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Abstract: 

Echography is one of the first-line techniques used in clinical practice to diagnose 

osteoarticular diseases in children. However, this technique involves the use of standard 

equipment, which is not adapted to the morphology or the acoustical properties of children’s 

bones. In this study, we developed an ultrasonic tomography method for measuring the 

cortical thickness of children’s long bones. Ultrasonic tomography gives cross-sectional 

images showing the spatial distribution of some of the physical components of an object, 

based on scattered ultrasound measurements. These measurements are carried out using 

variably dense sets of transmitter and receiver positions and various the wave frequencies. We 

solved this inverse scattering problem using a Born approximation, which yields an 

attractively simple linear relation between the object function and the scattered field, 

particularly in the far field. Experiments with a 2D-ring antenna show the applicability of the 

method and its various improvements to bone thickness imaging. (E-mail: 

lasaygues@lma.cnrs-mrs.fr) 

 

Keywords: Ultrasonic tomography, Born approximation, 2D-ring antenna, Children's bones 

imaging 
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INTRODUCTION 

Echography has long been the main first-line imaging technique used to diagnose various 

pediatric pathologies (such as abdominal injuries, urinary tract problems, congenital cardiac 

defects and brain anomalies and injuries). In the case of bone diseases, this technique is now 

proving to be an invaluable means of assessing painful traumatic and non traumatic disorders 

(such as hip dysplasia, knee trauma and stress fracture of the tibia). Cases where it is 

necessary to search for an intra articular joint effusion, an infectious periosteal apposition or a 

tumoral resurgence in contact with a stainless steel prosthesis or, more recently, for a 

traumatic ligament lesion, are just a few examples where the use of ultrasound is highly 

indicated (Falcini et al. 2000; Rand et al. 2001; Enns et al. 2004; Halaba and Pluskiewicz 

2004; Mayr et al. 2004; May et al. 2004). X-ray computed tomography, magnetic resonance 

imaging and/or bone scintigraphy, the other widely used methods available (Baert and Sartor 

2002), have various disadvantages, depending on the type of examination for which they are 

used, such as their cost, the fact that they involve X-rays or require sedation and their lack of 

availability and accessibility. Echography is non invasive, non irradiant, painless, inexpensive 

and practicable on children in bed. However, there are some factors which make it impossible 

to extend the use of this technique on patients with other osteoarticular diseases. In practice, it 

is difficult to perform pediatric bone ultrasonography, because standard echographic devices 

are not very suitable for use with hyper echogenic tissues of this kind (because of 

amplification, gain, delay line problems etc.). The usual ultrasonic probes are not always 

adapted to the morphology of the area investigated (because of the linear array, dimensions, 
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time and space resolution). The frequencies used are too high to be able to penetrate into the 

cortical bone and the underlying tissue (the medullary canal). The echographic map certainly 

reflects the varying impedance levels between tissues, but it does not depend on information 

about any particular acoustical parameter. 

Many authors have dealt with the ultrasonic characterization and imaging of adults’ and 

children’s bones. Their main aim has usually been to assess the thickness of the diaphysis (as 

part of its geometrical conformation) and to calculate the speed of sound (an acoustical 

parameter) of a compressional wave crossing the structure. These aspects are both of great 

importance. For example, the cortical thickness provides an index to the risk of fracture and 

can serve to predict fracture loads in the radius, femur and lumbar vertebrae (Wear 2003; 

Stegman et al. 1995; Foldes et al. 1995). To study the cortical area of long bones, 

measurements can be obtained in the plane parallel to their generator, using the "axial or 

transverse measurement" process (Moilanen et al. 2004, Bossy et al. 2002; Bossy et al. 2004). 

Measurements and images can also be obtained in the perpendicular plane, using the "radial 

or cross-sectional measurement and imaging" process (André et al. 1980; Lasaygues and 

Lefebvre 2001; Ouedraogo et al. 2001). 

Our group has been focusing on the second type of process, which involves solving inverse 

scattering problems, but first the corresponding forward problem has to be solved. Several 

methods have been applied to the forward problem, including integral equation and hybrid 

finite-element methods and the geometrical theory of diffraction. The latter method provides 

asymptotic approximations for diffracted fields, which are valid in the case of high 

frequencies and large distances from the diffracting body. Actually, all these approaches 

involve the "classical" problem of minimizing the differences between the modeling data and 
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the measured values. Several numerical strategies can be used to model the forward and 

inverse problems simply, efficiently and accurately. The strategy developed in this study was 

based on the use of ultrasonic tomography and the Born approximation. Ultrasonic 

tomography, which results from the linearization of the inverse acoustic scattering problem, 

makes it possible to detect any perturbations (even quite small ones) of the reference 

surrounding medium. In the case of media with weak inhomogeneities, such as soft tissues, 

the homogeneous mean medium is taken to be the reference medium. This has led to the 

development of a "constant background" method, which make it possible at the practical level 

to perform regular angular scanning with broadband pulses covering the whole spatial 

frequency spectrum of the object investigated, slice-by-slice. This leads to "reconstruction-

from-projections" algorithms, such as those used in X-ray computed tomography. In the case 

of media with considerable heterogeneities, such as bones, the problem is a non linear one and 

there is generally no single solution available. Ultrasound propagation in bone suffers from 

the severe mismatches encountered between the acoustic properties of bone and those of the 

surrounding mean medium (soft tissues). However, when the cause of the scattering appears 

to be quite small and localized in well-known media, a "variable background" method can be 

used, in which case, the reference background adopted is the water/specimen set (Lefebvre 

1994).  

In previous studies (Lasaygues et al. 2001), our group established that preliminary in vitro 

quantitative images of a human adult femur cross-section could be reconstructed using low-

frequency (< 1 MHz) ultrasonic reflection tomography. This method consists in assuming the 

cortical shaft to be a non circular cylindrical elastic cavity, which is taken to be weakly 

heterogeneous in comparison with the wavelength used (the local fluctuations in the acoustic 
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characteristics of a long bone cross-section are weak), immersed in a quasi homogeneous 

water-like medium. The aim of this study was to assess the cortical thickness of children’s 

thighbones using high-frequency (> 1 MHz) diffraction tomography (Lefebvre 1988) 

associated with an image-processing tool.  

Our tomographic approach is first explained and the computer-controlled 2D-ring antenna is 

also described. Results obtained on experimental phantoms (artificial bone) and real fibulas 

are presented. Our initial results are promising and suggest that the geometrical characteristics 

of the bones, which are known to be one of the main factors contributing to the risk of 

fracture and disease, can be determined using this ultrasonic tomographic method. 

ULTRASONIC DIFFRACTION TOMOGRAPHY 

In this section, it is proposed to present the image reconstruction algorithm and to discuss the 

problem of ultrasonic wave propagation in bone. 

The "reference" background 

Assessing the geometrical properties of a non circular cylindrical body, such as a long bone, 

from an ultrasonic scattered field is a non linear, ill-posed inverse problem. There is generally 

no single solution to problems of this kind and a suitable modeling procedure (based on first-

order or canonical approximations, for example (Wirgin 1999)) has to be used to avoid 

obtaining solutions that do not include relevant parameters.  

When dealing with weakly inhomogeneous media such as soft biological tissues, a mean 

medium is chosen as the homogeneous reference background. In this case, the scattering is 

relatively weak and the problem can be linearized with a Born approximation. If the Green 
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function of the unperturbed problem, i.e., the constant background, is known, the forward 

problem can be solved with the integral equation of Lippman-Schwinger and a far-field 

solution of the equation can be calculated (Greenleaf 1981). This "constant background" 

inverse Born approximation method, which requires regular angular slice-by-slice scanning 

with broadband pulses, yields the spatial frequency spectrum of the object under 

investigation. The inverse problem is then solved using the classical "reconstruction-from-

projections" algorithms focusing on any perturbations with respect to the reference problem 

(Kak and Roberts 1986). The details of the complete algorithm were presented in a previous 

paper (Lasaygues et al. 1997). 

When dealing with highly heterogeneous media such as bone (which involves strong contrasts 

and large objects with respect to the wavelength used), it is not possible to use the Born 

approximation with a "constant background" directly: hard biological tissues are 

heterogeneous and their acoustical characteristics differ greatly from those of the surrounding 

soft tissues (water in the present case: the body is immersed in a water tank). However, in 

cases such as non destructive testing situations, the focus is generally on flaws, which show 

up as strong inhomogeneities in well-known media. In this case, one can use a "variable 

background" inverse Born approximation method to reconstruct the perturbation (Lasaygues 

1992; Haddadin 1998). The reference background here is the water/specimen set and the flaw 

is the perturbation. We have used a similar approach here to the problem of imaging cortical 

bone thickness, consisting of identifying a water-like cavity in an elastic cylinder. The 

background, consisting of the cortical part without the hollow and the water, can be defined 

here as the set and the perturbation is therefore the hollow cavity. 
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The problem can be then reduced to studying the difference in acoustic impedance between 

the cortical part and the water. Some assumptions first have to be made about the properties 

of the bone. 

Bio acoustical considerations 

Bone tissue in humans over 10 y of age can be classified into two broad types, based on the 

macroscopic porosity. Cortical bone, which is also called compact bone, forms the outer shell 

of all long bones and its pore volume amounts to about 10%. Trabecular bone, which is also 

known as cancellous bone, is much more porous than cortical bone: it has a porosity of about 

75%. The shaft of long bones gradually widens towards the ends, the compact wall of the 

bone becomes thinner and the medullary cavity is lined with an increasingly thick layer of 

spongy bone. 

The acoustic impedance of bones (3 to 7 kg m-2 s-1) is more heterogeneous than that of the 

surrounding soft tissues (water ≈ 1 kg m-2 s-1) and this feature perturbs the ultrasonic 

propagation or, more specifically, the refraction, attenuation and scattering of the waves. 

Conventional medical echography (in the reflection mode only) with high ultrasonic nominal 

frequencies (3 – 13 MHz) therefore does not give accurate bone imaging results.  

Human cortical bone is generally assumed to consist of a transverse isotropic medium in 

which the main axis of symmetry is oriented along the longitudinal axis of the diaphysis. This 

assumption was confirmed by several independent compression and shear wave velocity 

measurements on various specimens and in various directions of isotropy (Ashman, 1982; 

Nicholson 2000, Pithioux et al. 2002). In our case, the cross-sections were therefore taken to 

be isotropic. The long bone shaft forms a long cylindrical cavity (a tube with a diameter of 
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about 15 to 20 mm in the case of the fibula) with a forward bow. This shaft has thick walls of 

compact bone surrounding a hollow medullary cavity and it mediates the propagation of 

rather complex waves similar to elastic volume waves. Several types of wave packets can 

occur, each probably corresponding to a different pathway through the object (through the 

cortex alone or through the cortex and the medullary cavity) (Cartney and Jeffcott 1987; 

Cartney et al. 1995) or even to a different propagating mode or type of wave (bulk 

compressional or shear wave, guided or surface waves) (Anderson and Kak 1984). 

Studies conducted by our group have shown that, at low frequencies of [0.5 – 1] MHz, adult 

femur tomography performed with a signal processing device gives an optimized resolution 

(Lasaygues and Lefebvre 2001). In this case, the signal contributions used were assumed to 

correspond to the propagation of a compression wave (the fastest wave). The mean wave 

velocities were then included, ranging between 2000 and 4000 m/s (child and adult bones). In 

the novel approach presented here, similar assumptions are made, but the nominal frequency 

of the wave generated was 2.25 MHz.  

On the one hand, the wavelengths occurring in bone (λb ≈ 0.8 to 1.7 mm) are much larger than 

the macroscopic porosity and, in bone shafts, than the microstructural level (osteon size ≈ 100 

µm in the case of children's fibulas). Cortical bones will therefore be assumed here to be only 

weakly heterogeneous (a homogenized equivalent medium) and the ultrasonic waves 

occurring in the cortical bone will therefore be less severely disturbed. This assumption is in 

agreement with the "linearized" propagating theory and with the asymptotic approximation.  

On the other hand, the wavelength in water (λ0 ≈ 0.6 mm) is smaller than the diameter of 

bones (about 15 mm). Ray theory can be applied here and straight lines running through the 

object can approximate the propagation paths (Rossman et al. 1989; Langton et al. 1990).  
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In the first approximation, the perturbation of the ultrasonic wave propagation is taken to 

consist only of diffraction and refraction of the incident beam at the interface between the 

water and the cortical bone and the cortical bone and the inner cavity containing marrow. 

The following experimental set-up including eight transducers was used. Transducer number 

1 is the transmitter/receiver and the other transducers are receivers. The incident beam runs 

perpendicular to the tangential point of the scatterer (Fig. 1).  

Fig. 1 approximately here 

In the reflection and diffraction modes (at angles of less than ±90°, i.e., at transducers nos. 2, 

3 and 7, 8), the first-arriving signal received was assumed to be the echo from the water/bone 

interface and the second-arriving signal received was assumed to be the compressional wave 

propagating due to the echo from the bone/marrow interface. All the other phenomena (shear 

waves, guided waves etc.) are insignificant or will occur too late to affect the compressional 

wave processes (fast waves).  

In the transmission mode (at angles greater than ±90°, i.e., at transducers nos. 4, 5 and 6), the 

signals are abolished and are therefore not taken into account in the signal processing.  

(Bossy et al. 2002) and (Nicholson et al. 2002) recently performed numerical simulations and 

in vivo experiments showing that, in the axial transmission mode, the speed of sound (SOS) of 

the ultrasound waves was clearly dependent on the cortical thickness. Briefly, the propagation 

mode is compressional only in thick cortical bone (thickness to wavelength ratio > 0.5) and 

becomes "guided" in thin cortical bone (ratio < 0.25). In our case, at 2.25 MHz, the typical 

ratio varied from 1 to 10 in a child fibula. The above comment is therefore valid in cross-
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sectional configuration and, in a second approximation, only the compressional mode will be 

investigated. 

Under these circumstances, the perturbation operator is the same as for a homogeneous 

background (in the particular case of a homogeneous half-space) and all the perturbed 

parameters will be defined with respect to the characteristics of the medium. The previous 

tomographic reconstruction algorithm can be used to image shapes and boundaries, within the 

conditions of the Born approximation. 

MATERIAL AND METHOD 

Experimental set-up and procedures 

Since ultrasonic scattering data have to be collected experimentally over a broad range around 

the specimen in order to cover the full spatial domain, a specially-adapted experimental set-up 

was developed. 

2D-ring antenna. An ultrasonic circular antenna consistent with fast ultrasonic radio-

frequency (RF-) signal acquisition (400 ms) was designed and developed by our group. The 

crown of the antenna has an internal radius of 150 mm and supports eight fixed transducers 

distributed over an angle of 360° (Δθfixed = 45°). The object to be imaged is placed in the 

presumed geometrical center of the antenna. The transducers are Imasonic® piezo composite 

transducers with a 2.25 MHz nominal frequency and cylindrical focusing (in the plane of the 

slice). The Lecoeur Electronique® multiplexer excites one of the transducers and organizes the 

signals received by all the transducers. One acquisition (i.e., one sinogram) corresponds to 64 

signals (eight emitters by eight receivers) (Table 1). The ultrasonic RF-signals transmitted and 
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received, which were composed of 4256 or 8192 samples in the present case, are digitized (8 

bit, 40 MHz). The presumed geometrical centre of the antenna is determined by measuring the 

time-of-flight between two coaxially-aligned transducers, without the object. 

Table 1 approximately here 

 

Fig. 2 approximately here 

By means of step-by-step motors and an electronic device controlling the mechanical 

movements, the crown can be made to turn 45° in stepwise increments of (1/100)° (we denote 

the angular increment Δθvariable) and to move vertically to perform many slice-by-slice 

measurements (we note the vertical increment Δl). In this way, an antenna comprising a larger 

number of transmitters and receivers was simulated. The signals recorded are then combined 

according to the angles of diffraction to form the complete sinogram. Transmission signals, 

corresponding to the direct wave field, were eliminated. 

The complete duration of this ultrasonic imaging process (acquisition + signal processing + 

reconstruction) depends on the signal processing steps and on the capacity of the computer 

(CPU time). In the examples here, the time required was 1 min per image. The image is a 

square consisting of 255 x 255 pixels. 

Calibration and off-set measurements. Let us consider an object to be imaged. The back-

scattering measured impulse response of this object at angle φ can be written 

r(φ, t) = h(φ, t) * g(φ, t),        (1) 

where h(φ, t) is the impulse response (the mechanical offset) of the whole apparatus 

comprising the mechanics (the experimental bench) and electroacoustics (the transducers, 
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which are assumed to be activated by a perfect electronic pulse δ(t)), and g(φ, t) is the impulse 

response of the object. 

We are interested in the last quantity, g(φ, t), and the problem is how to determine it, i.e., how 

to correct the apparatus deviation, i.e., to "deconvolve" the RF signals r(φ, t) by the apparatus 

impulse response h(φ, t) 

g(φ, t) = r(φ, t) **  h(φ, t),        (2) 

where **  designates the "deconvolution " operation. 

The problem is now that of evaluating the impulse response of the apparatus h. This is done 

by imaging a very thin copper wire (0.07 mm), the response of which is taken to be an ideal 

impulse (Fig. 3 and Fig. 4). 

g(φ, t) = δ(t) ⇒ r (φ, t) = h(φ, t).      (3) 

The circular data recordings on a thin cylinder allow estimating, for each transducer, the 

mechanical variations of the position and the water depth to the center of the bench. 

Fig. 3 approximately here 

Fig. 4 approximately here 

For each projection, the "deconvolution " introduced by the mechanical offset was a gap in 

the signal in comparison with the reference signal obtained at the same angle on the wire 

sinogram. 
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Wall thickness assessment 

Ultrasonic diffraction tomography, with some signal processing refinements, is ideally suited 

to reconstructing the external boundaries of high-contrast cylindrical bodies. Figure 5.a. 

shows an example of an ultrasonic reflection tomographic image of a cylindrical plexiglas 

tube with an external diameter of 16 mm and an internal diameter of 5 mm, obtained under 

the experimental conditions described above. Relatively good agreement was observed 

between the external diameter detected by ultrasound tomography and that measured using 

calipers. 

However, there was a discrepancy as to the position of the boundary of the inner cavity, 

because the reconstruction process assigns a constant speed of sound (i.e., wave velocity in 

water ≈ 1500 m/s) to every pixel in the cross-section, which biases the estimates of the inner 

cavity radius and the thickness. An image processing algorithm was therefore developed to 

detect the inner cavity radius on the image and to correct the position errors due to the 

reference speed of sound and the apparent distances. 

Fig. 5 approximately here 

In the first step, a polar map is drawn up from the image (mm vs. degrees) (Fig. 5.b.). The 

center ([0, 0] mm) of the image is used as the origin of the Cartesian transformation ([0 mm, 

top left, 0°, bottom left]). The external boundary Zext is detected from the highest color 

intensity (≈ 1) reached by each vertical line. The "apparent" internal boundary (Zapp) is 

established step-by-step, using a "sliding window" algorithm. The "sliding window" 

algorithm is simply a means of searching for local maximum deposition on the vertical lines 

of the polar map, which is done using a fixed-size “window” (typically 20 samples) formed 
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by a group of contiguous vertical lines. Local maxima are found by moving the window in 

fixed steps and searching for a window having a higher sum value than that of all of its 

nearest neighboring windows. In the next step, the actual position Zint of the inner boundary is 

rescaled by assigning the correct velocity values to the pixels corresponding to the shell and 

to water. This step requires the a priori knowledge of the mean velocity cb of the 

compressional waves to correct the relative inner boundary positioning error and to calculate a 

new wall thickness in all normal incident directions. The rescaling equation is written as 

follows: 

,        (4) 

where c0 is the speed of sound in water. 

RESULTS 

The present ultrasonic diffraction tomographic method was applied to one geometrical-

mimicking phantom and to two real children’s fibulas (12 y old). The sample thicknesses 

varied as a function of the radial position and were measured using calipers at eight locations 

around the scatterer. Density and velocity were measured using the ultrasonic procedures 

described in Pithioux et al. 2002. The experimental procedure fulfilled the criteria mentioned 

in the previous section. 

The embedded ultrasonic tomographic software program automatically determined the inner 

boundaries. On the comparative graphs, each point gives the mean cortical thicknesses and 

the error bars give ± 1 standard deviation. 
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Geometrical-mimicking phantom 

The phantom was a non circular homogeneous isotropic tube made of artificial resin 

(NEUKADUR ProtoCast 113TM). Its internal and external diameters measured 17 and 19 mm, 

respectively, and the inner cavity diameter measured 11 mm (Fig. 6). 

Fig. 6 approximately here 

The density of the resin was 1100 < ρ1 < 1200 kg/m3 and the mean velocity of the 

compressional wave tested was c1 ≈ 2750 m/s. 

One scanning slice was carried out 2 mm from the base. We acquired 32 sinograms of 64 

signals, with an angular increment Δθvariable = 1.4°. Results are presented in Fig. 7 and Fig. 8. 

 

Fig. 7 approximately here 

Fig. 8 approximately here 

Table 2 approximately here 

From the ultrasonic tomogram, our algorithm of wall-thickness assessment can automatically 

and precisely (Table 2) size the outer boundary of the tube with an accuracy of ±0.4 mm (see 

Zext in Fig. 7). The resolution of the tomogram was sufficiently excellent so that the detection 

of the highest color intensity is practicable by each vertical line. The accuracy of the inner 

cavity diameter was also satisfactory, although the mean error was larger. Only the data 

obtained at location 7 were inaccurate. In Fig. 7, Zapp is the apparent boundary obtained by 

using the "sliding window" algorithm. Zint is the actual position obtained by using eq n 4. 
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The algorithm of wall-thickness assessment used to determine the internal boundary was 

sensitive to the off-centering of the scatterer in the tank. Further studies are now required to 

assess the robustness of the algorithm versus the identification procedure. The importance of 

the location at which the caliper measurements are performed also needs to be analyzed, 

because here, the caliper measurements and the ultrasonic measurements differed by 2 mm. 

But to conclude, the cortical thickness of artificial bone was on the whole accurately assessed 

using the present ultrasonic tomographic method. 

Child fibulas 

The two child bone samples were fresh fibulas we named "sample A" and "sample B" (12 y 

old). Dimensions are given in Fig. 9. The inner cavities contained natural marrow. 

Fig. 9 approximately here  

The a priori mean velocity was the compression wave velocity, radially measured through a 

detail cut since the fibula "sample A", and was 2990±5 m/s. The density of the cortical 

material was 1700 kg/m3. Only one scanning slice was performed, 1.5 cm from the base. We 

acquired 32 sinograms consisting of 64 signals, with an angular increment Δθvariable = 1.4°. 

Results are presented in Fig. 10 to Fig. 13. 

Fig. 10 approximately here 

Fig. 11 approximately here 

Table 3 approximately here 
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Fig. 12 approximately here 

Fig. 13 approximately here 

Table 4 approximately here 

With both fibula samples, the geometry of the outer and inner boundaries was in keeping with 

the usual proportions, and the cross-sectional thicknesses were in good agreement (Table 3 

and Table 4). The differences between the mechanical and acoustical measurements were 

small (< 0.5 mm), except in some locations: n°6 in the case of "sample A" and n°7 in that of 

"sample B" (> 0.5 mm). There are two possible explanations for the latter differences. 

First, the internal boundary assessment algorithm used was sensitive to the image resolution. 

Since ultrasound tomography is basically a Fourier synthesis problem, the resolution depends 

on the angular spatial sampling rate and, thus, the number of available projections, which 

reduced the coverage of the frequency space of the scatterer. Furthermore, the bandwidth of 

the pulses is limited to almost an octave. To improve the resolution, one can increase the 

number of transducers placed on the 2D-ring antenna to obtain more than 64 signals and the 

low and high spectral frequencies can be restored using deconvolution algorithms. For 

example, one can chose a procedure of Papoulis (1975) that consists of an iterative extension 

of the bandwidth of the electroacoustic set-up in Fourier space, allowing to reach resolutions 

of λ/30, where λ is the wavelength (Lasaygues et al. 2001).  

Secondly, the caliper measurements on the internal cavity were performed at eight locations at 

the base of the bone. However, it is very likely that, at the bone level at which the ultrasonic 

data recordings were carried out, these dimensions were not exactly the same. 
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 CONCLUSION 

Within the limits of the Born approximation, we have described a method of performing 

ultrasonic diffraction imaging of the cortical diaphysis of long bones and obtaining slice-by-

slice tomographic data in the space-frequency plane. The experiments carried out on real bone 

using mechanical and electronic steering systems show the results obtained with this method 

to be accurate. These preliminary results suggest that ultrasonic tomography is one of a means 

of determining geometrical characteristics such as the cortical thickness of bone, which is 

known to be an indicator of the state of the fragility of the bone. An important error on the 

measures would limit the extension of the method to the clinical cases. Furthermore, it would 

be useful also to discuss transition boundaries between endosteal cortical bone and marrow, 

more or less heterogeneous and clean, which is an additional challenge for the ultrasonic 

tomography. 

It is thus necessary today to improve the quality of the tomogram to increase the precision of 

the thickness assessment. Various ways of improving this method will be investigated before 

increasing the number of antenna components. To increase the number of independent 

projections, a few rotations of the system could be performed and the transducers could be 

more regularly distributed. Other algorithms, such as algebraic algorithms, which are more 

suitable when there are only a few projections, could be also used. The latter algorithms are 

also known to be suitable for the non linear inversion procedures, which have to be used to 

deal with the main quantitative imaging problems arising when the contrast is more than a 

few percent. 
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Table 1. Acquisition sequences. 

Table 2. Comparison between calipers and ultrasound-derived dimensions (geometrical-
mimicking phantom). 

Table 3. Comparison between calipers and ultrasound-derived dimensions ("sample A"). 

Table 4. Comparison between calipers and ultrasound-derived dimensions ("sample B"). 

Fig. 14. Theoretical diffraction tomography with eight transducers. Transducers nos. 1 to 8 
are transmitters (and receivers) and the other transducers are receivers. 

Fig. 15. 2D-ring circular antenna. 

Fig. 16. 2.25 MHz-ultrasonic diffracted sinograms of a thin copper wire (0.07 mm), (32 
rotations, Δθvariable = 1.4°. View angles: (a) 0° (first sinogram), (b) 21.09° (middle sinogram) 
and (c) 43.59° (last sinogram)). 

Fig. 17. 2.25 MHz-ultrasonic diffracted tomography of a thin copper wire (0.07 mm). 

Fig. 18. Assessment of the thickness of a cylindrical plexiglas tube. (a) Reflection 
Tomography. (b) Polar map, Zext is the external boundary, Zapp and Zint are the "apparent" and 
actual boundaries of the inner cavity. (c) Polar representation. 

Fig. 19. NEUKADUR ProtoCast 113TM resin geometrical-mimicking phantom. 

Fig. 20. 2.25 MHz-ultrasonic diffracted tomography of a geometrical-mimicking phantom. 

Fig. 21. Cortical thickness depending on the measurement site, using mechanical calipers and 
a 2.25 MHz-ultrasonic tomogram (on a geometrical-mimicking phantom). (a) Initial 
tomogram. (b) Polar map, Zext is the external boundary, Zapp and Zint are the "apparent" and the 
actual boundaries of the inner cavity. (c) Mean-thickness. 

Fig. 22. Geometrical dimensions of child fibulas. 

Fig. 23. 2.25 MHz-ultrasonic diffracted tomography of a child fibula ("sample A"). (a) Initial 
tomogram. (b) Mean-thickness. 

Fig. 24. Cortical thickness at various measurement sites, determined using mechanical 
calipers and 2.25 MHz-ultrasonic tomogram ("sample A"). 

Fig. 25. 2.25 MHz-ultrasonic diffracted tomography of a child fibula ("sample B"). (a) Initial 
tomogram. (b) Mean-thickness. 

Fig. 26. Cortical thickness at various measurement sites, using mechanical calipers and 2.25 
MHz-ultrasonic tomogram ("sample B"). 
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Table 1 

 Transmitter n° Receiver n° Configuration 
1 1 1 Backscattering 
2 1 2  
3 1 3  
4 1 4  
5 1 5 Transmission 
6 1 6  
7 1 7  
8 1 8  
9 2 1  
10 2 2 Backscattering 
11 2 3  
.. … …  
14 2 6 Transmission 
.. … …  
64 8 8 Backscattering 
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Table 2 

Location Calipers (mm) Mean-values (mm) 
L 19 19.4 
l 17 16.6 
a 11 11.5 
b 11 10.9 
1 5 5.60 
2 3.2 2.80 
3 3 2.80 
4 3.2 3.25 
5 3 2.95 
6 3.2 3.40 
7 3 1.75 
8 3.2 2.80 
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Table 3 

Location Calipers (mm) Mean-values (mm) 
L 17±2 16.3 
l 13.5±2 14.5 
a 7±0.5 9 
b 5.5±0.5 6.8 
1 2.6 2.35 
2 3.2 3.25 
3 3 3.10 
4 3.5 3.7 
5 4.5 4.15 
6 3.5 2.95 
7 3.3 3.10 
8 4.5 4.30 
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Table 4 

Location Calipers (mm) Mean-values (mm) 
L 14±2 14 
l 11±2 13.23 
a 7.5±0.5 8.82 
b 6.5±0.5 8 
1 3.1 3.55 
2 1.9 1.90 
3 2.3 2.05 
4 2.5 2.65 
5 2.7 2.80 
6 2.5 2.35 
7 1.9 1.45 
8 2 1.75 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 13 

 


