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Ultrasonic Reflection Tomography Vs. Canonical Body
Approximation: Experimental Assessment of an Infinite Elastic
Cylindrical Tube
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Comparisons were made between the results obtained using two quantitative ultrasound imaging
methods on the solid cross section of a cylindrical tube that is infinite in the axial direction. The first
method tested was the classical reflection tomography method based on the first-order Born approxima-
tion, which can only be used under conditions to obtain limited reconstruction of the external boundaries
of the high contrast scatterer. The results were compared with those obtained using another inversion
scheme based on the Intercepting Canonical Body Approximation (ICBA) in a large frequency range,
which gives accurate complete geometrical information about the tube (thickness measurements). The
numerical and experimental results obtained show the feasibility of the latter approach.
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1. INTRODUCTION

The development of ultrasonic characterization and imaging methods for use on elastic
cylindrical tubes is of great importance in several medical and technical fields, where these
methods are required for bone imaging and nondestructive testing of steel tubes, for
example. In the case of elastic tubes showing high impedance contrast with the surrounding
medium (soft tissues in medical applications, water or coupling gel in nondestructive
testing), ultrasonic propagation is greatly perturbed, which gives rise to imaging problems.

Many authors have dealt with ultrasonic characterization and imaging of elastic tubes. The
aim of most previous studies has been to assess the thickness of the tube (as part of its geo-
metrical conformation) and to calculate the speed of sound (an acoustical parameter) of the
compressional wave crossing the structure. To study the shape of elastic tubes, measure-
ments can be made in a plane parallel to the generator axis (in the z-direction), using an ‘axial
or transverse measurement’ procedure, or in a perpendicular plane, using a ‘radial or
cross-sectional measurement and imaging’ procedure. Our group is particularly interested in
the cross-sectional imaging method, which we have approached as a problem where ultra-
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sonic waves are scattered by a solid cylindrical cavity. The ultimate aim is to find a means of
solving inverse scattering problems in the case of tubes. One of the prerequisites to to
achieve this aim is to solve the corresponding forward problems. Several methods have been
applied to solving forward problems, including integral equation methods, hybrid finite-ele-
ments methods and the geometrical theory of diffraction. The latter method provides asymp-
totic approximations for diffracted fields, which are valid at high frequencies and at large
distances from the diffracting body. Several imaging strategies are possible in this context
but to obtain real time imaging, simple, efficient and accurate numerical methods of model-
ing the forward and inverse problems are required.

Our Ultrasonic Reflection Tomography (URT) method, based on the inverse Born ap-
proximation, is one of these strategies.' This method has proved to be accurate and gives
promising results in terms of the shape of the tubes tested (qualitative tomography). In the
case of materials showing high acoustical impedance contrast with the surrounding medium,
however, it is not possible to reconstruct the inner cavity or to determine the acoustical pa-
rameters (such as the velocity and/or the attenuation of the sound waves) without correcting
for wave propagation through the water/shell interface. The main reason for this problem is
that the Born approximation solving the forward problem is valid for objects showing a
weak impedance contrast with the surrounding medium (high frequency approximation).
Modeling an elastic tube with a model where the acoustic properties are too similar to those
of the surrounding medium results in tomograms containing geometrical aberrations as far
as the dimensions of the shell are concerned.

In this paper, anew model based on a canonical approximation is presented for solving the
forward problem. The modeling procedure used here is based on the Intercepting Canonical
Body Approximation (ICBA) method developed by A. Wirgin and his group.” In contrast
to straight ray theory, no limited configuration of the scattered field is required. The ICBA
method consists in replacing the real scatterer at each observation point by an object having
simple geometrical characteristics and known acoustical properties, and the solution of the
forward problem has to be canonical (i.e., it has to be previously determined analytically).
For example, in the case of a noncircular elastic tube, a circular tube having the same inner
and outer radii as the local radii of the real object in the measurement direction would pro-
vide a suitable model.

Here we deal with the case of an elastic cylindrical tube, which is infinite in the z-direction
and is immersed in a homogeneous fluid, namely water. Note that the real object is not neces-
sary centered or circular, as required in the case of the model used for ICBA. Its cavity is
taken to be weakly heterogeneous in comparison with the wavelength. In fact, we consider
weak the local fluctuations in the acoustic characteristics of the cross-section of the scatterer.

This is an iterative tomographic approach requiring preliminary a priori information. We
distinguish between high-level a priori knowledge about parameters such as the density, ve-
locity of the waves propagating in the shell, and thickness of the ‘medullar’ canal, and
low-level a priori information about parameters such as the outer radius or acoustic parame-
ters of the surrounding medium. We will therefore focus on determining the thickness of the
tube by studying the resolution of the images. Other physical parameters such as the densi-
ties and velocities are set in this work at their exact values. A sinogram (diffracted angle vs.
time) based on experimental measurements and numerical simulations is drawn up. The
cross-sectional image of the tube is first determined using URT and a filtered back-projec-
tions algorithm.” The determined external boundary of the scatterer is then used as the
low-level a priori information. The second approach (that based on ICBA) was developed in
order to optimize the inverse problem. The accuracy of the boundaries and, hence, the thick-
ness is thus improved. The particular case of a tube having a similar thickness to the wave-
length of the wave in the water will be studied.
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The classical ultrasonic tomography method is described in section 3. The ICBA approach
to the forward and inverse problem is presented in section 3 and results obtained on numeri-
cal and experimental scatterers are given. The results presented in section 4 are of consider-
able importance in the field of ultrasonic imaging.

2. CONFIGURATION AND STATEMENT OF PROBLEM

Physical considerations

The elastic and acoustic properties of the material in the cross-section of the tube are taken
to be isotropic. This elastic scatterer mediates the propagation of complex elastic volume
waves, namely compressional P-waves and shear vertical SV-waves (shear horizontal
SH-waves are not taken into account here). Since the acoustic impedance of the tube con-
trasts strongly with that of the surrounding water (the scatterer is immersed in a water tank),
the ultrasonic propagation is greatly perturbed by refraction, attenuation and scattering of
the waves.’

The frequency bandwidth used here in the cross-section imaging was 0.25-1MHz. The
wavelengths occurring in the tube — typically 2 -16 mm at compression waves velocities
ranging between 2,000 and 4,000 m/s — were therefore much greater than the macroscopic
porosity and the microstructural scale of the shell (= 1 mm). The tube was therefore taken to
be weakly heterogeneous (small perturbations of the propagation) and to consist of a homog-
enized equivalent medium. It was assumed that the ultrasonic wave in the shell was not dis-
turbed by the microstructure. The latter assumption is necessary to be able to introduce a
linearized propagating theory and to adopt an asymptotic approximation. On the other hand,
the wavelength (1.5, 6 mm) in water (c,~ 1,500 m/s) is smaller than the diameter (= 10 = 2
mm) of the object. The ka product, where k = w/c is the wave number and a is the mean-ra-
dius of the tube, ranges between 6and 25 and the configuration is therefore nonresonant.

Geometrical considerations

In this section, it is proposed to study the homogeneous noncircular solid tube, the physi-
cal properties of which are known. The canonical 2-D geometry considered here is shown in
figure 1. The surrounding medium consists of a linear, homogeneous, uncompressible fluid
(a water-like fluid, for example). The noncircular elastic cylindrical cavity has generators
placed parallel to the z-axis and is immersed in the surrounding medium . We define in the
xy-plane: p, the density and c, the velocity of the propagating wave in the surrounding me-
dium and the hollow area, p, the density of the cavity and ¢, and ¢, the velocity of the propa-
gating longitudinal and transversal waves. We take »,(0,) and r,(0, ), to denote the radius of
the external and internal boundaries, respectively, of the cavity at the observation angle 0, .

It will be assumed that high-level a priori knowledge is used for p, and c,. The external ra-
dius 7, and internal radius », are unknown and the aim of this study is to determine these radii.
However, we assume that these radii are included in a limited set of values (corresponding to
the low level a priori information).

3. ULTRASONIC SCATTERING PROBLEM

Here, we deal with the forward scattering problem, i.e., predicting the scattered field when
the scattering medium and incident field are assumed to be known, as well as with the inverse



4 LASAYGUES AND LE MARREC

——
#-' ‘-‘
o -

d ¥

F'y
r I
/ 1
2 ;
/ | N
! rl | I]D LY
! \
! 1
! i
) d-
\ P ox
1 |
L) f
\ i
LY i
7
; /
transmitter Q ,/
R \ pO, CO 4
~ - -~
W -
- - -

el S

FIG. 1 Noncircular cylindrical elastic cavity: geometrical and acoustical configuration.

scattering problem, i.e., retrieving the boundaries of the medium from the measured (or sim-
ulated) incident and scattered fields, all the material properties being known. First, we look
at the forward problem in order to obtain the state equation, which is essential to solving the
inverse problem.

Since inverse problems are nonlinear and ill posed, one of the consequences is that there is
no single solution. In most ultrasonic scattering problems, approximate models (such as the
first-order Born approximation or canonical approximation)’ are used and it is generally
necessary to find a means of eliminating solutions, which do not correspond to the real pa-
rameters (Delamare et al.” have proposed a technique based on Born approximation). To de-
tect the boundaries of a high-contrast cylindrical cavity, we establish that:

1. The scattering problem can be linearized using the first-order Born approximation
method. If the Green function of the unperturbed problem (the surrounding medium €2,) is
known, we can solve the direct problem with the Lippmann-Schwinger integral equation
and the far field solution of the equation can be calculated. The inverse problem can then be
solved using a tomographic algorithm to obtain a perturbation map with respect to the refer-
ence problem.

2. A rational method of improving the resolution consists in combining canonical approxi-
mation with the analysis of a functional (cost-function) measuring the gap between the scat-
tered and predicted fields. The functional chosen for this purpose is generally the least-mean
square estimate obtained as follows:

’ (1)

m? m?

Fx ;X ;0, @) =’PP(55,,,;CO,¢’) - PF(T ; X, 0,0
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where P’ (%, ;m @) is the predicted and P°(t,; X, ; & @) the estimated scattered field.
These fields are function of the pulsation o, the observation pointx, =(r,,, 6,,) and incident
angle 0,, this latter parameter being expressed through the diffracted angle $ =0, - 6,,. The es-
timated field depends on the unknowns (radii) it is proposed to reconstruct. We denote these
unknowns using general term, the vector t_.

As a canonical approximation of the interactions between the wave and the body, the In-
tercepting Canonical Body Approximation (ICBA) has proved to be an efficient forward
solver both in and beyond the resonant domain in the case of full and hollow elastic cylin-
ders. We will see below how an ICBA extrapolation of the nonresonance diffraction can be
used to image the shape of the cavity.

Born modeling and reflection tomography

The goal of ultrasonic tomography is to reconstruct the spatial distribution of some of the
geometrical parameters of an object from scattered ultrasonic measurements. These mea-
surements are carried out at variably-dense sets of transmitter and receiver positions and in-
terrogating wave frequencies.

The inverse scattering problem is solved using a Born approximation, which gives a par-
ticularly simple and attractive linear relation between the object function and the scattered
field, particularly in the far-field (2D or 3D Fourier transform). This makes it possible, in
principle, to reconstruct the object function practically in real time when a sufficiently large
set of scattering data is available.

Asymptotic considerations

The basic principles of URT have by now been clearly established in the case of weakly-
varying media such as low-contrast structures, i.e., almost homogeneous media.’ The refer-
ence medium chosen can therefore be a constant medium (forming a constant background),
yielding an Inverse Born Approximation (IBA). In the case of our configuration, we take Q,
to denote the known background expressed in terms of the density p, and the velocity ¢,, and
Q, to denote the unknown perturbation (scatterer) expressed in terms of the homogeneous
density p, and the velocity c,.

Under weak scattering conditions (p,c, = p,c,), the following temporal equation based on
the Pekeris equation describes the acoustic propagation processes occurring in the medium
(including the boundary and Sommerfeld conditions):

)

{—izg - +A}p(xm,t) - —“(fm) % + grad p(3,,1).grade (3,) — % gradp(3.,1).grado(3,)
c, Ot c, :

where p(X,, , 1) is the acoustic pressure.
a, =(¢/(¥)—cg)/c](X) is the quadratic fluctuation of velocity and &X)=
log(Z, (x)/ Z,) is the logarithmic fluctuation of acoustic impedance, Z, (x) = p, (¥)c, (X).
If the Green function of the nonperturbed problem is given, we can find the total pressure
field in QO using the Lippmann-Schwinger integral equation:

p(x,.,t) = p'(X,,t)+p(x,,1) 3)

where p* (x,,,#) denotes the scattered field in Q given by:

m?2
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“
p(x,t) = —j; @ d’p + grad p.gradé ——gmdp grado d’x'
4n|x - | ¢ ot (e 2
One can calculate the far field solution of this equation in the directionn =x,, / ‘x in the

case of an ideally pulsed plane-wave insonification, with the incidence 7, —x0 / ‘xo

nx 5
p[(im,l)= S[t_l’lo.me (5)

¢

Under backscattering conditions ( # = —7,, ) and within the first-order Born approximation
(single-scattering), the asymptotic solution of Eq.(3) is:

ooz o ©)
p (xmﬁt)_—_.hd(l m) -
4nf3,| <
where A, is the first-order far-field response of the medium:

v (= N_C O e (7
h, &, Z o {R[a(xs)d x}

2

where x; is the 7, axis. In this case, the parameter o is eliminated.
In the space-frequency domain, the backscattering transfer function is given by:

d(l)(no’o‘)) _2kzé([2) (8)

where

§K)=[e(@e " d'

is the Fourier transform of the logarithmic fluctuation of the acoustic impedance and
K= —2kn, is the wave vector.

If one takes only the amplitude of the echoes in account, one obtains a (71, ©) = r(K ),
where r(K ) is the spatial Fourier transform of the reflectivity of the medium r(x).

The purpose of URT is to obtain reflectivity images from backscattering measurements.
Rotating the emitter-receiver transducer around the ‘object’ and emitting broadband pulses
at each position leads to the same situation as in X-ray tomography; one obtains slice-by-
slice spectral coverage of the object spectrum A(K). Any tomographic reconstruction algo-
rithm can therefore be used to perform the reconstruction. We chose an algorithm of summa-
tion of the backprojections of filtered projections.’
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Tomography of a high-impedance contrast scatterer

In the ultrasonic characterization of high contrast bodies, it is not possible to use the IBA
with a ‘constant’ background. For example, hard biological tissues (such as bones) are quite
heterogeneous and their acoustical characteristics are very different from those of the sur-
rounding soft tissues (or water in vitro). The problem arising with the tube-thickness imag-
ing is how to identify a water-like cavity within an elastic cylinder. In this case, an IBA with a
‘variable background’ can be used. The background can be defined in terms of the following
two parts: on the one hand, a solid part without hollow/water, and on the other hand, the per-
turbation, i.e., the object to be reconstructed, namely, the cavity. Based on the acoustical as-
sumptions adopted, the shell is weakly heterogeneous (in comparison with the wavelength)
and therefore gives off weak echoes. IBA can therefore be used to obtain a good approxima-
tion for the inverse scattering problem. The algorithm of tomographic reconstruction by
summation of the filtered backprojections can be used with some signal processing refine-
ments.'’ Due to the high contrast impedance, artifacts are generated in the image by the scat-
tering process (the Born approximation is a single-scattering theory). However, the main
result will be preserved: the basis underlying the ‘perturbation® will be detected, i.e., a quali-
tative image of the cavity will be obtained.

Wide-band imaging using canonical approximation

Analytical considerations

In this section, we deal with the ultrasonic imaging of 2-D elastic media based on
multifrequency, multiview synthetically- and/or experimentally-generated data. The goal is to
determine a geometrical parameter of the non-circular elastic tube cross-section from measure-
ments of the scattered pressure field resulting from interactions between the scatterer and the
known incident wave. We focus on the high-frequency domain, where the object is larger
than the wavelength of the ultrasonic wave (ka > 1).

In our configuration, at observation point X, in €2, we write the total pressure field:

PG, o, ®) = PE, o, ®)+PE, o, ®) 9)

where P* (%, ; @ @) is the Fourier transform of p* (X, ,#) and denotes the scattered field in
Q,and P’ (X, ; » @) is the Fourier transform of p'(x,,,7) and denotes the incident field ex-
pressed by:

P[(fm, o, (D) — Poeﬂ?.xm (10)

where o is the pulsation and K is the wave vector in the surrounding medium Q.

The acoustic fields are governed by the Helmholtz equation and the scattered field satis-
fies the usual conditions (Sommerfeld radiation conditions, continuity of pressure and nor-
mal velocities at the interface).

The inverse problem is approached using the ‘Intercepting Canonical Body Approxima-
tion’ (ICBA) method developed by A. Wirgin et al’ to solve the inverse scattering problem in
the resonance domain. Knowing the position of the receiver in relation to the emitted ultra-
sound source, it is assumed that the scattering process at observation point X, is identical to
that which would have been produced by an acoustically identical circular cylinder with an
‘apparent’ radius equal to the radius of the object in the measurement direction subjected to



8 LASAYGUES AND LE MARREC

the same conditions of insonification. The main advantage here is that this procedure can be
used even in cases where there is a high impedance contrast.

The estimated field P is the field scattered from a centered circular cylinder having the
same density p, and the same velocity c, as the object and radius #,° equal to the local radius
of the object in the measurement direction 6_. Using the partial wave expansion method, we
obtain the following expression forx, =(r,,0,) € Q:

PG, f)=A) YBGO..f) i e H"(kr)cos@O-0) IV

N st Y|p| < 107

n=N-10

where k, =2nf / ¢, H " is the first-kind Hankel function of the order n, ¢, is the Neumann
factor (¢, =2 for n > 1), and the scattering coefficient B, is exactly evaluated using the Ray-
leigh-Fourier method."

To estimate the unknown r,, =7°(98,,), we seek to minimize the cost function,

2

(12)

=1

F( ;

m?

. N = P(E, f) - PGs K, f)

Since a broadband incident pulse is used, a set of backscattering measurements at L con-
secutive frequencies (corresponding to 99% of the pulse spectrum) is available for a given
0, If these multifrequency data are treated independently, the number of admissible solu-
tions will increase. In the same way, searching for the minima of each of the cost function
corresponding to the various frequencies and then applying a postprocessing algorithm to
determine the unique solution requires as many minimizations as frequencies. This is also
the case with methods based on an iterative frequency algorithm. Whereas the method pre-
sented here is based on the minimization of a single cost function, the ‘mean cost function’ is
defined by

- L 13
Fai %) = + % Fas 5 ) "

Numerical simulation

To evaluate the validity of the method, we first performed imaging on the basis of synthe-
sized data. The measurements are obtained by solving the acoustic wave propagation prob-
lem in 2-D numerically. The method used for this purpose was based on mixed finite
elements for the space discretization and on a centered 2nd order finite difference scheme for
the time discretization."”

The object is a noncircular cylinder, the cross-section of which is shown in figure 5. The
acoustical properties used in the simulations are p, = 1,000 kg/m’, ¢,= 1,500 m/s, p, = 1,800
kg/m’ and ¢, = 4,000 m/s. Note that in this simulation, all the materials are fluid-like and, in
particular, the object is not elastic.

P"(%,,f) is measured at 16 points equally distributed on a centered measurement ring
with radius 7, = 12 mm (near field). The waveform of the incident pulse is a normalized sec-
ond derivative of a Gaussian function. Two probing pulses are simulated: the ‘low frequency
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FIG. 2 Reconstruction of r(n/4). (a) amplitude of cost function at three frequencies, f,(solid), f,(dash) and
f,(dot). (b) single frequency cost function as a function of frequency and estimation parameter (HFT).

insonification’ (LFI) pulse with a central frequency f, = 250 kHz and the ‘high frequency
insonification” (HFI) with f, = 1 MHz. Since the mean radius of the object is 6 mm, the first
insonification corresponds to an excitation in the resonance region (ka = 6) while the second
insonification is beyond the resonance region (ka = 25). Since ICBA is a monochromatic for-
ward solver, the time-domain measurements are converted into frequency domain data us-
ing a Fast Fourier Transform algorithm.

Frequency behavior

To analyze the role of the frequency in the inversion algorithm, we first compute the single
frequency cost function (Eq.(12)) at different frequencies. The parameter of interest is the
local radius 7, (n/ 4) = 5.4 mm and the data are the scattered field measured at 0, = /4 (i.e.,
backprojection, 8, = +0,).

Figure 2a gives the cost function for three different frequencies, ;=250 kHz, f, = 500 kHz
and f; = 1 MHz. Note that each of the cost functions has a minimum (not always global)
value, which is near the exact solution. However, other estimates (e.g., ,° = 2.5 mm) also
correspond to the minima of all the cost functions. Careful postprocessing is therefore re-
quired when using this algorithm with a small number of frequencies.

Upon plotting the local cost function vs. all the frequencies of HFI (Fig. 2b), it was ob-
served that at a given frequency, a periodic distribution of the minima occurs and the period
corresponds to the half wavelength. The attraction domain of each solution can be said to be
one half wavelength wide and to be centered on each admissible solution. Moreover, a line of
local minima can be observed at which the estimated parameter is approximately equal to the
solution and varies weakly with the frequency. This suggests that the reconstruction will
never be perfect but that an approximate solution can be obtained with a resolution smaller
than the wavelength.

Figure 3 gives the mean cost function Eq.(13) corresponding to the reconstruction of the
local radius with HFL. The sum in Eq.(13) is based on three frequency domains D,_, , , cen-
tered on the central frequency and cover 33%, 66% and 99%, respectively, of the available
frequency range. The variations in the cost function decrease and the minimum correspond-
ing to the optimum solution becomes more obvious (i.e., easier to estimate) as the frequency
range increases. Averaging over the frequency has a constructive effect on the minimum,
which is frequency invariant, and a destructive effect on the others. Moreover, the fact that
the attraction domain of the global minimum conserves the same width in all frequency do-
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FIG.3 Mean cost function for 7 (n/4) in three frequency domains: D (dot) = 33%, D,(dash) = 66% and D (solid) =
99% of available frequency range.

mains means that this width depends more strongly on the central frequency than on the fre-
quency range.

In figure 4, we compare the reconstruction obtained using the full-frequency spectrum
(domain D ) with HFT and LFI. Note that the number of local minima increases with the cen-
tral frequency f. In both cases, the deepest minimum is very close to the solution and will be
referred to from now on as the ‘optimal estimate.” The absolute errors in each frequency do-
main (0.019 mm with LFI and 0.048 mm with HFI) are far smaller than the wavelength in
both cases. The resolution seems to be independent of the frequency domain, although this
parameter affects the width of the attraction domain.

Boundary evaluation

Having estimated the local radii, it is now proposed to define the total boundary as a func-
tion 7(0) of polar angle 6. Considering a smooth boundary, we suppose the following form of
this function,

r@)= i(ps cos(s0)+y sin(s0) (14)

This can be interpreted as a Fourier decomposition at a finite order of the boundary. Note
that in this case the unknowns are the coefficients ¢_and y,_. Each local mean cost function is
minimized on D, taking 15 initial guesses equally distributed over 3 mm and 10 mm using a
quasiNewtonian algorithm (NAG Fortran subroutine EO4JYF). The optimum local esti-
mates are introduced into the left side of Eq.(14) and thus define a linear system, which is
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FIG. 4 Mean cost function for on D, = 99% of available frequency range, LFI (dash) and HFI (solid).

solved in order to find ¢, and y_. In this example, we use S = 4 (the additional terms are not
significant). Both LFI and HFI yield satisfactory reconstructions (Fig. 5).

4. EXPERIMENTAL RESULTS

Water-tank measurements

The experimental setup used here was designed for performing diffraction measurements.
The acoustic device could be moved with various degrees of freedom to analyze samples in
all directions. The positions of the target and transducers could be adjusted. In particular, the
operator could prescribe exact rotations and translations on the transmitter and receiver.
During all these measurements, the wave velocity in the water tank was 1,480 m/s.

Ultrasounds were generated using a Panametric” pulse/receiver and Imasonic” piezo-com-
posite wideband transducers. The nominal frequency of the transducers was 1 MHz and the
usable bandwidth of the transducers was approximately 0.5-1.5 MHz. The axial resolution
was 3 mm in water (with a pulse of 4 ps) and the lateral and azimuth resolutions were both 2
mm. Echoes were therefore occurring as the result of interactions with the ultrasonic beam at
a volume of approximately 12 mm’.

The object was placed in the center of the bench. Ultrasonic measurements were per-
formed in water at room temperature. The sector scanned was typically 180°/360°, i.e., there
were 180 view angles with an angular increment of 2°. In our application, the diffraction
mode was reduced to the reflection mode with a single transducer. In this case, the diffrac-
tion angle corresponded to ¢ =0, + 0, = 180° (n/2 rad), and the projections corresponded to
the backscattering echoes. Transmitted and received ultrasound radiofrequency (rf) signals
(1,024 samples in all) were digitized (8 bits, 20 MHz) using a numerical oscilloscope and
stored on a computer via a General Purpose Interface Bus for off-line analysis.
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The whole system architecture was based on two personal computers, one of which was
devoted to the automatic piloting of the data acquisition process and the other to signal pro-
cessing and image reconstruction. The image size was 512 x 512 pixels.

Circular elastic tubes

When testing our methods, we managed to reconstruct academic test-targets successfully.
Although the information inside the tubes is also important and interesting, it has been im-
possible so far to obtain this information reliably at the experimental level. However, the
densities and velocities can be estimated using simple parallelepiped-cut samples generated
in ultrasonic experiments. To check the results of these experiments, we compared the radii
of the tubes obtained from URT with those obtained from ICBA.

The test targets used here were homogeneous, isotropic circular Plexiglas tubes. The den-
sity was p, = 1,200 kg/m’ and the mean velocity of the compressional wave was ¢, = 2,700
m/s. The external radius (r,) of the tubes was 6 mm and the inner cavity radius (»,) was 4 mm.
Note that the real object was not centered here, contrary to what is assumed to be the case in
the canonical approximation.

Figure 6 gives the results of the second set of experiments. The sinogram was obtained on
the tube after performing angular scanning in the same configuration as the previous mea-
surements.

Since the axial resolution of the transmitted signal is 3 mm (with a 4-us pulse), the bound-
ary echoes on the shell (shell thickness: about 2 mm) are confused and the resulting
tomogram does not clearly show the inner cavity. The object is oversized and the external
boundary is therefore not correctly assessed. On the tomogram (Fig. 6b), it can be noted that
the radius was given as 12 mm instead of 6 mm. In addition, the wavelength of the 1 MHz
wave is 1.5 mm in water, which is also similar to the wall thickness. Because of the low im-
pedance contrast, the resolution limits of first-order Born tomography were reached. It is
therefore strictly impossible to determine or define the external boundary and the thickness
of the tube from the tomogram (Fig. 6b).

The value of using a canonical approximation rather than a Born approximation in addi-
tion to an analytical approach can be clearly seen from figure 7. With the ICBA method, the
dimensions of the tube were fairly accurately determined (<7%). The absolute error in the
thickness of the tube was one tenth of the wavelength in the surrounding medium. This result
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FIG. 6 Ultrasonic tomography of a circular plexiglas tube (ka = 25). (a) sinogram, 180 backprojections through
360°, 1024 samples. (b) tomogram 512 x 512 pixels. (c, d) x and y pixel profiles drawn at x =y = 0 mm.

is most encouraging, especially considering the deviation of the real object from the center
of'the measurement frame, which introduces a considerable difference between the real scat-
tered field and the model (centered tube). Thanks to the analytic model used for the inversion
procedure, the whole section was reconstructed in only a few minutes. The efficiency and ro-
bustness of this method have been established in the case of several numerical examples by
Le Marrec et al.” The mean cost function of the back-scattering data was used here as a func-
tion of the local radius, while mean values were used for the velocities and the density. The
admissible solution for the local radius therefore seems to be independent of small errors in
the acoustical parameters. This makes section reconstruction possible without any ambigu-
ity, even if the assumptions about the acoustical parameters are wrong. This does not mean of
course that backscattering reconstruction makes it possible to estimate acoustical parameters.

Measuring parameters other than the backscattering, such as the diffraction or transmis-
sion, associated with an adaptation of the ICBA method gives better shape reconstruction
and reasonably accurate acoustical parameters.

5. CONCLUSION

This paper deals with the two-dimensional image reconstruction of tubes using ultrasonic
Born tomography and a new canonical approximation. The latter improvement makes it pos-
sible to extend the scope of tomography from lower impedance contrast media (classical ap-
plications) to higher impedance contrast situations, even when the ultrasonic propagation is
greatly perturbed by the difference in acoustic impedance between the scatterer and the sur-
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FIG.7 Inversion by ICBA ofa circular plexiglas tube (ka = 25). 180 backprojections through 360°, 1024 samples
F'=20MHgz, first step ¢,= 2,500 m/s, p,= 1,200 kg/m’. (a) Cost function r,,at 8, = /2. (b) Cost function r,,at0, =
7/2. (c) geometrical reconstruction.

rounding medium. The strategy used here to solve this problem was based on comparisons
between the experimental diffracted field and the canonical solution approached as a for-
ward problem. The algorithm adopted, using the analytical solution to the local forward
problem and an iterative process to recover the unknowns, is fast enough to yield real-time
information about the shape. A single frequency does not suffice to determine the cost func-
tion and the inversion is improved by using all the frequencies present in the broadband of
the transducers. The method presented here is robust and is not perturbed by the experimen-
tal measurements or small errors in the material properties. The results are most promising,
and, in particular, this method gives an image with an error that is lower than the wavelength.

Various ways of improving this method will be investigated in the future. At present, the
algorithm is being improved as regards the detection of the global minima and reconstruc-
tion tests are being carried out on objects with noncircular geometry. This method needs to
be optimized to be able to estimate acoustical and physical parameters, such as the velocities
and the density, more accurately. For this purpose, several solutions are being investigated,
such as the possibility of introducing a larger number of scattering measurement angles in
order to stabilize the inverse problem.
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