-body interaction between electrons (and holes),
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as in usual Fermi-liquid theory. The fixed point Hamil-
tonian is

HFP = H0 +Hint, (4)

with H0 being the one-body Hamiltonian, involving scat-
tering states (first order in 1/TK) and Hint is the inter-
action between quasiparticles. The simplest form main-
taining particle-hole symmetry is

Hint =
1

TK

[

∑

k1,k2,k3,k4

β1(ǫk1
+ ǫk2

+ ǫk3
+ ǫk4

)

×
(

b†k1,↑b
†
k2,↓bk3,↓bk4,↑ +B†

k1,↑B
†
k2,↓Bk3,↓Bk4,↑

)

]

, (5)

with bk,σ = (ck,σ,L + ck,σ,R)/
√

2 and Bk,σ = (c†−k,σ,L +

c†−k,σ,R)/
√

2 with σ = −σ and β1(ǫ) is a function of en-
ergy. Here, a right-mover state with energy ǫ will have
some normal reflected part. No elastic scattering Hamil-
tonian is necessary6.

Because of Hartree-Fock corrections to order one in β1,

the dephasing δ
(1)
e will be changed to δ

(1)
e − (β1/TK)δnσ,

so that β1 = α1 to cancel the 1/TK overall contribution.
The main assumption of this paper is that this can be

continued all the way down to ǫ = 0. Then, β1(ǫ) will
have to cancel α1(ǫ).

Now, we calculate the average current in the Keldysh
formalism, perturbatively to order 1/T 2

K , following the
method of Ref. 5. The right mover scattering states are
thus of the form, in Nambu space, far on the left of the
scattering center

ψR(ǫk, x) =
1√
k

[

(

eikx+rNe
−ikx

)

(

1
0

)

+rAe
−ikx

(

0
1

)

]

.(6)

The left-mover scattering state consists in sending a hole
from the left, which is partially normally reflected and
also Andreev reflected as a left propagating electron. At
the one-body level, the current operator has two compo-
nents and is then expressed in terms of the BdG wave
function, and falls into three parts, IR, involving only
right-moving scattering states, IL with solely left-movers
and IOD which involves both right and left-movers. Each
of these three terms gives rise to two contributions. One
contribution, denoted by subscript 1 comes from the elec-
tron part of the two component Nambu wave function
and the other one from the hole part (subscript 2). For

example IR,1 =
∑

k,σ(1 − |rN |2)ψ†
k,σ,R,1ψk,σ,R,1, with

ψk,σ,R is the operator creating a two-component Nambu
right mover, and ψk,σ,R,1 denotes its upper component.
rN and (1 − |rA|) are order 1 in 1/TK . We could work
with these scattering states but we prefer to use the zero-
th order scattering states, (i.e. rN = 0 and |rA| = 1).
This is at the price of having to introduce an elastic
scattering Hamiltonian. The fixed point Hamiltonian is
H ′

FP = H ′
0 +H ′

α +H ′
int where H ′

0 is the Hamiltonian for

a perfect scatterer (zeroth order in 1/TK) and

H ′
α =

1

πνTK

2
∑

i=1

∑

k,k′,σ

[ǫk + ǫk′

2

]

×α2(ǫk + ǫk′)B†
k,σ,iBk′,σ,i, (7)

with B†
k,σ,i = (Φ†

k,σ,R,i +Φ†
k,σ,L,i)/

√
2, where Φ†

k,σ,R,i are
the Nambu components of operators creating a scattering
state to zeroth order in 1/TK. α2 is adjusted so that H ′

α

gives the same dephasing δe to order 1/TK as H0 (Eq.
(4)). α2 is proportionnal to α1; we obtain α2(ǫ) = Aǫ/∆,
with A = 2. The two-body Hamiltonian is written in the
form

H ′
int =

1

πνTK

2
∑

i=1

∑

k1,k2,k3,k4

β2(ǫk1
+ ǫk2

+ ǫk3
+ ǫk4

)

×B†
k1,↑,iB

†
k2,↓,iBk3,↓,iBk4,↑,i, (8)

β2 depends on energy ǫ. For the same reason
that β1 and α1 were not independent, β2 and α2

are also linked. We find β2(ǫ) = Bǫ/∆ with
B = 2. For calculating the inelastic part, it suf-
fices to expand to second order in β2 the quantity

(1/2)
∑

η=±〈TC I(tη) exp
(

−i
∫

C
H ′

int(t
η1)dtη1

)

〉, where η

and η1 are Keldysh indices, C denotes the Keldysh con-
tour and TC the corresponding time ordering. Lumping
these with the elastic backscattering contribution results
in the following expression for the averaged current

eV/∆

g

4e
−−−−−2

/h

0.5 1.0.
0.95

1.

FIG. 3: Conductance in units of 4e2/h vs. eV/∆ for ∆/TK =
0.2, taking into account the many-body terms (solid line), in
the resonant level approximation (dash-dotted line) and for
infinite TK (BTK result), (dashed line).

〈I〉 = 4
e2

h
V

[

1 −
(A2 + 3B2

20

)(eV

∆

)2( eV

TK

)2]

. (9)

As usual, this can be retrieved in a simple way by using
Fermi golden rule for the elastic process and the three
inelastic processes, (R,R) → (R,L), (R,R) → (L,L)
and (R,L) → (L,L), where R is a right-mover and L
a left-mover. For example, for the second process, two
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right-movers are backscattered; one right-mover carries
a charge e for the incoming electron and also e from the
Andreev reflected hole, so 2e in total. The current is of
the form (1/2) d(NL−NR)/dt, where NL (R) is the oper-
ator number for left (right) movers and the change in the
current is 4e. The diagram multiplicities are the same as
for the normal case but phase space integrals are differ-
ent because of the ǫ dependence of α2 and β2. Collecting
the four contributions gives the average current

〈I〉 = 2

∫

[

α2
2(ǫ) (2e) Γα(ǫ)mα

+
3

∑

j=1

β2
2(ǫ)e∗j Γβ,j(ǫ)mj

]

dǫ, (10)

where the factor 2 comes from the spin; Γα(ǫ) and
the Γβ,j are 2π/~ times the right mover self-energies
due to the above mentionned processes and m is the
multiplicity of the diagram. For instance, for the sec-
ond process, m2 = 2 and e∗2 = 4e, so that the
contribution is 2B2(π2ν2T 2

K)−1m2e
∗ ν2J , with J =

∫ eV

−eV
(ǫ/∆)2(2π/~) (1/4)

∫ ǫ

−eV
dx

∫ ǫ−x

0
dy dǫ. For the

first and third processes, e∗1 = e∗3 = 2e and m1 = m2 = 4,
but the self-energy triple integrals obtained by integrat-
ing Γβ,j(ǫ) on energy ǫ give a contribution 1/16 smaller
than for (R,R) → (L,L).

These results are summarized in Fig. 3, showing the
conductance g = 〈I〉/V versus eV/∆, in units of 4e2/h,
for ∆/TK = 0.2. Many-body terms make g decrease. In
the case of ∆/TK = 0, the BTK result19 is retrieved. For
comparison, the result given by a resonant level formula-
tion, without the many-body terms is shown.

Noise: We now turn to the zero frequency shot-noise
calculation. As, to zero-th order in α2 and β2, there is
no partition noise (unlike SU(4) case5,6), applying the

Schottky formula for each process is sufficient4. As in
the normal case, direct inspection of the four processes
gives

S = 4

∫

[

α2
2(ǫ) (2e)2 Γα(ǫ)mα

+

3
∑

j=1

β2
2(ǫ)(e∗j )

2 Γβ,j(ǫ)mj

]

dǫ. (11)

The resulting Fano factor with A = B = 2 is thus 10/3,
to second order in eV/TK for any eV ≤ ∆.

The finite frequency noise is now discussed. For a nor-
mal NS junction, at zero temperature, the absorption
finite frequency noise S(ω) goes to zero for ω > 2eV .
Here, within perturbation theory in Keldysh to second
order in 1/T 2

K , this is again the case. However, inspec-
tion of the diagrams suggests that inelastic terms bring
more noise than in the case of an imperfect NS junction
having the same Andreev conductance.

In conclusion, we have proposed a generalization of
the floating of the Kondo resonance to the case where
one electrode is superconducting, in the regime of small
∆/TK , close to the unitary limit. This enables a calcula-
tion of the many-body correction to the subgap Andreev
current and zero frequency noise. Remarkably, the Fano
factor sticks to the value 10/3 as long as eV ≤ ∆. In
the region eV ≥ ∆, not studied here, it is expected to
decrease and to reach eventually the normal state limit
5/3 for eV ≫ ∆.
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