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A POSTERIORI ERROR ESTIMATORS FOR THE FULLY DISCRETE TIME DEPENDENT STOKES PROBLEM WITH SOME DIFFERENT BOUNDARY CONDITIONS
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In this paper we study the time dependent Stokes problem with some different boundary conditions. We establish a decoupled variational formulation into a system of velocity and a Poisson equation for the pressure. Hence, the velocity is approximated with curl conforming finite elements in space and Euler scheme in time and the pressure with standard continuous elements in space and Euler scheme in time. Finally, we establish optimal a priori and a posteriori estimates

Introduction.

This paper is devoted to the numerical solution of the time dependent Stokes equations for an incompressible fluid

∂u ∂ -Δu + ∇ = f in Ω×]0, [, (1.1) 
with the incompressibility condition div u = 0 in Ω×]0, [,

the initial condition u(0) = 0 in Ω, (1.3) the boundary conditions u × n = 0, = 0 on ∂Ω×]0, [, (1.4) or u.n = 0, curl u × n = 0 on ∂Ω×]0, [. (1.5) where ]0, [ is a given time-interval, Ω is a convex bounded simply connected domain of IR 3 with a polyhedral connected boundary Γ = ∂Ω and n the exterior unit normal to Γ, u the velocity and the pressure. All the quantities are taken at the point ( , ) where = ( ) 1≤ ≤3 ∈ ℝ 3 denotes the position and ∈ [0, ] the time. f denotes the external forces applied to the fluid and > 0 is the viscosity. These sets of boundary conditions lend themselves readily to a variational formulation where the Laplacian operator is expressed by a (curl, curl) term and the incompressibility condition by an equation of the form (∇ , v). Usually, for the Stokes problem, we use a set of finite elements which verifies a discrete inf-sup condition. In our work, by decoupling the variational system in a Poisson equation for the pressure and an other system for the velocity, the finite elements used for the discretized system do not need to verify a discrete inf-sup condition and lead to matrix systems with an optimal dimension and optimal time of resolution. We use the non-confirming finite elements method where just the curl of the velocity is continuous at interface boundaries whereas the pressure is globally continuous. The main theorems (2.1 and 3.2) applied in this paper require the convexity of the domain.

We refer to Girault's work [START_REF] Girault | Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ℝ 3[END_REF] for a vector potential-vorticity approximation of similar Navier-Stokes type problems and to [START_REF] Girault | Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ℝ 3[END_REF] for the steady-state incompressible Navier-Stokes equations with non standard boundary conditions. For the Vorticity-velocity-pressure formulation for the Stokes problem, we refer to [START_REF] Dubois | Vorticity-velocity-pressure formulation for the Stokes problem[END_REF], [START_REF] Dubois | Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem[END_REF] and [START_REF] Salmon | Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes[END_REF]. We also refer to [START_REF] Repin | A posteriori error estimates for approximate solutions of variational problems[END_REF] where Repin establishes a posteriori estimates for the velocity, stress and pressure fields for the stationary Stokes problem and where his approach is based on duality theory of the calculus of variations. A posteriori estimates for the Stokes problem and for some viscous flow problems were studied by a number of authors, [START_REF] Bank | A posteriori eror estimates for the Stokes problem[END_REF], [START_REF] Verf¨ | A posteriori eror estimators for the Stokes equations[END_REF], [START_REF] Verf¨ | A posteriori eror estimators for the finite element discretizations of the heat equation[END_REF], [START_REF] Bernardi | A Posteriori error analysis of the fully discretized time-dependent Stokes equations[END_REF], [START_REF] Oden | An a posteriori eror estimate for finite element approximations of the Navier-Stokes equations[END_REF] and [START_REF] Padra | A posteriori error estimators for nonconforming approximation of some quasi-newtonian flows[END_REF]. Typically, they have been obtained in the frame of the so-called "residual method" originally proposed in [START_REF] Babu˜ | A posteriori eror estimates for the finite element method[END_REF] and [START_REF] Babu˜ | Error estimates for adaptive finite element computations[END_REF] for the finite element approximations. For the a piori estimations of the Stokes problem, we can also cite the works of S. Repin [START_REF] Repin | A posteriori estimates for the Stokes problem[END_REF], [START_REF] Repin | Local a posteriori estimates for the Stokes problem[END_REF], [START_REF] Repin | A posteriori error estimates for the generalized Stokes problem[END_REF]. Finally, in [START_REF] Abboud | A priori and a posteriori estimates for the Stokes problem with some different boundary conditions[END_REF], we treat the same problem in stationary case.

The remainder of this article is organized as follows: In Section 2, we introduce the problem and we establish a decoupled variational formulation into a system of velocity and a Poisson equation for the pressure. In section 3, we introduce the finite elements and a fully discrete system using the curl conforming finite elements for the velocity and the standard continuous elements for the pressure in space, and the Euler scheme in time. In the section 4, we establish an optimal corresponding a priori estimates. In the last section, we begin by establish an optimal a posteriori estimates for the pressure. Next, by writing the error uu h with specific decomposition, we establish an optimal a posteriori estimate for the velocity.

Description and analysis of the model

We denote by [START_REF] Abboud | A priori and a posteriori estimates for the Stokes problem with some different boundary conditions[END_REF] the system of equations (1.1), (1.2), (1.3) and (1.4), and by ( 2) the system of equations (1.1), (1.2) (1.3) and (1.5). In all the paper, we denote by and generic positive constants.

In order to write the variational formulation of the previous problems, we introduce some spaces:

, (Ω) = { ∈ (Ω), ∂ ∈ (Ω), ∀ | |≤ }, (Ω) = ,2 (Ω),
equipped with the following semi-norm and norm :

| | , ,Ω = ⎧ ⎨ ⎩ ∑ | |= ∫ Ω | ∂ ( ) | ⎫ ⎬ ⎭ 1/ and ∥ ∥ , ,Ω = ⎧ ⎨ ⎩ ∑ ≤ | | , ,Ω ⎫ ⎬ ⎭ 1/
.

As usual, we shall omit when = 2 and denote by (⋅, ⋅) the scalar product of 2 (Ω). Also, recall the familiar notation :

1 0 (Ω) = { ∈ 1 (Ω); = 0 on Γ}, with the Poincaré inequality ∀ ∈ 1 0 (Ω); || || 0,Ω ≤ | | 1,Ω . (2.1)
Finally, we introduce the spaces :

( , Ω) = {v ∈ 2 (Ω) 3 , v ∈ 2 (Ω)}; 0 ( , Ω) = {v ∈ ( , Ω), v ⋅ n = 0 on Γ}; (curl, Ω) = {v ∈ 2 (Ω) 3 , curl v ∈ 2 (Ω) 3 }; 0 (curl, Ω) = {v ∈ (curl, Ω), v × n = 0 on Γ};
normed respectively by :

∥ v ∥ ( ,Ω) = { ∥ v ∥ 2 0,Ω + ∥ v ∥ 2 0,Ω } 1/2 ,
and

∥ v ∥ (curl,Ω) = { ∥ v ∥ 2 0,Ω + ∥ curl v ∥ 2 0,Ω } 1/2 .
For the following regularity theorem, we refer to Nedelec [START_REF] Nedelec | Eléments finis mixtes incompressibles pour l'équation de Stokes dans IR 3[END_REF] Theorem 2.1. Let Ω be convex. All functions v ∈ 2 (Ω) 3 satisfying :

div v = 0, curl v ∈ 2 (Ω) 3 , v.n = 0 v × n = 0 on Γ,
belong to 1 (Ω) and we have ||v|| 1,Ω ≤ ||curl v|| 0,Ω .

As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time interval ] , [ with values in a functional space, say . More precisely, let ∥ . ∥ denote the norm of ; then for any , 1 ≤ ≤ ∞, we define

( , ; ) = { mesurable in ] , [; ∫ ∥ ( ) ∥ < ∞ } ,
equipped with the norm

∥ ∥ ( , ; ) = ( ∫ ∥ ( ) ∥ ) 1/ , with the usual modifications if = ∞. It is a Banach space if is a Banach space.
In view of the relation :

-Δu = curl curl u (as we have u = 0), we can establish the next theorem.

Theorem 2.2. Let f ∈ ∞ (0, ; 2 (Ω) 3 ).

( 1) has the following weak variational formulation :

Find u( ) ∈ 0 (curl, Ω) and ( ) ∈ 1 0 (Ω) such that:

( u( ), v) + (curl u( ), curl v) + (∇ ( ), v) = (f ( ), v) ∀ v ∈ 0 (curl, Ω), (2.2) (∇ , u( )) = 0 ∀ ∈ 1 0 (Ω), (2.3) 
u(0) = 0, (2.4) 
and ( 2) has the following weak variational formulation :

Find u( ) ∈ (curl, Ω) and ( ) ∈ 1 (Ω)/IR such that:

( u( ), v) + (curl u( ), curl v) + (∇ ( ), v) = (f ( ), v) ∀ v ∈ (curl, Ω), (2.5) 
(∇ , u( )) = 0 ∀ ∈ 1 (Ω), (2.6) 
u(0) = 0. (2.7)
Where u( ) = u( , .) and ( ) = ( , .).

Proof: First, let ( , ) is the solution of the problem [START_REF] Abboud | A priori and a posteriori estimates for the Stokes problem with some different boundary conditions[END_REF]. The density of (Ω) 3 in 0 (curl, Ω) (see [START_REF] Girault | Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ℝ 3[END_REF] Chap. 1 or [START_REF] Temam | Theory and Numerical Analysis of the Navier-Stokes Equations[END_REF] Chap. 1) and the density of (Ω) in 1 0 (Ω) give that ( , ) is also solution of the problem (2.2) and (2.3). Conversely, let ( , ) be the solution of (2.2) and (2.3), the equations (1.1) and (1.2) are satisfied in the distribution sense, and the forth equation (1.4) becomes from the definition of the spaces 0 (curl, Ω) and 1 0 (Ω). For the second problem, we proceed in the same way. In fact, let ( , ) a solution of (2.5) and (2.6), the equations (1.1) and (1.2) are satisfied in the distribution sense. The first boundary condition of (1.5) is then derived by integrating by parts the equation:

∫ Ω div u = 0 ∀ ∈ 1 (Ω),
(note that it is satisfied in the dual space of 1 2 (∂Ω)). The second boundary condition of (1.5) can be obtaining as follow: The equations (1.1) and (2.5) give (curl curl u, v) = (curl u, curl v) ∀v ∈ (curl, Ω), which leads to curl u × n = 0 on ∂Ω. □ Each variational formulation is splitted into a system for the velocity and a Poisson equation for the pressure.

Let us introduce the spaces :

0 = {v ∈ 0 (curl, Ω); (∇ , v) = 0 ∀ ∈ 1 0 (Ω)}, and = {v ∈ (curl, Ω); (∇ , v) = 0 ∀ ∈ 1 (Ω)}. Theorem 2.3. The problem (2.2)-(2.
3) is equivalent to the problem :

Find u( ) ∈ 0 such that: u(0) = 0, ( u( ), v) + (curl u( ), curl v) = (f ( ), v) ∀ v ∈ 0 .
(2.8)

Find ( ) ∈ 1 0 (Ω) such that: (∇ ( ), ∇ ) = (f ( ), ∇ ) ∀ ∈ 1 0 (Ω).
(2.9)

The problem (2.5)-(2.6) is equivalent to the problem :

Find u( ) ∈ such that: u(0) = 0, ( u( ), v) + (curl u( ), curl v) = (f ( ), v) ∀ v ∈ . (2.10) 
Find ( ) ∈ 1 (Ω)/IR such that:

(∇ ( ), ∇ ) = (f ( ), ∇ ) ∀ ∈ 1 (Ω). ( 2 

.11)

Proof: For every v ∈ 0 (curl, Ω) (rep. (curl, Ω)), there exists a unique q such that:

(∇ , ∇ ) = (v, ∇ ) ∀ ∈ 1 0 (Ω) (resp. 1 (Ω)/IR). We deduce that every v ∈ 0 (curl, Ω) (rep.

( , Ω)) can be decomposed as v = w + ∇ where w ∈ 0 (res. ) and ∈ 1 0 (Ω) (rep. 1 (Ω)/IR). First by taking v = w ∈ 0 (resp. ∈ ) in (2.2) (resp. (2.5)), we obtain (2.8) (resp. (2.10)). second, by taking v = ∇ with ∈ 1 0 (Ω) (resp. ∈ 1 (Ω)/IR) in (2.2) (resp. (2.5)), we obtain (2.9) (resp. (2.11)). □

Finite element discretization

We introduce a regular family of triangulations ( ℎ ) ℎ in the sens that :

• for each ℎ, Ω in the union of all element of ℎ ;

• for each ℎ, the intersection of two different elements of ℎ , if not empty, is a node, a whole edge or a whole face of both of them; • the ratio of the diameter ℎ of an element in ℎ to the diameter of its inscribed sphere is bounded by a constant independent of and ℎ;

As usual, ℎ denotes the maximum of the diameters of the elements of ℎ .

Next, for each in ℎ , we introduce the spaces IP 0 ( ) of the restrictions to of constant functions on IR 3 , IP 1 ( ) of the restrictions to of affine functions on IR and the space IP ( ) of the restrictions to of polynomials v of the form :

v( ) = + × , ∈ IR 3 , ∈ IR 3 .
The space IP ( ) and the corresponding finite elements are studied in [START_REF] Nedelec | Mixed finite element in IR 3[END_REF].

Their degrees of freedom are the average flux along the edges ∫ (v.t) , for the six edges of , is the direction vector of . Hence, we associate the operator where (u) is the unique polynomial of IP that has the same flux along the edges as u. We define also the the operator where ( ) is the unique polynomial of IP 1 ( ) that has the same values on the vertex of as .

Next, let us introduce the discrete spaces :

ℎ = {u ℎ ∈ (curl, Ω); u ℎ | ∈ IP ( ), ∀ ∈ ℎ }, (3.1) 
0ℎ = ℎ ∩ 0 (curl, Ω), (3.2) 
ℎ = { ℎ ∈ 0 (Ω); ℎ | ∈ IP 1 ( ), ∀ ∈ ℎ }, (3.3 
) 0ℎ = ℎ ∩ 1 0 (Ω). (3.4)
With these spaces, the finite dimensional analogues of 0 and are :

0ℎ = {v ℎ ∈ 0ℎ ; (∇ ℎ , v ℎ ) = 0, ∀ ℎ ∈ 0ℎ },
and

ℎ = {v ℎ ∈ ℎ ; (∇ ℎ , v ℎ ) = 0 ∀ ℎ ∈ ℎ }.
We define the interpolation operators ℎ from 1 (Ω) 3 onto ℎ , ℎ from 2 (Ω) onto ℎ by ℎ = ( ) on , ∀ ∈ ℎ (similarly for ℎ ).

Theorem 3.1. Assume that the triangulation ℎ is regular. For all ≥ 1 we have :

∥ u -ℎ u ∥ 0,Ω +ℎ ∥ curl(u -ℎ u) ∥ 0,Ω ≤ ℎ | u | 1, ,Ω , ∀ u ∈ 1, (Ω) 3 , for some > 2.
Moreover, when u ∈ ( (Ω)) 3 we have :

∥ u -ℎ u ∥ 0,Ω ≤ ℎ | u | ,Ω ,
and, when u ∈ ( +1 (Ω)) 3 we have :

∥ curl(u -ℎ u) ∥ 0,Ω ≤ ℎ | u | +1,Ω .
We have also an important result given by V. Girault [START_REF] Girault | Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ℝ 3[END_REF] which shows an impact imbedding between the spaces 0ℎ or ℎ and 4 (Ω) 3 .

Theorem 3.2. Let Ω be convex and ℎ a uniformly regular family of triangulations of Ω. For each space 0ℎ and ℎ , there exists constants and ′ , independent of ℎ, such that

||u ℎ || 0,Ω ≤ ||u ℎ || 0,4,Ω ≤ ′ ||curl u ℎ || 0,Ω ∀u ℎ ∈ 0ℎ or ℎ . (3.5)
To discretize in time, we divide the interval [0, ] into subintervals of equal length = , with grid-points = , 0 ≤ ≤ .

We discretize ( 1) by : knowing ℎ , find ( +1

ℎ , +1 ℎ ) with values in 0ℎ × 0ℎ , solution of 1 (u +1 ℎ -u ℎ , v ℎ ) + (curl u +1 ℎ , curl v ℎ ) + (∇ +1 ℎ , v ℎ ) = (f +1 , v ℎ ) ∀ v ℎ ∈ 0ℎ . (3.6)
Similarly, we discretize ( 2) by : knowing ℎ , find ( +1

ℎ , +1 ℎ ) with values in ℎ × ℎ /IR, solution of 1 (u +1 ℎ -u ℎ , v ℎ ) + (cur u +1 ℎ , curl v ℎ ) + (∇ +1 ℎ , v ℎ ) = (f +1 , v ℎ ) ∀ v ℎ ∈ ℎ . (3.7)
Where we assume that f +1 = f ( +1 ] and u 0 ℎ = 0.

As in the continuous way, the problem (3.6) can be splited to

Find u +1 ℎ ∈ 0ℎ such that 1 (u +1 ℎ -u ℎ , v ℎ ) + (curl u +1 ℎ , curl v ℎ ) = (f +1 , v ℎ ) ∀ v ℎ ∈ 0ℎ , (3.8) 
Find +1 ℎ ∈ 0ℎ such that (∇ +1 ℎ , ∇ ℎ ) = (f +1 , ∇ ℎ ), ∀ ℎ ∈ 0ℎ . (3.9)
And the problem (3.7) can be splited to

Find u +1 ℎ ∈ ℎ such that 1 (u +1 ℎ -u ℎ , v ℎ ) + (curl u +1 ℎ , curl v ℎ ) = (f +1 , v ℎ ), ∀ v ℎ ∈ ℎ , (3.10) 
Find +1 ℎ ∈ ℎ /IR such that (∇ +1 ℎ , ∇ ℎ ) = (f +1 , ∇ ℎ ), ∀ ℎ ∈ ℎ . (3.11)
Remark: It is easy to show that these two last discrete problems have a unique solution. The pressure is entirely dissociated from the velocity, i.e. can be computed without knowing the velocity.

We have also for both discrete problems :

sup 0≤ ≤ -1 ||u +1 ℎ || 2 0,Ω + -1 ∑ =0 ||u +1 ℎ -u ℎ || 2 0,Ω + -1 ∑ =0 ||curl u +1 ℎ || 2 0,Ω ≤ ||f || 2 ∞ (0, ; 2 (Ω) 3 ) ,
and sup

0≤ ≤ -1 | +1 ℎ | 1,Ω ≤ ||f || ∞ (0, ; 2 (Ω) 3 ) .

A priori error analysis

In this section, we will establish the a priori error estimates for the pressure and the velocity.

Theorem 4.1. We suppose that the theoretical solution (u, ) of the problem (2.8)-(2.9) (resp. (2.10)- 

(2.11)) verify: u ∈ ∞ (0, ; 2 (Ω) 3 ), u ′ ∈ 2 (0, ; 1 (Ω) 3 ), u ′′ ∈ ∞ (0, ; 2 (Ω) 3
sup 0≤ ≤ -1 ||∇( ( +1 ) -+1 ℎ )|| 0,Ω ≤ ( , , Ω) ℎ, (4.1) 
sup

0≤ ≤ -1 ||u( +1 ) -u +1 ℎ || 2 0,Ω + -1 ∑ =0 ||(u( +1 ) -u +1 ℎ ) -(u( ) -u ℎ )|| 2 0,Ω + -1 ∑ =0 ||curl (u( +1 ) -u +1 ℎ )|| 2 0,Ω ≤ ( , u, f , , Ω) ( ℎ 2 + 2
) .

(4.2) Proof: For the pressure, let us choose = ℎ in (2.9) and take, for = +1 , the difference with (3.9) (resp. (2.11) and (3.11)), we obtain:

(∇( ( +1 ) -+1 ℎ ), ∇ ℎ ) = 0, ∀ ℎ ∈ 0ℎ (resp. ℎ ), (4.3) then ∀ ℎ ∈ 0ℎ (resp. ℎ ) (∇( ℎ ( +1 ) -+1 ℎ ), ∇ ℎ ) = -(∇( ( +1 ) -ℎ ( +1 )), ∇ ℎ ). (4.4)
We take ℎ = ℎ ( +1 ) -+1 ℎ and we obtain, using the triangle inequality, the relation:

||∇( ( +1 ) -+1 ℎ )|| 0,Ω ≤ ℎ| ( +1 )| 2,Ω , (4.5) 
which lead to the first result (4.1).

For the velocity, we choose v = v ℎ in the equation (2.8) taken for = +1 and multiplied by , and take the difference with (3.8) multiplied by (resp. (2.10) and (3.10)), we obtain:

( u ( +1 ) -(u +1 ℎ -u ℎ ), v ℎ )+ (curl (u( +1 ) -u +1 ℎ ), curl v ℎ ) + (∇( ( +1 ) -+1 ℎ ), v ℎ ) = 0 ∀v ℎ ∈ 0ℎ (resp. ℎ ) .
Then a simple manipulation gives:

(( ℎ u( +1 ) -u +1 ℎ ) -( ℎ u( ) -u ℎ ), v ℎ ) + (curl ( ℎ u( +1 ) -u +1 ℎ ), curl v ℎ ) = -((u( +1 ) -ℎ u( +1 )) -(u( ) -ℎ u( )), v ℎ ) + ((u( +1 ) -u( )) -u ′ ( +1 ), v ℎ ) -(curl (u( +1 ) -ℎ u( +1 )), curl v ℎ ) -(∇( ( +1 ) -+1 ℎ ), v ℎ ) ∀v ℎ ∈ 0ℎ (resp. ℎ ) .
We take

v ℎ = v +1 ℎ = ℎ u( +1 ) -u +1 ℎ and use the formula ( -, ) = 1 2 2 - 1 2 2 + 1 2 ( -) 2 , we obtain : 1 2 ||v +1 ℎ || 2 0,Ω - 1 2 ||v ℎ || 2 0,Ω + 1 2 ||(v +1 ℎ -v ℎ )|| 2 0,Ω + ||curl (v +1 ℎ )|| 2 0,Ω ≤ ( ∫ +1 (u ′ ( ) -ℎ u ′ ( )) , v +1 ℎ ) + 2 2 ||u ′′ || ∞ (0, ; 2 (Ω) 3 ) ||v +1 ℎ || 0,Ω + 3 ℎ||u( +1 )|| 2,Ω ||curl v +1 ℎ || 0,Ω + (∇( ( +1 ) -+1 ℎ ), v +1 ℎ ) .
The first term of the right member can be treated as :

( ∫ +1 (u ′ ( ) -ℎ u ′ ( )) , v +1 ℎ ) ≤ 1 ( 1 2 1 ℎ 2 ||u ′ || 2 2 ( , +1; 1 0 (Ω) 3 ) + 1 2 ||v +1 ℎ || 2 0,Ω
) .

The second term :

2 2 ||u ′′ || ∞ (0, ; 2 (Ω) 3 ) ||v +1 ℎ || 0,Ω ≤ 2 { 1 2 2 3 ||u ′′ || 2 ∞ (0, ; 2 (Ω) 3 ) + 2 2 ||v +1 ℎ || 2 0,Ω } .
The third term :

3 ℎ||u( +1 )|| 2,Ω ||curl v +1 ℎ || 0,Ω ≤ 3 { 2 2 3 ℎ 2 ||u|| 2 ∞ (0, ; 2 (Ω) 3 ) + 3 2 ||curl v +1 ℎ || 2 0,Ω } .
The last term: for all functions v +1 ℎ of 0ℎ (resp ℎ ), we define +1 ℎ in 0ℎ (resp. ℎ ) by

(∇ +1 ℎ , ∇ ℎ ) = (v +1 ℎ , ∇ ℎ ) ∀ ℎ ∈ 0ℎ (resp. ℎ ) ,
and set w +1 

(∇( ( +1 ) -+1 ℎ ), v +1 ℎ ) = (∇( ( +1 ) -+1 ℎ ), w +1 ℎ ) ≤ 4 ( 1 2 4 ||∇( ( +1 ) -+1 ℎ )|| 2 0,Ω + 4 2 ||curl v +1 ℎ || 2 0,Ω
) .

Taking all the last inequality, summing over from 0 to -1, we obtain by choosing

1 = 1 8 1 ; 2 = 1 8 2 , 3 = 2 3 , 4 = 2 4 : 1 2 ||v ℎ || 2 0,Ω + 1 2 -1 ∑ =0 ||(v +1 ℎ -v ℎ )|| 2 0,Ω + 2 -1 ∑ =0 ||curl (v +1 ℎ )|| 2 0,Ω ≤ (ℎ 2 + 2 ) + 1 8 sup 1≤ ≤ -1 ||v +1 ℎ || 2 0,Ω ,
which leads to :

3 8 sup 1≤ ≤ -1 ||v +1 ℎ || 2 0,Ω + 1 2 -1 ∑ =0 ||(v +1 ℎ -v ℎ )|| 2 0,Ω + 2 -1 ∑ =0 ||curl (v +1 ℎ )|| 2 0,Ω ≤ ′ (ℎ 2 + 2 ).
We obtain the result by using the triangular inequality:

||u( +1 ) -u +1 ℎ || 0,Ω ≤ ||u( +1 ) -ℎ u( +1 )|| 0,Ω + || ℎ u( +1 ) -u +1 ℎ || 0,Ω ,
and remarking that:

||(u( +1 ) -u +1 ℎ ) -(u( ) -u ℎ )|| 2 0,Ω ≤ 2|| ∫ +1 (u ′ ( ) -ℎ u ′ ( )) || 2 0,Ω + 2||v +1 ℎ -v ℎ || 2 0,Ω ≤ ℎ 2 ||∇u ′ || 2 2 ( , +1; 2 (Ω) 3 ) + 2||v +1 ℎ -v ℎ || 2 0,Ω .

□

Remark: We denote by u ℎ and ℎ the time dependent functions which take in the interval [ , +1 ] the values:

u ℎ ( ) = -(u +1 ℎ -u ℎ ) + u ℎ , ℎ ( ) = -( +1 ℎ -ℎ ) + ℎ .
We have, with some regularities over (u, ), the same a priori estimates as the last theorem:

||∇( -ℎ )|| 2 ∞ (0, ; 2 (Ω)) ≤ (ℎ 2 + 2 ), (4.6) ||u -u ℎ || 2 ∞ (0, ; 2 (Ω) 3 ) + ||curl (u -u ℎ )|| 2 2 (0, ; 2 (Ω) 3 ) ≤ ( ℎ 2 + 2 ) . (4.7) 
If fact, it suffices to use the inequality:

|∇( ( ) -ℎ ( ))| ≤ |∇( ( ) -( +1 ))| + |∇( ( +1 ) -+1 ℎ )| + |∇( +1 ℎ -ℎ ( ))|,
and remark that:

|∇( +1 ℎ -ℎ ( ))| ≤ |∇( +1 ℎ -ℎ )| ≤ |∇( +1 ℎ -( +1 ))| + |∇( ( +1 ) -( ))| + |∇( ( ) -ℎ )|.

A posteriori error analysis

We now intend to prove a posteriori error estimates between the exact solution (u, ) of the problem (2.8)-(2.9) and the numerical solution (u ℎ , ℎ ) of the problem (3.8)-(3.9). By the same way, we can prove a posteriori error estimates between the solution (u, ) of the exact problem (2.10)-(2.11) and (u ℎ , ℎ ) of the numerical problem (3.10)- (3.11). In all the rest of the paper, we suppose that f ∈ ∞ (0, ; (div, Ω)).

We first introduce the space ℎ = {g ℎ ∈ 2 (Ω) 3 ; ∀ ∈ ℎ , g ℎ | ∈ IP 0 ( )}, and we fix an approximation ℎ (f ) of the data f in ℎ .

Next, we denote by ℎ the set of all faces of the elements of ℎ that are not contained in Γ. For every element in ℎ , we denote by the set of faces of that are not contained in Γ, Δ the set of union of elements of ℎ that intersect , Δ the union of elements of ℎ that intersect the face , ℎ the diameter of and ℎ the diameter of the face . Also, n stands for the unit outward normal vector to on ∂ and [⋅] the jump through the face of .

For the demonstration of the next theorems, we introduce for an element of ℎ , the bull function (resp. of the face ) which is equal to the product of the + 1 barycentric coordinates associated with the vertices of (resp. of ) and ℒ the lifting operator from polynomials defined on into polynomials defined on the elements and ′ contained , which is constructed by affine transformations from a fixed operator on the reference element.

Property 5.1. Denoting by ( ) the polynomial of degrees on , we have ∀ polynom of ( )

{ || || 0, ≤ || 1/2 || 0, ≤ ′ || || 0, | | 1, ≤ ℎ -1 || || 0, (5.1) 
Property 5.2. Denoting by ( ) the polynomial of degrees on , we have

∀ polynom of ( ) ∥ ∥ 0, ≤∥ 1/2 ∥ 0, ≤ ′ ∥ ∥ 0, ,
and ∀ polynom of ( ) which vanishes on ∂ , is a element which contains , we have

∥ ℒ ∥ 0, +ℎ | ℒ | 1, ≤ ℎ 1/2 ∥ ∥ 0, .
We denote by ℎ the Clément operator [START_REF] Clément | Approximation by finite element functions using local regularisation[END_REF]. We have for all function

∈ 1 0 (Ω), ℎ ∈ 0ℎ verifies ∥ -ℎ ∥ 0, ≤ ℎ ∥ ∥ 1,Δ , ∥ -ℎ ∥ 0, ≤ ℎ 1/2 ∥ ∥ 1,Δ . (5.2)
Furtheremore, we denote by ℛ ℎ the Raviart-Thomas operator: for any smooth enough vectorial function v which is divergence-free in Ω, ℛ ℎ v belongs to 0ℎ and satisfies

∀ ∈ ℎ , ∫ (v -ℛ h v).n = 0.
Moreover, this operator satisfies, see [START_REF] Raviart | A mixed finite element method for second order elliptic problems,Mathematical Aspects of Finite Element Methods[END_REF]: ∀v in 1 (Ω) 3 and ∀ in ℎ ,

∥ v -ℛ ℎ v ∥ 0, ≤ ℎ ∥ v ∥ 1, , ∥ v -ℛ ℎ v ∥ 0, ≤ ℎ 1/2 ∥ v ∥ 1,Δ . (5.3)
Let us begin with a posteriori error for the pressure. We introduce the function:

f ( ) = -(f ( +1 ) -f ( )) + f ( ) ∀ ∈ [ , +1 ],
and we deduce that:

(∇ ℎ ( ) -f ( ), ∇ ℎ ( )) = 0.
So, we have:

∀ ( ) ∈ 1 0 (Ω) (resp. 1 (Ω)/IR) (∇( ( ) -ℎ ( )), ∇ ( )) = (f ( ) -∇ ℎ ( ), ∇ ( )) = (f ( ) -f ( ), ∇ ( )) + (f ( ) -∇ ℎ ( ), ∇( ( ) -ℎ ( ))).
(5.4) We define the error indicator by

2 , = ∑ ∈ ℎ ∥ [( ℎ f -∇ ℎ ).n] ∥ 2 2 ( , +1; 2 ( )) .
Lemma 5.3. The following estimate hold

||∇( -ℎ )|| 2 2 (0, ; 2 (Ω)) ≤ { -1 ∑ =0 ∑ ∈ ℎ ( 2 , + ||f -f || 2 2 ( , +1; 2 ( ) 3 ) +ℎ 2 ∥ div f ∥ 2 2 ( , +1; 2 ( ) 3 ) + ∑ ∈ ℎ ∥ [(f -ℎ f ).n] ∥ 2 2 ( , +1; 2 ( ))
)} .

Proof: For any ℎ ( ) ∈ 0ℎ , we have

(∇( ( ) -ℎ ( )), ∇ ( )) = (f ( ) -f ( ), ∇ ( )) + (f ( ) -ℎ f ( ), ∇( ( ) -ℎ ( ))) + ( ℎ f ( ) -∇ ℎ ( ), ∇( ( ) -ℎ ( ))) = ∑ ∈ ℎ ( ∫ (f ( ) -f ( ))∇ ( ) + ∫ (f ( ) -ℎ f ( ))∇( ( ) -ℎ ( )) + ∫ ( ℎ f ( ) -∇ ℎ ( ))∇( ( ) -ℎ ( )) ) = ∑ ∈ ℎ { ∫ (f ( ) -f ( ))∇ ( ) - ∫ div f ( ) ( ( ) -ℎ ( )) + 1 2 ∑ ∈ ∫ ( [(f ( ) -ℎ f ( )).n]( ( ) -ℎ ( )) + [( ℎ f ( ) -∇ ℎ ( )).n]( ( ) -ℎ ( ))
)} .

(5.5) We take ( ) = ( ( )ℎ ( )) and ℎ ( ) = ℎ ( ), the image of ( ) by the Clément type regularisation operator, and we obtain:

||∇ ( )|| 2 2 (Ω) ≤ ∑ ∈ ℎ { 1 2 1 ( ||f ( ) -f ( )|| 2 0, + 1 2 1 ||∇ ( )|| 2 0,
)

+ ( 1 2 2 ℎ 2 || div f ( )|| 2 0, + 1 2 2 ||∇ ( )|| 2 0,Δ ) + ∑ ∈ ( ( 1 
2 3 ℎ ||[(f ( ) -ℎ f ( )).n]|| 2 0, + 1 2 3 ||∇ ( )|| 2 0,Δ ) + ( 1 2 4 ℎ ||[( ℎ f ( ) -∇ ℎ ( )).n]|| 2 0, + 1 2 4 ||∇ ( )|| 2 0,Δ
) )} .

(5.6)

As Δ ⊂ Δ and after a suitable choice of , = 1, 2, 3, 4, we integrate between and +1 and we sum over from 0 to -1 to obtain the result. □ Proposition 5.4. The error indicators verify the following optimality conditions

2 , ≤ ′ ( | -ℎ | 2 2 ( , +1; 1 (Δ )) +||f -f || 2 2 ( , +1; 2 (Δ ) 3 ) +ℎ 2 ∥ div f ∥ 2 2 ( , +1; 2 (Δ )) + ∑ ∈ ℎ ∥ [(f -ℎ f ).n] ∥ 2 2 ( , +1 ;( 2 ( )) 3 )
) .

(5.7)

Proof: We consider the equation (5.5) with ℎ = 0 and we take (

) = ( ) = ℒ ([( ℎ f ( ) - ∇ ℎ ( )).n] ): ∫ ∪ ′ ∇( ( ) -ℎ ( ))∇ ( ) = ∫ ∪ ′ (f ( ) -f ( )) ∇ ( ) - ∫ ∪ ′ div f ( ) ( ) + 1 2 ∫ ( [(f ( ) -ℎ f ( )).n] ( ) + [( ℎ f ( ) -∇ ℎ ( )).n] 2 ) , (5.8 
) then by using the properties 5.1 and 5.2

∥ [( ℎ f ( ) -∇ ℎ ( )).n] ∥ 2 0, ≤ ′ ( ℎ -1 | ( ) -ℎ ( )| 2 1, ∪ ′ + ℎ -1 ||f ( ) -f ( )|| 2 0, ∪ ′ +ℎ ∥ div f ( ) ∥ 2 0, ∪ ′ + ∥ [(f ( ) -ℎ f ( )).n] ∥ 2 0,
) , multiplying by ℎ , integrating over from to +1 and summing over , we obtain the result. □ Now, let us establish a posteriori error for the velocity. The error function u( ) -u ℎ ( ) belongs to 0 (curl, Ω), there exists a function ( ) ∈ 1 0 (Ω) solution of the problem:

∀ ∈ 1 0 (Ω), ∫ Ω ∇ ( )∇ = ∫ Ω (u( ) -u ℎ ( ))∇ .
Then the function w( ) = (u( )-u ℎ ( ))-∇ ( ) belongs to 0 and we have curl w( ) = curl (u( )-u ℎ ( )). We obtain

∥ u( ) -u ℎ ( ) ∥ 2 0,Ω =∥ ∇ ( ) ∥ 2 0,Ω + ∥ w( ) ∥ 2 0,Ω , ∥ curl (u( ) -u ℎ ( )) ∥ 2 0,Ω =∥ curl w( ) ∥ 2 0,Ω .
(5.9)

In order to find the upper and lower bounds of the velocity, we start by finding the upper and lower bounds of the right hand sides of the last equations.

For the first term of the right hand side of (5.9), we have for a ∈ [ , +1 ] and ∀ ( )

∈ 1 0 (Ω), ∫ Ω ∇ ( )∇ ( ) = ∫ Ω (w( ) + ∇ ( ))∇ ( ) = ∫ Ω (u( ) -u ℎ ( ))∇ ( ) = - ∫ Ω u ℎ ( )∇ ( ) = - ∫ Ω u ℎ ( )∇( ( ) -ℎ ( )) ∀ ℎ ( ) ∈ 0ℎ ,
then, using the fact that div u ℎ ( ) = 0 on every element ∈ ℎ , we have

∫ Ω ∇ ( )∇ ( ) = - 1 2 ∑ ∈ ℎ ( ∑ ∈ ∫ [u ℎ ( ).n]( ( ) -ℎ ( )) ) . (5.10) 
The same steps with ′ ( ) gives:

∫ Ω ∇ ′ ( )∇ ( ) = - 1 2 ∑ ∈ ℎ ( ∑ ∈ ∫ [u ′ ℎ ( ).n]( ( ) -ℎ ( )) ) , (5.11) 
with

u ′ ℎ ( ) = u +1 ℎ -u ℎ for ∈ [ , +1
[ for all = 0, . . . , -

We introduce the indicators

2 , = ∑ ∈ ℎ ( ∥ [u ℎ .n] ∥ 2 ∞ ( , +1; 2 ( )) + ∥ [u ′ ℎ .n] ∥ 2 2 ( , +1 ; 2 ( )) 
) .

(5.12)

Theorem 5.5. The following bounds hold

-1 ∑ =0 ( ||∇ || 2 ∞ ( , +1; 2 (Ω) 3 ) + ||∇ ′ || 2 2 ( , +1; 2 (Ω) 3 ) ) ≤ 1 ( -1 ∑ =0 ∑ ∈ ℎ 2 ,
) ,

and 2 , ≤ 2 ( ||∇ || 2 ∞ ( , +1; 2 (Δ ) 3 ) + ||∇ ′ || 2 2 ( , +1; 2 (Δ ) 3 ) ) . (5.13) 
Proof: For the upper bound, first we take = ( ) and ℎ = ℎ in (5.10) and integrate over from to +1 , and second, we take = ′ ( ) and ℎ = ℎ in (5.11), and we obtain the result after summing over .

In order to find the lower bound, we take in the equation (5.10) (resp. (5.11)), ℎ = 0 and =

ℒ ([u ℎ ( ).n] ) (resp. = ℒ ([u ′ ℎ ( ).n]
)) and we obtain by using the property 5.2

∥ [u ℎ ( ).n] ∥ 2 0, ≤ 2 ( ℎ -1 ||∇ ( )|| 2 0, ∪ ′ ) ; ∥ [u ′ ℎ ( ).n] ∥ 2 0, ≤ 2 ( ℎ -1 ||∇ ′ ( )|| 2 0, ∪ ′ ) ;
which leads, after summing over ∈ , to

2 , ≤ 2 ( ||∇ || 2 ∞ ( , +1; 2 (Δ ) 3 ) + ||∇ ′ || 2 2 ( , +1; 2 (Δ ) 3 )
) .

(5.14) □ Now, we will bound the second and third terms of the right hand side of (5.9): For ∈ [ , +1 [, ∀v( ) ∈ 0 (curl, Ω):

( (u -u ℎ )( ), v( )) + (curl (u( ) -u ℎ ( )), curl v( )) + (∇( ( ) -ℎ ( )), v( )) = (f ( ), v( )) - 1 (u +1 ℎ -u ℎ , v( )) -(curl u ℎ ( ), curl v( )) -(∇ ℎ ( ), v( )).
(5.15)

We introduce the residual (u ℎ ) ∈ 2 (0, ; ( 0 (curl, Ω)) ′ ): for ∈ [ , +1 [, ∀v( ) ∈ 0 (curl, Ω)

⟨ (u ℎ )( ), v( )⟩ = (f ( ), v( )) -( u ℎ ( ), v( )) -(curl u ℎ ( ), curl v( )) -(∇ ℎ ( ), v( )).
(5.16) Using (3.6), we introduce the space residual ℎ and the time residual :

(u ℎ ) = f -f ( +1 ) + ℎ (u ℎ ) + (u ℎ ), (5.17) 
with, for ∈ [ , +1 [, ∀v ℎ ( ) ∈ 0 (curl, Ω):

⟨ ℎ (u ℎ )( ), v( )⟩ = (f ( +1 ) - 1 (u +1 ℎ -u ℎ ) -∇ +1 ℎ , v( )) -(curl u +1 ℎ , curl v( )) = (f ( +1 ) - 1 (u +1 ℎ -u ℎ ) -∇ +1 ℎ , v( ) -v ℎ ( )) -(curl u +1 ℎ , curl (v( ) -v ℎ ( )) = ∑ ∈ ℎ { ∫ (f ( +1 ) - 1 (u +1 ℎ -u ℎ ) -∇ +1 ℎ )(v( ) -v ℎ ( )) + 2 ∑ ∈ ∫ ([curl u +1 ℎ × n])(v( ) -v ℎ ( )) } , (5.18) ⟨ (u ℎ )( ), v( )⟩ = (curl (u +1 ℎ -u ℎ ( )), curl v( )) + (∇( +1 ℎ -ℎ ( )), v( )) = ∑ ∈ ℎ { ∫ ∇( +1 ℎ -ℎ ( ))v( ) + ∫ curl (u +1 ℎ -u ℎ ( )) curl v( ) } . (5.19) 
We introduce, for each ∈ ℎ , the indicators:

2 , = ℎ 2 || ℎ f ( +1 ) -1 (u +1 ℎ -u ℎ ) -∇ +1 ℎ || 2 0, + ∑ ∈ ℎ ||[curl u +1 ℎ × n]|| 2 0, , 2 
, = ||curl (u +1 ℎ -u ℎ )|| 2 0, . (5.20) 
Theorem 5.6. We have the upper bound

||w|| 2 ∞ (0, ; 2 (Ω) 3 ) + ||curl w|| 2 2 (0, ; 2 (Ω) 3 ) + ||w ′ || 2 2 (0, ; 2 (Ω) 3 ) ≤ -1 ∑ =0 ( ||f -f ( +1 )|| 2 2 ( , +1; 2 (Ω) 3 ) + ∑ ∈ ℎ ( ℎ 2 || ℎ f ( +1 ) -f ( +1 )|| 2 2 ( ) 3 + 2 , + 2 
,
) ) .

Proof: First, we consider the equations (5.15) and (5.17) and the definition of (u ℎ ), we replace u( ) -u ℎ ( ) = w( ) + ∇ ( ) and v( ) = w( ), integrate over from to +1 , sum over from 0 to -1 and using the theorem 2.1:

1 2 ||w( )|| 2 0,Ω + ||curl w|| 2 2 (0, ; 2 (Ω) 3 ) ≤ ( -1 ∑ =0 ||f -f ( +1 )|| 2 ( , +1; 2 (Ω) 3 ) +|| ℎ (u ℎ )|| 2 (0, ; ′ 0 ) + || (u ℎ )|| 2 (0, ; ′ 0 ) ) ||curl w|| 2 (0, ; 2 (Ω) 3 ) , (5.21) 
which leads to

||w|| 2 ∞ (0, ; 2 (Ω) 3 ) + ||curl w|| 2 2 (0, ; 2 (Ω) 3 ) ≤ ′ ( -1 ∑ =0 ||f -f ( +1 )|| 2 2 ( , +1; 2 (Ω) 3 ) + || ℎ (u ℎ )|| 2 2 (0, ; ′ 0 ) + || (u ℎ )|| 2 2 (0, ; ′ 0 )
) .

(5.22)

We repeat the same procedure with v( ) = w ′ ( ) and combining the tow steps:

||w|| 2 ∞ (0, ; 2 (Ω) 3 ) + ||curl w|| 2 2 (0, ; 2 (Ω) 3 ) + ||w ′ || 2 2 (0, ; 2 (Ω) 3 ) ≤ ′′ ( -1 ∑ =0 ||f -f ( +1 )|| 2 2 ( , +1; 2 (Ω) 3 ) + || ℎ (u ℎ )|| 2 2 (0, ; ′ 0 ) + || (u ℎ )|| 2 2 (0, ; ′ 0 )
) .

(5.23)

To find the upper bound of w, it suffices to find the upper bound of the operator ℎ and . We take in the equation (5.18) v( ) ∈ 0 and v ℎ ( ) = ℛ ℎ v( ), we integrate over from to +1 and we sum over from 0 to -1. We obtain, using the properties of ℛ ℎ and the theorem 2.1, the upper following bound:

|| ℎ (u ℎ )|| 2 2 (0, ; ′ 0 ) ≤ 1 -1 ∑ =0 ∑ ∈ ℎ ( ℎ 2 || ℎ f ( +1 ) -f ( +1 )|| 2 2 ( ) 3 + 2 , ) . 
(5.24)

Similarly, we take the equation (5.19) with v( ) ∈ 0 ; we integrate over from to +1 and we sum over from 0 to -1. We obtain:

|| (u ℎ )|| 2 2 (0, ; ′ 0 ) ≤ 2 -1 ∑ =0 ∑ ∈ ℎ ∫ +1 ( +1 -) 2 2 ||curl (u +1 ℎ -u ℎ )|| 2 2 ( ) 3 ≤ 2 3 -1 ∑ =0 ∑ ∈ ℎ 2 , (5.25) 
The formulas (5.23), (5.24) and (5.25) give the result. □

Next, we will show some properties of the operator ℎ . To do that, we introduce, for any element , the operators:

ℎ , = ℎ f ( +1 ) -1 (u +1 ℎ -u ℎ ) -∇ +1 ℎ , ℎ , = [curl u +1 ℎ × n] , (5.26) 
and, for some 1 > and 2 > 0:

= ∑ ∈ ℎ , where , = 1 ℎ 2 ℎ , + 2 ∑ ∈ ℎ ℒ ( ℎ ,
).

Theorem 5.7. There exist constants 1 † and 2 † such that, on each interval [ , +1 ], the following estimates, for some , hold:

|| || 2 0,Ω ≤ 1 † ∑ ∈ ℎ ℎ 2 2 , , (5.27 
)

||curl || 2 0,Ω ≤ 2 † ∑ ∈ ℎ 2 , , (5.28) 
⟨ ℎ (u ℎ ), ⟩ ≥ (f ( +1 ) -ℎ f ( +1 ), ) + ∑ ∈ ℎ 2 , . (5.29) 
Proof: Using the properties 5.2 and 5.1 and the fact that ℎ ≤ ℎ , we have:

|| || 2 0,Ω = ∑ ∈ ℎ || || 2 0, = ∑ ∈ ℎ ( 2 1 ℎ 4 ||( ℎ , )|| 2 0, + 2 2 ∑ ∈ ∑ ′ ∈ ℎ ℎ ′ ((ℒ( ℎ , )), (ℒ( ℎ , ′ ′ ))) +2 1 2 ∑ ∈ ℎ 2 ℎ (( ℎ , ), (ℒ( ℎ , ))) ) ≤ 1 † ∑ ∈ ℎ ℎ 2 2 , , and 
||curl || 2 0,Ω = ∑ ∈ ℎ ||curl || 2 0, = ∑ ∈ ℎ ( 2 1 ℎ 4 ||curl ( ℎ , )|| 2 0, + 2 2 ∑ ∈ ∑ ′ ∈ ℎ ℎ ′ (curl (ℒ( ℎ , )), curl (ℒ( ℎ , ′ ′ ))) +2 1 2 ∑ ∈ ℎ 2 ℎ (curl ( ℎ , ), curl (ℒ( ℎ , ))) ) ≤ 2 † ∑ ∈ ℎ 2 , .
Furthermore, we consider the equation (5.18) with v( ) = and v ℎ ( ) = 0:

⟨ ℎ (u ℎ )( ), ⟩ = (f ( +1 ) -ℎ f ( +1 ), ) + ∑ ∈ ℎ ( ℎ , , ) + 2 ∑ ∈ ℎ ∑ ∈ ( ℎ , , ) = (f ( +1 ) -ℎ f ( +1 ), ) + 1 ∑ ∈ ℎ ℎ 2 ( ℎ , , ℎ , ) +2 2 ∑ ∈ ℎ ∑ ∈ ℎ ( ℎ , , ℒ ( ℎ , )) + 2 ∑ ∈ ℎ ∑ ∈ ℎ ( ℎ , , ℎ , ) . 
(5.30)

We have by using the properties 5.2 and 5.1, and remarking that ℎ ≤ ℎ :

⟨ ℎ (u ℎ )( ), ⟩ ≥ (f ( +1 ) -ℎ f ( +1 ), ) + 1 1 ∑ ∈ ℎ ℎ 2 || ℎ , || 2 0, -2 2 2 ∑ ∈ ℎ ∑ ∈ ℎ ℎ 1/2 || ℎ , || 0, || ℎ , || 0, + 2 3 ∑ ∈ ℎ ∑ ∈ ℎ || ℎ , || 2 0, ≥ (f ( +1 ) -ℎ f ( +1 ), ) + 1 1 ∑ ∈ ℎ ℎ 2 || ℎ , || 2 0, + 2 3 ∑ ∈ ℎ ∑ ∈ ℎ || ℎ , || 2 0, -2 2 2 ∑ ∈ ℎ ∑ ∈ { 1 2 ℎ 2 || ℎ , || 2 0, + 1 2 ℎ || ℎ , || 2 0, } ≥ (f ( +1 ) -ℎ f ( +1 ), ) + ( 1 1 - 4 2 2 ) ∑ ∈ ℎ ℎ 2 || ℎ , || 2 0, + 2 ( 3 -2 ) ∑ ∈ ℎ ∑ ∈ ℎ || ℎ , || 2 0, . (5.31) 
We choice = ) to obtain the third estimate. □ } .

(5.32)

Proof: We take the definition of with v( ) = v ℎ = (u +1 ℎ -u ℎ ) ∈ 0ℎ , we integrate from to +1 and we obtain: We deduce: } .

√ 2 1/2 ||curl (u +1 ℎ -u ℎ )|| 0,Ω ≤ ′ { ||u ′ -u ′ ℎ || 2 (
(5.34)

Proof: We consider the inequality (5.29):

∑ ∈ ℎ 2 , ≤ ⟨ ℎ (u ℎ ), ⟩ -(f ( +1 ) -ℎ f ( +1 ), ) ≤ ⟨ (u ℎ ), ⟩ -⟨ (u ℎ ), ⟩ -(f ( ) -f ( +1 ), ) -(f ( +1 ) -ℎ f ( +1 ), ) (5.35) 
We integrate the resulting inequality from to +1 . We thus arrive at: (5.36)

  ) and ∈ ∞ (0, ; 2 (Ω)). Then they verify with the numerical solution (u +1 ℎ , +1 ℎ ) of the problem (3.8)-(3.9) (resp. (3.10)-(3.11)) the error estimates :

.

  Then w +1 ℎ belongs to 0ℎ (resp. ℎ ) and curl w +1 ℎ = curl v +1 ℎ . Then we obtain using the theorem 3.2 and the relation (4.3) :

Theorem 5 . 8 . 1 ∑ ∈ ℎ 2 , ≤ 1 {

 58121 The following upper bound estimate holds for a positive constant ||u′ -u ′ ℎ || 2 2 ( , +1; 2 (Ω) 3 ) + ||∇(ℎ )|| 2 2 ( , +1; 2 (Ω) 3 ) +||curl (u -u ℎ )|| 2 2 ( , +1; 2 (Ω) 3 ) + ||f -f ( +1 )|| 2 2 ( , +1; 2 (Ω) 3 )

  ℎ )( ), v ℎ ⟩| + ∫ +1 |⟨ ℎ (u ℎ )( ), v ℎ ⟩| + ∫ +1 |(f ( ) -f ( +1 ), v ℎ )| + ∫ +1 |(∇( +1 ℎ ℎ ( )), v ℎ )|.We will bound terms of the right side. We remark that (∇( +1 ℎ ℎ ( )), v ℎ ) = 0. The definition of (u ℎ ) and ℎ (u ℎ ), and the fact that v ℎ ∈ 0ℎ give⟨ ℎ (u ℎ )( ), v ℎ ⟩ = 0,and∫ +1 |⟨ (u ℎ )( ), v ℎ ⟩| ≤ ( ||u ′ -u ′ ℎ || 2 ( , +1; 2 (Ω) 3 ) + ||∇(ℎ )|| 2 ( , +1; 2 (Ω) 3 ) + ||curl (u -u ℎ )|| 2 ( , +1; 2 (Ω) 3 ) ) ||curl v ℎ || 2 ( , +1; 2 (Ω) 3 ) ,and∫ +1 |f ( ) -f ( +1 ), v ℎ )| ≤ ||(f -f ( +1 )|| 2 ( , +1; 2 (Ω) 3 ) ||v ℎ || 2 ( , +1; 2 (Ω) 3 ) ≤ ||(f -f ( +1 )|| 2 ( , +1; 2 (Ω) 3 ) ||curl v ℎ || 2 ( , +1; 2 (Ω) 3 ) .

  +1 )ℎ f ( +1 ), ).

  , +1; 2 (Ω) 3 ) + ||∇(ℎ )|| 2 ( , +1; 2 (Ω) 3 ) + ||curl (u -u ℎ )|| 2 ( , +1; 2 (Ω) 3 ) + ||f -f ( +1 )|| 2 ( , +1; 2 (Ω) 3 ) } . +1 )ℎ f ( +1 )|| 2 2 ( , +1; 2 (Ω) 3 ) + ||f -f ( +1 )|| 2

						(5.33)
	which leads to the result.	□
	Theorem 5.9. The following upper bound estimate holds
	∑	2	,	≤ 2	{ ||f (
	∈ ℎ				

2 ( , +1; 2 (Ω)

3 

)

+ ||f ( +1 ) -f ( )|| 2 2 ( , +1; 2 (Ω) 3 ) + ||u ′ -u ′ ℎ || 2 2 ( , +1; 2 (Ω) 3 ) + ||∇(ℎ )|| 2 2 ( , +1; 2 (Ω) 3 ) + ||curl (u -u ℎ )|| 2 2 ( , +1; 2 (Ω) 3 )

Since

is constant with respect to time, we obtain by using theorem 5.7 and remarking that ||∇( +1 ℎ ℎ )|| 0,Ω ≤ || ( +1 ) -( )|| 0,Ω :

and

) 1/2 .

(5.38) Combining the last estimates and using the previous theorem give:

} ,

(5.39) which leads to the result. □ Theorem 5.10. Finally, the pressure and the velocity verify the upper bound:

)} ,

(5.40) and the lower bounds defined by (5.7), (5.13), (5.32) and (5.34).

Conclusion:

We observe that estimate (5.40) is optimal: up to the terms involving the data, the full error is bounded by a constant times the sum of all indicators. Estimates (5.7) and (5.13) are local, i.e., only involve the error in a neighborhood of K or e, and estimates (5.32) and (5.34) are global. The indicator , can be interpreted as a measure for the error of the time-discretization. Correspondingly, it can be used for controlling the step-size in time. On the other hand, the other three indicators , , , and , can be viewed as a measure for the error of the space discretization and can be used to adapt the mesh-size in space.