
HAL Id: hal-00440492
https://hal.science/hal-00440492

Submitted on 10 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the concurrency of an MPEG RVC decoder
based on dataflow program analysis

Ruirui Gu, Jörn W. Janneck, Shuvra S. Bhattacharyya, Mickaël Raulet,
Matthieu Wipliez, William Plishker

To cite this version:
Ruirui Gu, Jörn W. Janneck, Shuvra S. Bhattacharyya, Mickaël Raulet, Matthieu Wipliez, et
al.. Exploring the concurrency of an MPEG RVC decoder based on dataflow program analysis.
IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19 (11), pp.1646-1657.
�10.1109/TCSVT.2009.2031517�. �hal-00440492�

https://hal.science/hal-00440492
https://hal.archives-ouvertes.fr

1

Exploring the Concurrency of an MPEG RVC
Decoder Based on Dataflow Program Analysis

Ruirui Gu∗, Jörn W. Janneck‡, Shuvra S. Bhattacharyya∗,
Mickaël Raulet†, Matthieu Wipliez†, William Plishker∗

∗Electrical and Computer Engineering, University of Maryland at College park (U.S.A)
†IETR Laboratory - UMR CNRS 6164 - Rennes (France)

‡Xilinx Inc. - San Jose (U.S.A)

Abstract—This paper presents an in-depth case study on
dataflow-based analysis and exploitation of parallelism in the
design and implementation of an MPEG RVC (reconfigurable
video coding) decoder. Dataflow descriptions have been used in
a wide range of digital signal processing (DSP) applications,
such as applications for multimedia processing and wireless com-
munications. Because dataflow models are effective in exposing
concurrency and other important forms of high level application
structure, dataflow techniques are promising for implementing
complex DSP applications on multi-core systems, and other
kinds of parallel processing platforms. In this paper, we use the
CAL language as a concrete framework for representing and
demonstrating dataflow design techniques.

Furthermore, we also describe our application of The DIF
package (TDP), a software tool for analyzing dataflow networks,
to the systematic exploitation of concurrency in CAL networks
that are targeted to multi-core platforms. Using TDP, one is
able to automatically process regions that are extracted from the
original network, and exhibit properties similar to synchronous
dataflow (SDF) models. This is important in our context because
powerful techniques, based on static scheduling, are available for
exploiting concurrency in SDF descriptions. Detection of SDF-
like regions is an important step for applying static scheduling
techniques within a dynamic dataflow framework. Furthermore,
segmenting a system into SDF-like regions also allows us to
explore cross-actor concurrency that results from dynamic depen-
dencies among different regions. Using SDF-like region detection
as a preprocessing step to software synthesis generally provides
an efficient way for mapping tasks to multi-core systems, and
improves the system performance of video processing applications
on multi-core platforms. 1

Index Terms—MPEG RVC, dataflow, CAL, DIF, concurrency,
parallel processing.

I. INTRODUCTION

UPCOMING MPEG video coding standards are intended
to increase the quality and the flexibility of complex and

versatile future video coding applications. Since 1988, several
MPEG standards have been developed successfully based on
available hardware technologies and software support. Early
MPEG standards (MPEG-1 and MPEG-2) were specified by
textual natural-language descriptions. Starting with MPEG-
4, reference software written in C/C++ became the formal
specification of the standard. Written in a sequential pro-
gramming language, this reference software describes a se-

1Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

quential algorithm, effectively hiding the considerable inherent
concurrency of a video decoder. Furthermore, the reliance
on global memory and state makes the reference description
difficult to modularize, resulting in a very monolithic specifi-
cation. The observation of these drawbacks of current video
standard specification formalism led to the development of
the Reconfigurable Video Coding (RVC) standard [1]. The
key concept of RVC is to be able to design a decoder at a
higher level of abstraction than the one provided by current
generic monolithic C based specifications to express the po-
tential parallelism of the decoder. Furthermore, hardware for
embedded systems employs increasing amounts of parallelism
— e.g., in platforms such as multi-core systems on chip.
When starting from sequential specifications (e.g., in C/C++),
designers targeting parallel platforms typically have to start
with a complete rewrite of the reference code. This scenario
leads to the following questions: What are suitable languages
for developing implementations on parallel platforms? How is
application concurrency represented and exploited? How can
designers enhance application concurrency?

CAL, as a dataflow/actor-oriented language, is a promising
answer to the first question and has been chosen by MPEG
RVC as the normative language to describe MPEG decoder
coding tools. In addition to a stronger encapsulation of coding
tools and a more explicit description of the parallelism inherent
in a decoding algorithm, constructing decoding algorithms
as dataflow networks creates the opportunity to apply the
wide range of techniques for analyzing and implementing
dataflow systems that have been developed in the past (e.g.,
see [2]). Furthermore, CAL has been designed to make explicit
a number of relevant properties of dataflow actors, which can
be extracted and used as input to those techniques. Concur-
rency mainly benefits system execution speed, especially for
real time systems such as video decoders. There are other
issues, such as memory/buffer and energy efficiency, related
to concurrency, which are beyond the scope of this paper, and
are useful directions for future work.

References [1], [3], [4] cover related aspects of reconfig-
urable video coding and CAL-oriented tools. In particular,
[1] gives an overview of the overall RVC framework; Ref-
erence [3] provides details on the software code generator
CAL2C; and Reference [4] elaborates on a hardware code gen-
erator for CAL. In contrast, this paper is distinctive in it focus
on analyzing concurrency and exploiting parallelism; the topic

2

of concurrency is not addressed in depth in References [1], [3]
and [4].

Using CAL as a concrete design representation framework,
this paper places emphasis on answering the last two questions
described above. More specifically, this paper analyzes data
parallelism and pipeline concurrency that are exposed by CAL
actors. Furthermore, we exploit these forms of concurrency
with new techniques for cross-actor optimization. These tech-
niques are enabled by dataflow analysis on intermediate rep-
resentations that are derived from CAL specifications. Based
on these ideas, we present novel tools and techniques for
efficient implementation of video processing systems on multi-
core platforms.

Section II introduces previous work related to advanced
reconfigurable video coding technology, dataflow models, and
the CAL language. multi-core systems are also discussed
in this section. Section III analyzes inter-actor concurrency
obtained from CAL specifications from the viewpoint of both
hardware and software implementation. Section IV proposes
techniques for cross actor-optimization that enhance multi-core
system performance. Simulation results are also presented in
this section. Conclusions and future work are discussed in
section V.

II. BACKGROUND

A. Reconfigurable video coding

The desire for a more compositional approach for building
existing and future video standards, and for a shorter path
to parallel implementation has led to the development of the
reconfigurable video coding (RVC) standard [1]. The MPEG
RVC framework is a new standard under development by
MPEG that aims at providing a unified high-level specification
of current and future MPEG video coding standards. Rather
than building a monolithic piece of reference software, RVC
standardizes an “Abstract Decoder Model” (ADM) composed
of a network that interconnects a set of video coding tools
with uniform interfaces extracted from a library. Decoder
descriptions are composed from that library, which permits
a wide range of decoding algorithms.

The MPEG RVC framework is currently under development
in MPEG as part of the MPEG-B part 4 [5] and MPEG-
C part 4 [6] standards. The abstract decoder is built as a
block diagram or network in which blocks define processing
entities called functional units (FUs) and connections represent
the data path between the FUs. This network is described
in MPEG-B part 4 as an XML dialect called FU Network
Language (FNL). RVC also provides in MPEG-C part 4 a
normative standard library of FUs, called the “Video Tool
Library (VTL)”, and a set of decoder descriptions expressed as
networks of FUs. CAL is currently chosen as the language to
express the behavior for the coding tools of the library (VTL).
Such a representation is modular and helps in formulating the
potential configuration of decoders in terms of modifications of
network topologies. The ADM is a CAL dataflow program that
constitutes the conformance point between the normative RVC
specification and all possible proprietary implementations that
have to be generated to decode the incoming bitstreams. Thus

the MPEG RVC standard leaves open the platforms and the
implementation methodologies that can be used to generate
any RVC proprietary implementation. This provides all pos-
sibility of generating parallel and concurrent implementations
for a wide variety of existing and emerging implementation
platforms. Thus, indirect generations of implementations will
be possible together with the direct synthesis of software
and hardware from the ADM. All these possibilities enable,
for each application scenario, the users to select the most
appropriate implementation methodology.

B. Dataflow language
Since the mid 1980s, a class of graphical program repre-

sentations has been evolving steadily, and gaining increas-
ing acceptance among designers of digital signal processing
(DSP) systems. Foundations for such dataflow representations
have been provided by computation graphs [7], Kahn process
networks [8], and dataflow architectures [9]. Synchronous
dataflow (SDF) is a specialized form of dataflow that is
streamlined for efficient representation of DSP systems [10].
Since the introduction of SDF, a variety of such DSP-
oriented dataflow models of computation have been proposed,
and DSP-oriented models have been incorporated into many
commercial design tools, including Agilent ADS, Cadence
SPW (later acquired by CoWare), National Instruments Lab-
VIEW, and Synopsys CoCentric. These alternative model-
ing approaches provide different trade-offs among expressive
power (the range of DSP applications that can be represented),
analysis potential (the rigor with which implementations can
be automatically validated or optimized), and intuitive appeal.

In DSP-oriented dataflow graphs, vertices (actors) represent
computations of arbitrary complexity, and each edge represents
the flow of data as values are passed from the output of
one computation to the input of another. Each data value is
encapsulated in an object called a token as it is passed across
an edge. Actors are assumed to execute iteratively, over and
over again, as the graph processes data from one or more data
streams. These data streams are typically assumed to be of
unbounded length (e.g., derived implementations that are not
dependent on any pre-defined duration for the input signals). In
dataflow graphs, interfaces to input data streams are typically
represented as source actors (actors that have no input edges).

A simple example is illustrated in Figure 1. Here, A and
B represent two actors, and the numbers shown above the
edges represent the rates at which actors produce and consume
tokens. For example, A produces two tokens every time it
executes and B consumes three tokens during each execution.
How token production and consumption rates are represented,
and underlying restrictions imposed on such rates are key
distinguishing characteristics of many DSP-oriented dataflow
models. In SDF, all data production and consumption rates are
restricted to be constant values that are known at design time.
The example of Figure 1 conforms to the SDF model.

A limitation of SDF and related models, such as cyclo-
static [11] and single-rate [12] dataflow, is that dynamic
dataflow relationships among computations cannot be de-
scribed. To express applications that involve such relation-
ships, one must employ models that are more expressive than

3

such static dataflow models. Earlier work on DSP-oriented
dataflow models has focused heavily on static dataflow tech-
niques, especially SDF. As designers seek to develop more
and more complex embedded DSP systems — incorporating
more flexible sets of features, and more powerful forms
of adaptivity — exploration of dynamic dataflow models is
becoming increasingly important.

A variety of dynamic dataflow modeling techniques have
been developed previously, including stream-based func-
tions [13], functional DIF [14], and the CAL actor lan-
guage [15] that is targeted in this paper.

 A B2 3

 C

 D

 E
2

1

3
2

1

2

1
2

Fig. 1. A simple example of a dataflow (SDF) model.

C. Concurrency

In computer science, concurrency is a property of systems in
which several computations are executing simultaneously, and
potentially interacting with each other. The computations may
be executing on multiple cores in the same die, preemptively
time-shared threads on the same processor, or executed on
physically separated processors.

As mentioned before, real-world embedded applications
are typically developed in sequential programming languages,
such as C/C++. In addition to CAL, various other languages
have been developed for concurrent programming. An example
of such a language is the Erlang language [16]. Many of
the previously-developed concurrent programming languages,
including the Erlang language, are oriented towards general-
purpose programming. In contrast, CAL targets more spe-
cialized application domains, such as video processing and
many other domains of DSP, that are suited to dataflow
representations.

D. The CAL language

CAL is a dataflow- and actor-oriented language that de-
scribes algorithms by using a set of encapsulated functional
components (actors) or functional units (FUs) in RVC that
communicate with one another based on dataflow semantics.
In CAL, an actor is a modular component that encapsulates its
own state. The state of an actor cannot be shared with other
actors. Thus, an actor cannot modify the state of another actor.

The behavior of a CAL actor is defined in terms of a set of
actions. The operations an action can perform are consuming
(reading) input tokens, modifying internal state, and producing
output tokens. The topology of the connections between input
and output ports of actors constitute what is called a network
of actors. Compared to actors, which can be of arbitrary
functional complexity, edges — connections between actors
— are conceptually simpler. The only interaction an actor has
with other actors is through input and output ports that connect
to dataflow graph edges.

CAL actors are specified in terms of actions. Each action of
an actor defines the kind of transitions that internal states can
undergo. An action can only be executed (fired) under specific
conditions; these conditions can be specified in terms of (1)
the availability of input tokens, (2) the values of input tokens,
(3) the state of the enclosing actor or (4) the priority of the
action. In an actor, actions are executed sequentially — that
is, only one action is executed at a time for a given actor.

RVC uses the CAL actor language [15] as the language
for specifying FUs, and the FU network language for the
dataflow composition [6]. CAL is supported by a portable
interpreter infrastructure called OpenDF that can simulate a
hierarchical network of actors. Some tools related to CAL can
be found in OpenDF [17]. Among them, we are especially
interested in the code generators that translate CAL into C
or hardware description language (HDL) code. In addition to
the strong encapsulation afforded by the actor description, the
dataflow model also makes much more algorithmic parallelism
explicit. This provides the unique opportunity to apply the
wide range of techniques used to implement dataflow systems
to the realization of video coding algorithms on a variety of
platforms. In particular, platforms will differ in their degrees
of parallelism, which gives rise to the challenging problem
of matching the concurrency of the decoder specification with
the parallelism of the computing machine that is executing it.

E. Multi-core systems

Multi-core devices, which incorporate two or more proces-
sors on the same integrated circuits, are becoming increasingly
relevant to the design and implementation of DSP systems
(e.g., see [18]). In multi-core platforms, all cores can execute
instructions independently and simultaneously. While instruc-
tion level concurrency is targeted by single core processors,
multi-core structures target task level concurrency.

In multi-core platforms, carefully managing communication
and synchronization among different cores is important to
achieve efficient implementations. Two or more processing
cores sharing the same system bus and memory bandwidth
limit the achievable performance improvements. For example,
if a single core is close to being memory-bandwidth-limited,
going to a dual-core solution may only result in 30% to 70%
improvement. If memory bandwidth is not a problem, 90%
or greater improvement can be achievable. It is possible for
an application that used two CPUs to end up running signifi-
cantly faster on a single dual-core platform if communication
between the CPUs was the limiting factor.

The ability of multi-core processors to increase application
performance depends on the use of multiple concurrent tasks
within applications. Therefore, if code is written in a form
that facilitates decomposition into concurrent tasks, the multi-
core technologies can be exploited more effectively. In the
context of dataflow programming, the CAL language is suit-
able for such decomposition into concurrent tasks. This paper
addresses the systematic mapping onto parallel platforms of
concurrent tasks that are extracted from CAL programs.

4

III. INTER-ACTOR CONCURRENCY ANALYSIS

A. Data-driven processing

The transitions between actions within an actor are purely
sequential: actions are fired one after another. This means that
during each actor invocation, only one action is executed inside
the actor. In a CAL network, distinct actors are functionally
independent and work concurrently, with each one executing
its own sequential operations based on the availability of
sufficient numbers of tokens on actor input ports.

Connections between actors in CAL are purely data-driven.
This data-driven property of CAL results from two properties:
A CAL actor executes only if there are enough tokens on
the actor input ports to trigger an action, and execution of
a CAL actor produces nothing “outside the actor” other than
tokens on the output ports of the actor. In other words, CAL
actors communicate with one another only using tokens that
are passed along dataflow graph edges. Networks of CAL
actors are described in FNL language.

The CAL language naturally supports hierarchical design,
which is important for MPEG RVC coding systems. In
hierarchical dataflow graphs, actors can have their internal
functionality specified in terms of embedded (nested) dataflow
graphs. Such actors or FUs are called hierarchical actors or
super actors. A hierarchical actor in CAL can be specified in
terms of a network of CAL actors. This approach facilitates
modularity, where the internal specification of any actor can
be modified without impacting that of other actors.

In this paper we target as a case study the example of
an MPEG-4 simple profile decoder (MPEG-4 SP decoder)
described in RVC formalism. A graphical representation of
the macroblock-based SP decoder description is shown in
Figure 2. In Figure 2, the shaded area indicated as texture
decoding represents a super actor that is described in FNL
. Similarly, the shaded area labeled as motion compensation
also represents a hierarchical actor in our design. Furthermore,
inside the actor texture decoding, the Inverse DCT actor
represents a lower-level super actor, which is also described
in FNL and is composed of several atomic (non-hierarchical)
actors/FUs. The other blocks in the diagram are atomic ac-
tors/FUs.

Overall, in the MPEG-4 SP decoder shown in Figure 2,
there are three hierarchies and atomic actors and super actors
from different hierarchies are interleaved. Note that for read-
ability, only one edge is shown in cases where two actors are
connected by more than one edge. It is possible, for example,
that multiple edges connect the same pair of actors because
of connections between different interfaces of hierarchical
subsystems.

B. Data parallelism inside CAL networks

In Figure 2, there are three sub-systems that handle Y , U
and V separately. These three sub-systems share the same set
of processing modules in the form of CAL actors that differ
only in their associated sample rates.

The structure of a macroblock demands that the processing
used in MPEG-4 utilize 4:2:0 YUV processing. The color
channels sample at exactly half the rate in both the horizontal

and vertical directions as they relate to the luminance (Y)
channel. For this reason, for every U and V pixel, there
are four Y pixels. The spatial relationship among the three
channels is documented in many MPEG articles.

The subsystems for Y , U and V are concurrent in the sense
that they handle signals from different channels. These signals
are generated by the parser actor, and then are directed to
the Y , U , and V subsystems for processing. In this way,
the CAL network explicitly exposes inter-actor, and inter-
subsystem concurrency in the overall application.

C. Pipeline concurrency analysis

Exploiting different forms of concurrency is often important
when we implement DSP applications on multi-core systems.
The intrinsic capability of CAL operators and programming
constructs to describe different forms of concurrency, includ-
ing pipeline concurrency, which is a special form of task level
concurrency for consecutive input data, and more irregular
forms of task level concurrency, makes CAL especially useful
for design and implementation of DSP applications.

Each atomic CAL actor encapsulates a set of computations
that are executed sequentially — i.e., there is no concurrency
among different actions at the intra-actor level. However, the
data-driven semantics of CAL actors, where different actors
can execute whenever they have sufficient input data, effec-
tively exposes inter-actor concurrency. How effective a CAL
representation is in exposing inter-actor concurrency depends
not only on the CAL semantics but also on the particular CAL
program that is used. Given a CAL program, it may be possible
to redesign the program to expose more concurrency; such
rewriting of CAL programs is beyond the scope of this paper.

Our CAL representation for the MPEG-4 SP decoder is
composed of 27 distinct actors. Some of these actors are
instantiated multiple times; the total number of actor instanti-
ations in our MPEG-4 SP decoder program is 42. If a multi-
core platform with enough processing cores is available, each
actor instance can be mapped to a separate core, and we can
use the dataflow semantics of inter-actor communication in
CAL to drive the communication and synchronization among
the multiple processors. If there are not enough processor
cores to accommodate such a one-to-one mapping between
actor instances and cores, we need to map groups of multiple
actors to the same core. Furthermore, even if enough cores are
available, it may be desirable to employ such “grouped map-
pings” (and leave some processors unused) if the overhead of
inter-processor communication dominates parallel processing
efficiency for some subsystems (e.g., when the granularity of
the actors is relatively small).

Thus, grouping of actors onto multiple processing units
is in general an important step in the mapping of dataflow
programs onto multi-core platforms (e.g., see [19]). This step
is often referred to as “actor assignment” (i.e., the assignment
of actors to physical processors). To derive efficient parallel
implementations of CAL networks, it is generally important
to perform actor assignment carefully.

5

P
A
R
S
E
R

M
E
R
G
E

TEXTURE DECODING

[01111001...]

BITSTREAM DECODED DATA

MOTION COMPENSATION

DC

addr

DC

split

DC

pred-1

Scan-1

AC

pred-1

Quant-

ize-1
DCT-1

Addr

Bu�er
Interpo-

late

Add

DC

addr

DC

split

DC

pred-1

Scan-1

AC

pred-1

Quant-

ize-1
DCT-1

Addr

Bu�er
Interpo-

late

Add

DC

addr

DC

split

DC

pred-1

Scan-1

AC

pred-1

Quant-

ize-1
DCT-1

Addr

Bu�er
Interpo-

late

Add

Fig. 2. An RVC block diagram of an MPEG-4 Simple Profile decoder.

D. Concurrency from available code generators

A number of code generators have been developed for trans-
lating CAL programs into platform-specific implementations.

For example, a hardware description language (HDL) code
generator, CAL2HDL, was developed at Xilinx [4]. In the
current version of CAL2HDL, an actor with N actions is
translated into N + 1 “threads”, one for each action and
another one for the action scheduler, which coordinates ex-
ecution across the different actions. The action scheduler is
the mechanism that determines which action to fire next. This
determination is made based on the availability of tokens, the
guard expression for each action (if present), the underlying
finite state machine schedule, and the action priorities. The re-
sulting hardware circuit can be optimized further in a sequence
of steps, including bit-accurate constant propagation, static
scheduling of operators, and memory access optimization.
Detailed discussion of CAL2HDL is beyond the scope of this
paper; we refer the reader to [4] for further information.

HDL programs generated from CAL2HDL provide suit-
able targets for dedicated hardware implementation and fully
concurrent programs. However, targeting CAL to embedded
processors, including embedded multi-core platforms, requires
a different approach, including different abstractions and target
languages.

CAL2C [20], [21] is a code generator that translates CAL
into C code, and provides a suitable path for implementing
CAL programs on embedded processors. An important ob-
jective in the development of CAL2C is the minimization of
context switch overhead.

CAL PARSER

H
CPP

CCODE
GENERATION

TRANSFOR-
MATIONS

NL HELABORATION CODE
GENERATIONPARSER

CIL

NL
AST

CAL
AST

NL
AST

PARAMETERS

Fig. 3. CAL2C compilation process: The action translation process starts
with an abstract syntax tree (AST) derived from the CAL source code; the
transformed CAL AST is expressed in the C intermediate language (CIL) [22],
where CAL functional constructs are replaced by imperative ones.

In CAL2C, software synthesis from a CAL network includes
two parts: actor transformation [20] and network transforma-
tion [21]. Inside an actor, CAL translation is performed in
two parts: translation of actor code (actions, functions, and
procedures) to express the core functionality, and implemen-
tation of the action scheduler (priorities, FSMs, and guards) to
control execution of the actions [20]. Translating CAL actor
code produces a single C file that contains translated versions
of functions, procedures, and actions. Each action is converted
into one function and the functions to describe the actions for
one CAL actor share a set of common input/output ports as
the function arguments in C. An action scheduler is created
to control action selection during execution. Priorities, guards,
token consumption rates, and FSMs have to be translated to
this end. Determining the overall order of action execution is
required to have a consistent evaluation of actions that can be
fired. SystemC scheduling is used in CAL2C generation as
a sequential scheme. Figure 3 illustrates how CAL2C works.
For further details on CAL2C, we refer the reader to [21].

In [21], we have applied CAL2C successfully on our
CAL-based design for the MPEG-4 SP decoder. Simulation
results show that the synthesized C-software is as fast as 20
frames/s, which provides near-real-time performance for the
QCIF format (25 frames/s) on a standard PC platform. It
is interesting to note that our CAL-based speed processing
generated from CAL2C is scalable in terms with the number
of macro-blocks decoded per second (MB/s) (the number of
MB/s remains constant when dealing with larger image sizes).
Furthermore, this number can be increased if we use more
powerful processors.

Although both forms of design produce code in the same
kind of language, code generated from CAL2C is different
compared to implementations that use C/C++ as the starting
point. As a dataflow language, CAL restricts the way in which
designers can describe applications, and these restrictions carry
over through CAL2C to produce code that is more modular
and purely dataflow-oriented compared to implementations
that are developed directly from C/C++. This is illustrated in
Figure 4.

After obtaining a set of threads from CAL2C, the mapping
of these threads onto the targeted multi-core platform remains

6

 main

 function 1

 function 2

function 3

 main

 actor 1

actor 2

 actor 3

Tradition C/C++ reference Language C Programming from CAL2C

Fig. 4. Comparison between direct-C/C++-based implementation and imple-
mentation using CAL2C.

an important issue. Since CAL-based threads communicate
with one another through tokens that pass along dataflow graph
edges, one must provide mappings from dataflow edges into
appropriate communication primitives, depending on whether
the edges (i.e., the incident source and sink actors) are
assigned to the same core (intra-core communication) or to
different cores (inter-core communication). In general, inter-
core communication is less efficient, and this should be taken
into account carefully when mapping threads onto cores.

Previous CAL-based synthesis tools, including CAL2HDL
and CAL2C, focus on intra-actor code generation without
attention to inter-actor optimization. For example, for CAL2C,
both actor- and network-level schedulers are based on run-time
scheduling mechanisms from systemC, which is not optimized
for cross-actor dataflow scheduling.

In the next section we explore new techniques for inter-
actor optimization of CAL programs, and we apply these
techniques in conjunction with CAL2C to derive optimized
software implementations for multi-core platforms.

IV. INTER-ACTOR OPTIMIZATION FOR CAL NETWORKS

Although CAL2C exposes task level concurrency, there is
significant room for improvement in CAL2C-based implemen-
tation in terms of the scheduling mechanisms used to map and
coordinate tasks across multiple processors. In particular, since
CAL2C inherits the scheduling mechanism of systemC, there
is no use of task level static scheduling.

In this section, we describe techniques to exploit the concur-
rency exposed by CAL network representations. In particular,
we develop new graph analysis techniques that result in
efficient inter-actor optimization for CAL-based implemen-
tations. The result of our optimization is in the form of
units of scheduling that we call statically schedulable regions
(SSRs). SSRs are of significant utility in static scheduling, and
mapping of CAL networks onto multi-core systems.

A. DIF and network analysis capability

In this section, we present our application of the dataflow
interchange format (DIF) package [2], [12], a software tool for
analyzing DSP-oriented dataflow graphs, to the analysis and
transformation of CAL networks for efficient implementations.

The dataflow interchange format (DIF) is proposed as a
standard approach for specifying and integrating arbitrary
dataflow-oriented semantics for DSP system design. The
DIF language (TDL) is an accompanying textual design
language for high-level specification of signal-processing-
oriented dataflow graphs. The TDL syntax for dataflow graph
specification is designed based on dataflow theory and is inde-
pendent of any design tool. For a DSP application, the dataflow
semantic specification is unique in TDL regardless of the
design tool used to originally enter the specification. The TDL
grammar and the associated parser framework are developed
using a Java-based compiler-compiler called SableCC [23].
For the complete DIF language grammar and a detailed syntax
description, we refer the reader to [12].

TDL is designed as a standard approach for specifying
DSP-oriented dataflow graphs. TDL provides a unique set
of semantic features to specify graph topologies, hierarchi-
cal design structures, dataflow-related design properties, and
actor-specific information. Because dataflow-oriented design
tools in the signal processing domain are fundamentally based
on actor-oriented design, TDL provides a syntax to specify
tool-specific actor information, which ensures that all relevant
information can be extracted from a given design tool. The
DIF Package (TDP) is a software tool that accompanies TDL,
and provides a variety of intermediate representations, analysis
techniques, and graph transformations that are useful for
working with dataflow graphs that have been captured by TDL.
Mocgraph is a companion tool that is provided along with
TDP. Mocgraph can be viewed as a library of algorithms and
representations for working with generic graphs, whereas TDP
is a specialized package for working with dataflow graphs.

For example, TDP includes a transformation tool to con-
vert SDF representations into equivalent homogeneous SDF
(HSDF) representations, based on the transformation algorithm
introduced in [10]. Such a transformation can in general
expose additional concurrency that is not represented explicitly
in the original SDF graph. In this paper, we make use of
both generic-graph-based (via Mocgraph) and model-based
(via TDP) analysis methods to identify SSRs within CAL
networks As we will demonstrate later in this paper, automated
identification of SSRs from CAL networks provides a power-
ful and novel methodology for optimized implementation of
dataflow graphs. This methodology is especially useful in the
design and implementations of embedded multiprocessors for
video processing. In section IV-C, we develop the concept of
SSRs in details.

Compared to other design tools for representation and
transformation of dataflow graphs — such as SysteMoC [24],
PeaCE [25], and stream-based functions [13] — a distinguish-
ing feature of TDP is its support for representing and manipu-
lating different specialized forms of dataflow semantics. This
arises from the emphasis in TDL on recognizing a wide variety
of important forms of dataflow semantics along with relevant
modeling details that are required to meaningfully analyze
those semantics. Due to this feature of TDP, its capabilities
are highly complementary to those of existing dataflow-based
frameworks, since TDL and TDP can be used to capture
and analyze, respectively, representations from many of these

7

frameworks.

B. Interface between DIF and CAL

Our method to optimize implementation of DSP applica-
tions combines the advantages of three complementary tools,
as shown in Figure 5. The given DSP application is initially
described as a CAL network, which is a highly expressive form
of dataflow graph. The CAL-based dataflow representation is
then translated into a DIF-based intermediate representation
for analysis by TDP. This TDP-driven analysis produces a
set of SSRs, and an associated quasi-static schedule, which
is then translated into a reformulated CAL specification.
This transformed CAL code is then translated to a C code
implementation using CAL2C. The generated CAL2C imple-
mentation is optimized to exploit the static structures provided
by the SSRs and their enclosing quasi-static schedules.

In our current work, TDP reads XML representations of
CAL actors and CAL networks, and then generates a TDL file
based on the extracted information. We are also developing
an interface between XML and TDL, through which TDL
files can be represented in XML format, thereby making
XML a bridge for communicating between different dataflow
languages in our targeted CAL- and DIF-based design flow.

CAL
actor

CAL
network

DIF rep. of
CAL actor

DIF rep. of
CAL network

Analysis: actor
SRP

Analysis: detect
SSR

CAL network with
knowledge of SSR

DIF: TDL&TDP

Code Generation:
CAL2C

Fig. 5. Overview of our CAL- and DIF-based method for optimizing
dataflow graph implementation. SRP represents statically related port and SSR
represents statically related region.

Describing an actor in CAL involves describing not only its
ports, but also the structure of its internal state; the actions it
can perform; what these actions do (such as token production
and token consumption, and updating of actor state); and how
to determine the action that the actor will perform next. When
performing network dataflow analysis, we analyze interactions
among ports, state variables, and guard conditions of CAL
actors. In our current research, which focuses on deriving
and utilizing information about the token production and
consumption rates of actors, action priority is not taken into
consideration. This is because action priority only affects the
order of action execution within individual actors; it does not
affect the numbers of tokens that are produced or consumed.

C. Statically schedulable regions

Using TDP, one is able to automatically process regions that
are extracted from the original network, and exhibit properties
similar to synchronous dataflow (SDF) [10] graphs. SDF is
geared towards static scheduling of computational modules,

which can provide significant improvements in system per-
formance and predictability for DSP applications. Detection
of SDF-like regions is an important step for applying static
scheduling techniques within a dynamic dataflow framework.
Segmenting a system into SDF-like regions also allows us to
explore another kind of intrinsic concurrency — that resulting
from the dynamic dependencies between different regions.
Using SDF-like region detection as a preprocessing step to
software synthesis generally reduces the number of threads,
and is well suited for efficient parallel implementation of video
processing systems. In this paper, we designed and imple-
mented the statically schedulable region detection algorithm
as part of TDP to address inter-actor concurrency.

Given a dataflow graph G consisting of CAL actors, one
can construct a port connectivity graph (PCG) P = (V,E),
where V , the vertex set of the graph, is the set of all ports of
all actors in G, and E is a set of undirected edges. If there is
an edge between a pair of ports(A.a, B.b), the relationship be-
tween ports A.a and B.b satisfies two conditions: connectivity
and statically-related numbers of tokens. When discussing a
graphical representation of a CAL network, we assume that
the representation is in the form of a PCG, unless otherwise
stated.

Our approach for deriving statically schedulable regions
involves partitioning and grouping actor ports based on rela-
tionships that pertain to various kinds of interactions between
ports.

This overall process of partitioning and grouping begins
at the level of individual actors. Ports inside an actor can
be viewed as having different kinds of associations with one
another. Some ports can be viewed as related because they are
involved in the same action, while some are related because
they affect the same state variable. We refer to the set of ports
in A as the port set of A, denoted as ports(A). For a given
action l ∈ Γ(A), the set of ports that can be affected by the
action is denoted (allowing a minor abuse of notation) by
ports(A)l. In this paper, we apply the following two kinds
of port associations:

1) ∃(l ∈ Γ(A)) such that a, b ∈ ports(A)l;
2) ∃l,m ∈ Γ(A) such that a ∈ ports(A)l, b ∈ ports(A)m,

l is a state-changing action, and m is a state-guarded
action.

We define these two conditions as the coupling relation-
ships, and we observe that in general, two distinct ports can
satisfy zero, one or both of the coupling relationships. In the
case that one or both of the coupling relationships are satisfied,
we say that these two ports have strong connections.

As shown in Figure 6, there are four stages in our applica-
tion of the PCG: coupled ports (CPs), coupled groups (CGs),
statically related groups (SRGs), and statically schedulable
regions (SSRs). Using TDP, we repeatedly apply two key
techniques when working with the PCG — techniques of
partitioning and grouping — through the connected component
analysis of the PCG. Transformation of PCG is the procedure
of all the ports in the CAL network going through the above
four stages. The detailed description on strong connections,
statically schedulable regions and PCG derived in our design
flow is the result of network analysis in TDP [26].

8

 CP CG

 actor 1

 actor 1

 actor n

partition

 grouping
SRG SSR

 grouping

Fig. 6. SSR detection in PCG.

By transforming the PCG for a CAL network, we obtain a
set of SSRs. In general, this set can be empty or it can contain
one or multiple elements. For individual actors, SSRs distin-
guish “strong” connections from “weak” connection among
ports in terms of static schedule-ability analysis. Regarding the
CAL network, SSRs combine parts of the system that exhibit
potential for efficient static or quasi-static scheduling.

D. Mapping SSRs into multi-core systems

CAL provides for effective concurrent programming, which
provides natural benefits for multi-core systems. However in
the available code generators for CAL, such as CAL2C, no
optimization is performed for CAL actors. SSRs distinguish
weak connections from strong connections among ports. Each
SSR is grouped and subsequently applied as a thread to
help optimize the multi-threaded implementation for a multi-
core target. The main differences between SSR-based threads
and CAL-actor-based threads lie in two aspects: On one
hand, each SSR-based thread can be quasi-statically scheduled,
which allows for significant compile-time streamlining of the
associated scheduling mechanisms. On the other hand, data
connections between SSR-based threads are much weaker
compared to intra-SSR connections. This latter property im-
proves interprocessor communication. For these reasons, SSRs
provide enhanced granularity for parallelization on multi-core
systems.

Figure 7 illustrates SSRs within the IDCT subsystem. Here,
the main body of the IDCT is composed of the actors row,
tran, col, retran and clip. The dataGen and print actors are
used to complete a testbench for the network — dataGen is
responsible for generating input data, and print for displaying
the output from the IDCT computation. The shaded regions
shown in the figure correspond to the different SSRs, which
are unique to the application.

row
X Y

trans
X Y X Y X Y

clip
SIGNED

I

O

col retrans
datagen

S

DATA

printInput

row, col--GEN_124_algo_Idct1d.cal; tran,retran—GEN_algo_Transpose.cal;
clip—GEN_algo_Clip.cal; data_gen--idct2d_data_generate.cal;print--idct2_print.cal

Fig. 7. SSRs in the IDCT subsystem.

Next, we consider mapping of SSRs into multi-core sys-
tems. If we temporarily ignore the load balancing of compu-
tational tasks, we map one SSR into one core. In the example
of the IDCT subsystem, there are two SSRs, which can be
mapped naturally for a dual-core system. If all of the ports

in one actor belong to the same SSR, we allocate the actor
onto one core. On the other hand, for an actor that has ports
belonging to different SSRs, we divide the actor into two or
more parts, and each part is allocated separately — thus, in
general, actors may be “split” across multiple cores if they are
separated by the SSR construction process. As we described
before, SSRs distinguish strongly related ports from relatively
weaker connections. For example, inside one actor, two SRGs
may interact with one another only through processing of
shared state variables. The mechanism to access such shared
data can be easily implemented in a multi-core system, such
as through use of semaphore primitives.

In another word, SSR distinguish weak connections from
strong connections. Thus, when two SSRs are allocated onto
two cores, the connections for the SSRs between the cores are
weak. In our example, semaphores can be used for the two
cores to access the same data. In an SSR-based multi-threaded
system, data movement between cores is reduced, and it takes
correspondingly less time and effort for memory management
and synchronization between cores. In this sense, SSR-based
systems are effective in exploiting data locality for multi-core
systems.

DMA is helpful for intra-chip data transfer in our imple-
mentation on multi-core processors, where each processing
element is equipped with a local memory and DMA is used
for transferring data between the local memory and the main
memory. Multi-core systems that have DMA channels can
transfer data to and from devices with significantly less CPU
overhead. Similarly, a processing element inside a multi-core
processor can transfer data to and from its local memory
without occupying its processor time, which provides for
computation and data transfer concurrency. Using DMA, data
communications between actors are concurrent with the com-
putations, and therefore concurrency can be further enhanced.
Adapting DMA into our hardware platform is a promising
direction of future research.

Each SSR can be scheduled quasi-statically, which means
a significant portion of the schedule structure can be fixed at
compile time. Scheduling of each SSR can be controlled in the
core allocated for the SSR. Scheduling control is centralized
regarding synchronization between SSRs. For two SSRs that
share data, the central scheduler must determine the order of
execution between the SSRs.

Suppose that we have a dual-core platform. If we map
the tasks based on actors, as implemented in the original
CAL2C, one option is shown in Figure 8. Four CAL actors
are mapped into one core, and the other three actor are
mapped into the other core. There are other possible options
with differences in the numbers of actors that are mapped
to individual cores. Whatever option is used for mapping
actors, although inter-actor concurrency is maintained, for
each macroblock processed by the IDCT module, execution
of actors is sequential. Furthermore, since there are two paths
between actors dataGen and clip, as shown in Figure 8, if these
two actors are mapped onto separate cores, there is a relatively
large amount of data communication between the cores, which
in turn results in a large amount of context switch overhead
on the individual cores.

9

If we map the IDCT onto a dual-core system based on SSR
analysis, a straightforward mapping for this case is shown in
Figure 7. In this case, the connections between the cores are
weak connections inside both the dataGen and clip actors.
These weak connections can be implemented using semaphore
primitives. Furthermore, inside each core, the actions can be
statically scheduled in terms of checks on an appropriately
defined semaphore. Here we can easily take advantage of well
known SDF scheduling techniques, such as APGAN [27] [28].
An example of scheduling of SSRs, including the actor clip,
is shown in Figure 9.

rowX Y tranX Y retranX Y clipI OX Y

Signed

col

dataGen
S

DATA

print
input

row, col--GEN_124_algo_Idct1d.cal; tran, retran--GEN_algo_Transpose.cal;
clip--GEN_algo_Clip.cal; data_gen-- idct2d_data_generate.cal; print-- idct2d_print.cal;

Fig. 8. Actor-level mapping onto a multi-core platform.

idct2dSSR1_sched

1

datagen1 8 tran 8 retran 64 print

row col clip1

Fig. 9. Scheduling tree for one SSR in the IDCT.

After integrating results of SSR analysis into CAL2C, we
obtained a modified version of CAL2C, which we call CAL2C-
SSR. To evaluate the effectiveness of our SSR techniques,
we conducted experiments on a dual-core 2.5Ghz laptop.
We generated C code using CAL2C and CAL2C-SSR for
three different IDCT versions. The first version (V1) does
not employ any SSR analysis, and can be viewed as being
scheduled purely through SystemC, which is used in CAL2C.
In this version, the actors are mapped onto two core as shown
in Figure 8.

The second version (V2) uses CAL2C-SSR. This version
exploits the SSRs illustrated in Figure 7, and employs a
quasi-static integration of static schedules for these SSRs with
top-level dynamic scheduling. In this version, two SSRs are
mapped onto two cores, and semaphore primitives are used
for inter-SSR communication.

The third version (V3) also uses CAL2C-SSR. This version
also uses a modified, more predictable version of the clip actor

that can be used when the input data is known in advance. In
the new version of clip, the ports Signed and O are rewritten
to become coupled ports. Then the original two SSRs are
combined as one SSR through connections inside clip. In
the illustration of V3 shown in Figure 10, the IDCT system
becomes an SDF model that runs as a single thread. Since
entirely static scheduling is used in this version, V3 is the
most efficient in terms of execution speed.

row
X Y

trans
X Y X Y X Y

clip
SIGNED

I

O

col retrans
datagen

S

DATA

printInput

row, col--GEN_124_algo_Idct1d.cal; tran,retran—GEN_algo_Transpose.cal;
clip—GEN_algo_Clip.cal; data_gen--idct2d_data_generate.cal;print--idct2_print.cal

Fig. 10. IDCT subsystem with one SSR.

We experimented with all three IDCT versions using Mi-
crosoft Visual Studio. The results are shown in Figure 11.
Here, V2 shows an improvement in performance of 1.5 times
compared to V1, whereas V3 shows the best performance
among all three versions.

Note that while V3 exhibits the best performance, demon-
strates that larger SSR regions can lead to significant improve-
ments in performance, and is generally interesting as a kind
of “limit study”, this version is not of practical utility. This is
because V3 requires prior knowledge of input data, which is
not a practical assumption for real-time operations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0

100

200

300

400

500

600

700

Throughputs of different IDCT

CAL2C (no SSR)

CAL2C +SSRs

CAL2C +SSR (SDF)

Nb of IDCT (*1000)

N
b

of
 T

ic
ks

Fig. 11. Results: clock cycles vs number of iterations.

E. Concurrency analysis of the MPEG-4 SP decoder

When we analyze the MPEG-4 SP decoder in Figure 2 in
the domain of TDP, the first step is to translate the hierarchical
system into a flattened one in which every actor is an atomic
actor.

In TDP, a fork actor is introduced to implement dataflow-
style broadcasting when needed (i.e., when data must be
copied to multiple outgoing edges). For example, Header is an
atomic actor inside the super actor parser in the CAL network
of Figure 2, and the tokens produced from the BTYPE port of
the actor Header are broadcast to five different input ports
of different actors. Thus, in the intermediate representation
derived by TDP, a fork actor GEN-mgnt-fork is inserted
between Header and the five actors that are destinations of
the broadcast. Conceptually, whenever GEN-mgnt-fork fires,

10

MPEG-4 SP decoder speed frame/second
monoprocessor with systemC scheduler 8

monoprocessor with round robin scheduler 42
monoprocessor with round robin scheduler and SSR 44

dual-core processor with round robin scheduler and SSR 50

TABLE I
MPEG-4 SP DECODER PERFORMANCE.

it consumes a single token and produces copies of that token
onto its five output ports. Due to space limitations, the PCG
graph of the MPEG RVC decoder is not illustrated in this
paper.

When applied to the targeted decoder system, our tools for
SSR detection return a total of 30 SSRs that are detected. Each
SSR can be statically scheduled in terms of some enclosing
condition. Since SSRs can be processed concurrently, the
SSRs become the basic unit for thread formation instead of
actors. Compared with actor-based threads, SSR-based threads
provide advantages such as reduced inter processor commu-
nication (IPC) and synchronization overhead between threads.
These advantages are important since IPC and synchronization
overhead are often limiting factors for performance enhance-
ment in multi-core platforms.

We further modified the scheduler of CAL2C to better
accommodate SSRs [3]. All of the SystemC primitives have
been removed from the current version of Cal2C. The current
scheduler of CAL2C is improved into a round robin sched-
uler [29] executing each actor in a loop; an actor is fired
until input tokens are available and output FIFOs are not full.
SSRs can be easily incorporated in this fully software-based
implementation, independent from SystemC, by removing all
of the possible tests on the FIFOs when an SSR is detected.

We conducted experiments involving the application of CIF
sequences with size 352x288. A CIF-size image (352x288)
corresponds to 22x18 macroblocks. As shown in Table I, the
experimental results demonstrate that CAL2C with SSR on the
round robin scheduler has the best performance in a multi-core
system.

Note that although we have detected many SSRs in the
whole MPEG-4 SP decoder system, we have applied SSRs
only to three parts within the IDCT system. These are parts
where SSR detection has significant impact. A completely
thorough application of SSRs would require much more effort,
but we expect that such an effort would result in further
improvements. This is a useful direction for further exploration
in this case study.

We relate the number of ports in one SSR to the scale
of the SSR granularity due to the general fact that a larger
number of ports result in a bigger sequence of actions. In some
cases, however, SSRs may produce too large a granularity to
promote effective computational load balancing. In such cases,
further dataflow analysis techniques are needed to decompose
“large” SSRs into smaller units that are more computationally-
balanced. Similarly, it may be advantageous to combine fine-
grained (“small”) SSRs into larger units to further promote the
streamlining of IPC and synchronization. Thus, SSR detection
provides an important step towards improving the dataflow

granularity of CAL programs; however, there may be room
for significant further improvement through post-processing
transformations that operate on the detected SSRs. Some work
along these lines has already been developed as part of the
PREESM project [30]. Further exploration on this class of
“granularity-adjustment” transformations for SSRs is a useful
direction for further work.

V. CONCLUSIONS

This paper describes an approach based on dataflow rep-
resentations to coping with the growing complexity of video
processing algorithms. We demonstrate this approach on an in-
depth case study involving the design of an MPEG reconfig-
urable video coding (RVC) description of the MPEG-4 simple
profile decoder. The system is originally represented using an
actor-oriented dataflow language called CAL. Code generators,
such as CAL2C, that translate CAL into C code are then
described, and this is followed by an analysis of inter-actor
concurrency in CAL-based dataflow representations. Next, we
describe an approach for automatically detecting and exploit-
ing structures called statically schedulable regions (SSRs)
from within CAL networks. We then show how SSRs can be
used to significantly improve the efficiency and predictability
of multi-core video processing systems.

CAL actor programming and SSR detection allow designers
and tools to analyze different forms of concurrency, which can
significantly improve the efficiency of circuits and systems
for video processing. Our experimental results show that
integration of SDF-like regions into CAL2C makes the derived
multi-core implementations significantly faster. The overall
goal of our work on CAL is to provide an automatic design
flow from user-friendly design to efficient implementation of
video processing systems.

Important directions for further work include the exploration
of CAL-based design, analysis and optimization for other
types of hardware platforms beyond multi-core platforms;
programmer-directed implementation of SSRs for interactive
performance tuning; and SSR transformations (e.g., cluster-
ing and decomposition transformations) for optimizing thread
granularity.

REFERENCES

[1] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG reconfigurable video coding
framework,” Journal of Signal Processing Systems, June 2009. [Online].
Available: http://dx.doi.org/10.1007/s11265-009-0399-3

[2] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis from
the dataflow interchange format,” in Proceedings of the International
Workshop on Software and Compilers for Embedded Systems, Dallas,
Texas, September 2005, pp. 37–49.

[3] M. Wipliez, G. Roquier, and J. Nezan, “Software code generation for
the RVC-CAL language,” Journal of Signal Processing Systems, June
2009. [Online]. Available: http://dx.doi.org/10.1007/s11265-009-0390-z

[4] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs,” Journal
of Signal Processing Systems, June 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11265-009-0397-5

[5] MPEG video technologies – Part 4: Video tool library, ISO/IEC FDIS
23002-4, 2009.

[6] MPEG systems technologies – Part 4: Codec Configuration Represen-
tation, ISO/IEC FDIS 23001-4, 2009.

http://dx.doi.org/10.1007/s11265-009-0399-3
http://dx.doi.org/10.1007/s11265-009-0390-z
http://dx.doi.org/10.1007/s11265-009-0397-5

11

[7] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinacy, termination, queuing,” SIAM Journal of
Applied Math, vol. 14, no. 6, November 1966.

[8] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of the IFIP Congress, 1974.

[9] J. B. Dennis, “First version of a data flow procedure language,” Lab-
oratory for Computer Science, Massachusetts Institute of Technology,
Tech. Rep., May 1975.

[10] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[11] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2,
pp. 397–408, February 1996.

[12] C. Hsu, I. Corretjer, M. Ko., W. Plishker, and S. S. Bhattacharyya,
“Dataflow interchange format: Language reference for DIF language
version 1.0, users guide for DIF package version 1.0,” Institute for
Advanced Computer Studies, University of Maryland at College Park,
Tech. Rep. UMIACS-TR-2007-32, June 2007.

[13] B. Kienhuis and E. F. Deprettere, “Modeling stream-based applications
using the SBF model of computation,” in Proceedings of the IEEE
Workshop on Signal Processing Systems, September 2001, pp. 385–394.

[14] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya,
“Functional DIF for rapid prototyping,” in Proceedings of the Interna-
tional Symposium on Rapid System Prototyping, Monterey, California,
June 2008, pp. 17–23.

[15] J. Eker and J. W. Janneck, “CAL language report, language version 1.0
— document edition 1,” Electronics Research Laboratory, University of
California at Berkeley, Tech. Rep. UCB/ERL M03/48, December 2003.

[16] S. Vinoski, “Concurrency with erlang,” IEEE Internet Computing,
vol. 11, no. 5, pp. 90–93, 2007.

[17] S. S. Bhattacharyya, G. Brebner, J. Eker, J. W. Janneck, M. Mattavelli,
C. von Platen, and M. Raulet, “Opendf — a dataflow toolset for recon-
figurable hardware and multicore systems,” ACM SIGARCH Comput.
Archit. News, vol. 36.

[18] T. Chen and Y. K. Chen, “Challenges and opportunities of obtaining
performance from multi-core cpus and many-core gpus,” in Proceedings
of IEEE International Conference on Acoustics, Speech, and Signal
Processing, April 2009.

[19] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization, 2nd ed. CRC Press, 2009.

[20] M. Wipliez, G. Roquier, M. Raulet, J. Nezan, and O. Deforges, “Code
generation for the MPEG reconfigurable video coding framework: From
CAL actions to C functions,” in Proceedings Multimedia and Expo,
IEEE International Conference, June 2008, pp. 1049–1052.

[21] G. Roquier, M. Wipliez, M. Raulet, J. Janneck, I. Miller, and D. Parlour,
“Automatic software synthesis of dataflow program: An MPEG-4 simple
profile decoder case study,” in Proceedings of IEEE Workshop on Signal
Processing Systems, October 2008, pp. 281–286.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: An Infras-
tructure for C Program Analysis and Transformation,” in Proceedings
of CC 2002, April 2002, pp. 213–228.

[23] E. Gagnon, “Sablecc: An object-oriented compiler framework,” School
of Computer Science, McGill University, Montreal, Canada, Tech. Rep.,
1998.

[24] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubhr, A. Deyhle,
A. Hadert, and J. Teich, “A SystemC-based design methodology for
digital signal processing systems,” EURASIP Journal on Embedded
Systems, vol. 2007, pp. Article ID 47 580, 22 pages, 2007.

[25] W. Sung, M. Oh, C. Im, and S. Ha, “Demonstration of hardware software
codesign workflow in PeaCE,” in Proceedings of the International
Conference on VLSI and CAD, October 1997.

[26] R. Gu, J. W. Janneck, M. Raulet, and S. S. Bhattacharyya, “Exploiting
statically schedulable regions in dataflow programs,” in Proceedings of
the International Conference on Acoustics, Speech, and Signal Process-
ing, 2009.

[27] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Apgan and rpmc:
Complementary heuristics for translating dsp block diagrams into ef-
ficient software implementations,” Journal of Design Automation for
Embedded Systems, vol. 2, no. 1, pp. 33–60, January 1997.

[28] W. Plishker, N. Sane, and S. S. Bhattacharyya, “A generalized scheduling
approach for dynamic dataflow applications,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, Nice,
France, April 2009.

[29] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded
memory using the token flow model,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, 1993. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2429.html

[30] J. Piat, M. Raulet, M. Pelcat, P. Mu, and O. Déforges, “An extensible
framework for fast prototyping of multiprocessor dataflow applications,”
in IDT’08: Proceedings of the 3rd International Design and Test
Workshop, Monastir, Tunisia, December 2008.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2429.html

	Introduction
	Background
	Reconfigurable video coding
	Dataflow language
	Concurrency
	The CAL language
	Multi-core systems

	Inter-actor concurrency analysis
	Data-driven processing
	Data parallelism inside CAL networks
	Pipeline concurrency analysis
	Concurrency from available code generators

	Inter-actor optimization for CAL networks
	DIF and network analysis capability
	Interface between DIF and CAL
	Statically schedulable regions
	Mapping SSRs into multi-core systems
	Concurrency analysis of the MPEG-4 SP decoder

	Conclusions
	References

